TWM426883U - LED with high light output - Google Patents

LED with high light output Download PDF

Info

Publication number
TWM426883U
TWM426883U TW100219943U TW100219943U TWM426883U TW M426883 U TWM426883 U TW M426883U TW 100219943 U TW100219943 U TW 100219943U TW 100219943 U TW100219943 U TW 100219943U TW M426883 U TWM426883 U TW M426883U
Authority
TW
Taiwan
Prior art keywords
light
layer
semiconductor layer
emitting diode
type semiconductor
Prior art date
Application number
TW100219943U
Other languages
Chinese (zh)
Inventor
Fang-Yi Li
Han-zhong LIAO
wei-gang Zheng
xi-ming Pan
Original Assignee
Formosa Epitaxy Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Formosa Epitaxy Inc filed Critical Formosa Epitaxy Inc
Priority to TW100219943U priority Critical patent/TWM426883U/en
Publication of TWM426883U publication Critical patent/TWM426883U/en

Links

Landscapes

  • Led Devices (AREA)

Description

M426883 101年.01月10日梭正替換頁 五、新型說明: 【新型所屬之技術領域】 [〇〇〇1] 本創作係有關於一種半導體發光元件,特別是指一 種具高出光之發光二極體。 【先前技術】 [0002] 在製造發光二極體中,能夠穿過可見光譜而操作的M426883 101.01月10日 Shuttle replacement page 5, new description: [New technology field] [〇〇〇1] This creation is about a semiconductor light-emitting component, especially a light-emitting light II Polar body. [Prior Art] [0002] In manufacturing a light-emitting diode, it is capable of operating through a visible spectrum

LED中最重要的材料包含第m-v族的半導體,具體而言 ,:m-v族的半導體包括鎵、鋁、銦及氮的二元、三元及 四元合金、以及嫁、Is、铜及填的二元、三元及四元合 金。發光二極體通常藉由化學氣相沈積法(Chemical Vapor Deposition,CVD)、分子束遙晶法(Molecular Beam Epitaxy,MBE)、或其他的蟲晶技術,前述蟲晶 技術係以藍寶石、碳化矽、或第ΠΙ族氮化物所形成之基 板上進行磊晶成長,而第ΠΙ族磷化物裝置在砷化鎵所形 成之基板上進行蟲晶生長。一般發表*二極體之蟲晶成長 是指,在一基板上沈積至少一η型半導體層,接著在η型 半導體層上沈積一主動層,亦稱為發光層,然後,在主 動層上沈積ρ型半導體層。前述三者之沉積順序可顛倒, 也就是各層的順序,先由使Ρ型半導體層開始沉積,而與 基板相鄰,且η型半導體層沉積於最上層。 發光二極體於通電後,發光二極體之Ρ型半導體層至 Ν型半導體層所含有之兩種不同的載子,即電洞和電子, 在不同的電極電壓作用下,而形成一電流從Ρ型電極往η 型電極流動,當電洞和電子在發光層中相遇而產生耦合 ,電子的能階會在耦合的過程中,自較高之能階降低至 10021994#單編號 A〇lt)1 第3頁/共12頁 1013012388-0 M426883 •101年:0l·月ίο B梭正替換胥 較低的能階’同時電子在能階降低時會以光子的模式釋 出月b里由於光子在半導體内部受到全反射之物理特 欧的衫響,造成發光二極體内僅有部份光子傳導出發光 一極體外’而其餘光子係侷限於發光二極體内傳導進 而文半導體之阻抗特性之影響而轉換成熱能。發光二極 體的發光效☆係、受到發光效率和出光效率的完全影響, 其中發光效率是指輸人至發光二極體的輸人能量與發光 層所產生的光相對比較後所得的比率,其主要是與各層 材料之本身特性和結構特性有關,出光效率係與由發光 一極體内部所產生的光子能傳導至發光二極體外的比例 痛 有關聯’隨著現今光電產業之磊晶技術的進步,各家光 電礙所產出之發光二極體,其本身内部之發光效率可達 80%以上’但是現今發光二極體在出光效率仍遭受瓶頸, 所以發光二極體之出光效率卻仍然偏低 。因此^光電產 業至今對於如何有效提升發光二極體的出光效率而言, 仍然是一重要研發重點。 有鐘於此,本創作提出一種具高出光之發光二極體 ,其改善習知發光二極體的出光效率問題,以增加發光 ’ 二極體效能。 【新型内容】 [0003] 本創作之主要目的,在於提供一種具高出光之發光 二極體,其提供發光二極體提升出光效率。 本創作係提供一種發光二極體,其包含基板、N型半 導體層、發光層、P型半導體層、金屬奈米顆粒層、透明 導電層、第一電極與第二電極。N型半導體層設置於基板 上, 10021994#單编號 ΑΟίοι 發光層設置於N型半導體層上,p型半導體層設置於 第 4 頁 / 共 12 頁 1013012388-0 M426883 101年01月10日修正替換頁 發光層上,金屬奈米顆粒層設置於p型半導體層上,透明 導電層設置於金屬奈米顆粒層上,第一電極與第二電極 分別設置於N型半導體層與透明導電層上。 本創作係另提供一種發光二極體,其包含導電基板 、N型半導體層、發光層、p型半導體層、金屬奈米顆粒 層與電極。其中N型半導體層、發光層、p型半導體層與 金屬奈米顆粒層位於導電基板與電極之間,且N型半導體 層、發光層、P型半導體層、金屬奈米顆粒層與透明導電 層依序堆疊於導電基板上,並將電極設置於透明導電層 上,以供電性連接。 茲為使貴審查委員對本創作之結構特徵及所達成 之功效更有進一步之瞭解與認識,謹佐以較佳之實施例 圖及配合詳細之說明,說明如後: 【實施方式】 [0004] 請參閱第一圖’其為本創作之一實施例之示.意圖。 如圖所示,本創作之具向出光之發光二極體係包含一 基板12、一N型半導體層14、一發光層16、一p型半導體 層18、一金屬奈米顆粒層20、一透明導電声22、一第一 電極24與一第二電極26。 N型半導體膚14係設置於基板12上,發光層16係設 置於部分N型半導體層14上,P型半導體層18設置於發光 層16上,金屬奈米顆粒層20設置於部分p型半導體層18上 ,透明導電層22設置於金屬奈米顆粒層2〇上,第一電極 22與第二電極24分別設置於N型半導體層14與透明導電層 22 <= 10〇21"4产單編號A0101 本實施例之基板12之材料係為選自於A1〇、 第5頁/共12頁 ' 23The most important materials in LEDs include the mv-group semiconductors. Specifically, the mv-group semiconductors include binary, ternary, and quaternary alloys of gallium, aluminum, indium, and nitrogen, as well as marry, Is, copper, and filled. Binary, ternary and quaternary alloys. The light-emitting diode is usually subjected to chemical vapor deposition (CVD), molecular beam epitaxy (MBE), or other insect crystal technology, and the above-mentioned insect crystal technology is sapphire or tantalum carbide. Or epitaxial growth is performed on the substrate formed by the bismuth nitride, and the bismuth phosphide device is grown on the substrate formed by gallium arsenide. Generally speaking, the growth of the crystal of the diode is to deposit at least one n-type semiconductor layer on a substrate, and then deposit an active layer, also called a light-emitting layer, on the n-type semiconductor layer, and then deposit on the active layer. P-type semiconductor layer. The order of deposition of the foregoing three may be reversed, that is, the order of the layers is first deposited by the Ρ-type semiconductor layer adjacent to the substrate, and the n-type semiconductor layer is deposited on the uppermost layer. After the light-emitting diode is energized, the two types of carriers, that is, the holes and electrons, which are contained in the germanium-type semiconductor layer of the light-emitting diode to the germanium-type semiconductor layer, form a current under different electrode voltages. From the Ρ-type electrode to the η-type electrode, when the hole and the electron meet in the luminescent layer to form a coupling, the energy level of the electron will decrease from the higher energy level to 10021994# single number A〇lt in the process of coupling. ) 1 Page 3 / 12 pages 1013012388-0 M426883 • 101 years: 0l·month ίο B shuttle is replacing 胥 lower energy level 'simultaneous electrons will release in the photon mode when the energy level is lowered. The photon is totally reflexed inside the semiconductor, and the part of the photon is transmitted to the outside of the body of the light-emitting diode. The remaining photons are limited to the conduction in the light-emitting diode and the impedance characteristics of the semiconductor. The effect is converted into heat. The luminous efficacy of the light-emitting diode is completely affected by the luminous efficiency and the light-emitting efficiency, wherein the luminous efficiency refers to the ratio obtained by comparing the input energy of the human-to-light-emitting diode with the light generated by the light-emitting layer. It is mainly related to the properties and structural characteristics of the materials of each layer. The light-emitting efficiency is related to the proportional pain caused by the photon energy generated inside the light-emitting diode to the outside of the light-emitting diode. The progress of the light-emitting diodes produced by various photoelectric barriers can achieve an internal luminous efficiency of more than 80%. However, today's light-emitting diodes still suffer from bottlenecks in light-emitting efficiency, so the light-emitting efficiency of the light-emitting diodes is Still low. Therefore, the optoelectronics industry has still been an important research and development focus on how to effectively improve the light-emitting efficiency of light-emitting diodes. In view of this, the present invention proposes a light-emitting diode with a high light output, which improves the light-emitting efficiency of the conventional light-emitting diode to increase the luminous efficiency of the LED. [New Content] [0003] The main purpose of the present invention is to provide a light-emitting diode with high light output, which provides a light-emitting diode to enhance light-emitting efficiency. The present invention provides a light emitting diode comprising a substrate, an N-type semiconductor layer, a light-emitting layer, a P-type semiconductor layer, a metal nanoparticle layer, a transparent conductive layer, a first electrode and a second electrode. The N-type semiconductor layer is disposed on the substrate, and the light-emitting layer is disposed on the N-type semiconductor layer, and the p-type semiconductor layer is disposed on the 4th page/12 pages 1013012388-0 M426883. On the page luminescent layer, the metal nanoparticle layer is disposed on the p-type semiconductor layer, the transparent conductive layer is disposed on the metal nanoparticle layer, and the first electrode and the second electrode are respectively disposed on the N-type semiconductor layer and the transparent conductive layer. The present invention further provides a light-emitting diode comprising a conductive substrate, an N-type semiconductor layer, a light-emitting layer, a p-type semiconductor layer, a metal nanoparticle layer and an electrode. The N-type semiconductor layer, the light-emitting layer, the p-type semiconductor layer and the metal nanoparticle layer are located between the conductive substrate and the electrode, and the N-type semiconductor layer, the light-emitting layer, the P-type semiconductor layer, the metal nano-particle layer and the transparent conductive layer The electrodes are stacked on the conductive substrate in sequence, and the electrodes are disposed on the transparent conductive layer to be electrically connected. In order to give your reviewers a better understanding and understanding of the structural features and the efficacies of the creation, please refer to the preferred embodiment diagram and the detailed description as follows: [Embodiment] [0004] Refer to the first figure 'which is an illustration of one embodiment of the creation. Intent. As shown in the figure, the light-emitting diode system of the present invention comprises a substrate 12, an N-type semiconductor layer 14, a light-emitting layer 16, a p-type semiconductor layer 18, a metal nanoparticle layer 20, and a transparent layer. Conductive sound 22, a first electrode 24 and a second electrode 26. The N-type semiconductor skin 14 is disposed on the substrate 12, the light-emitting layer 16 is disposed on the partial N-type semiconductor layer 14, the P-type semiconductor layer 18 is disposed on the light-emitting layer 16, and the metal nano-particle layer 20 is disposed on the partial p-type semiconductor. On the layer 18, the transparent conductive layer 22 is disposed on the metal nanoparticle layer 2, and the first electrode 22 and the second electrode 24 are respectively disposed on the N-type semiconductor layer 14 and the transparent conductive layer 22 <= 10〇21" Single No. A0101 The material of the substrate 12 of this embodiment is selected from A1〇, page 5/12 pages.

SiC、 1013012388-0 M426883 ^ |-i〇l年Ol·月log俯雜資SiC, 1013012388-0 M426883 ^ |-i〇l年Ol·月log

GaAs、GaN、AIN、GaP、Si、ΖπΟ及Mn〇、m‘v族、n_ VI族、IV族、!y_iv族、非晶體半導體、非結晶體半導體 及上述之任意組合之其中之一。N型半導體層14含有第一 載子,P型半導體層18含有第二載子,藉由摻雜性質的不 同,使第一載子與第二載子分別為電子與電洞。本實施 例之發光層16為一單量子井結構或一多重量子井結構, 藉以限制載子之遷移方向,以提升載子結合率。金屬奈 米顆粒層20設有複數奈米顆粒,該些奈米顆粒之大小係 30奈米以下,例如:奈米銀顆粒。 其中’當第一電極22與第二電極24接通電源,第一 β 電極22與第二電極24之間的電壓差,驅使第一載子自 半導體層14往P型半導體層18遷移,並同時驅使第二載子 自P型半導體層18往N型半導體層14形成,因而讓第一載 子與第二載子於發光層16中結合因而形成電偶極並發光 ’金屬奈米顆粒層20係吸取發光層16的量子井中因第__GaAs, GaN, AIN, GaP, Si, ΖπΟ and Mn〇, m‘v family, n_VI family, IV family,! One of the y_iv group, the amorphous semiconductor, the amorphous semiconductor, and any combination of the above. The N-type semiconductor layer 14 contains a first carrier, and the P-type semiconductor layer 18 contains a second carrier. The first carrier and the second carrier are electrons and holes, respectively, by different doping properties. The luminescent layer 16 of this embodiment is a single quantum well structure or a multiple quantum well structure to limit the migration direction of the carrier to enhance the carrier binding rate. The metal nanoparticle layer 20 is provided with a plurality of nanoparticles having a size of 30 nm or less, for example, nano silver particles. Wherein when the first electrode 22 and the second electrode 24 are powered on, the voltage difference between the first β electrode 22 and the second electrode 24 drives the first carrier to migrate from the semiconductor layer 14 to the P-type semiconductor layer 18, and At the same time, the second carrier is driven from the P-type semiconductor layer 18 to the N-type semiconductor layer 14, so that the first carrier and the second carrier are combined in the light-emitting layer 16 to form an electric dipole and emit a 'metal nanoparticle layer. The 20 series absorbs the luminescent layer 16 in the quantum well due to the first __

載子與第二載子結合所產生之能量,並同時藉由第一載 子與第二載子結合所產生的能量發射出光子,因而提高 光子的產出,再者,由於光子產生的層次部位提升至最. I 上層,以避免層次接面之全反射物理特性降低出光效率 ,也就是說發光二極體1 〇不僅利用發光層16,更另外藉 由金屬奈米顆粒層20發光,更因金屬奈米顆粒層2〇位於p 型半導體層18與透明導電層22之間,而讓自金屬奈米顆 粒層20向外傳導之光子僅須通過透明導電層22或直接由 側面發出,以減少全反射效應的影響。 以上所述’本創作之發光二極體1〇係用以擺脫純粹 以發光層發光的技術概念,並同時藉由發光二極體之發 1013012388-0 10021994#單編號A0101 第6頁/共12頁 M426883 101年01月10日俊正替換頁 光層次邹位的增加,提高發光效率,且因增加的發光層 次部位因位於最上層,而減少全反射物理特性的影響, 以增加出光效率。 請參閱第二圖,其為本創作之另一實施例之側視圖 °其中第一圖與第二圖之差異在於第一圖之發光二極體 10採用同側電極設置,第二圖之發光二極體30採用垂直 電極設置。如圖所示,發光二極體3〇包含一導電基板32 、一N型半導體層34、一發光層36、一P型半導體層38、 —金屬奈米顆粒層4〇、一透明導電層42與一電極44。 由於N型半導體層34、發光層36、P型半導體層38、 金屬奈米顆粒層40與透明導電層42同於前一實施例之N塑 半導體層14、發光層16、P型半導體層18、金屬奈米顆粒 層20與透明導電層22,因此N型半導體層34、發光層36 、P型半導體層38、金屬奈米顆粒層4〇與透明導電層42亦 為依序堆疊於導電基板32上,再者,由於本實施例之發 光一極體30係採用具導電性質之導電基板32,亦即導電 基板32係作為發光二極體3〇之其中一電極,因此發光二 極體30僅設置一電極44於逸明導電層42上,以將導電基 板32與電極44分別耦接炱電源° N型半導體層14含有第一載子’ P型半導體層18含有 第二載子,由於N擎半導擄層14為N型摻雜,p型半導體層 18為P型摻雜,因此第一栽子與第二載子分別為電子與電 洞。本實施例之發光層16為一量子井結構,其可為單一 量子井结構或一多重量孑升、结構’該量子井結構為限制 載子之其中一維遷移方甸,使載子自三維運動受限於二 維運動,因而提升載子結舍率。金屬奈米顆粒層40設有 1013012388-0 1〇〇21994产單編號A0101 第7頁/妗12頁 M426883The carrier and the second carrier combine the energy generated, and at the same time, the photons are emitted by the energy generated by the combination of the first carrier and the second carrier, thereby increasing the photon output, and further, due to the level of photon generation. The upper part is raised to the uppermost layer I to avoid the total reflection physical property of the junction junction to reduce the light extraction efficiency, that is to say, the light-emitting diode 1 〇 not only utilizes the light-emitting layer 16, but also emits light by the metal nano-particle layer 20, Since the metal nanoparticle layer 2 is located between the p-type semiconductor layer 18 and the transparent conductive layer 22, the photons that are conducted outward from the metal nanoparticle layer 20 need only pass through the transparent conductive layer 22 or directly from the side to Reduce the effects of total reflection effects. The above-mentioned 'Light Emitting Diode 1〇 is used to get rid of the technical concept of purely emitting light layer, and at the same time by the light emitting diode 1013012388-0 10021994#单号A0101 Page 6 of 12 Page M426883 On January 10, 101, Junzheng replaced the increase in the light level of the page light level, improved the luminous efficiency, and reduced the influence of the physical characteristics of total reflection due to the increased upper level of the light-emitting layer to increase the light-emitting efficiency. Please refer to the second figure, which is a side view of another embodiment of the present invention. The difference between the first figure and the second figure is that the light-emitting diode 10 of the first figure is disposed with the same side electrode, and the second figure is illuminated. The diode 30 is provided with a vertical electrode. As shown, the LED 3 includes a conductive substrate 32, an N-type semiconductor layer 34, a light-emitting layer 36, a P-type semiconductor layer 38, a metal nanoparticle layer 4, and a transparent conductive layer 42. With an electrode 44. The N-type semiconductor layer 34, the light-emitting layer 36, the P-type semiconductor layer 38, the metal nanoparticle layer 40 and the transparent conductive layer 42 are the same as the N-plastic semiconductor layer 14, the light-emitting layer 16, and the P-type semiconductor layer 18 of the previous embodiment. The metal nanoparticle layer 20 and the transparent conductive layer 22, so that the N-type semiconductor layer 34, the light-emitting layer 36, the P-type semiconductor layer 38, the metal nanoparticle layer 4A and the transparent conductive layer 42 are also sequentially stacked on the conductive substrate. In addition, since the light-emitting body 30 of the present embodiment is a conductive substrate 32 having a conductive property, that is, the conductive substrate 32 is one of the electrodes of the light-emitting diode 3, the light-emitting diode 30 is used. Only one electrode 44 is disposed on the conductive layer 42 to couple the conductive substrate 32 and the electrode 44 respectively. The N-type semiconductor layer 14 contains the first carrier. The P-type semiconductor layer 18 contains the second carrier due to The N-semiconductor layer 14 is N-doped, and the p-type semiconductor layer 18 is P-doped, so the first and second carriers are electrons and holes, respectively. The luminescent layer 16 of the present embodiment is a quantum well structure, which may be a single quantum well structure or a multi-weight soaring structure. The quantum well structure is a one-dimensional migration of the limited carrier, and the carrier is self-dimensional. Movement is limited by two-dimensional motion, thus increasing the carrier rejection rate. The metal nanoparticle layer 40 is provided with 1013012388-0 1〇〇21994 production order number A0101 page 7 / page 12 M426883

-_ι_ο_ι-年舟-,1脅&':修疋替I 複數奈来顆粒’該些奈米顆粒之大小係3〇奈米以下,本 實施例係以奈米銀顆粒為例,但本創作不侷限於此。 當’導電基板32與電極44接通電源,導電基板μ與 電極44之間的電愿差驅使電子自N型半導體層34往p型半 導體層38遷移,並同時驅使電洞自p型半導體層38往^型 半導體層34形成,因而讓第一載子與第二載子於發光層 36中結合而形成電偶極並發光’金屬奈米顆粒層4〇係吸 取發光層36的量子井中因第一載子與第二載子結合所產 生之能量,並同時藉由金屬奈米顆粒層40依據第一載子 與第二載子結合所產生的能量發射出光子,因而提高光 屬 子的產出,再者,由於光子產生的層次部位提升至最上 層,以避免層次接面之全反射物理特性降低出光效率, 也就是說發光二極體30不僅利用發光層36,更另外藉由 金屬奈米顆粒層40發光,更因金屬奈米顆粒層4〇位於p型 半導體層38與透明導電層42之間,而讓自金屬奈米顆粒 層40向外傳導之光子僅須通過透明導電層22或直接由側 面發出,以減少全反射效應的影響。 綜上所述,本創作之具高出光之發光二極體係利用 β 金屬奈米顆粒層設置於Ρ型半導體層上,以在Ρ型半導體 層上形成表面電漿波,並由表面電漿波吸收發光層中經 第一載子與第二載子結合所發出之能量,以藉由該能量 激發出光子,因而增加發光二極體之發光層次部位,用 以提升發光效能,並同時藉由金屬奈米顆粒層位於ρ型半 導體層與透明導電層之間,因而減少光子所需傳導之磊 晶層次,以減少全反射的影響。 雖然本創作已以較佳實施例揭露如上,然其並非用 10_94严號 Α〇101 第8頁/共12頁 1013012388-0 M426883 101年.01月10日慘正替換頁 以限定本創作,任何熟習此技藝者,在不脫離本創作之 精神和範圍内,當可作些許之更動與潤飾,因此本創作 之保護範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 [0005] 第一圖為本創作之一實施例的側視圖;以及 第二圖為本創作之另一實施例之側視圖。 【主要元件符號說明】 [0006] 10 發光二極體 12 基板 14 N型半導體層 16 發光層 18 P型半導體層 20 金屬奈米顆粒層 22 透明導電層 24 第一電極 26 第二電極 30 發光二極體 32 基板 34 N型半導體層 36 發光層 38 P型半導體層 40 金屬奈米顆粒層 42 透明導電層 44 電極 10021994^^^^ A〇101 第9頁/共12頁 1013012388-0-_ι_ο_ι-年舟-,1重量&': repairing for I complex number of nano-particles 'The size of these nano-particles is less than 3 nanometers, this example is based on nano silver particles, but this Creation is not limited to this. When the conductive substrate 32 and the electrode 44 are powered on, the electrical difference between the conductive substrate μ and the electrode 44 drives electrons from the N-type semiconductor layer 34 to the p-type semiconductor layer 38, and simultaneously drives the hole from the p-type semiconductor layer. 38 is formed on the semiconductor layer 34, so that the first carrier and the second carrier are combined in the light-emitting layer 36 to form an electric dipole and emit light. The metal nanoparticle layer 4 is a quantum well in the light-absorbing layer 36. The first carrier and the second carrier combine the generated energy, and at the same time, the photon is emitted by the metal nanoparticle layer 40 according to the energy generated by the combination of the first carrier and the second carrier, thereby improving the photon. Output, in addition, since the layer generated by the photon is raised to the uppermost layer to avoid the total reflection physical property of the junction junction, the light extraction efficiency is lowered, that is, the light-emitting diode 30 not only utilizes the light-emitting layer 36 but also by metal The nanoparticle layer 40 emits light, and the metal nanoparticle layer 4 is located between the p-type semiconductor layer 38 and the transparent conductive layer 42, and the photons that are conducted outward from the metal nanoparticle layer 40 need only pass through the transparent conductive layer. 22 or directly by Face issue, in order to reduce the effect of total reflection effect. In summary, the light-emitting diode system of the present invention is provided on the germanium-type semiconductor layer by using a layer of beta metal nanoparticle to form a surface plasma wave on the germanium-type semiconductor layer, and the surface plasma wave Absorbing the energy emitted by the first carrier and the second carrier in the luminescent layer to excite the photon by the energy, thereby increasing the illuminating level of the illuminating diode to improve the illuminating performance, and at the same time The metal nanoparticle layer is located between the p-type semiconductor layer and the transparent conductive layer, thereby reducing the epitaxial level of photon conduction required to reduce the effect of total reflection. Although the present invention has been disclosed above in the preferred embodiment, it is not limited to the use of 10_94 Yan Α〇 101 page 8 / 12 pages 1013012388-0 M426883 101. January 10 misplaced page to limit the creation, any Those skilled in the art will be able to make some changes and refinements without departing from the spirit and scope of this creation. Therefore, the scope of protection of this creation is subject to the definition of the patent application scope attached. BRIEF DESCRIPTION OF THE DRAWINGS [0005] The first drawing is a side view of one embodiment of the creation; and the second drawing is a side view of another embodiment of the creation. [Main component symbol description] [0006] 10 light-emitting diode 12 substrate 14 N-type semiconductor layer 16 light-emitting layer 18 P-type semiconductor layer 20 metal nano-particle layer 22 transparent conductive layer 24 first electrode 26 second electrode 30 light-emitting two Polar body 32 Substrate 34 N-type semiconductor layer 36 Light-emitting layer 38 P-type semiconductor layer 40 Metal nano-particle layer 42 Transparent conductive layer 44 Electrode 10021994^^^^ A〇101 Page 9 / Total 12 pages 1013012388-0

Claims (1)

M426883 __ Ιϋΐ年01方10日核正替換頁 六、申請專利範圍: 1 . 一種具高出光之發光二極體,其包含: 一基板; 一Ν型半導體層,設置於該基板上; 一發光層,設置於該Ν型半導體層上; 一Ρ型半導體層,設置於該發光層上; 一金屬奈米顆粒層,設置於該Ρ型半導體層上; 一透明導電層,其設置於該金屬奈米顆粒層上; 一第一電極,設置於該Ν型半導體層上;以及 I 一第二電極,設置於該透明導電層上。 2 .如申請專利範圍第1項所述之具高出光之發光二極體,其 中該Ν型半導體層與該Ρ型半導體層分別含有複數第一載子 與複數第二載子。 3. 如申請專利範圍第2項所述之具高出光之發光二極體,其 中該金屬奈米顆粒層於該第一電極與該第二電極通電後, 將該發光層中經複數第一載子與複數第二載子結合所產生 的能量發射出複數光子。 | 4. 如申請專利範圍第1項所述之具高出光之發光二極體,其 中該金屬奈米顆粒層設有複數奈米顆粒,該些奈米顆粒之 大小為3 0奈米以下。 5. 如申請專利範圍第4項所述之具高出光之發光二極體,其 中該些奈米顆粒為複數奈米銀顆粒。 6 .如申請專利範圍第1項所述之具高出光之發光二極體,其 中該基板之材料係選自於Al2〇3、SiC、GaAs、GaN、AlN 、GaP、Si、ZnO 及 MnO、m-V 族、Π-VI 族、IV 族、IV-IV族、非晶體半導體、非結晶體半導體及上述之任意組合 1002199#^^^ Α〇101 第10頁/共12頁 1013012388-0 M426883 101年.01月10日核正替换頁 之其中之一。 •7.如申請專利範圍第1項所述之具高出光之發光二極體,其 中該發光層為一量子井結構。 8 . —種具高出光之發光二極體,其包含: 一導電基板; 一N型+導體層,設置於該導電基板上; 一發光層,設置於該N型半導體層上; * 一P型半導體層,設置於該發光層上; 一金屬奈米顆粒層,設置於該P型半導體層上:以及 • 一電極,設置於該P型半導體層上。 9 .如申請專利範圍第8項所述之具高出光之發光二極體,其 中該N型半導體層與該P型半導體層分別具有複數第一載子 與複數第二載子。 10 .如申請專利範圍第9項所述之具高出光之發光二極體,其 中該金屬奈米顆粒層於該電極與導電基板通電後,將該發 光層中經複數第一載子與複數第二載子結合所產生的能量 發射出複數光子。 11 .如申請專利範圍第8項所述之具高出光之發光二極體,其 中該金屬奈米顆粒層設有複數奈米顆粒,該些奈米顆粒之 大小為3 0奈米以下。 12 .如申請專利範圍第11項所述之具高出光之發光二極體,其 中該些奈米顆粒為複數奈米銀顆粒。 13.如申請專利範圍第8項所述之具高出光之發光二極體,其 中該發光層為一量子井結構。 10021994#單編號 A〇101 第11頁/共12頁 1013012388-0M426883 __ Ιϋΐ年01方10日核正正页6, the scope of application patent: 1. A light-emitting diode with high light, comprising: a substrate; a germanium-type semiconductor layer disposed on the substrate; a layer disposed on the germanium semiconductor layer; a germanium semiconductor layer disposed on the light emitting layer; a metal nanoparticle layer disposed on the germanium semiconductor layer; a transparent conductive layer disposed on the metal On the nanoparticle layer; a first electrode disposed on the germanium semiconductor layer; and a second electrode disposed on the transparent conductive layer. 2. The light-emitting diode of claim 1, wherein the germanium semiconductor layer and the germanium semiconductor layer respectively comprise a plurality of first carriers and a plurality of second carriers. 3. The light-emitting diode of claim 2, wherein the metal nanoparticle layer is energized by the first electrode and the second electrode, The energy generated by the combination of the carrier and the plurality of second carriers emits a plurality of photons. 4. The light-emitting diode of claim 1, wherein the metal nanoparticle layer is provided with a plurality of nano-particles having a size of less than 30 nm. 5. The light-emitting diode of claim 4, wherein the nanoparticle is a plurality of nano-silver particles. 6. The light-emitting diode of claim 1, wherein the material of the substrate is selected from the group consisting of Al2〇3, SiC, GaAs, GaN, AlN, GaP, Si, ZnO, and MnO. mV, Π-VI, IV, IV-IV, amorphous semiconductor, amorphous semiconductor, and any combination of the above 1002199#^^^ Α〇101 Page 10 of 12 1013012388-0 M426883 101 years. On January 10th, one of the replacement pages was verified. 7. The light-emitting diode of claim 1, wherein the luminescent layer is a quantum well structure. 8. A light emitting diode having a high light output, comprising: a conductive substrate; an N-type + conductor layer disposed on the conductive substrate; a light emitting layer disposed on the N-type semiconductor layer; a semiconductor layer disposed on the light emitting layer; a metal nanoparticle layer disposed on the P-type semiconductor layer: and an electrode disposed on the P-type semiconductor layer. 9. The light-emitting diode of claim 8, wherein the N-type semiconductor layer and the P-type semiconductor layer respectively have a plurality of first carriers and a plurality of second carriers. 10. The light-emitting diode of claim 9, wherein the metal nanoparticle layer is electrically connected to the conductive substrate, and the first carrier and the plurality of the light-emitting layer are combined The second carrier combines the generated energy to emit a plurality of photons. 11. The light-emitting diode of claim 8, wherein the metal nanoparticle layer is provided with a plurality of nano-particles having a size of less than 30 nm. 12. The light-emitting diode of claim 11, wherein the nanoparticle is a plurality of nano-silver particles. 13. The light-emitting diode of claim 8, wherein the luminescent layer is a quantum well structure. 10021994#单单 A〇101 Page 11 of 12 1013012388-0
TW100219943U 2011-10-24 2011-10-24 LED with high light output TWM426883U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100219943U TWM426883U (en) 2011-10-24 2011-10-24 LED with high light output

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100219943U TWM426883U (en) 2011-10-24 2011-10-24 LED with high light output

Publications (1)

Publication Number Publication Date
TWM426883U true TWM426883U (en) 2012-04-11

Family

ID=46463997

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100219943U TWM426883U (en) 2011-10-24 2011-10-24 LED with high light output

Country Status (1)

Country Link
TW (1) TWM426883U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI470833B (en) * 2012-06-04 2015-01-21 Phostek Inc Semiconductor device and a method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI470833B (en) * 2012-06-04 2015-01-21 Phostek Inc Semiconductor device and a method of manufacturing the same

Similar Documents

Publication Publication Date Title
US7816700B2 (en) Light emitting diode employing an array of nanorods and method of fabricating the same
US8330174B2 (en) LED having current spreading layer
KR101469979B1 (en) group 3 nitride-based semiconductor light emitting diodes and methods to fabricate them
KR100604406B1 (en) Nitride semiconductor device
CN101867002A (en) Novel semiconductor light-emitting diode
KR20100103866A (en) High-performance heterostructure light emitting devices and methods
KR101552104B1 (en) Semiconductor Light Emitting Device
US20130099248A1 (en) Nitride semiconductor light emitting device
JP7262965B2 (en) semiconductor light emitting device
JP2016518703A (en) Two-step method of depositing transparent conductive film and method of manufacturing GaN nanowire device
US20090057696A1 (en) Light emitting diode device and manufacturing method therof
KR101547969B1 (en) Nano structure and nano device including the same
KR101011108B1 (en) Nitrides light emitting device selectively using the coupling effect between surface plasmons and active layer and method for manufacturing it
CN108565319B (en) Nitride semiconductor structure and semiconductor light emitting element
KR20130050166A (en) Enhanced luminescence light emitting device using surface plasmon resonance
US9130103B2 (en) Light-emitting diode device
US20150179880A1 (en) Nitride semiconductor structure
TWM426883U (en) LED with high light output
CN103199163B (en) Light-emitting diode assembly
TWI785930B (en) Optoelectronic semiconductor device
KR101784815B1 (en) Light emitting device and method for manufacturing the same
US20130153857A1 (en) Semiconductor light emitting device
KR101618005B1 (en) Electrode structure for UV LED and method for manufacturing thereof
KR101992152B1 (en) Light emitting device and light emitting device package
KR101919109B1 (en) Uv light emitting deviceand uv light emitting device package

Legal Events

Date Code Title Description
MK4K Expiration of patent term of a granted utility model