TWM369461U - Photographic lens and photographing apparatus - Google Patents

Photographic lens and photographing apparatus Download PDF

Info

Publication number
TWM369461U
TWM369461U TW98210104U TW98210104U TWM369461U TW M369461 U TWM369461 U TW M369461U TW 98210104 U TW98210104 U TW 98210104U TW 98210104 U TW98210104 U TW 98210104U TW M369461 U TWM369461 U TW M369461U
Authority
TW
Taiwan
Prior art keywords
lens
curvature
radius
image
conditional expression
Prior art date
Application number
TW98210104U
Other languages
Chinese (zh)
Inventor
Taro Asami
Original Assignee
Fujinon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujinon Corp filed Critical Fujinon Corp
Publication of TWM369461U publication Critical patent/TWM369461U/en

Links

Landscapes

  • Lenses (AREA)

Description

-M369461 五、新型說明: 【新型所屬之技術領域】 本創作係關於一種攝影透鏡及攝影裝置,尤指一種利 用 CCD(Charge Coupled Device)或 CMOS(Complementary 5 Metal Oxide Semiconductor)等攝影元件的車載用攝影 機、便攜終端用攝影機、監視攝影機等上所適用的攝影透 鏡以及具備該攝影透鏡的攝影裝置。 【先前技術】 10 15-M369461 V. New description: [New technical field] This is a kind of photographic lens and photographic device, especially for vehicular use of photographic components such as CCD (Charge Coupled Device) or CMOS (Complementary 5 Metal Oxide Semiconductor). An imaging lens to which a camera, a camera for a portable terminal, a surveillance camera, and the like are applied, and an imaging device including the imaging lens. [Prior Art] 10 15

20 近幾年,CCD或CMOS等攝影元件的小型化及高像素 化飛速發展。與此同時,具備這些攝影元件的攝影設備本 體的小型化也發展,對於其所搭載的攝影透鏡,除了良好 的光學性能以外,也要求小型化。另一方面,在車載用攝 影機或監視攝影機等的用途中,例如要求不僅全視場角超 過1 80度的廣角的透鏡並具有高的耐氣候性、小型且具有高 性能的透鏡。 在上述領域,作為過去習知的透鏡片數較少的攝影透 鏡,例如有在下述專利文獻1〜4記載的攝影透鏡。在專利 文獻1〜4記載有包括非球面透鏡的四片結構的攝影透鏡。 專利文獻1 :日本專利公開2007-264676號公報 專利文獻2 :日本專利公開2005-227426號公報 專利文獻3 :日本專利公開2006-259704號公報 專利文獻4 :日本專利公開2007-206516號公報 3 M369461 、但疋,對搭載於車載用攝影機或監視攝影機等的攝影 透鏡的要求每年變得嚴格,在滿足小型、全視場角超過180 度的廣角化的基礎上進而要求到成像區域周邊部為止得到 好的像仁疋,在過去的小型的透鏡系統中,报難同時 5實現全視場角超過刚度的廣角化、和到成像區域周邊部為 止得到良好的像的兩者。特別是,很難實現充分的廣角化 並且到成像區域周邊部為止良好地校正像面彎曲、畸變' 倍率色像差。 10【新型内容】 本創作鑒於上述情況,其目的在於提供一種攝影透鏡 及具備該攝影透鏡的攝影裝置,該攝影透鏡實現全視場角 超過180度的廣角化,並且可以小型地構成且具有良好的光 學性能,特別是可以良好地校正像面彎曲、畸變像差、倍 15率色像差而到成像區域周邊部為止得到良好的像。 本創作的第一攝影透鏡,其中,從物側依次包括負的 第一透鏡、負的第二透鏡、正的第三透鏡、光闌、正的第 四透鏡,第二透鏡、第三透鏡、第四透鏡的各透鏡的至少 單側的面為非球面,第三透鏡的材質對d線的阿貝數為h 20以下’滿足下述條件式(1)。 -0.2<(R3+R4)/(R3-R4)<0.2 ......(!) 其中, R3 .第—透鏡的物側的面的近轴曲率半和, R4 :第二透鏡的像側的面的近軸曲率半彳查。 -M3 69461 4乍的第一攝影透鏡,其中,從物側依次包括:將凹面朝向像側的彎月形狀的負的第一透鏡、物側的面及像=面為非球面的第二透鏡、物側的面為非球面的正的第' 光闌像側的面為非球面的正的第四透鏡,第三'兄Γη材f則線的阿貝數為35以下’滿足下述條件式⑺。 l.〇<D3/f<5.〇 ....⑺其中,20 In recent years, the miniaturization and high pixelation of photographic components such as CCD or CMOS have been rapidly developed. At the same time, the size of the photographic apparatus having these photographic elements has also been reduced, and the photographic lens mounted thereon is required to be miniaturized in addition to good optical performance. On the other hand, in applications such as a vehicle-mounted camera or a surveillance camera, for example, a lens having a wide-angle lens having a full angle of view of more than 180 degrees and having high weather resistance and a small size and high performance are required. In the above-mentioned field, for example, the photographic lens described in Patent Documents 1 to 4 below is known as a photographic lens having a small number of lenses. Patent Documents 1 to 4 disclose a four-piece imaging lens including an aspherical lens. Patent Document 1: Japanese Patent Publication No. 2007-264676 Patent Document 2: Japanese Patent Publication No. 2005-227426 Patent Document 3: Japanese Patent Publication No. 2006-259704 Patent Document 4: Japanese Patent Publication No. 2007-206516 No. 3 M369461 In addition, the demand for an imaging lens mounted on a vehicle-mounted camera or a surveillance camera has become stricter every year, and it has been required to obtain a wide angle and a wide-angle angle of more than 180 degrees. In the small lens system of the past, it is difficult to achieve both the wide angle of the full field of view and the good image of the peripheral portion of the imaging area. In particular, it is difficult to achieve sufficient wide-angle and the image curvature and distortion 'magnification chromatic aberration are well corrected to the peripheral portion of the imaging region. 10 [New Content] In view of the above, an object of the present invention is to provide an imaging lens and an imaging device including the same, which can realize a wide angle of view with a full viewing angle of more than 180 degrees, and can be configured in a small size and has good The optical performance, in particular, can well correct image curvature, distortion, and chromatic aberration of 15 times to obtain a good image until the peripheral portion of the imaging region. The first photographic lens of the present invention, wherein the negative first lens, the negative second lens, the positive third lens, the pupil, the positive fourth lens, the second lens, the third lens, At least one side surface of each lens of the fourth lens is an aspherical surface, and the Abbe number of the material of the third lens to the d line is h 20 or less 'the following conditional expression (1) is satisfied. -0.2<(R3+R4)/(R3-R4)<0.2 (...) where R3 is the semi-axial curvature of the surface of the object side of the first lens, R4: second The paraxial curvature of the image side surface of the lens is half-checked. -M3 69461 The first photographic lens of the fourth embodiment includes, in order from the object side, a negative first lens having a meniscus shape having a concave surface toward the image side, an object side surface, and a second lens having an image surface aspherical surface. The surface on the object side is an aspherical surface on the right side of the 'image' side, which is an aspherical positive fourth lens, and the third 'brothers' n material f has an Abbe number of 35 or less'. The following conditions are satisfied. Formula (7). L.〇<D3/f<5.〇 ....(7) where

f ·整個系統的焦距, U0 10 本一 β蜆的中心厚度。Μ在本創作的第一攝影透鏡及第二攝影透鏡中, 較佳地滿足τ述條件式(3)〜(十並且,作 =是具有下述條件式(3)〜(9)中的任一種結構,=以 八有組合任意的二種以上的結構。 〆f · The focal length of the entire system, U0 10 The thickness of the center of the β蚬. In the first photographic lens and the second photographic lens of the present invention, it is preferable to satisfy the conditional expressions (3) to (10), and to have any of the following conditional expressions (3) to (9). A structure, which has two or more structures in any combination of eight.

2.0<D2/f<5.0 ......(3) 0.01<|fl2/f34|<0.5 ... 2.5<(D4+D5)/f<5.5 .. 2.1<Dl/f<5.5 ......(6) (4) .(5) 10.0<L/f<20.0 ......(7) 1.5<Bf/f<4.0 ......(8) 20 〇.3<(R8-R9)/(R8+R9)<i.〇其中, f:整個系統的焦距, E>2:第一透鏡和第二透鏡的光軸上的空氣『3 Π2 :第一透鏡和第二透鏡的合成焦距,]隔 f34:第三透鏡和第四透鏡的合成焦距, 5 M369461 D4 :第二透鏡和第三透鏡的光軸上的空氣間隔, D5 :第;透鏡的中心厚度, D1 :第一透鏡的中心厚度, L :從第一透鏡的物側的面到像面的光軸上的距離(後 5截距部分為空氣換算長度),2.0<D2/f<5.0 ......(3) 0.01<|fl2/f34|<0.5 ... 2.5<(D4+D5)/f<5.5.. 2.1<Dl/ f<5.5 ......(6) (4) .(5) 10.0<L/f<20.0 ......(7) 1.5<Bf/f<4.0 ...... (8) 20 〇.3<(R8-R9)/(R8+R9)<i.〇 where f: the focal length of the entire system, E>2: air on the optical axes of the first lens and the second lens 『3 Π 2 : composite focal length of the first lens and the second lens, 】 f34: composite focal length of the third lens and the fourth lens, 5 M369461 D4 : air spacing on the optical axes of the second lens and the third lens, D5 : the center thickness of the lens, D1: the center thickness of the first lens, L: the distance from the object side surface of the first lens to the optical axis of the image plane (the latter 5 intercept portion is the air conversion length),

Bf:第四透鏡的像側的面到像面在光軸上的距離(空氣 換算長度), R8 .第四透鏡物側的面的近軸曲率半徑, R9 .第四透鏡像側的面的近轴曲率半徑。 〇 而且,本創作的第二攝影透鏡的第一透鏡的「凹面」、 彎月开> 狀」是關於非球面在近轴區域考慮的。此外,非 球面透鏡的光焦度的符號是在近軸區域考慮的近軸曲率 半徑的符號是將朝物側凸的情況設為正,將朝像側凸的情 況設為負。 15 本創作的攝影裝置的特徵在於,包括上述記載的本創 作的攝影透鏡。 根據本創作的第一攝影透鏡,在最少四片的透鏡系統 中從第二透鏡到第四透鏡的各透鏡設置非球面,適當 地^定整個系統的光焦度配置、光闌的位置、第三透鏡的 材質等的構成’以便滿;^條件式⑴,所以能夠小型地構 成’可以實現全視場角超過180度的廣角化’同時實現良好 像面’曲、畸變像差、倍率色像差而到成像區域周 透鏡Y止可以得到良好的像、且具有高的光學性能的攝影 20 -M369461 根據本創作的第二攝影透鏡,在最少四片的透鏡系統 中’在從第二透鏡到第四透鏡的各透鏡有效地設置非球 面,適當地設定各透鏡的面形狀和光焦度、光闌的位置、 第三透鏡的材質等的構成,以便滿足條件式(2),所以能夠 5小型地構成’可以實現全視場角超過18〇度的廣角化,同時 實現良好地校正像面變曲、畸變像差、倍率色像差而到成 像區域周邊部為止可以得到良好的像、且具有高的光學性 能的攝影透鏡。 、根據本創作的攝影裝置,由於包括本創作的第一攝影 10透鏡或本創作的第二攝影透鏡,所以能夠小型地構成,且 有全視場角超過⑽度的寬的視場角,同時可以到成像區域 周邊部為止得到良好的像。 實施方式】 15 明 以下,參照圖式對本創作的實施方式詳細地進行說Bf: the distance from the image side surface of the fourth lens to the image plane on the optical axis (air conversion length), R8. the paraxial radius of curvature of the surface on the fourth lens object side, R9. The surface of the fourth lens image side Peripheral radius of curvature. Further, the "concave surface" and the meniscus opening of the first lens of the second photographic lens of the present invention are considered in the paraxial region with respect to the aspherical surface. Further, the sign of the power of the aspherical lens is a sign of the paraxial radius of curvature considered in the paraxial region, which is a case where the convexity toward the object side is positive, and the case where the image is convex toward the image side is set to be negative. The photographing apparatus of the present invention is characterized by comprising the photographing lens of the present invention described above. According to the first photographic lens of the present invention, aspherical surfaces are disposed from the second lens to the fourth lens in a minimum of four lens systems, and the power configuration of the entire system, the position of the pupil, and the Since the configuration of the material of the three lenses is sufficient to satisfy the conditional expression (1), it is possible to form a small angle of 'wide angle of view over 180 degrees' while achieving good image surface curvature, distortion aberration, and magnification chromatic image. Poor to the imaging area, the lens Y can be used to obtain a good image and has high optical performance. 20 - M369461 According to the second photographic lens of the present invention, in a minimum of four lens systems, 'from the second lens to Each of the lenses of the fourth lens is provided with an aspherical surface, and the surface shape and the refractive power of each lens, the position of the pupil, and the material of the third lens are appropriately set so as to satisfy the conditional expression (2). The ground structure can achieve a wide angle of full-field angle of more than 18 degrees, and at the same time achieve good correction of image surface distortion, distortion aberration, and chromatic aberration of magnification to the periphery of the imaging area. The good image, and has a high optical properties of the photographic lens. According to the photographing apparatus of the present invention, since the first photographing 10 lens of the present creation or the second photographing lens of the present creation is included, it can be configured in a small size, and has a wide angle of view with a full angle of view exceeding (10) degrees, and at the same time A good image can be obtained up to the peripheral portion of the imaging area. Embodiments 15 Hereinafter, embodiments of the present creation will be described in detail with reference to the drawings.

[攝影透鏡的實施方式] ^首先,一邊參照圖i’一邊對本創作的實施方式的攝 影透鏡進行說明。圖以本創作的實_—的攝影透鏡㈣ 透鏡剖面圖。圖i所示的攝影透鏡1&括本創作的第一實施 方式的攝影透鏡的結構及本創作的第二實施方式的攝影 鏡的結構的兩者。 在圖1中,圖的左側為物側,右側為像側,也一併表 示來自位於無限遠的距離的物點的軸上光束2、全視場角2 7 M369461 ω處的轴外光束3、4。在圖丨中,考慮攝影透鏡丨適用於攝 影裝置的情況’也圖示有配置在包含攝影透鏡i的像點恤 的像面Sim的攝影元件5。攝影元件5將由攝影透鏡i形成的 光學像變換成電信號,例如,可以使用CCD圖像感測器或 5 CMOS圖像感測器等。 另外,將攝影透鏡1適用於攝影裝置時,根據裝載透 鏡的攝影機俱!的結構,較佳地設置蓋玻㊣、低通濾光片或 紅外線截止濾光片等’在圖丨中表示將設想這些的平行平板 狀光學部件pp配置在最靠近像侧的透鏡和攝影元件$(像面 10 Sim)之間的例子。 首先,對本創作的第一實施方式的攝影透鏡進行說 明。本創作的第一實施方式的攝影透鏡從物側依次包括: 負的第一透鏡L1、負的第二透鏡L2、正的第三透鏡L3、孔 俚光闌St、正的第四透鏡L4。而且,圖1中的孔徑光闌St 15不表示其形狀或大小,而表示其在光轴Z上的位置。 該攝影透鏡由四片較少的透鏡片數構成,從而可以降 低成本,同時謀求光軸方向的總長的小型化。此外,將配 置在物側的二片透鏡即第一透鏡L1和第二透鏡L2設為負 的透鏡,從而容易將整個透鏡系統廣角化。此外,將負透 2〇鏡°又為一片,從而可以由這些二片透鏡分擔對負透鏡要求 的各像差的校正,能夠有效地進行校正。同樣地,像侧的 正透鏡也6又為第三透鏡L3和第四透鏡L4的二片,從而可以 由這些一片透鏡分擔在像面用於成像的收斂作用及對正透 鏡要求的各像差的校正,能夠有效地進行校正。此外,透 -M369461 過將孔徑光闌St配置在第三透鏡L3和第四透鏡L4之間,從 而可以將整個系統小型化。 此外,本創作的第一實施方式的攝影透鏡是第二透鏡 L2、第三透鏡L3、第四透鏡L4的各透鏡的至少單側的面為 非球面,第三透鏡L3的材質對d線的阿貝數為35以下,構 成為滿足下述條件式(1)。 -0.2<(R3+R4)/(R3-R4)<0.2 ......⑴ 其中, R3 .第二透鏡L2的物側的面的近軸曲率半徑, R4 :第二透鏡]^的像側的面的近軸曲率半徑。 透過將第二透鏡L2、第三透鏡L3、帛四透獻如片 透鏡設為非球面,從而是較少的透鏡片數,並且良好地校 正各種像差而且謀求廣角化。 15[Embodiment of photographic lens] ^ First, a photographic lens of an embodiment of the present invention will be described with reference to Fig. i'. The figure is a photographic lens (four) lens profile of the real creation of the present invention. The photographic lens 1 & shown in Fig. 1 includes both the configuration of the photographic lens of the first embodiment of the present invention and the configuration of the photographic mirror of the second embodiment of the present invention. In Fig. 1, the left side of the figure is the object side, and the right side is the image side, which also represents the on-axis beam 2 from the object point at an infinity distance, and the off-axis beam 3 at the full field angle 2 7 M369461 ω , 4. In the figure, a case where the photographing lens 丨 is applied to the photographing device is considered. The photographing element 5 disposed on the image surface Sim of the image-receiving lens including the photographing lens i is also illustrated. The photographing element 5 converts the optical image formed by the photographing lens i into an electric signal, and for example, a CCD image sensor or a 5 CMOS image sensor or the like can be used. Further, when the photographic lens 1 is applied to an imaging device, it is preferable to provide a cover glass positive, low-pass filter or infrared cut filter according to the configuration of the camera that mounts the lens, etc. These parallel flat optical members pp are disposed between the lens closest to the image side and the photographing element $ (image plane 10 Sim). First, the photographic lens of the first embodiment of the present invention will be described. The photographic lens of the first embodiment of the present invention includes, in order from the object side, a negative first lens L1, a negative second lens L2, a positive third lens L3, a hole stop St, and a positive fourth lens L4. Moreover, the aperture stop St 15 in Fig. 1 does not indicate its shape or size, but indicates its position on the optical axis Z. The photographic lens is composed of four fewer lenses, so that the cost can be reduced and the total length of the optical axis direction can be reduced. Further, the first lens L1 and the second lens L2, which are two lenses disposed on the object side, are set as negative lenses, thereby making it easy to widen the entire lens system. Further, since the negative lens is one piece, the correction of the aberrations required for the negative lens can be shared by the two lenses, and the correction can be performed efficiently. Similarly, the positive lens on the image side is also two of the third lens L3 and the fourth lens L4, so that the convergence of the image plane for imaging and the aberrations required for the alignment lens can be shared by the one lens. The correction can be effectively corrected. Further, the through-m369461 arranges the aperture stop St between the third lens L3 and the fourth lens L4, so that the entire system can be miniaturized. Further, in the photographic lens according to the first embodiment of the present invention, at least one surface of each of the lenses of the second lens L2, the third lens L3, and the fourth lens L4 is aspherical, and the material of the third lens L3 is d-line. The Abbe number is 35 or less, and is configured to satisfy the following conditional expression (1). -0.2 < (R3 + R4) / (R3 - R4) < 0.2 (1) where R3 is the paraxial radius of curvature of the surface of the object side of the second lens L2, R4: second lens] The paraxial radius of curvature of the face of the image side. By arranging the second lens L2, the third lens L3, and the fourth lens as aspherical lenses, the number of lenses is small, and various aberrations are satisfactorily corrected and wide-angle is achieved. 15

20 透過將第三透鏡[3的材質對樣的阿貝數設為35以 下,從而可以良好地校正倍率色像差。 透過滿足條件式⑴,能夠取得第二透鏡L2的物側的面 和像側的面的曲率半徑的平衡,帛角化變得容易的同時, 可以良好地校正像面彎曲、畸變(也稱畸變像 條件式(1)的上限以上,則m 双馬 、J第一透鏡L2的物側的面的曲率主 徑增大,良好地校正傻面吟此从 + 早+ 又正像面.考曲的同時難以廣角化。此 第二透鏡L2的光焦度減小,透鏡线會大型化。 件式⑴的下限H透鏡L2_㈣㈣ = 過大,廣角化及畸變的良好校正均變得困難。 传 另外,較佳地滿足下述條 (1-2)的上限,從而可# 兩疋怿件式 尹'角化且更良好地校正像面彎曲。 9 25 M3 69461 透過滿足條件式(1 -2)的下限 校正畸變。 從而可以廣角化且更良好地 -0.08<(R3+R4)/(R3-R4)<〇.i2 .... (1_2) 曲 另外,更較佳地滿足下述條件式U-3)。透過滿足條件 式㈣的上限’可以廣角化錢_步良好地校正像面弯 -〇.08<(R3+R4)/(R3-R4)<〇.〇8 ......(1_3) 另外,更較佳地滿足下述條件式(Μ)。透過滿足條件 式(1-4)的上限,可以廣角化且更進一步良好地校正像面彎 10曲。透過滿足條件式(1_4)的下限,從而可以廣角化且更進 一步良好地校正畸變。 -〇.〇6<(R3+R4)/(R3.R4)<〇.〇3 ......(1_4) 接著肖本創作的第二實施方式的攝影透鏡進行說 月本創作的第一實施方式的攝影透鏡從物側依次包括: 15將凹面朝向像側的彎月形狀的負的第一透鏡U、物側的面 及像側的面為非球面的第二透鏡L2、至少物側的面為非球 面的正的第二透鏡L3、孔徑光閣St、至少像側的面為非球 面的正的第四透鏡L4。 該攝影透鏡由四片較少的透鏡片數構成,從而可以降 20低成本,同時謀求光軸方向的總長的小型化。而且,透過 將孔徑光闌st配置在第三透鏡L3和第四透鏡L4之間,從而 可以將整個系統小型化。並且,將配置在最靠近物側的第 -透鏡L1設為將凹面朝向像側的負彎月形透鏡,從而可以 將整個透鏡系統廣肖化,例如可以製作全視場角超過⑽。 25 的廣角的透鏡。 M369461 5 10 在本創作的第二實施方式的攝影透鏡中,將第二透鏡 L2的物侧的面及像側的面、第三透鏡L3的物側的面、第四 透鏡L4的像侧的面設為非球面。即,這些三個透鏡中、離 孔住光闌St最遠的第二透鏡L2的兩側的面成為非球面,關 於與孔徑光闌St鄰接配置的第三透鏡L3、第四透鏡[4分別 是離孔徑光闌St遠的一方的面必須成為非球面。如圖 示’這樣’將各像高的軸外光線和軸上光線進一步分離的 面設為非球面,從而可以有效地校正各種像差,是較少的 透鏡片數,並且廣角化的同時有利於良好地校正像面弯曲 和畸變。 此外’本創作的第二實施方式的攝影透鏡是第三透鏡 L3的材質對d線的阿貝數為35以下,構成為滿足下述條件 式(2)。 1.0<D3/f<5.0 ……(2) 15 其中, f:整個系統的焦距,By setting the Abbe number of the material of the third lens [3 to 35 or less, the chromatic aberration of magnification can be satisfactorily corrected. By satisfying the conditional expression (1), it is possible to obtain a balance between the radius of curvature of the object-side surface and the image-side surface of the second lens L2, and it is easy to correct the curvature of field and distortion (also called distortion). When the upper limit of the conditional expression (1) is equal to or higher than the upper limit of the conditional expression (1), the main path of curvature of the surface of the object side of the m double horse and the J first lens L2 is increased, and the stupid surface is well corrected from the + early + positive image plane. At the same time, it is difficult to widen the angle. The power of the second lens L2 is reduced, and the lens line is enlarged. The lower limit H lens L2_(4) (4) of the equation (1) is too large, and wide correction of the wide angle and distortion becomes difficult. It is preferable to satisfy the upper limit of the following bar (1-2), so that the two-part type can be keratinized and the field curvature can be corrected more satisfactorily. 9 25 M3 69461 by satisfying the conditional expression (1 - 2) The lower limit corrects the distortion, so that it can be wide-angled and more preferably -0.08<(R3+R4)/(R3-R4)<〇.i2 .... (1_2) 曲 additionally, the following conditions are more preferably satisfied Formula U-3). By satisfying the upper limit of the conditional expression (4), it is possible to widen the money _step to correct the image plane curvature-〇.08<(R3+R4)/(R3-R4)<〇.〇8 ......(1_3 In addition, the following conditional formula (Μ) is more preferably satisfied. By satisfying the upper limit of the conditional expression (1-4), it is possible to widen the angle and further correct the curvature of field. By satisfying the lower limit of the conditional expression (1_4), it is possible to widen the angle and further correct the distortion more satisfactorily. -〇.〇6<(R3+R4)/(R3.R4)<〇.〇3 ......(1_4) Next, the photographic lens of the second embodiment created by Shawburn performs the creation of the moon. The photographing lens according to the first embodiment includes, in order from the object side, a negative first lens U having a concave surface facing the image side, an object side surface, and a second lens L2 having an aspheric surface on the image side surface. The surface on the object side is a non-spherical positive second lens L3, an aperture stop St, and at least the image side is aspherical positive fourth lens L4. The photographic lens is composed of four fewer lenses, so that the cost can be reduced by 20, and the total length of the optical axis direction can be reduced. Further, by arranging the aperture stop st between the third lens L3 and the fourth lens L4, the entire system can be miniaturized. Further, the first lens L1 disposed on the closest object side is a negative meniscus lens having a concave surface toward the image side, whereby the entire lens system can be broadened, and for example, the full angle of view can be made larger than (10). 25 wide-angle lens. M369461 5 10 In the imaging lens according to the second embodiment of the present invention, the object side surface and the image side surface of the second lens L2, the object side surface of the third lens L3, and the image side of the fourth lens L4 are provided. The face is set to aspherical. That is, among the three lenses, the faces on both sides of the second lens L2 farthest from the aperture stop St become aspherical surfaces, and the third lens L3 and the fourth lens [4 respectively disposed adjacent to the aperture stop St are respectively The surface that is farther from the aperture stop St must be aspherical. As shown in the figure, the surface in which the off-axis ray and the on-axis ray of each image are further separated is aspherical, so that various aberrations can be effectively corrected, and the number of lenses is small, and it is advantageous at the same time as wide angle. Good correction of field curvature and distortion. In the photographic lens of the second embodiment of the present invention, the material of the third lens L3 has an Abbe number of 35 or less with respect to the d line, and is configured to satisfy the following conditional expression (2). 1.0<D3/f<5.0 ......(2) 15 where f: the focal length of the entire system,

20 D3 :第二透鏡12的中心厚度。 透過第三透鏡L3的材質對d線的阿貝數設為35以下, 從而可以良好地校正倍率色像差。 若成為條件式(2)的上限以上,則透鏡系統會大型化。 右成為條件式(2)的下限以下,則第二透鏡[2的中心厚度變 小’第二透鏡L2的周邊部和中心部的厚度比增大,成型就 變得困難。 另外’較佳地滿足下述條件式(2_2)。若滿足條件式(2-2) 25的上限,則透鏡系統的小型化變得更容易。 M369461 1.0<D3/f<2.2 ......(2-2) 而且’第一實施方式的攝影透鏡可以具有第二實施方 式的攝影透鏡具有的結構、或第二實施方式的攝影透鏡且 有的較佳結構的任意一個、或任意二個以上。同樣地,第 二實施方式的攝影透鏡可以具有第一實施方式的攝影透鏡 具有的結構、或第—實施方式的攝影透鏡具有的較佳結構 的任意一個、或任意二個以上。 10 接著’舉出本創作的第—或第二實施方式的攝影透鏡 較佳具有的結構1其仙效果進行闡述。而且,作為較 佳的方式’可以具有以下的任意—種結構、或者具有組合 任意的二種以上的結構。 較佳地滿足下述條件式(3)。 2.0<D2/f<5.0 ......(3) 其中, 15 f :整個系統的焦距, D2:第一透鏡。和第二透鏡[2的光軸上的空氣間隔。 若成為條件式(3)的上限以上,則透鏡系統會大型化。 若成為條件式(3)的下限以下,則第一透鏡u和第二透鏡L2 的間隔減小,第二透鏡L2的物側的面的非球面形狀受限 2〇 制’難以校正像面彎曲、畸變。 另外,較佳地滿足下述條件式(3_2)。若滿足條件式(3_2) 的上限,則透鏡系統的小型化變得更容易。若滿足條件式 (3-2)的下限,則像面彎曲、畸變的校正變得更容易。 2.3<D2/f<4.5 ......(3-2) 25 較佳地滿足下述條件式(4)。 12 -M369461 0.01<|fl2/f34|<0.5 ......(4) 其中, Π2 :第一透鏡LI和第二透鏡L2的合成焦距, f34 :第三透鏡L3和第四透鏡L4的合成焦距。 若成為條件式(4)的上限以上,則廣角化變得困難的同 時像面彎曲增大,難以得到良好的像。若成為條件式⑷ 的下限以下,則容易實現廣角化,但是彗形像差會增大, 在視場角的周邊也難以得到良好的像。 曰 另外,較佳地滿足下述條件式(5): 2.5<(D4+D5)/f<5.5 ......(5) 其中, f:整個系統的焦距, 以:第二透鏡L2和第三透鏡_光抽上的空氣間隔, D5·第三透鏡L3的中心厚度。 15 =過騎條件式(5),可以良好地校正球面像差、崎20 D3 : Center thickness of the second lens 12. The Abbe number of the d-line by the material of the third lens L3 is 35 or less, so that the chromatic aberration of magnification can be satisfactorily corrected. When the upper limit of the conditional expression (2) is exceeded, the lens system is increased in size. When the right side is equal to or less than the lower limit of the conditional expression (2), the thickness of the center of the second lens [2 is reduced.] The thickness ratio of the peripheral portion to the center portion of the second lens L2 is increased, which makes molding difficult. Further, the following conditional formula (2_2) is preferably satisfied. If the upper limit of the conditional expression (2-2) 25 is satisfied, the miniaturization of the lens system becomes easier. M369461 1.0 <D3/f<2.2 (2-2) Further, the photographic lens of the first embodiment may have the structure of the photographic lens of the second embodiment or the photographic lens of the second embodiment And some of the preferred structures, or any two or more. Similarly, the photographic lens of the second embodiment may have any one of the configuration of the photographic lens of the first embodiment or the preferred configuration of the photographic lens of the first embodiment, or any two or more. 10 Next, the structure 1 of the present invention or the photographic lens of the second embodiment preferably has a structure 1 and its effect is explained. Further, the preferred embodiment may have any of the following configurations or a combination of two or more of them. The following conditional expression (3) is preferably satisfied. 2.0 <D2/f<5.0 (3) where 15 f : focal length of the entire system, D2: first lens. And the air on the optical axis of the second lens [2]. When the upper limit of the conditional expression (3) is exceeded, the lens system is increased in size. When the lower limit of the conditional expression (3) is equal to or less than the lower limit of the conditional expression (3), the interval between the first lens u and the second lens L2 is reduced, and the aspherical shape of the surface on the object side of the second lens L2 is limited. ,distortion. In addition, the following conditional expression (3_2) is preferably satisfied. If the upper limit of the conditional expression (3_2) is satisfied, the miniaturization of the lens system becomes easier. If the lower limit of the conditional expression (3-2) is satisfied, the correction of the image plane curvature and the distortion becomes easier. 2.3 <D2/f<4.5 (3-2) 25 The following conditional expression (4) is preferably satisfied. 12 - M369461 0.01 <|fl2/f34| <0.5 (4) where Π2 : composite focal length of the first lens L1 and the second lens L2, f34: third lens L3 and fourth lens The composite focal length of L4. When the temperature is equal to or higher than the upper limit of the conditional expression (4), the widening of the image becomes difficult, and the image curvature increases, and it is difficult to obtain a good image. When the temperature is below the lower limit of the conditional expression (4), it is easy to achieve wide angle, but the coma aberration is increased, and it is difficult to obtain a good image around the angle of view. Further, it is preferable to satisfy the following conditional expression (5): 2.5 < (D4 + D5) / f < 5.5 (5) where f: the focal length of the entire system, to: the second lens L2 and third lens_air spacing on the light pumping, D5·center thickness of the third lens L3. 15 = Overriding condition (5), spherical aberration can be corrected well, Saki

^形像差,進而後截距可以較長,視場角增大,得到 充分的性能。若成為條件式 -τ ^ Λ (5)的上限以上,則難以良好地 20 ^的視場S4變、^形像差,難以確保長的後截距或 =視场角。此外’若成為條件式(5)的上限以上,則最靠 rrf的第一透鏡u的直徑增大,並且透鏡總長也變 :地=Γ。若成為條件式(5)的下限以下,則難以良 統。 像差、S形像差,難以得到F數小的透鏡系 而且’較佳地滿足下述鉻 25 A2)的上限,可以進 ^件式㈣。透過滿足條件式 步良好地校正球面像差、畸變、彗 13 M369461 ,’更容易確保期望的長度的後截距、大的視場角。 ^滿足條件式(5-2)的下限,則容易校正球面像差、蓉形像 3.〇<(D4+D5)/f<4.〇 ......(5_2) 5 較佳地滿足下述條件式(6): 2.1<Dl/f<5.5 ......⑹ 其中, f ·整個系統的焦距, D1 :第一透鏡L1的中心厚度。 10 例如以車載等的用途使用時,配置在最靠近物側的第 -透鏡L1要求對各種衝擊的強度,所以較佳地滿足條件式 ⑹。若成為條件式⑹下限以下,則第一透鏡[卜變薄而容 易破裂。4成為條件式(6)的上限以上,則透鏡系統會大型 15 另外,較佳地滿足下述條件式(6-2)。透過滿足條件式 (6-2)的上限’從而易於將透鏡系統小型化。透過滿足條件 式(6-2)的下限,從而使第一透鏡L1更不易破裂。 2.5<Dl/f<3.〇 ......(6-2) 較佳地滿足下述條件式(7p而且,在計算1時,後截 20距部分設為空氣換算長度。即,在最靠近像側的透鏡和像 面Sim之間有蓋玻璃或濾光片等時,蓋玻璃或濾光片的厚 度使用空氣換算後的值。 10.0<L/f<20.0 ......(7) 其中, 25 f .整個系統的焦距, 14 • M369461 L .從第一透鏡li的物側的面到像面的光轴上的距離 透過滿足條件式⑺,可以小型化同時實現廣角化。若 成為條件式(7)的上限以上,則可以容易實現廣角化,但透 鏡系統會大型化。若成為條件式⑺的下限以下,則透鏡系 5統可以小型化,但是難以實現廣角化。 另外,較佳地滿足下述條件式(7_2)。若滿足條件式(7_2) 的上限則更各易小型化。若滿足條件式(Μ)的下限,則 更容易廣角化。 13.0<L/f<19.0 ......(7_2) 10 為了使透鏡系統小型,較佳地將從第一透鏡以的物側 的面到像面的光轴上的距離L設為丨以下,進而為了將 透鏡系統小型化,較佳地將L設為13mm以下。 較佳地滿足下述條件式(8)。而且,Bf是相當於後截距 的值,在其計算時假設使用空氣換算長度。即在最靠近 15像側的透鏡和像面Sim之間具有蓋玻璃或遽光片等時,假 設使用空氣換算後的值。 1.5<Bf/f<4.〇 ......(8) 其中, f ··整個系統的焦距, 2〇 Bf.第四透鏡L4的像側的面到像面的光軸上的距離。 若成為條件式(8)的上限以上,則透鏡系統會大型化。 若成為條件式⑻的下限以下,則在透鏡系統和攝影元件之 間難以***各種濾光片或蓋破璃等。 15 M369461 ,卜&佳地滿足下述條件式(8_2)。若滿足條件式(η) 則小型變得更容易。若滿足條件式㈣的下限’ 則後截距的確保變得容易。 2.0<Bf/f<3.5 ......(8-2) 較佳地滿足下述條件式(9): 〇.3<(R8-R9)/(R8+r9)<i.〇 ......⑺ 其中, R8 ·第四透鏡[4的物側的面的近秘曲率半徑, R9:第四透獻4的像側的面的近軸曲率半^。 域設ΐί :::迷:件式⑼’可以將第四透鏡L4在近轴區 製作遠心性良好的透鏡,同時可以 良好地杈正像面彎曲和球面像差。 15 20 蠻“即1透過滿^條件式(9)的上限,可以良好地校正像面 2和球面像差。此外,透過滿足條件 =:::!面的曲率半徑變得過小,可以抑制丄 變仔過小。由此’成像區域周邊處的光線入射 以可以製作所謂遠心IS透=Μ — 二==;!:=·2)。透過滿足條件式 像差。透過滿_式(9姻;限,=== 良好的透鏡。 从乍延〜性 0.4<(R8-R9)/(R8+R9)<〇 9 (9 2) 較佳地滿足下述條件式(1〇): 25 -13<R8/f<-3 , ππλ 16 • M369461 其中, f:整個系統的焦距, R8 :第四透鏡L4的物側的面的近軸曲率半徑。 5^Dimorphism, and then the back intercept can be longer, the field of view angle is increased, and sufficient performance is obtained. If it is equal to or higher than the upper limit of the conditional expression -τ ^ Λ (5), it is difficult to satisfactorily change the field of view S4 and the aberration of the image, and it is difficult to ensure a long back intercept or a field of view. Further, when the upper limit of the conditional expression (5) is equal to or higher than the upper limit of the conditional expression (5), the diameter of the first lens u which is the most rrf is increased, and the total length of the lens is also changed to ground = Γ. If it is less than the lower limit of the conditional expression (5), it is difficult to be good. The aberration and the S-shaped aberration make it difficult to obtain a lens system having a small F number and the upper limit of the chrome 25 A2 which is preferably satisfied, and the equation (4) can be obtained. It is easier to ensure the back intercept of the desired length and the large angle of view by correcting the spherical aberration, distortion, and 彗 13 M369461 by satisfying the conditional steps. ^ When the lower limit of the conditional expression (5-2) is satisfied, it is easy to correct the spherical aberration, the singular image 3. 〇 < (D4 + D5) / f < 4. 〇 ... (5_2) 5 is preferable The following conditional expression (6) is satisfied: 2.1 < Dl / f < 5.5 (6) where f · the focal length of the entire system, D1 : the center thickness of the first lens L1. For example, when it is used for a vehicle or the like, the first lens L1 disposed on the most object side is required to have strength against various impacts, and therefore the conditional expression (6) is preferably satisfied. When it is less than or equal to the lower limit of the conditional expression (6), the first lens is thin and easily broken. When the temperature is greater than or equal to the upper limit of the conditional expression (6), the lens system is large. Further, the following conditional expression (6-2) is preferably satisfied. The lens system can be easily miniaturized by satisfying the upper limit ' of the conditional expression (6-2). By satisfying the lower limit of the conditional expression (6-2), the first lens L1 is more likely to be broken. 2.5 <Dl/f<3. 〇 (6-2) It is preferable to satisfy the following conditional expression (7p and, in the calculation of 1, the rear section 20-portion portion is set to the air-converted length. When there is a cover glass or a filter between the lens closest to the image side and the image surface Sim, the thickness of the cover glass or the filter is a value converted by air. 10.0<L/f<20.0 .... .. (7) where 25 f. The focal length of the entire system, 14 • M369461 L. The distance from the object-side surface of the first lens li to the optical axis of the image plane satisfies the conditional expression (7), and can be miniaturized and realized simultaneously. When the angle is equal to or greater than the upper limit of the conditional expression (7), the lens can be easily widened, but the lens system can be increased in size. When the lower limit of the conditional expression (7) is satisfied, the lens system 5 can be miniaturized, but it is difficult to achieve wide angle. In addition, it is preferable to satisfy the following conditional expression (7_2). If the upper limit of the conditional expression (7_2) is satisfied, it is easier to miniaturize. If the lower limit of the conditional expression (Μ) is satisfied, it is easier to widen the angle. ;L/f<19.0 (7_2) 10 In order to make the lens system small, it is preferable to face the object side from the first lens to The distance L on the optical axis of the surface is set to 丨 or less, and in order to reduce the size of the lens system, it is preferable to set L to 13 mm or less. Preferably, the following conditional expression (8) is satisfied. Further, Bf is equivalent to The value of the intercept is assumed to be the air-converted length in the calculation. That is, when there is a cover glass or a calender between the lens closest to the 15 image side and the image surface Sim, it is assumed that the value after the air conversion is used. 1.5&lt Bf/f <4. 〇 (8) where f · the focal length of the entire system, 2 〇 Bf. The distance from the image side surface of the fourth lens L4 to the optical axis of the image plane. When the temperature is equal to or greater than the upper limit of the conditional expression (8), the lens system is increased in size. When the temperature is less than or equal to the lower limit of the conditional expression (8), it is difficult to insert various filters or cover glass between the lens system and the imaging element. 15 M369461 It is preferable that the following conditional formula (8-2) is satisfied. If the conditional expression (η) is satisfied, the small size becomes easier. If the lower limit of the conditional expression (4) is satisfied, the securing of the back intercept becomes easy. 2.0<Bf/f<3.5 (8-2) preferably satisfies the following conditional expression (9): 〇.3<(R8-R9)/(R8+r9)<i.〇.. .... (7) where R8 · the fourth lens [4's near-secret curvature radius of the object-side surface, R9: the paraxial curvature of the image side of the fourth distribution 4 is half a ^. Domain setting :: ::: Fan: Piece (9) 'The fourth lens L4 can be made into a lens with a good telecentricity in the paraxial region, and the image surface curvature and the spherical aberration can be corrected well. 15 20 "The upper limit of the conditional (9) is 1" The image plane 2 and the spherical aberration can be corrected well. In addition, by satisfying the condition that the radius of curvature of the surface of the =:::! surface becomes too small, it is possible to suppress the 丄 丄 from becoming too small. Thus, the incident light at the periphery of the image forming area can be made so that the so-called telecentricity IS Μ = 二 - 2 ==; !: = 2). By satisfying the conditional aberration. Through the full _ (9 marriage; limit, === good lens. From the delay ~ sex 0.4 < (R8-R9) / (R8 + R9) < 〇 9 (9 2) preferably meet the following Conditional formula (1〇): 25 -13 <R8/f<-3, ππλ 16 • M369461 where f: the focal length of the entire system, R8: the paraxial radius of curvature of the object-side surface of the fourth lens L4.

10 1510 15

20 若成為條件式(10)的上限以上,則第四透鏡L4的光焦 度減小,難以抑製成像區域周邊處的光線入射到像面(攝影 元件)的角度,難以製作所謂遠心性良好的透鏡。若成為條 件式(10)的下限以下,則難以校正球面像差。 另外,較佳地滿足下述條件式(10_2)。透過滿足條件 式(10-2)的上限,更容易製作遠心性良好的透鏡。若滿足 條件式(10-2)的下限,則更容易校正球面像差。 -11.5<R8/f<-4 ......(i〇_2) 較佳地滿足下述條件式(11): 3.2<L/f34<6.0 ......(11) 其中, L:從第一透鏡幻的物側的面到像面的光軸上的距離, f34.第二透鏡L3和第四透鏡L4的合成焦距。 右成為條件式(11)的上限以上,則第三透鏡L3、第四 透鏡L4的光焦度增大,難以取長的後截距。若成為條件式 (Π)的下限以下,則難以校正倍率色像差、像面彎曲、及 彗形像差。 較佳地滿足下述條件式(12): 2.0<D5/f<4.0 ......(12) 其中, f:整個系統的焦距, D5 .第三透鏡L3的中心厚度。 17 M369461 若成為條件式(12)的上限以上,則第三透鏡L3變得過 大系、、充s大型化。若成為條件式(12)的下限以下,則第 ^透鏡L3的功率減小,難讀正倍率色像差,或難以確保 第二透鏡L3的端緣(端緣厚度)。 ,另外,較佳地滿足下述條件式(12_2)。透過滿足條件 式(12)的上限,從而容易將系統小型化。透過滿足條件式 (12)的下限,從而容易校正倍率色像差及確保第三透鏡u 2.2<D5/f<3.8 ......(12-2) 較佳地滿足下述條件式(13 ): 0.3<(Ri_R2)/(Ri+R2)<〇>7 ......(13) 其中, 〜 R1 :第一透鏡L1的物側的面的曲率半徑, R2 :第一透鏡1^的像側的面的曲率半徑。 15 20 若成為條件式(13)的上限以上,則第—透鏡^的物々 =的曲率半徑變得過小,難以廣角化或接近半球;以 一透鏡L1的像侧的面的曲率半徑變得過小難以加工 條件式(13)的下限以下,則第—透鏡u的物側❼ 二曲率半徑變得過大,難以校正畸變,或者第一透⑽ 像側的面的曲率半徑變得過大,難以廣角化。 車乂佳地滿足下述條件式(14): 〇.40<ED1/R1<i.2〇 ......(14) 其中, EDI :第一透鏡以的物側的面的有效直徑(直徑” R1 :第一透鏡L1的物側的面的曲率半徑。 18 -M369461 儿 IHJ的有效置徑」是指在者磨 弁毺知泳vti 号慮有助於成像的全 ^ Λ. ^ . ^ y 田谷仫向上的最外側的點構 成的圓的直徑,後述的「面 側的^ ㈣4“^」是指該最外 的上限以上m⑽㈣物側 :面„,難以加工、或成為成本上升的原因。或者, =鏡u變大,還存在損害車的外觀的問題。若成為條 件式U4)的下限以下,則容易加工,但是難以校正崎變, 10 15When the upper limit of the conditional expression (10) is equal to or greater than the upper limit of the conditional expression (10), the refractive power of the fourth lens L4 is reduced, and it is difficult to suppress the incidence of light incident on the image surface (the imaging element) at the periphery of the imaging region, and it is difficult to produce a so-called telecentricity. lens. If it is equal to or lower than the lower limit of the conditional expression (10), it is difficult to correct the spherical aberration. In addition, the following conditional expression (10_2) is preferably satisfied. By satisfying the upper limit of the conditional expression (10-2), it is easier to produce a lens having a good telecentricity. If the lower limit of the conditional expression (10-2) is satisfied, it is easier to correct the spherical aberration. -11.5 < R8/f < -4 (i〇_2) preferably satisfies the following conditional expression (11): 3.2 < L/f34 < 6.0 ...... (11 Where L is the distance from the face of the object side of the first lens to the optical axis of the image plane, f34. The combined focal length of the second lens L3 and the fourth lens L4. When the right is equal to or higher than the upper limit of the conditional expression (11), the power of the third lens L3 and the fourth lens L4 is increased, and it is difficult to take a long back intercept. When the value is below the lower limit of the conditional expression (Π), it is difficult to correct the chromatic aberration of magnification, the curvature of field, and the coma. It is preferable to satisfy the following conditional expression (12): 2.0 < D5/f < 4.0 (12) where f: the focal length of the entire system, D5. The center thickness of the third lens L3. When the upper limit of the conditional expression (12) is equal to or greater than the upper limit of the conditional expression (12), the third lens L3 is oversized and enlarged. When the temperature is lower than the lower limit of the conditional expression (12), the power of the second lens L3 is reduced, it is difficult to read positive chromatic aberration, or it is difficult to secure the edge (edge thickness) of the second lens L3. Further, it is preferable to satisfy the following conditional expression (12-2). By satisfying the upper limit of the conditional expression (12), it is easy to miniaturize the system. By satisfying the lower limit of conditional expression (12), it is easy to correct the chromatic aberration of magnification and ensure that the third lens u 2.2 < D5 / f < 3.8 (12-2) preferably satisfies the following conditional expression (13): 0.3 < (Ri_R2) / (Ri + R2) < 〇 > 7 (13) where, R1 : radius of curvature of the surface of the object side of the first lens L1, R2 : the radius of curvature of the surface on the image side of the first lens 1^. When the upper limit of the conditional expression (13) is equal to or greater than the upper limit of the conditional expression (13), the radius of curvature of the object 々= of the first lens ^ is too small, and it is difficult to widen or approach the hemisphere; the radius of curvature of the surface on the image side of the lens L1 becomes When the thickness is less than the lower limit of the conditional expression (13), the radius of curvature of the object side 第2 of the first lens u becomes too large, and it is difficult to correct the distortion, or the radius of curvature of the surface on the first through image side is too large, and it is difficult to wide-angle. Chemical. The rut satisfies the following conditional expression (14): 〇.40<ED1/R1<i.2〇 (14) where EDI: the effective diameter of the surface of the object side of the first lens (diameter "R1: the radius of curvature of the surface of the object side of the first lens L1. 18 -M369461 The effective diameter of the IHJ" refers to the fullness of the figure that helps the imaging. ^ y The diameter of the circle formed by the outermost point of the top of the field, "^ (4) 4 "^" on the side of the surface is the upper limit of the outermost m (10) (four) object side: face „, difficult to process, or cost increase Or, if the mirror u becomes large, there is a problem that the appearance of the vehicle is impaired. If it is equal to or lower than the lower limit of the conditional expression U4), it is easy to process, but it is difficult to correct the change, 10 15

20 周邊部的圖像較小地成像,所以即便透過圖像處理校正, 像也會粗輪。 第一透鏡L1在近軸區域較佳地是負冑月形狀。透過該 結構’有利於廣角化,例如可以製作全視場角超過180度的 廣角的透鏡系統* 第一透鏡L2在近軸區域較佳為雙凹形狀的透鏡。透過 該結構,容易廣角化的同時,可以良好地校正畸變和像面 變曲。 第二透鏡L2的物側的面在中心較佳地具有負的光焦 度、且疋在有效直徑邊緣負的光焦度小於中心的形狀。透 過將第一透鏡L2的物側的面設為這種形狀,從而可以廣角 化同時良好地校正像面彎曲和畸變。 在此’一邊參照圖2,一邊對第二透鏡L2的物侧的面 的形狀進行說明。圖2是在圖1所示的攝影透鏡1的光路圖。 在圖2中,點Q3是第二透鏡L2的物側的面的中心,是第二 透鏡L2的物側的面與光轴Z的交點。圖2的點X3是第二透鏡 19 M369461 L2的物側的面的有效直徑邊緣的點,是轴外光束4所包含 的最外側的光線6與第二透鏡L2的物側的面的交點。 此時,如圖2所示,將在點X3的透鏡面的法線與光抽z 的交點設為點P3,將連接點X3和點P3的線段X3-P3定義為 5在點X3的曲率半徑RX3,將線段X3-P3的長度|X3-P3|定義 為曲率半徑RX3的絕對值|RX3|。即,|X3-P3| = |RX3卜此 外’將在點Q3的曲率半徑即第二透鏡L2的物側的面的中心 的曲率半徑設為R3,將該絕對值設為|R3|(在圖2不圖示)。 第二透鏡L2的物側的面的「中心具有負的光焦度」是 10指包含點Q3的近軸區域為凹形狀。此外,第二透鏡L2的物 侧的面的「在有效直徑邊緣負的光焦度小於中心的形狀」 是指點P3位於比點Q3更靠物側,在點X3的曲率半徑絕對值 |RX31比在點Q3的曲率半徑絕對值|R3丨大的形狀。 在圖2中’為了幫助理解用雙點劃線描繪按半徑丨R3| 15通過點Q3、且以光軸上的點為中心的圓CQ3,用虛線描繪 按半徑|RX3|通過點X3、且以光軸上的點為中心的圓〇χ3 的一部分。圓CX2成為比圓CQ2大的圓,明示出|R3|<|RX3卜 在點X3的曲率半徑絕對值|RX3|較佳地大於在點Q3的 曲率半徑絕對值|R3丨的5.0倍,即,5 〇<|RX3丨/丨R3| ,這時容 20 易校正像面—曲和畸變。 第二透鏡L2的像側的面較佳是中心具有負的光焦度 並在有效直担邊緣負的光焦度大於中心的形狀。透過將第 二透鏡L2的像側的面設為這種形狀,從而可以良好地校正 像面彎曲。 20 .M369461 第二透鏡L2的像側的面的形狀,與利用圖2說明的第 二透鏡L2的物側的面的形狀同樣,可以如下認為。在透鏡 剖面圖中,將第二透鏡L2的像側的面的有效直徑邊緣設為 點X4 ’將在該點的法線與光軸z的交點設為點?4時,將連 5 10 接點X4和點P4的線段X4-P4設為在點X4的曲率半徑,將連 接點X4和點P4的線段的長度|χ4_Ρ4|設為在點χ4的曲率半 徑絕對值|RX4卜因此成為|X4_P4|=|RX4|。此外,將第二透 鏡L2的像侧的面與光軸z的交點即第二透鏡[2的像側的面 的中心設為點Q4。並且,將在點Q4的曲率半徑絕對值設為 |R4|。 第二透鏡L2的像側的面的「中心具有負的光焦度、且 在有效直徑邊緣負的光焦度大於中心的形狀」是指在包含 點Q4的近軸區域為凹形狀,點p4比點Q4更靠像側,並且在 點X4的曲率半徑絕對值|rx4|小於在點Q4的曲率半徑絕對 15 值|R4|的形狀。20 The image of the peripheral part is imaged small, so even if it is corrected by image processing, the image will be thick. The first lens L1 is preferably a negative moon shape in the paraxial region. The transmission structure is advantageous for wide-angle, for example, a wide-angle lens system having a full angle of view of more than 180 degrees can be produced. * The first lens L2 is preferably a biconcave lens in the paraxial region. Through this structure, it is easy to wide-angle, and distortion and image plane distortion can be corrected well. The object-side face of the second lens L2 preferably has a negative refractive power at the center, and the negative power of the 疋 at the effective diameter edge is smaller than the central shape. By setting the surface on the object side of the first lens L2 to have such a shape, it is possible to widen the angle while correcting the curvature of field and the distortion. Here, the shape of the surface on the object side of the second lens L2 will be described with reference to Fig. 2 . FIG. 2 is a light path diagram of the photographing lens 1 shown in FIG. 1. In Fig. 2, the point Q3 is the center of the object-side surface of the second lens L2, and is the intersection of the object-side surface of the second lens L2 and the optical axis Z. Point X3 of Fig. 2 is a point of the effective diameter edge of the object-side surface of the second lens 19 M369461 L2, and is the intersection of the outermost light ray 6 included in the off-axis light beam 4 and the object side surface of the second lens L2. At this time, as shown in FIG. 2, the intersection of the normal line of the lens surface at the point X3 and the light extraction z is set as the point P3, and the line segment X3-P3 of the connection point X3 and the point P3 is defined as the curvature of the point 5 at the point X3. The radius RX3 defines the length |X3-P3| of the line segment X3-P3 as the absolute value |RX3| of the radius of curvature RX3. In other words, |X3-P3| = |RX3, in addition, 'the radius of curvature at the center of the surface of the object side of the second lens L2, which is the radius of curvature of the point Q3, is R3, and the absolute value is set to |R3| Figure 2 is not shown). The "center has a negative refractive power" of the surface on the object side of the second lens L2 means that the paraxial region including the point Q3 has a concave shape. Further, the "object having a negative refractive power at the effective diameter edge is smaller than the center shape" on the object side surface of the second lens L2 means that the point P3 is located on the object side more than the point Q3, and the absolute value of the curvature radius at the point X3 is |RX31 ratio The shape of the curvature radius at the point Q3 is an absolute value |R3. In Fig. 2, in order to help understand, a circle CQ3 centered on a point on the optical axis by a radius 丨R3|15 by a radius 丨R3|15 is drawn by a double-dotted line, and a circle X3 is drawn by a broken line by a radius|RX3| A part of the circle 3 centered on the point on the optical axis. The circle CX2 becomes a circle larger than the circle CQ2, and it is shown that |R3|<|RX3 is the absolute value of the radius of curvature |RX3| at the point X3 is preferably 5.0 times larger than the absolute value of the radius of curvature |R3 at the point Q3. That is, 5 〇 < | RX3 丨 / 丨 R3 |, then 20 easy to correct image surface - distortion and distortion. The image-side surface of the second lens L2 preferably has a negative refractive power at the center and a negative refractive power at the effective straight-forward edge is larger than the center shape. By setting the surface on the image side of the second lens L2 to have such a shape, it is possible to satisfactorily correct the curvature of field. 20. M369461 The shape of the surface on the image side of the second lens L2 is the same as the shape of the surface on the object side of the second lens L2 described with reference to Fig. 2, and can be considered as follows. In the lens cross-sectional view, the effective diameter edge of the image side surface of the second lens L2 is set to a point X4', and the intersection of the normal line at that point and the optical axis z is set as a point. At 4 o'clock, the line segment X4-P4 connecting the 5 10 joint X4 and the point P4 is set to the radius of curvature at the point X4, and the length of the line segment connecting the point X4 and the point P4 |χ4_Ρ4| is set to be the absolute radius of curvature at the point χ4. The value |RX4b thus becomes |X4_P4|=|RX4|. Further, the intersection of the image-side surface of the second lens L2 and the optical axis z, that is, the center of the image-side surface of the second lens [2] is referred to as a point Q4. Further, the absolute value of the radius of curvature at the point Q4 is set to |R4|. The "the center has a negative refractive power and the negative refractive power at the effective diameter edge is larger than the central shape" of the surface on the image side of the second lens L2 means that the paraxial region including the point Q4 has a concave shape, and the point p4 It is closer to the image side than the point Q4, and the absolute value of the curvature radius |rx4| at the point X4 is smaller than the shape of the absolute radius 15 |R4| at the point of curvature of the point Q4.

在點X4的曲率半徑絕對值丨RX4|較佳地小於在點Q4的 曲率半徑絕對值|R4|的0.9倍,即,0.9>|RX4|/|R4|,這時容 易校正像面彎曲。 第三透鏡L3在近轴區域較佳為雙凸形狀的透鏡。透過 20 該構成,可以與像面彎曲一起良好地校正倍率色像差。 第三透鏡L3的物側的面較佳地設為非球面。第三透鏡 L3的物側的面較佳為中心具有正的光焦度並在有效直徑 邊緣正的光焦度大於中心的形狀。透過將第三透鏡L3的物 21 M369461 侧的面設為這種形狀,從而可以良好地校正像面彎曲和慧 形像差。 第三透鏡L3的物側的面的形狀與使用圖2說明的第二 透鏡L2的物側的面的形狀同樣,可以如下認為。在透鏡剖 5面圖中,將第三透鏡L3的物侧的面的有效直徑邊緣設為點 X5 ’將在該點的法線與光軸z的交點設為點p5時,將連接 點X5和點P5的線段X5-P5設為在點X5的曲率半徑,將連接 點X5和點P5的線段的長度|χ5_Ρ5丨設為在點χ5的曲率半徑 絕對值|RX5|。因此,成為|X5_P5|=|RX5|。此外,將第三 10透鏡L 3的物側的面與光軸z的交點即第三透鏡L 3的物側的 面的中心設為點Q5。並且,將在點Q5的曲率半徑絕對值設 為 |R5|。 第二透鏡L3的物側的面的「中心具有正的光焦度,在 有效直徑邊緣正的光焦度大於中心的形狀」是指在包含點 15 Q5的近轴區域為凸形狀,點P5比點Q5更靠像側,並且是在 點X5的曲率半徑絕對值丨RX5丨小於在點95的曲率半徑絕對 值|R5丨的形狀。 在點X5的曲率半徑絕對值|RX5丨較佳小於在點卩5的曲 率半徑絕對值|R5|的1.0倍,即,1〇>|RX5丨/丨R5|,這時容易 20 校正像面彎曲和慧形像差。 第二透鏡L3的像側的面較佳設為非球面。第三透鏡L3 的像側的面較佳是中心具有正的光焦度並在有效直徑邊緣 具有負的光焦度。透過將第三透鏡L3的像側的面設為這種 形狀,從而可以良好地校正像面彎曲。 22 M369461 第三透鏡L3的像側的面的形狀與利用圖2說明的第二 透鏡L2的物側的面的形狀同樣,可如下認為。在透鏡剖面 圖中,將第三透鏡L3的像側的面的有效直徑邊緣設為點 X6,將在該點的法線與光轴Z的交點設為點p6時,將連接 5點X6和點P6的線段X6-P6設為在點X6的曲率半徑,將連接 點X6和點P6的線段的長度|Χ6-Ρ6|設為在點X6的曲率半徑 絕對值|RX6|。因此’成為|X6-P6| = |RX6|。此外,將第三 透鏡L3的像侧的面與光軸Z的交點即第三透鏡L3的像側的 面的中心设為點Q6。並且,將在點Q6的曲率半徑絕對值設 10 為 |R6|。 第三透鏡L3的像側的面的「中心具有正的光焦度,在 有效直徑邊緣具有負的光焦度的形狀」是指在包含點96的 近轴區域為凸形狀,點P6比點q6更靠像側的形狀。 15The absolute value of the radius of curvature 丨RX4| at the point X4 is preferably smaller than 0.9 times the absolute value of the radius of curvature |R4| at the point Q4, i.e., 0.9 > | RX4|/|R4|, at which time the curvature of field is easily corrected. The third lens L3 is preferably a biconvex lens in the paraxial region. According to this configuration, the chromatic aberration of magnification can be favorably corrected together with the curvature of field. The surface on the object side of the third lens L3 is preferably an aspherical surface. The object-side surface of the third lens L3 preferably has a positive power at the center and a positive power at the edge of the effective diameter is larger than the shape of the center. By setting the surface on the side of the object 21 M369461 of the third lens L3 to have such a shape, it is possible to satisfactorily correct field curvature and coma aberration. The shape of the surface on the object side of the third lens L3 is the same as the shape of the surface on the object side of the second lens L2 described with reference to Fig. 2, and can be considered as follows. In the cross-sectional view of the lens section, the effective diameter edge of the surface of the object side of the third lens L3 is set to a point X5 '. When the intersection of the normal of the point and the optical axis z is set to the point p5, the connection point X5 is used. The line segment X5-P5 of the point P5 is set to the radius of curvature at the point X5, and the length |χ5_Ρ5丨 of the line segment connecting the point X5 and the point P5 is set to the absolute value of the curvature radius |RX5| at the point χ5. Therefore, it becomes |X5_P5|=|RX5|. Further, the intersection of the surface of the object side of the third 10 lens L 3 and the optical axis z, that is, the center of the object side surface of the third lens L 3 is referred to as a point Q5. Also, the absolute value of the radius of curvature at point Q5 is set to |R5|. The "center has a positive refractive power at the object-side surface of the second lens L3, and the positive refractive power at the effective diameter edge is larger than the central shape" means that the paraxial region including the point 15 Q5 has a convex shape, and the point P5 It is closer to the image side than the point Q5, and the absolute value of the radius of curvature 丨RX5丨 at the point X5 is smaller than the absolute value of the radius of curvature |R5丨 at the point 95. The absolute value of the radius of curvature |RX5 at the point X5 is preferably less than 1.0 times the absolute value of the radius of curvature |R5| at the point ,5, that is, 1〇>|RX5丨/丨R5|, at which time it is easy to correct the image plane 20 Bending and coma aberration. The image side surface of the second lens L3 is preferably an aspherical surface. The image side surface of the third lens L3 preferably has a positive refractive power at the center and a negative refractive power at the effective diameter edge. By setting the surface on the image side of the third lens L3 to have such a shape, it is possible to satisfactorily correct the field curvature. 22 M369461 The shape of the image side surface of the third lens L3 is the same as the shape of the surface of the object side of the second lens L2 described with reference to Fig. 2, and can be considered as follows. In the lens cross-sectional view, the effective diameter edge of the image side surface of the third lens L3 is set to a point X6, and when the intersection of the normal of the point and the optical axis Z is set to a point p6, 5 points X6 and 5 points are connected. The line segment X6-P6 of the point P6 is set to the radius of curvature at the point X6, and the length |Χ6-Ρ6| of the line segment connecting the point X6 and the point P6 is set to the absolute value of the curvature radius |RX6| at the point X6. Therefore ' becomes |X6-P6| = |RX6|. Further, the center of the image side surface of the third lens L3 which is the intersection of the image side surface of the third lens L3 and the optical axis Z is referred to as a point Q6. Also, the absolute value of the radius of curvature at point Q6 is set to 10 |R6|. The "the center has a positive refractive power and the negative refractive power at the effective diameter edge" of the surface on the image side of the third lens L3 means that the paraxial region including the point 96 has a convex shape, and the point P6 is a point. Q6 is more like the shape of the side. 15

20 在點X6的曲率半徑絕對值|rx6|較佳大於在點q6的曲 率半徑絕對值|R6|的2.0倍,即2.0<|RX6|/丨R6|,在此時容易 校正像面彎曲。 第四透鏡L4在近軸區域較佳為正.贊月形透鏡。透過該 結構,可以良好地校正球面像差、像面彎曲。 第四透鏡L4的物側的面較佳設為非球面。第四透鏡L4 的物側的面較佳是中心具有負的光焦度並在有效直徑邊緣 負的光焦度大於中心的形狀。透過將第4透L4的物側的面 設為這種形狀,從而可以良好地校正球面像差、像面彎曲。 第四透鏡L4的物側的面的形狀與利用圖2說明的第二 透鏡L2的物側的面的形狀同樣’可以如下認為。在透鏡剖 23 M369461 面圖中,將第四透鏡L4的物側的面的有效直徑邊緣設為點 X8,將在該點的法線與光軸z的交點設為點P8時,將連接 點X8和點P8的線段X8-P8設為在點X8的曲率半徑,將連接 點X8和點P8的線段的長度丨χ8-Ρ8|設為在點X8的曲率半徑 5絕對值|RXS|。因此,成為|X8-P8| = |RX8|。而且,將第四 透鏡L4的物側的面與光軸z的交點即第四透鏡L4的物側的 面的中心設為點Q8。並且,將在點Q8的曲率半徑絕對值設 為 |R8|。 第四透鏡L4的物側的面的「中心具有負的光焦度,在 10有效直徑邊緣負的光焦度大於中心的形狀」是指在包含點 Q8的近軸區域為凹形狀,點P8比點〇8更靠物側,並且是在 X8的曲率半徑絕對值丨rX8|小於在點Q8的曲率半徑絕對值 IR8丨的形狀》 在點X8的曲率半徑絕對值丨RX8丨較佳小於在sQ8的曲 15率半徑絕對值lR8丨的〇.9倍,即,〇.9>|RX8|/|R8|,在此時容 易校正像面彎曲。 第四透鏡L4的像側的面較佳為非球面。第四透鏡Μ 的像側的面的令心較佳具有正的光焦度並在有效直徑邊緣 正的光焦度小於中心的形狀。透過將第四透鏡£4的像側的 20面設為這種形狀,從而可以良好地校正球面像差、像面彎 曲、彗形像差。 第四透鏡L4的像側的面的形狀與利用圖2說明的第二 透鏡L2的物側的面的形狀同樣,可如下認為。在透鏡剖: 圖中’將第四透鏡L4的像側的面的有效直徑邊緣設為點 24 • M369461 X9 ’將在該點的法線與光軸Z的交點設為點P9時,將連接 點X9和點P9的線段X9-P9設為在點X9的曲率半徑,將連接 點X9和點P9的線段的長度|X9-P9|設為在點X9的曲率半徑 絕對值|RX9|。因此’成為|X9-P9| = |RX9|。而且,將第四 5透鏡L4的像側的面與光轴Z的交點即第四透鏡L4的像側的 面的中心設為點Q9。並且,將在點Q9的曲率半徑絕對值設 為 |R9|。20 The absolute value of the radius of curvature at point X6 |rx6| is preferably greater than 2.0 times the absolute value of the radius of curvature |R6| at point q6, ie 2.0<|RX6|/丨R6|, at which point the image curvature is easily corrected . The fourth lens L4 is preferably a positive. sinuous lens in the paraxial region. With this configuration, spherical aberration and field curvature can be satisfactorily corrected. The surface on the object side of the fourth lens L4 is preferably an aspherical surface. The object-side surface of the fourth lens L4 preferably has a negative refractive power at the center and a negative refractive power at the effective diameter edge is larger than the center shape. By setting the surface on the object side of the fourth through-L4 to have such a shape, it is possible to satisfactorily correct spherical aberration and field curvature. The shape of the surface on the object side of the fourth lens L4 is the same as the shape of the surface on the object side of the second lens L2 described with reference to Fig. 2'. In the lens section 23 M369461, the effective diameter edge of the object-side surface of the fourth lens L4 is set to a point X8, and when the intersection of the normal of the point and the optical axis z is set to the point P8, the joint point is The line segments X8-P8 of X8 and point P8 are set to the radius of curvature at point X8, and the length 丨χ8-Ρ8| of the line segment connecting point X8 and point P8 is set to the radius of curvature 5 absolute value |RXS| at point X8. Therefore, it becomes |X8-P8| = |RX8|. Further, the intersection of the object-side surface of the fourth lens L4 and the optical axis z, that is, the center of the object-side surface of the fourth lens L4 is referred to as a point Q8. Also, the absolute value of the radius of curvature at point Q8 is set to |R8|. The "center has a negative refractive power at the object-side surface of the fourth lens L4, and the negative refractive power at the 10 effective diameter edge is larger than the central shape" means that the paraxial region including the point Q8 has a concave shape, and the point P8 It is closer to the object side than point 〇8, and the absolute value of the radius of curvature of X8 is 丨rX8| is smaller than the absolute value of the radius of curvature of IR8 at point Q8". The absolute value of the radius of curvature at point X8 is preferably smaller than RX8丨. The absolute radius of the sQ8 is 15 times the absolute value of lR8 ,, that is, 〇.9>|RX8|/|R8|, and the curvature of field is easily corrected at this time. The image side surface of the fourth lens L4 is preferably aspherical. The center of the image side of the fourth lens 较佳 preferably has a positive power and a positive power at the edge of the effective diameter is smaller than the center shape. By setting the 20 faces of the image side of the fourth lens £4 to such a shape, spherical aberration, field curvature, and coma aberration can be satisfactorily corrected. The shape of the surface on the image side of the fourth lens L4 is the same as the shape of the surface on the object side of the second lens L2 described with reference to Fig. 2, and can be considered as follows. In the lens section: 'In the figure, 'the effective diameter edge of the image side surface of the fourth lens L4 is set to point 24 • M369461 X9 ' will be connected when the intersection of the normal of this point and the optical axis Z is set to point P9 The line segments X9-P9 of the point X9 and the point P9 are set to the radius of curvature at the point X9, and the length |X9-P9| of the line segment connecting the point X9 and the point P9 is set to the absolute value of the curvature radius |RX9| at the point X9. Therefore ' becomes |X9-P9| = |RX9|. Further, the intersection of the image-side surface of the fourth lens L4 and the optical axis Z, that is, the center of the image-side surface of the fourth lens L4 is referred to as a point Q9. Also, the absolute value of the radius of curvature at point Q9 is set to |R9|.

10 第四透鏡L4的像侧的面的「中心具有正的光焦度,在 有效直徑邊緣正的光焦度小於中心的形狀」是指在包含點 Q9的近轴區域為凸形狀,點P9比點Q9更靠物側,並且是在 點X9的曲率半徑絕對值丨RX9|大於在點q9的曲率半徑絕對 值丨R9|的形狀。 在點X9的曲率半徑絕對值|RX9|較佳大於在點q9的曲 率半徑絕對值|R9|的1.1倍,即,i.i<|RX9|/|R9|,在此時容 15 易校正球面像差、像面彎曲、彗形像差。10 "The center of the image on the image side of the fourth lens L4 has a positive refractive power, and the positive refractive power at the edge of the effective diameter is smaller than the central shape" means that the paraxial region including the point Q9 has a convex shape, and the point P9 It is closer to the object side than the point Q9, and is the shape of the absolute value of the radius of curvature 丨RX9| at the point X9 is larger than the absolute value of the radius of curvature 丨R9| at the point q9. The absolute value of the radius of curvature at point X9 |RX9| is preferably greater than 1.1 times the absolute value of the radius of curvature |R9| at point q9, ie, i.i<|RX9|/|R9|, at this time, the volume 15 is easily corrected Spherical aberration, curvature of field, coma aberration.

20 將從第二透鏡L2的物側的面到第四透鏡L4的像側的 面的各面設為如上所述的非球面形狀,從而除了球面像 差、像面彎曲、彗形像差以外,也能良好地校正畸變。 而且,第三透鏡L3的像側的面可以構成為中心具有負 的光焦度並在有效直徑邊緣負的光焦度大於中心的形狀, 這時容易校正球面像差。 右用上述定義的符號說明,第三透鏡L3的像側的面的 「中心具有正的光焦度,在有效直徑邊緣正的光焦度大於 中心的形狀」是指在包含點()6的近軸區域為凸形狀,抑比 25 M369461 點Q6更靠物側,並且在點χ6的曲率半徑絕對值|RX6|小於 在點Q6的曲率半徑絕對值|r6|的形狀β 設整個系統的焦距為f、視場角為少(變數處理,〇 $少 S ω,ω是半視場角),將理想像高設為2fxtan( φ /2),畸 5變表示與其的偏移量時,從中心到最大視場角較佳是正的 值。相對於理想像高2fxtan( ρ /2)從中心到最大視場角將畸 變設為正的值,從而可以將由畸變引起的周邊的圖像的模 糊抑制為最小限度,從而可以抑製圖像劣化。 第一透鏡L1的材質對d線的阿貝數較佳為4〇以上,由 10此,抑制色像差的發生,可以得到良好的分辨性能。第二 透鏡L2的材質對d線的阿貝數較佳為4〇以上,由此,抑制 色像差的發生,可以得到良好的分辨性能。第四透鏡以的 材質對d線的阿貝數較佳為4〇以上’由此,抑制色像差的發 生’可以得到良好的分辨性能。 15 第三透鏡1^3的材質對d線的阿貝數較佳為30以下,由 此,可以良好地校正倍率色像差。而且,第三透鏡L3的材 質對d線的阿貝數較佳設為28以下’這時’可以更良好地校 正倍率色像差。 第一透鏡L1的材質較佳為玻璃。攝影透鏡例如在車載 20用攝影機或監視攝影機用等的嚴格的環境中使用時,配置 在最靠近物侧的第一透鏡L1要求使用耐抗由風雨引起的 表面劣化、由直射日光引起的溫度變化,而且,耐抗油脂、 洗滌劑等化學藥品的材質,即,耐水性、耐氣候性、耐酸 性、耐藥品性等高的材質,而且,有時要求使用堅硬、不 26 M369461 易破裂的材質。透過將材質設為玻璃,可以滿足這些要求。 此外’作為第一透鏡L1的材質,也可以使用透明的陶瓷。 例如,在車載攝影機用透鏡中,透鏡要求耐受各種衝 擊。因此,第一透鏡Li較佳是厚的透鏡。優選第—透鏡^ 5的中心厚度為i.7mm以上。而且,為了使第一透鏡L1不易 破裂’優選第一透鏡L1的中心厚度為175111111以上。而且, 為了使第一透鏡L1更不易破裂,優選第一透鏡匕丨的中心厚 度為1.80mm以上。 而且’可以在第一透鏡L1的物侧的面施加用於提高強 10度、耐劃性、耐藥品性的保護機構❹這時,第一透鏡以的 材質可以設為塑料。這種保護機構可以是硬塗層,也可以 是疏水塗層。 15The surface from the object-side surface of the second lens L2 to the image-side surface of the fourth lens L4 is an aspherical shape as described above, and is free from spherical aberration, field curvature, and coma. It can also correct distortion well. Further, the image-side surface of the third lens L3 may be configured such that the center has a negative refractive power and the negative power at the effective diameter edge is larger than the center shape, and the spherical aberration is easily corrected. The right side is defined by the symbol defined above, and the "center has a positive power at the center of the image side of the third lens L3, and the positive power at the edge of the effective diameter is larger than the center shape" means that the point (6) is included. The paraxial region is convex, which is closer to the object side than 25 M369461 point Q6, and the absolute value of the radius of curvature at point χ6 |RX6| is smaller than the shape of the radius of curvature absolute value |r6| at point Q6. For f, the angle of view is small (variable processing, 〇$ is less S ω, ω is the half angle of view), and the ideal image height is set to 2fxtan( φ /2), and the distortion is changed to indicate the offset thereof. The value from the center to the maximum field of view is preferably a positive value. The distortion is set to a positive value from the center to the maximum angle of view with respect to the ideal image height of 2fxtan (ρ /2), so that the blur of the peripheral image caused by the distortion can be suppressed to a minimum, and image deterioration can be suppressed. The Abbe number of the material of the first lens L1 to the d line is preferably 4 Å or more, thereby suppressing the occurrence of chromatic aberration and obtaining good resolution performance. The Abbe number of the material of the second lens L2 to the d line is preferably 4 Å or more, whereby the occurrence of chromatic aberration is suppressed, and good resolution performance can be obtained. The Abbe number of the material of the fourth lens to the d line is preferably 4 Å or more', whereby the occurrence of chromatic aberration is suppressed, and good resolution performance can be obtained. 15 The material of the third lens 1^3 is preferably 30 or less in the Abbe number of the d line, whereby the chromatic aberration of magnification can be satisfactorily corrected. Further, it is preferable that the Abbe number of the material of the third lens L3 to the d line is 28 or less 'at this time' to correct the chromatic aberration of magnification more satisfactorily. The material of the first lens L1 is preferably glass. When the photographic lens is used in a strict environment such as a camera for a vehicle 20 or a surveillance camera, the first lens L1 disposed on the closest object side is required to be resistant to surface deterioration caused by wind and rain, and temperature change caused by direct sunlight. Moreover, it is resistant to chemicals such as grease and detergents, that is, materials with high water resistance, weather resistance, acid resistance, and chemical resistance, and it is sometimes required to use a hard, non-26 M369461 material that is easily broken. . These requirements can be met by setting the material to glass. Further, as the material of the first lens L1, a transparent ceramic may be used. For example, in a lens for a car camera, the lens is required to withstand various shocks. Therefore, the first lens Li is preferably a thick lens. Preferably, the center thickness of the first lens ^5 is i.7 mm or more. Further, in order to make the first lens L1 less likely to be broken, it is preferable that the center thickness of the first lens L1 is 175111111 or more. Further, in order to make the first lens L1 less likely to be broken, it is preferable that the center density of the first lens 为 is 1.80 mm or more. Further, a protective mechanism for improving the strength by 10 degrees, scratch resistance, and chemical resistance can be applied to the surface of the object side of the first lens L1. In this case, the material of the first lens can be made of plastic. This protective mechanism can be either a hard coat or a hydrophobic coating. 15

在第二透鏡L2、第三透鏡L3、第四透鏡L4的任意個或 者在這些中的任意多個組合中,較佳地將該材質設為塑 料。透過將材質設為塑料,從而可以廉價且輕量地構成透 鏡系統的同時’在設置非球面時’可以準確地製作非球面 形狀,所以可以製作良好的性能的透鏡。 在第二透鏡L2、第三透鏡L3、第四透鏡L4中的至少任 意一個使用塑料材質時,作為該材質也可使用在塑料混合 20 小於光波長的粒子的所謂納米複合材料。 在第二透鏡L2、第三透鏡L3、第四透鏡L4的任意個、 或者在這些中的任意多個組合中’可以將該材質設為玻 璃。透過將材質設為玻璃’從而可以抑制由溫度變化引起 的性能劣化。 27 M369461 第-透如、第二透鏡L2、第三透鏡L3、第四透鏡L4 意—個’其材f的麵化轉變溫度⑽較佳為 A150V更佳為150C以上。透過使用玻璃化轉變溫度 為150(:以上的材質,從而可製作耐熱性良好的透鏡。 媒另外,根據攝影透鏡1的用途,也可以在透鏡系統和 攝影元件5之間插人截止從紫外光到藍色光的渡光片、或者 截止紅外光的IR(InfraRed)截止據光片。 10 在圖1巾$出在透鏡系統和攝景多元件5之間配置設想 各種濾光片等的光學部件PP的例子,但取代此也可以在各 透鏡之間配置這些各種濾光片。或者,也可以在攝影透鏡 具有的任意透鏡的透鏡面施加具有與各種濾光片同樣的作 用的塗層。 另外,通過各透鏡間的有效直徑外的光束成為雜散光 而到達像面,存在成為重影的憂慮,所以根據需要優選設 15置遮斷該雜散光的遮光機構。作為該遮光機構,例如可以 在透鏡的有效直徑外的部分施加不透明的塗料或設置不透 明的板材。而且,也可以在成為雜散光的光束的光路設置 不透明的板材而作為遮光機構。或者,也可以在最靠近物 側的透鏡的更靠物側配置遮斷雜散光的如遮光罩的部件。 2〇作為一例’在圖1中示出將遮光機構丨丨、12分別設置在第一 透鏡L1、第二透鏡L2的像側的面的有效直徑外的例子。另 外’設置遮光機構的部位不限於圖1所示的例子,也可配置 在其他透鏡或透鏡之間。 28 M369461 而且,也可以在各透鏡之間配置以周邊光量比實用上 沒有問題的範圍遮斷周邊光線的光闌等部件。周邊光線是 指來自光軸z外的物點的光線中通過光學系統的入瞳的^ 邊部分的光線。透過這樣配置遮斷周邊光線的部件,可^ 5提高成像區域周邊部的圖像質量。而且,透過用該部件遮 斷產生重影的光,從而可以減少重影。 [攝影透鏡的數值實施例] 接著,對本創作的攝影透鏡的數值實施例進行說明。 將實施例一〜實施例五的攝影透鏡的透鏡剖面圖分別示於 10圖3〜圖7。在圖3〜圖7中,圖的左側為物侧,右側為像側, 與圖1同樣也一併圖示了孔徑光闌St、光學部件pp、配置在 像面Sim的攝影元件5。各圖的孔徑光闌&不表示其形狀或 大小、而表示其在光轴Z上的位置》在各實施例中,透鏡 剖面圖的符號Ri、Di㈣、2、3、)對應於在以下說明 15 的透鏡數據的Ri、Di。 將實施例一的攝影透鏡的透鏡數據及各種數據示在 表1,將非球面數據示在表2,將有關曲率半徑的數據示在 表3。同樣地,將實施例二〜五的攝影透鏡的透鏡數據及各 種數據、非球面數據分別示在表4〜表丨5。在以下,舉實施 20例一為例而對表中的符號的意義進行說明,但對實施例二 〜五也基本相同。 在表1的透鏡數據中,Si表示將最靠近物側的構成因素 的面作為第一個而隨著朝向像側依次增加的第i個(i=1、 2、3、)的面號碼(也稱第i面),Ri表示第i面的曲率半徑, 29 M369461In any one of the second lens L2, the third lens L3, and the fourth lens L4, or any combination of these, the material is preferably made of plastic. By making the material into a plastic material, the lens system can be formed inexpensively and lightly, and the aspherical shape can be accurately produced when the aspherical surface is provided. Therefore, a lens having good performance can be produced. When at least one of the second lens L2, the third lens L3, and the fourth lens L4 is made of a plastic material, a so-called nanocomposite in which the plastic is mixed with particles smaller than the wavelength of light can be used as the material. The material may be made of glass in any one of the second lens L2, the third lens L3, and the fourth lens L4, or any combination of these. By setting the material to glass ', it is possible to suppress performance deterioration caused by temperature change. 27 M369461 The first, the second lens L2, the third lens L3, and the fourth lens L4 preferably have a surface transition temperature (10) of a material f of preferably 150 C or more. By using a material having a glass transition temperature of 150 or more, a lens having good heat resistance can be produced. In addition, depending on the use of the photographic lens 1, a cut-off ultraviolet light can be inserted between the lens system and the photographic element 5. A light-emitting sheet to the blue light or an IR (InfraRed) cut-off light source that cuts off the infrared light. 10 Between the lens system and the multi-element 5 of the lens, the optical components of various filters and the like are arranged. In the example of PP, these various filters may be disposed between the lenses instead of this. Alternatively, a coating having the same function as various filters may be applied to the lens surface of any lens of the photographic lens. The light beam outside the effective diameter between the lenses becomes stray light and reaches the image surface, which may cause a ghost. Therefore, it is preferable to provide a light shielding mechanism for blocking the stray light, as needed. An opaque coating or an opaque sheet is applied to the portion outside the effective diameter of the lens. Moreover, the optical path of the beam that becomes stray light may be opaque. The plate member may be used as a light-shielding mechanism. Alternatively, a member such as a hood that blocks stray light may be disposed on the object side of the lens closest to the object side. 2〇 As an example, a light-shielding mechanism is shown in FIG. And 12 are respectively provided outside the effective diameter of the surface on the image side of the first lens L1 and the second lens L2. Further, the portion where the light shielding mechanism is provided is not limited to the example shown in Fig. 1, and may be disposed in other lenses or lenses. 28 M369461 In addition, it is also possible to arrange a member such as a diaphragm that blocks peripheral light in a range in which the peripheral light amount is practically no problem, and the peripheral light refers to the light from the object point outside the optical axis z. The light passing through the edge portion of the entrance of the optical system. By arranging the member that blocks the peripheral light, the image quality of the peripheral portion of the imaging region can be improved, and the ghosting light is blocked by the member. Thus, the ghost image can be reduced. [Numerical Example of Photographic Lens] Next, a numerical embodiment of the photographic lens of the present invention will be described. The lenses of the photographic lens of the first to fifth embodiments will be described. The surface views are shown in Fig. 3 to Fig. 7. In Fig. 3 to Fig. 7, the left side of the figure is the object side, and the right side is the image side. Similarly to Fig. 1, the aperture stop St and the optical member pp are also shown. The photographic element 5 disposed on the image surface Sim. The aperture stop & of each figure does not indicate its shape or size, but indicates its position on the optical axis Z. In each embodiment, the symbol Ri of the lens cross-sectional view, Di (four), 2, 3, and ) correspond to Ri, Di of the lens data of the following description 15. The lens data and various data of the photographic lens of the first embodiment are shown in Table 1, the aspherical data is shown in Table 2, and the data on the radius of curvature is shown in Table 3. Similarly, the lens data of the photographic lenses of the second to fifth embodiments, the various types of data, and the aspherical data are shown in Tables 4 to 5, respectively. In the following, the meaning of the symbols in the table will be described by way of example, but the second to fifth embodiments are basically the same. In the lens data of Table 1, Si denotes the i-th (i=1, 2, 3,) face number which is the first one of the constituent elements closest to the object side and sequentially increases toward the image side ( Also called the i-th surface), Ri represents the radius of curvature of the i-th surface, 29 M369461

Di表示第i面和第i+i面的光軸2上的面間隔。另外,曲率半 徑的符號將朝物側為凸的情況設為正,將朝像側為凸的情 況設為負。 而且,在透鏡數據中,Ndj表示將最靠近物側的透鏡 5作為第一個而隨著朝向像側依次增加的第』個(』=丨、2、 3、......)的光學要素(也稱第j光學要素)對d線(波長587.6nm) 的折射率’ vdj表示第j光學要素對d線的阿貝數。另外,在 透鏡數據中,也包括孔徑光闌St和光學部件pp表示,在相 當於孔徑光闌St的面的曲率半徑的攔記載有(孔徑光闌)的 10 語句。 在表1的各種數據中’ Fno.為F數,為全視場角,IH 為在像面Sim上的最大像高,Bf為從最靠近像側的透鏡的 像側的面到像面的光軸Z上的距離(相當於後截距、空氣換 算長度)’ L為從第一透鏡L1的物側的面到像面sim的光軸z I5上的距離(後截距部分為空氣換算長度),ED1為第一透鏡 L1的物側的面的有效直徑,f為整個系統的焦距,fl為第一 透鏡L1的焦距,f2為第二透鏡L2的焦距,f3為第三透鏡L3 的焦距’ f4為第四透鏡L4的焦距,f 12為第一透鏡l 1和第二 透鏡L2的合成焦距,f34為第三透鏡L3和第四透鏡L4的合 2〇成焦距,f23為第二透鏡L2和第三透鏡L3的合成焦距。 在表1的透鏡數據中,在非球面的面號碼附加有*號, 作為非球面的曲率半徑表示光軸附近的曲率半徑(中心的 曲率半徑)的數值◊在表2的非球面數據表示非球面的面號 碼、有關各非球面的非球面係數。表2的非球面數據的數值 30 M369461 的「Ε-η」(η:整數)表示「χιό·"」,「E+n」表示Γχ1〇η」。 另外,非球面係數是由以下式(Α)表示的非球面式中的各係 數 KA、RBm(m=3、4、5、......20)的值。Di represents the surface spacing on the optical axis 2 of the i-th surface and the i-i-i surface. Further, the sign of the radius of curvature is set to be positive when the object side is convex, and negative when the image side is convex. Further, in the lens data, Ndj indicates that the lens 5 closest to the object side is the first one and the first one ("==2, 3, ...) is sequentially increased toward the image side. The refractive index 'vdj' of the optical element (also referred to as the jth optical element) to the d line (wavelength 587.6 nm) represents the Abbe number of the jth optical element to the d line. Further, in the lens data, the aperture stop St and the optical member pp are also included, and 10 sentences of (aperture stop) are described in the radius of curvature of the surface corresponding to the aperture stop St. In the various data of Table 1, 'Fno. is the F number, which is the full angle of view, IH is the maximum image height on the image plane Sim, and Bf is the image side from the image side closest to the image side to the image plane. The distance on the optical axis Z (corresponding to the back intercept and the air converted length) 'L is the distance from the object side surface of the first lens L1 to the optical axis z I5 of the image plane sim (the rear intercept portion is air conversion) Length), ED1 is the effective diameter of the surface of the object side of the first lens L1, f is the focal length of the entire system, fl is the focal length of the first lens L1, f2 is the focal length of the second lens L2, and f3 is the focal length of the third lens L3 The focal length 'f4 is the focal length of the fourth lens L4, f12 is the combined focal length of the first lens 11 and the second lens L2, f34 is the combined focal length of the third lens L3 and the fourth lens L4, and f23 is the second The combined focal length of the lens L2 and the third lens L3. In the lens data of Table 1, the * is added to the surface number of the aspherical surface, and the radius of curvature of the aspherical surface indicates the radius of curvature (the radius of curvature of the center) near the optical axis. The aspherical data of Table 2 indicates non- The face number of the sphere and the aspherical coefficient of each aspherical surface. The numerical value of the aspherical data in Table 2 "Ε-η" (η: integer) of M369461 means "χιό·"", and "E+n" means Γχ1〇η". Further, the aspherical coefficient is a value of each of the coefficients KA, RBm (m = 3, 4, 5, ... 20) in the aspherical expression represented by the following formula (Α).

Zd=C-h2/{l+(l.KA-C2-h2)1/2}+IRBm-hm ......(A) 其中,Zd=C-h2/{l+(l.KA-C2-h2)1/2}+IRBm-hm ......(A) where

10 1510 15

Zd :非球面深度(從高度h的非球面上的點下垂到非球 面頂點相切的垂直於光軸的平面的垂線長度), h :高度(從光軸到透鏡面的距離), C :近轴曲率半徑的倒數, KA、RBm :非球面係數(m=3、4、5、......20)。 在有關表3的曲率半徑的數據中’使用上述的說明的 符號表示面號碼、有效直徑邊緣的曲率半徑絕對值、有效 直徑邊緣的曲率半徑絕對值與中心的曲率半徑絕對值之 比。|RX3丨是第二透鏡L2的物側的面的有效直徑邊緣的曲率 半徑絕對值,|RX3|/|R3|是第二透鏡L2的物側的面的有效直 徑邊緣的曲率半徑絕對值與中心的曲率半徑絕對值之比。 |RX4|是第二透鏡L2的像側的面的有效直徑邊緣的曲率半 徑絕對值,|RX4|/|R4|是第二透鏡L2的像側的面的有效直徑 邊緣的曲率半徑絕對值與中心的曲率半徑絕對值之比。 20 |RX5|是第三透鏡L3的物側的面的有效直徑邊緣的曲率半 徑絕對值,|RX5|/|R5|是第三透鏡L3的物側的面的有效直徑 邊緣的曲率半徑絕對值與中心的曲率半徑絕對值之比。 |RX6|是第三透鏡L3的像側的面的有效直徑邊緣的曲率半 徑絕對值,|RX6|/|R6|是第三透鏡L3的像側的面的有效直徑 25 邊緣的曲率半徑絕對值與中心的曲率半徑絕對值之比。 31 M369461 |RX8|是第四透鏡L4的物側的面的有效直徑邊緣的曲率半 徑絕對值,|RX8|/|R8|是第四透鏡L4的物側的面的有效直徑 邊緣的曲率半徑絕對值與中心的曲率半徑絕對值之比。 |RX9|是第四透鏡L4的像側的面的有效直徑邊緣的曲率半 5徑絕對值,丨RX9|/|R9丨是第四透鏡L4的像側的面的有效直徑 邊緣的曲率半徑絕對值與中心的曲率半徑絕對值之比。 另外’在表1〜表3記載有以規定的位數取整的數值。 作為各數值的單位對於表丨的2〇使用「度」,對於長度使 用「mm」。但是,這是一例,光學系統即使按比例放大或 10按比例縮小也可以得到同等的光學性能,所以也可就使用 其他適當的單位。 [表1] 15實施例一透鏡數據Zd : aspherical depth (the length of the perpendicular from the point on the aspheric surface of the height h to the plane perpendicular to the optical axis tangent to the aspherical vertex), h : height (distance from the optical axis to the lens surface), C : Reciprocal of the paraxial radius of curvature, KA, RBm: aspherical coefficient (m = 3, 4, 5, ... 20). In the data on the radius of curvature of Table 3, the symbol used in the above description indicates the face number, the absolute value of the radius of curvature of the effective diameter edge, the absolute value of the radius of curvature of the effective diameter edge, and the absolute value of the radius of curvature of the center. |RX3丨 is the absolute value of the radius of curvature of the effective diameter edge of the object side surface of the second lens L2, and |RX3|/|R3| is the absolute value of the radius of curvature of the effective diameter edge of the object side surface of the second lens L2 and The ratio of the absolute radius of curvature of the center. |RX4| is the absolute value of the radius of curvature of the effective diameter edge of the image side surface of the second lens L2, |RX4|/|R4| is the absolute value of the radius of curvature of the effective diameter edge of the image side surface of the second lens L2 and The ratio of the absolute radius of curvature of the center. 20 | RX5| is an absolute value of the radius of curvature of the effective diameter edge of the object side surface of the third lens L3, |RX5|/|R5| is the absolute value of the radius of curvature of the effective diameter edge of the object side surface of the third lens L3 The ratio of the absolute value of the radius of curvature to the center. |RX6| is the absolute value of the radius of curvature of the effective diameter edge of the image side surface of the third lens L3, |RX6|/|R6| is the effective radius of the image side of the third lens L3, and the absolute value of the curvature radius of the edge The ratio of the absolute value of the radius of curvature to the center. 31 M369461 | RX8| is the absolute value of the radius of curvature of the effective diameter edge of the object side surface of the fourth lens L4, and |RX8|/|R8| is the radius of curvature of the effective diameter edge of the object side surface of the fourth lens L4. The ratio of the value to the absolute value of the radius of curvature of the center. |RX9| is the absolute value of the radius of the effective diameter edge of the image side surface of the fourth lens L4, and 丨RX9|/|R9丨 is the radius of curvature of the effective diameter edge of the image side surface of the fourth lens L4. The ratio of the value to the absolute value of the radius of curvature of the center. Further, in Tables 1 to 3, numerical values which are rounded up by a predetermined number of bits are described. As the unit of each numerical value, "degree" is used for 2〇 of the watch, and "mm" is used for the length. However, this is an example, and the optical system can obtain the same optical performance even if scaled up or scaled down, so other suitable units can be used. [Table 1] 15 Example 1 Lens Data

Si Ri Di Ndj vdj 1 17.87 1.80 1.77 49.6 2 4.30 2.77 3* -2.30 1.15 1.53 56.0 2.51 0.52 5* 1.94 2.43 1.61 25.5 6* -26.87 0.34 7 ~~ (孔徑光闌) 0.20 8* -7.30 1.50 1.53 56.0 9 * -0.81 0.80 10 〇〇 0.40 1.52 64.2 11 〇〇 0.72 像面 - 0.00 32 M369461 實施例一各種數據Si Ri Di Ndj vdj 1 17.87 1.80 1.77 49.6 2 4.30 2.77 3* -2.30 1.15 1.53 56.0 2.51 0.52 5* 1.94 2.43 1.61 25.5 6* -26.87 0.34 7 ~~ (Aperture stop) 0.20 8* -7.30 1.50 1.53 56.0 9 * -0.81 0.80 10 〇〇0.40 1.52 64.2 11 〇〇0.72 Image plane - 0.00 32 M369461 Example 1 Various data

Fno. 2.8 2ω 200.6 Bf 1.78 L 12.49 EDI 14.58 f 0.70 fl -7.78 f2 -2.08 f3 3.04 f4 1.58 fl2 -1.28 f34 2.98 f23 281.11Fno. 2.8 2ω 200.6 Bf 1.78 L 12.49 EDI 14.58 f 0.70 fl -7.78 f2 -2.08 f3 3.04 f4 1.58 fl2 -1.28 f34 2.98 f23 281.11

[表2] 5 實施例一非球面數據[Table 2] 5 Example 1 Aspherical data

Si KA RB3 RB4 RB5 RB6 RB7 RB8 3 0.00E+00 1.17E-01 -1.86E-02 -1.19E-03 9.14E-05 8.36E-05 2.57E-05 4 0.00E+00 6.40E-02 8.67E-02 -8.08E-02 3.00E-02 2.35E-02 6.27E-03 5 0.00E+00 4.68E-02 7.61E-02 9.92E-02 3.36E-03 -5.29E-03 -3.10E-03 6 0.00E+00 -8.79E-02 4.13E-01 -3.89E-01 -1.66E-01 1.89E-01 3.40E-01 8 0.00E+00 3.52E-02 -3.09E-01 -1.01E+00 6.33E+00 -6.71E+00 -1.22E+01 9 0.00E+00 1.23E-02 -2.85E-02 -1.28E-03 -3.47E-02 6.09E-02 1.49E-02 Si RB9 RB10 RB11 RBI 2 RBI 3 RBI 4 RBI 5 3 4.40E-07 -1.76E-06 -6.97E-07 -1.94E-07 2.09E-09 1.85E-08 6.93E-09 4 -1.10E-03 -2.33E-03 -1.67E-03 -8.75E-04 -3.17E-04 -3.64E-05 3.36E-05 5 -2.73E-03 -1.00E-03 8.42E-04 4.80E-04 1.93E-04 6.25E-05 5.71E-06 6 2.11E-01 -4.62E-02 -4.35E-01 -7.75E-01 -6.66E-01 3.71E-01 2.53E-01 8 -2.40E+00 5.45E+01 7.24E+01 -1.04E+02 -2.41E+02 -1.59E+02 2.00E+02 9 -4.67E-02 -5.83E-02 -2.85E-02 1.47E-02 4.21E-02 4.33E-02 2.23E-02 Si RBI 6 RBI 7 RBI 8 RB19 RB20 3 3.07E-09 -2.26E-10 -3.18E-10 -8.80E-11 2.76E-11 4 7.32E-05 5.30E-05 2.23E-05 -4.72E-06 -7.63E-06 5 -1.57E-05 -2.73E-05 -3.80E-05 -5.65E-06 1.16E-05 6 3.72E+00 -1.53E+00 3.04E+00 -1.03E+01 5.87E+00 8 5.98E+02 1.85E+03 3.23E+02 -9.15E+03 6.76E+03 9 -8.12E-03 -3.35E-02 -3.95E-02 -1.90E-02 4.75E-02 33 M369461 [表3] 實施例一關於曲率半徑的數據Si KA RB3 RB4 RB5 RB6 RB7 RB8 3 0.00E+00 1.17E-01 -1.86E-02 -1.19E-03 9.14E-05 8.36E-05 2.57E-05 4 0.00E+00 6.40E-02 8.67E -02 -8.08E-02 3.00E-02 2.35E-02 6.27E-03 5 0.00E+00 4.68E-02 7.61E-02 9.92E-02 3.36E-03 -5.29E-03 -3.10E-03 6 0.00E+00 -8.79E-02 4.13E-01 -3.89E-01 -1.66E-01 1.89E-01 3.40E-01 8 0.00E+00 3.52E-02 -3.09E-01 -1.01E+ 00 6.33E+00 -6.71E+00 -1.22E+01 9 0.00E+00 1.23E-02 -2.85E-02 -1.28E-03 -3.47E-02 6.09E-02 1.49E-02 Si RB9 RB10 RB11 RBI 2 RBI 3 RBI 4 RBI 5 3 4.40E-07 -1.76E-06 -6.97E-07 -1.94E-07 2.09E-09 1.85E-08 6.93E-09 4 -1.10E-03 -2.33E -03 -1.67E-03 -8.75E-04 -3.17E-04 -3.64E-05 3.36E-05 5 -2.73E-03 -1.00E-03 8.42E-04 4.80E-04 1.93E-04 6.25 E-05 5.71E-06 6 2.11E-01 -4.62E-02 -4.35E-01 -7.75E-01 -6.66E-01 3.71E-01 2.53E-01 8 -2.40E+00 5.45E+01 7.24E+01 -1.04E+02 -2.41E+02 -1.59E+02 2.00E+02 9 -4.67E-02 -5.83E-02 -2.85E-02 1.47E-02 4.21E-02 4.33E- 02 2.23E-02 Si RBI 6 RBI 7 RBI 8 RB19 RB20 3 3.07E-09 -2.26E-10 -3.18E-10 -8.80E-11 2.76E-11 4 7.32E-05 5.30E-05 2.23E-05 -4.72E-06 -7.63E-06 5 -1.57E-05 -2.73E-05 -3.80E-05 -5.65E-06 1.16E-05 6 3.72E+00 -1.53 E+00 3.04E+00 -1.03E+01 5.87E+00 8 5.98E+02 1.85E+03 3.23E+02 -9.15E+03 6.76E+03 9 -8.12E-03 -3.35E-02 - 3.95E-02 -1.90E-02 4.75E-02 33 M369461 [Table 3] Example 1 Data on radius of curvature

Si 有效直徑邊緣 有效直徑邊緣和中心之比 3 |RX3 25.99 |RX3|/ R3| 11.28 4 RX4 2.00 |RX4|/|R4| 0.80 5 RX5| 1.87 RX5 / R5 0.97 6 RX6 93.31 |RX6|/|R6| 3.47 8 |RX8 4.12 |RX8|/|R8| 0.56 9 RX9 1.23 RX9|/ R9| 1.52 [表4] 5 實施例二透鏡數據Si Effective Diameter Edge Effective Diameter Edge to Center Ratio 3 |RX3 25.99 |RX3|/ R3| 11.28 4 RX4 2.00 |RX4|/|R4| 0.80 5 RX5| 1.87 RX5 / R5 0.97 6 RX6 93.31 |RX6|/|R6 3.47 8 |RX8 4.12 |RX8|/|R8| 0.56 9 RX9 1.23 RX9|/ R9| 1.52 [Table 4] 5 Example 2 Lens Data

Si Ri Di Ndj vdj 1 19.06 1.80 1.77 49.6 2 4.39 2.73 3* -2.45 1.20 1.53 56.0 4* 2.40 0.70 5* 2.00 2.23 1.61 25.5 6* -60.40 0.34 7 (孔徑光闌) 0.19 8* -7.67 1.50 1.53 56.0 9* -0.82 0.80 10 〇〇 0.50 1.52 64.2 11 oo 0.68 像面 - 0.00 實施例二各種數據Si Ri Di Ndj vdj 1 19.06 1.80 1.77 49.6 2 4.39 2.73 3* -2.45 1.20 1.53 56.0 4* 2.40 0.70 5* 2.00 2.23 1.61 25.5 6* -60.40 0.34 7 (Aperture stop) 0.19 8* -7.67 1.50 1.53 56.0 9 * -0.82 0.80 10 〇〇0.50 1.52 64.2 11 oo 0.68 Image plane - 0.00 Example 2 Various data

Fno. 2.8 2ω 200.2 Bf 1.80 L 12.49 EDI 14.82 f 0.69 fl -7.81 f2 -2.10 34 M369461 f3 3.20 f4 1.60 fl2 -1.29 f34 2.70 f23 27471.06 [表5] 實施例二非球面數據Fno. 2.8 2ω 200.2 Bf 1.80 L 12.49 EDI 14.82 f 0.69 fl -7.81 f2 -2.10 34 M369461 f3 3.20 f4 1.60 fl2 -1.29 f34 2.70 f23 27471.06 [Table 5] Example 2 Aspherical data

Si KA RB3 RB4 RB5 RB6 RB7 RB8 3 0.00E+00 1.18E-01 -1.86E-02 -1.20E-03 8.64E-05 8.20E-05 2.53E-05 4 0.00E+00 6.38E-02 8.66E-02 -8.07E-02 3.01E-02 2.36E-02 6.29E-03 5 0.00E+00 4.70E-02 -7.70E-02 9.87E-02 3.19E-03 -5.33E-03 -3.10E-03 6 0.00E+00 -8.45E-02 4.14E-01 -3.88E-01 -1.64E-01 1.92E-01 3.46E-01 8 0.00E+00 2.67E-02 -3.14E-01 -1.02E+00 6.33E+00 -6.72E+00 -1.22E+01 9 O.OOE+OO 1.17E-02 -3.77E-02 -3.67E-03 -3.44E-02 6.20E-02 1.62E-02 Si RB9 RB10 RBI 1 RBI 2 RBI 3 RBI 4 RBI 5 3 3.45E-07 -1.79E-06 -7.02E-07 -1.95E-07 1.84E-09 1.85E-08 6.92E-09 4 -1.08E-03 -2.33E-03 -1.67E-03 -8.75E-04 -3.17E-04 -3.65E-05 3.33E-05 5 -2.72E-03 -9.87E-04 8.53E-04 4.88E-04 1.98E-04 6.55E-05 7.35E-06 6 2.18E-01 -3.64E-02 -4.24E-01 -7.64E-01 -6.58E-01 3.75E-01 2.47E-01 8 -2.42E+00 5.45E+01 7.23E+01 -1.03E+02 -2.43E+02 -1.63E+02 1.98E+02 9 -4.56E-02 -5.74E-02 -2.80E-02 1.50E-02 4.21E-02 4.31E-02 2.19E-02 Si RBI 6 RBI 7 RBI 8 RBI 9 RB20 3 3.07E-09 -2.25E-10 3.17E-10 -8.77E-11 2.77E-11 4 7.30E-05 5.28E-05 2.21E-05 -4.81E-06 -7.70E-06 5 -1.49E-05 -2.70E-05 -3.79E-05 -5.77E-06 1.15E-05 6 3.70E+00 -1.58E+00 3.04E+00 -1.03E+01 5.85E+00 8 6.27E+02 1.83E+03 3.22E+02 -9.15E+03 6.76E+03 9 -8.62E-03 -3.41E-02 -4.01E-02 -1.93E-02 4.73E-02Si KA RB3 RB4 RB5 RB6 RB7 RB8 3 0.00E+00 1.18E-01 -1.86E-02 -1.20E-03 8.64E-05 8.20E-05 2.53E-05 4 0.00E+00 6.38E-02 8.66E -02 -8.07E-02 3.01E-02 2.36E-02 6.29E-03 5 0.00E+00 4.70E-02 -7.70E-02 9.87E-02 3.19E-03 -5.33E-03 -3.10E- 03 6 0.00E+00 -8.45E-02 4.14E-01 -3.88E-01 -1.64E-01 1.92E-01 3.46E-01 8 0.00E+00 2.67E-02 -3.14E-01 -1.02E +00 6.33E+00 -6.72E+00 -1.22E+01 9 O.OOE+OO 1.17E-02 -3.77E-02 -3.67E-03 -3.44E-02 6.20E-02 1.62E-02 Si RB9 RB10 RBI 1 RBI 2 RBI 3 RBI 4 RBI 5 3 3.45E-07 -1.79E-06 -7.02E-07 -1.95E-07 1.84E-09 1.85E-08 6.92E-09 4 -1.08E-03 -2.33E-03 -1.67E-03 -8.75E-04 -3.17E-04 -3.65E-05 3.33E-05 5 -2.72E-03 -9.87E-04 8.53E-04 4.88E-04 1.98E -04 6.55E-05 7.35E-06 6 2.18E-01 -3.64E-02 -4.24E-01 -7.64E-01 -6.58E-01 3.75E-01 2.47E-01 8 -2.42E+00 5.45 E+01 7.23E+01 -1.03E+02 -2.43E+02 -1.63E+02 1.98E+02 9 -4.56E-02 -5.74E-02 -2.80E-02 1.50E-02 4.21E-02 4.31E-02 2.19E-02 Si RBI 6 RBI 7 RBI 8 RBI 9 RB20 3 3.07E-09 -2.25E-10 3.17E-10 -8.77E-11 2.77E-11 4 7.30E-0 5 5.28E-05 2.21E-05 -4.81E-06 -7.70E-06 5 -1.49E-05 -2.70E-05 -3.79E-05 -5.77E-06 1.15E-05 6 3.70E+00 - 1.58E+00 3.04E+00 -1.03E+01 5.85E+00 8 6.27E+02 1.83E+03 3.22E+02 -9.15E+03 6.76E+03 9 -8.62E-03 -3.41E-02 -4.01E-02 -1.93E-02 4.73E-02

5 [表 6] 實施例二關於曲率半徑的數據5 [Table 6] Example 2 data on radius of curvature

Si 有效直徑邊緣 有效直徑邊緣和中心之比 3 |RX3 59.40 |RX3 /|R3| 24.20 4 |RX4| 2.01 |RX4|/|R4| 0.84 5 RX5 1.81 |RX5|/|R5| 0.91 6 RX6 10.72 |RX6 /|R6| 0.18 8 |RX8 3.79 |RX8|/|R8| 0.49 9 |RX9| 1.22 |RX9|/|R9| 1.48 35 M369461 [表7] 實施例三透鏡數據Si effective diameter edge effective diameter edge to center ratio 3 |RX3 59.40 |RX3 /|R3| 24.20 4 |RX4| 2.01 |RX4|/|R4| 0.84 5 RX5 1.81 |RX5|/|R5| 0.91 6 RX6 10.72 | RX6 /|R6| 0.18 8 |RX8 3.79 |RX8|/|R8| 0.49 9 |RX9| 1.22 |RX9|/|R9| 1.48 35 M369461 [Table 7] Example 3 Lens Data

Si Ri Di Ndj vdj 1 17.49 1.20 1.77 49.6 2 3.94 2.49 3* -2.63 1.10 1.53 56.0 4 * 2.67 0.78 5* 2.46 2.15 1.61 25.5 6* 65.59 0.45 7 (孔徑光闌) 0.15 8* -3.80 1.50 1.53 56.0 9* -0.97 1.16 10 〇〇 0.60 1.52 64.2 11 〇〇 1.18 像面 - 0.00 實施例三各種數據Si Ri Di Ndj vdj 1 17.49 1.20 1.77 49.6 2 3.94 2.49 3* -2.63 1.10 1.53 56.0 4 * 2.67 0.78 5* 2.46 2.15 1.61 25.5 6* 65.59 0.45 7 (Aperture stop) 0.15 8* -3.80 1.50 1.53 56.0 9* -0.97 1.16 10 〇〇0.60 1.52 64.2 11 〇〇1.18 Image plane - 0.00 Example 3 Various data

Fno. 2.8 2ω 198.0 Bf 2.74 L 12.56 EDI 12.28 f 0.87 fl -6.86 f2 -2.31 f3 4.10 f4 2.07 fl2 -1.35 f34 2.74 f23 -13.10 36 _ M369461 [表8] 實施例三非球面數據Fno. 2.8 2ω 198.0 Bf 2.74 L 12.56 EDI 12.28 f 0.87 fl -6.86 f2 -2.31 f3 4.10 f4 2.07 fl2 -1.35 f34 2.74 f23 -13.10 36 _ M369461 [Table 8] Example 3 Aspherical data

Si KA RB3 RB4 RB5 RB6 RB7 RB8 3 O.OOE+OO 1.17E-01 -1.90E-02 -1.38E-03 4.85E-05 7.66E-05 2.50E-05 4 0.00E+00 8.12E-02 8.87E-02 -8.05E-02 2.96E-02 2.32E-02 6.13E-03 5 0.00E+00 7.09E-02 -8.85E-02 9.62E-02 3.56E-03 -4.80E-03 -2.81E-03 6 0.00E+00 -8.43E-02 4.00E-01 -3.91E-01 -1.52E-01 2.14E-01 3.63E-01 8 0.00E+00 -2.12E-02 -1.38E-01 -1.14E+00 5.97E+00 -7.00E+00 -1.20E+01 9 0.00E+00 1.85E-02 -6.89E-02 -9.28E-03 -3.64E-02 6.15E-02 1.74E-02 Si RB9 RB10 RB11 RB12 RBI 3 RB14 RBI 5 3 4.73E-07 -1.72E-06 -6.77E-07 -1.90E-07 3.46E-09 1.90E-08 7.02E-09 4 -1.15E-03 -2.35E-03 -1.68E-03 -8.77E-04 -3.18E-04 -3.71E-05 3.32E-05 5 -2.62E-03 -9.68E-04 8.43E-04 4.74E-04 1.90E-04 6.25E-05 8.05E-06 6 2.21E-01 -5.15E-02 -4.54E-01 -8.01E-01 -6.91E-01 3.68E-01 2.70E-01 8 -1.29E+00 5.66E+01 7.52E+01 -9.90E+01 -2.83E+02 -1.94E+02 1.88E+02 9 -4.31E-02 -5.44E-02 -2.52E-02 1.68E-02 4.25E-02 4.20E-02 1.96E-02 Si RBI 6 RBI 7 RBI 8 RBI 9 RB20 3 3.09E-09 -2.22E-10 -3.18E-10 -8.91E-11 2.65E-11 4 7.27E-05 5.27E-05 2.22E-05 -4.47E-06 -7.51E-06 5 -1.24E-05 -2.45E-05 -3.61E-05 -5.53E-06 1.07E-05 6 3.73E+00 -1.51E+00 3.09E+00 -1.03E+01 5.75E+00 8 5.27E+02 2.01E+03 9.81E+02 -8.06E+03 4.73E+03 9 -1.18E-02 -3.78E-02 -4.37E-02 -1.77E-02 4.96E-02Si KA RB3 RB4 RB5 RB6 RB7 RB8 3 O.OOE+OO 1.17E-01 -1.90E-02 -1.38E-03 4.85E-05 7.66E-05 2.50E-05 4 0.00E+00 8.12E-02 8.87 E-02 -8.05E-02 2.96E-02 2.32E-02 6.13E-03 5 0.00E+00 7.09E-02 -8.85E-02 9.62E-02 3.56E-03 -4.80E-03 -2.81E -03 6 0.00E+00 -8.43E-02 4.00E-01 -3.91E-01 -1.52E-01 2.14E-01 3.63E-01 8 0.00E+00 -2.12E-02 -1.38E-01 - 1.14E+00 5.97E+00 -7.00E+00 -1.20E+01 9 0.00E+00 1.85E-02 -6.89E-02 -9.28E-03 -3.64E-02 6.15E-02 1.74E-02 Si RB9 RB10 RB11 RB12 RBI 3 RB14 RBI 5 3 4.73E-07 -1.72E-06 -6.77E-07 -1.90E-07 3.46E-09 1.90E-08 7.02E-09 4 -1.15E-03 -2.35 E-03 -1.68E-03 -8.77E-04 -3.18E-04 -3.71E-05 3.32E-05 5 -2.62E-03 -9.68E-04 8.43E-04 4.74E-04 1.90E-04 6.25E-05 8.05E-06 6 2.21E-01 -5.15E-02 -4.54E-01 -8.01E-01 -6.91E-01 3.68E-01 2.70E-01 8 -1.29E+00 5.66E+ 01 7.52E+01 -9.90E+01 -2.83E+02 -1.94E+02 1.88E+02 9 -4.31E-02 -5.44E-02 -2.52E-02 1.68E-02 4.25E-02 4.20E -02 1.96E-02 Si RBI 6 RBI 7 RBI 8 RBI 9 RB20 3 3.09E-09 -2.22E-10 -3.18E-10 -8.91E-11 2.65E-11 4 7.27E-05 5.27E-05 2.22E-05 -4.47E-06 -7.51E-06 5 -1.24E-05 -2.45E-05 -3.61E-05 -5.53E-06 1.07E-05 6 3.73E+00 -1.51 E+00 3.09E+00 -1.03E+01 5.75E+00 8 5.27E+02 2.01E+03 9.81E+02 -8.06E+03 4.73E+03 9 -1.18E-02 -3.78E-02 - 4.37E-02 -1.77E-02 4.96E-02

[表9] 5 實施例三關於曲率半徑的數據[Table 9] 5 Example 3 data on radius of curvature

Si 有效直徑邊緣 有效直徑邊緣和中心之比 3 |RX3 31.55 |RX3|/|R3| 11.98 4 |RX4| 1.91 |RX4|/|R4| 0.72 5 |RX5| 1.81 |RX5 /|R5| 0.74 6 |RX6| 8.77 |RX6|/|R6 0.13 8 |RX8| 2.21 |RX8|/|R8| 0.58 9 RX9| 1.22 |RX9|/|R9| 1.25 [表 10] 實施例四透鏡數據Si effective diameter edge effective diameter edge to center ratio 3 |RX3 31.55 |RX3|/|R3| 11.98 4 |RX4| 1.91 |RX4|/|R4| 0.72 5 |RX5| 1.81 |RX5 /|R5| 0.74 6 | RX6| 8.77 |RX6|/|R6 0.13 8 |RX8| 2.21 |RX8|/|R8| 0.58 9 RX9| 1.22 |RX9|/|R9| 1.25 [Table 10] Example 4 Lens Data

Si Ri Di Ndj vdj 1 17.49 1.20 1.77 49.6 37 M369461 2 4.48 2.82 3* -2.45 1.20 1.53 56.0 4* 2.41 0.70 5* 2.00 2.20 1.61 25.5 6* -59.66 0.36 7 (孔徑光闌) 0.19 8* -7.56 1.50 1.53 56.0 9* -0.82 0.80 10 〇〇 0.70 1.52 64.2 11 〇〇 0.53 像面 - 0.00 實施例四各種數據Si Ri Di Ndj vdj 1 17.49 1.20 1.77 49.6 37 M369461 2 4.48 2.82 3* -2.45 1.20 1.53 56.0 4* 2.41 0.70 5* 2.00 2.20 1.61 25.5 6* -59.66 0.36 7 (Aperture stop) 0.19 8* -7.56 1.50 1.53 56.0 9* -0.82 0.80 10 〇〇0.70 1.52 64.2 11 〇〇0.53 Image plane - 0.00 Example 4 Various data

Fno. 2.8 2ω 200.2 Bf 1.79 L 11.96 EDI 13.67 f 0.69 fl -8.12 f2 -2.10 f3 3.19 f4 1.60 Π2 -1.29 f34 2.70 f23 2103.14 [表 11] 5 實施例四非球面數據Fno. 2.8 2ω 200.2 Bf 1.79 L 11.96 EDI 13.67 f 0.69 fl -8.12 f2 -2.10 f3 3.19 f4 1.60 Π2 -1.29 f34 2.70 f23 2103.14 [Table 11] 5 Example 4 Aspherical data

Si KA RB3 RB4 RB5 RB6 RB7 RB8 3 0.00E+00 1.18E-01 -1.86E-02 -1.20E-03 8.65E-05 8.21E-05 2.53E-05 4 0.00E+00 6.38E-02 8.67E-02 -8.06E-02 3.01E-02 2.36E-02 6.30E-03 5 O.OOE+OO 4.69E-02 -7.70E-02 9.88E-02 3.22E-03 -5.32E-03 -3.09E-03 6 0.00E+00 -8.46E-02 4.14E-01 -3.88E-01 -1.64E-01 1.92E-01 3.46E-01 8 0.00E+00 2.64E-02 -3.14E-01 -1.02E+00 6.33E+00 -6.72E+00 -1.22E+01 9 0.00E+00 1.35E-02 -3.74E-02 -3.58E-03 -3.44E-02 6.21E-02 1.62E-02 Si RB9 RB10 RBI 1 RBI 2 RBI 3 RB14 RBI 5 3 3.49E-07 -1.78E-06 -7.01E-07 -1.95E-07 1.85E-09 1.85E-08 6.92E-09 38 M369461 4 -1.08E-03 -2.33E-03 -1.67E-03 -8.75E-04 -3.17E-04 -3.65E-05 3.34E-05 5 -2.72E-03 -9.83E-04 8.55E-04 4.89E-04 1.99E-04 6.59E-05 7.60E-06 6 2.19E-01 -3.64E-02 -4.24E-01 -7.64E-01 -6.58E-01 3.73E-01 2.46E-01 8 -2.42E+00 5.45E+01 7.24E+01 -1.03E+02 -2.44E+02 -1.63E+02 1.99E+02 9 -4.56E-02 -5.74E-02 -2.80E-02 1.50E-02 4.21E-02 4.31E-02 2.19E-02 Si RB16 RB17 RB18 RB19 RB20 3 3.07E-09 -2.25E-10 -3.17E-10 -8.77E-11 2.77E-11 4 7.30E-05 5.28E-05 2.21E-05 -4.81E-06 -7.70E-06 5 -1.48E-05 -2.70E-05 -3.79E-05 -5.78E-06 1.14E-05 6 3.69E+00 -1.58E+00 3.04E+00 -1.03E+01 5.86E+00 8 6.23E+02 1.84E+03 3.22E+02 -9.15E+03 6.76E+03 9 -8.62E-03 -3.41E-02 -4.01E-02 -1.92E-02 4.72E-02Si KA RB3 RB4 RB5 RB6 RB7 RB8 3 0.00E+00 1.18E-01 -1.86E-02 -1.20E-03 8.65E-05 8.21E-05 2.53E-05 4 0.00E+00 6.38E-02 8.67E -02 -8.06E-02 3.01E-02 2.36E-02 6.30E-03 5 O.OOE+OO 4.69E-02 -7.70E-02 9.88E-02 3.22E-03 -5.32E-03 -3.09E -03 6 0.00E+00 -8.46E-02 4.14E-01 -3.88E-01 -1.64E-01 1.92E-01 3.46E-01 8 0.00E+00 2.64E-02 -3.14E-01 -1.02 E+00 6.33E+00 -6.72E+00 -1.22E+01 9 0.00E+00 1.35E-02 -3.74E-02 -3.58E-03 -3.44E-02 6.21E-02 1.62E-02 Si RB9 RB10 RBI 1 RBI 2 RBI 3 RB14 RBI 5 3 3.49E-07 -1.78E-06 -7.01E-07 -1.95E-07 1.85E-09 1.85E-08 6.92E-09 38 M369461 4 -1.08E- 03 -2.33E-03 -1.67E-03 -8.75E-04 -3.17E-04 -3.65E-05 3.34E-05 5 -2.72E-03 -9.83E-04 8.55E-04 4.89E-04 1.99 E-04 6.59E-05 7.60E-06 6 2.19E-01 -3.64E-02 -4.24E-01 -7.64E-01 -6.58E-01 3.73E-01 2.46E-01 8 -2.42E+00 5.45E+01 7.24E+01 -1.03E+02 -2.44E+02 -1.63E+02 1.99E+02 9 -4.56E-02 -5.74E-02 -2.80E-02 1.50E-02 4.21E- 02 4.31E-02 2.19E-02 Si RB16 RB17 RB18 RB19 RB20 3 3.07E-09 -2.25E-10 -3.17E-10 -8.77E-11 2.77E-11 4 7 .30E-05 5.28E-05 2.21E-05 -4.81E-06 -7.70E-06 5 -1.48E-05 -2.70E-05 -3.79E-05 -5.78E-06 1.14E-05 6 3.69E +00 -1.58E+00 3.04E+00 -1.03E+01 5.86E+00 8 6.23E+02 1.84E+03 3.22E+02 -9.15E+03 6.76E+03 9 -8.62E-03 -3.41 E-02 -4.01E-02 -1.92E-02 4.72E-02

[表 12] 實施例四關於曲率半徑的數據[Table 12] Example 4 data on radius of curvature

Si 有效直徑邊緣 有效直徑邊緣和中心之比 3 |RX3 55.63 |RX3|/|R3| 22.67 4 |RX4| 2.02 |RX4|/|R4| 0.84 5 |RX5| 1.82 |RX5|/|R5| 0.91 6 |RX6| 11.84 |RX6|/|R6| 0.20 8 |RX8| 3.75 |RX8|/|R8| 0.50 9 |RX9 1.22 |RX9|/ R9| 1.49 5 [表 13]Si effective diameter edge effective diameter edge to center ratio 3 |RX3 55.63 |RX3|/|R3| 22.67 4 |RX4| 2.02 |RX4|/|R4| 0.84 5 |RX5| 1.82 |RX5|/|R5| 0.91 6 |RX6| 11.84 |RX6|/|R6| 0.20 8 |RX8| 3.75 |RX8|/|R8| 0.50 9 |RX9 1.22 |RX9|/ R9| 1.49 5 [Table 13]

實施例五透鏡數據Example 5 lens data

Si Ri Di Ndj vdj 1 17.18 1.78 1.76 52.3 2 4.16 2.78 3* -2.32 1.15 1.53 56.0 4 * 2.41 0.55 5* 1.86 2.47 1.61 25.5 6* -30.23 0.24 7 (孔徑光闌) 0.23 8* -5.81 1.50 1.53 56.0 9* -0.80 0.43 10 oo 0.50 1.52 64.2 11 oo 1.03 39 M369461 像面 - 0.00 實施例五各種數據Si Ri Di Ndj vdj 1 17.18 1.78 1.76 52.3 2 4.16 2.78 3* -2.32 1.15 1.53 56.0 4 * 2.41 0.55 5* 1.86 2.47 1.61 25.5 6* -30.23 0.24 7 (Aperture stop) 0.23 8* -5.81 1.50 1.53 56.0 9 * -0.80 0.43 10 oo 0.50 1.52 64.2 11 oo 1.03 39 M369461 Image surface - 0.00 Example 5 Various data

Fno. 2.8 2ω 199.8 Bf 1.79 L 12.49 EDI 14.52 f 0.70 fl -7.74 f2 -2.04 f3 2.94 f4 1.58 fl2 -1.26 f34 3.03 f23 63.19 [表 14] 5 實施例五非球面數據Fno. 2.8 2ω 199.8 Bf 1.79 L 12.49 EDI 14.52 f 0.70 fl -7.74 f2 -2.04 f3 2.94 f4 1.58 fl2 -1.26 f34 3.03 f23 63.19 [Table 14] 5 Example 5 Aspherical data

Si KA RB3 RB4 RB5 RB6 RB7 RB8 3 0.00E+00 1.16E-01 -1.86E-02 -1.18E-03 9.50E-05 8.35E-05 2.55E-05 4 O.OOE+OO 6.53E-02 8.68E-02 -8.07E-02 3.00E-02 2.35E-02 6.27E-03 5 0.00E+00 4.86E-02 -7.66E-02 9.89E-02 3.26E-03 -5.33E-03 -3.12E-03 6 0.00E+00 -9.73E-02 4.1 IE-01 -3.90E-01 -1.66E-01 1.90E-01 3.41E-01 8 O.OOE+OO 6.30E-02 -3.10E-01 -1.02E+00 6.33E+00 -6.72E+00 -1.22E+01 9 0.00E+00 1.04E-02 -2.59E-02 -5.93E-04 -3.43E-02 6.12E-02 1.52E-02 Si RB9 RB10 RBI 1 RBI 2 RBI 3 RB14 RBI 5 3 3.29E-07 -1.73E-06 -7.00E-07 -1.94E-07 2.09E-09 1.86E-08 6.95E-09 4 -1.09E-03 -2.33E-03 -1.67E-03 -8.75E-04 -3.17E-04 -3.60E-05 3.38E-05 5 -2.74E-03 -1.00E-03 8.40E-04 4.79E-04 1.93E-04 6.19E-05 5.40E-06 6 2.1 IE-01 -4.86E-02 -4.41E-01 -7.87E-01 -6.85E-01 3.45E-01 2.21E-01 8 -2.41E + 00 5.45E+01 7.25E+01 -1.03E + 02 -2.40E+02 -1.52E + 02 1.95E+02 9 -4.64E-02 -5.80E-02 -2.83E-02 1.50E-02 4.24E-02 4.36E-02 2.26E-02 Si RBI 6 RBI 7 RB18 RBI 9 RB20 3 3.09E-09 -2.25E-10 -3.20E-10 -8.86E-11 2.74E-11 4 7.33E-05 5.30E-05 2.23E-05 -4.70E-06 -7.63E-06 5 -1.58E-05 -2.74E-05 -3.80E-05 -5.61E-06 1.17E-05 6 3.68E+00 -1.57E + 00 3.1 1E + 00 -1.02E+01 5.91E+00 8 5.93E+02 1.86E + 03 3.23E+02 -9.15E + 03 6.76E+03 9 -7.73E-03 -3.31E-02 -3.90E-02 -1.97E-02 4.70E-02 40 • M369461 [表 15] 實施例五關於曲率半徑的數據Si KA RB3 RB4 RB5 RB6 RB7 RB8 3 0.00E+00 1.16E-01 -1.86E-02 -1.18E-03 9.50E-05 8.35E-05 2.55E-05 4 O.OOE+OO 6.53E-02 8.68 E-02 -8.07E-02 3.00E-02 2.35E-02 6.27E-03 5 0.00E+00 4.86E-02 -7.66E-02 9.89E-02 3.26E-03 -5.33E-03 -3.12E -03 6 0.00E+00 -9.73E-02 4.1 IE-01 -3.90E-01 -1.66E-01 1.90E-01 3.41E-01 8 O.OOE+OO 6.30E-02 -3.10E-01 - 1.02E+00 6.33E+00 -6.72E+00 -1.22E+01 9 0.00E+00 1.04E-02 -2.59E-02 -5.93E-04 -3.43E-02 6.12E-02 1.52E-02 Si RB9 RB10 RBI 1 RBI 2 RBI 3 RB14 RBI 5 3 3.29E-07 -1.73E-06 -7.00E-07 -1.94E-07 2.09E-09 1.86E-08 6.95E-09 4 -1.09E-03 -2.33E-03 -1.67E-03 -8.75E-04 -3.17E-04 -3.60E-05 3.38E-05 5 -2.74E-03 -1.00E-03 8.40E-04 4.79E-04 1.93E -04 6.19E-05 5.40E-06 6 2.1 IE-01 -4.86E-02 -4.41E-01 -7.87E-01 -6.85E-01 3.45E-01 2.21E-01 8 -2.41E + 00 5.45 E+01 7.25E+01 -1.03E + 02 -2.40E+02 -1.52E + 02 1.95E+02 9 -4.64E-02 -5.80E-02 -2.83E-02 1.50E-02 4.24E-02 4.36E-02 2.26E-02 Si RBI 6 RBI 7 RB18 RBI 9 RB20 3 3.09E-09 -2.25E-10 -3.20E-10 -8.86E-11 2.74E-11 4 7.33E-05 5.30E-05 2.23E-05 -4.70E-06 -7.63E-06 5 -1.58E-05 -2.74E-05 -3.80E-05 -5.61E-06 1.17E-05 6 3.68E +00 -1.57E + 00 3.1 1E + 00 -1.02E+01 5.91E+00 8 5.93E+02 1.86E + 03 3.23E+02 -9.15E + 03 6.76E+03 9 -7.73E-03 -3.31 E-02 -3.90E-02 -1.97E-02 4.70E-02 40 • M369461 [Table 15] Example 5 Data on radius of curvature

Si 有效直徑邊緣 有效直徑邊緣和中心之比 3 IKX3I 25.98 |RX3|/|R3| 11.20 4 IRX4I 1.85 |RX4|/|R4| 0.77 5 |RX5| 1.76 |RX5|/|R5I 0.95 6 IRX6I 82.56 |RX6|/|R6| 2.73 8 IRX8I 5.05 IRX8I/IR8I 0.87 9 IRX9I 1.24 |RX9|/|R9I 1.55 5 另外,在實施例一〜五的攝影透鏡中,全部是第一透 鏡L1為玻璃球面透鏡,但是第一透鏡。的單側的面或兩側 的面可以作為非球面使用。透過將第一透鏡u設為玻璃非 球面透鏡,從而能夠更良好地校正各種像差。 此外,實施例一〜五中的攝影透鏡中的、第二透鏡L2、 10第一透鏡L3、第四透鏡L4的材質全部為塑料,可以廉價地 製作。Si Effective Diameter Edge Effective Diameter Edge to Center Ratio 3 IKX3I 25.98 |RX3|/|R3| 11.20 4 IRX4I 1.85 |RX4|/|R4| 0.77 5 |RX5| 1.76 |RX5|/|R5I 0.95 6 IRX6I 82.56 |RX6 |/|R6| 2.73 8 IRX8I 5.05 IRX8I/IR8I 0.87 9 IRX9I 1.24 |RX9|/|R9I 1.55 5 In addition, in the photographic lenses of Embodiments 1 to 5, all of the first lens L1 is a glass spherical lens, but the first a lens. The one-sided side or the sides on either side can be used as an aspherical surface. By using the first lens u as a glass aspherical lens, various aberrations can be corrected more satisfactorily. Further, among the imaging lenses of the first to fifth embodiments, the materials of the second lens L2, the first lens L3, and the fourth lens L4 are all made of plastic, and can be produced at low cost.

將實施例一〜五的攝影透鏡的對應於條件式(1)〜(14) 的值示於表16。在實施例一〜五中,以d線作為基準波長, 在表16表不該基準波長的各值。 15 [表 16]The values corresponding to the conditional expressions (1) to (14) of the photographic lenses of the first to fifth embodiments are shown in Table 16. In the first to fifth embodiments, the d line is used as the reference wavelength, and the values of the reference wavelength are not shown in Table 16. 15 [Table 16]

41 M369461 5 -0.02 1.63 3.95 0.42 4.29 2.53 17.74 條件式 實施例 (8) (9) (10) (11) (12) (13) (14) Bf/f (R8-R9)/ (R8+R9) R8/f L/f34 D5/f (R1-R2)/ (R1+R2) ED1/R1 1 2.53 0.80 -10.37 4.19 3.45 0.61 0.82 2 2.61 0.81 -11.08 4.62 3.23 0.63 0.78 3 3.16 0.59 -4.38 4.58 2.48 0.63 0.70 4 2.61 0.80 -10.98 4.42 3.19 0.59 0.78 5 2.54 0.76 -8.25 4.13 3.51 0.61 0.85 在圖8(A)、圖8(B)、圖8(C)、圖8(D)、圖8(E)分別表示 實施例一的攝影透鏡的球面像差、非點像差、畸變(歪曲像 差)、倍率色像差(倍率色像差)、彗形像差的像差圖。在各 5 像差圖表示以d線(587.56nm)為基準波長的像差,但在球面 像差圖及倍率色像差圖也表示對F線(波長486.13nm)、C線 (波長656.27nm)、s線(波長852.11nm)的像差。 球面像差圖的Fno.是F數,其他的像差圖的ω表示半視 場角。利用整個系統的焦距f、視場角φ (變數處理,〇 $少 10 $ ω ) ’將理想像高設為2fxtan( φ /2),畸變的圖表示與其 的偏移量。在圖8(E)中將各半視場角中的子午方向、弧矢 方向的五個像差圖歸納作為彗形像差圖而表示。 而且,同樣地在圖9(A)〜圖9(E)、圖10(A)〜圖10(E)、 圖11(A)〜圖11(E)、圖12(A)〜圖12(E)分別表示實施例二〜五 15的攝影透鏡的球面像差、非點像差、畸變(歪曲像差)、倍 率色像差、彗形像差的像差圖。根據各像差圖可知,實施 例一〜五在可見區域及近紅外區域良好地校正了各像差。 根據以上的數據可知,實施例一〜五的攝影透鏡由四 片的較少的透鏡片數構成,除了可小型且廉價製作以外, 42 M369461 實現全視%角為大約2〇〇度的非常寬的視場角,F數小到 2.8’包括像面㈣、畸變、倍率色像差的各像差被良好地 校正而具有良好的光學性能。這些攝影透鏡可以適當地使 用在監視攝影機、或用於拍攝汽車前方、側方、後方等影 5像的車載用攝影機等。 [攝影裝置的實施方式] 在圖13作為使用例,表示將包括本實施方式的攝影透 ^ 鏡的攝影裝置搭載於汽車100的樣子。在圖13中,汽車100 包括用於拍攝其副駕駛席側的側面的死角範圍的車外攝影 10機101、用於拍攝汽車100的後側的死角範圍的車外攝影機 102、安裝在内視鏡的背面並用於拍攝與駕駛員同樣的視野 範圍的車内攝影機1〇3。車外攝影機1(H、車外攝影機1〇2、 ' 車内攝影機103為本創作的實施方式的攝影裝置,包括本創 作的實施例的攝影透鏡、和將由該攝影透鏡形成的光學像 15變換成電信號的攝影元件。 本創作的實施方式的攝影透鏡具有上述優點所以車 鲁外攝影機101、102及車内攝影機1()3也可以小型且廉價地構 成,具有寬的視場角,可以到成像區域周邊部得到良好 影像。 20 以上,例舉實施方式及實施例說明了本創作,但本創 作不限於上述實施方式及實施例,可進行各種變形。例如, 各透鏡成分的曲率半徑、面間隔、折射率、阿貝數的值不 限於上述各數值實施例所示的值,可取其他值。 43 M369461 另外,在上述的實施例中,由均質的材料構成了所有 的透鏡,但是也可以使用折射率分佈型透鏡。而且,在上 述的實施例中,由施加非球面的折射型透鏡構成了第二透 鏡L2~第四透鏡L4,但也可以在一個面或者多個面形成衍 5 射光學元件。 而且,在攝影裝置的實施方式中,對將本創作適用於 車載用攝影機的例子進行了圖示說明,但本創作不限於該 用途,例如,也可適用於便攜終端用攝影機或監視攝影機 等。 10 【圖式簡單說明】 圖1是本創作的一實施方式的攝影透鏡的光路圖。 圖2是用於說明第二透鏡的面形狀等的圖。 圖3疋表不本創作的實施例一的攝影透鏡的透鏡結構的剖 15 面圖。 圖4疋表不本創作的實施例二的攝影透鏡的透鏡結構的 面圖。 圖5疋表不本創作的實施例三的攝影透鏡的透鏡結構的剖 面圖。 2〇面圖疋表不本創作的實施例四的攝影透鏡的透鏡結構的剖 疋表不本創作的實施例五的攝影透鏡的透鏡結構的剖 44 .M369461 圖8(A)〜圖8(E)是本創作的實施例一的攝影透鏡的各像差 圖。 圖9(A)〜圖9(E)是本創作的實施例二的攝影透鏡的各像差 圖。 5圖10(A)〜圖10(E)是本創作的實施例三的攝影透鏡的各像 差圖。 圖11 (A)〜圖11 (E)是本創作的實施例四的攝影透鏡的各像 差圖。 圖12(A)〜圖12(E)是本創作的實施例五的攝影透鏡的各像 10差圖。 圖13是用於說明本創作的實施方式的車載用攝影裝置的配 置的圖。41 M369461 5 -0.02 1.63 3.95 0.42 4.29 2.53 17.74 Conditional Example (8) (9) (10) (11) (12) (13) (14) Bf/f (R8-R9)/ (R8+R9) R8/f L/f34 D5/f (R1-R2)/ (R1+R2) ED1/R1 1 2.53 0.80 -10.37 4.19 3.45 0.61 0.82 2 2.61 0.81 -11.08 4.62 3.23 0.63 0.78 3 3.16 0.59 -4.38 4.58 2.48 0.63 0.70 4 2.61 0.80 -10.98 4.42 3.19 0.59 0.78 5 2.54 0.76 -8.25 4.13 3.51 0.61 0.85 Figure 8 (A), Figure 8 (B), Figure 8 (C), Figure 8 (D), Figure 8 (E) The spherical aberration, astigmatism, distortion (distortion aberration), magnification chromatic aberration (magnification chromatic aberration), and aberration diagram of the coma aberration of the imaging lens of the first embodiment. In each of the 5 aberration diagrams, the aberration with the d line (587.56 nm) as the reference wavelength is shown, but the spherical aberration diagram and the chromatic aberration diagram of the magnification also indicate the F line (wavelength 486.13 nm) and the C line (wavelength 656.27 nm). ), the aberration of the s line (wavelength 852.11 nm). Fno. of the spherical aberration diagram is the F number, and ω of the other aberration diagrams represents the half angle of view. The ideal image height is set to 2fxtan (φ /2) using the focal length f of the entire system, the angle of view φ (variable processing, 〇 $10 ω), and the distorted graph indicates the offset thereto. In Fig. 8(E), five aberration diagrams in the meridional direction and the sagittal direction in each half angle of view are summarized as a coma aberration diagram. 9(A) to 9(E), FIG. 10(A) to FIG. 10(E), FIG. 11(A) to FIG. 11(E), and FIG. 12(A) to FIG. E) The aberration diagrams of the spherical aberration, astigmatism, distortion (distortion aberration), lateral chromatic aberration, and coma aberration of the imaging lenses of the second to fifth embodiments, respectively. As can be seen from the respective aberration diagrams, Embodiments 1 to 5 have well corrected the aberrations in the visible region and the near-infrared region. According to the above data, the photographic lenses of the first to fifth embodiments are composed of four fewer lenses, and the 42 M369461 achieves a very wide angle of about 2 degrees, in addition to being small and inexpensive. The field of view angle, the F number is as small as 2.8', including the image plane (four), distortion, and chromatic aberration of magnification are well corrected to have good optical performance. These photographic lenses can be suitably used in a surveillance camera or an in-vehicle camera for photographing images such as front, side, and rear of a car. [Embodiment of the photographing apparatus] Fig. 13 shows a state in which the photographing apparatus including the photographing lens of the present embodiment is mounted on the automobile 100 as a use example. In FIG. 13, the automobile 100 includes an exterior camera 10 for photographing a dead angle range of a side of the passenger's seat side, an exterior camera 102 for photographing a dead angle range of the rear side of the automobile 100, and an exterior mirror mounted to the endoscope. The back side is used to capture an in-vehicle camera 1〇3 that has the same field of view as the driver. The outside camera 1 (H, the outside camera 1 2, 'the in-vehicle camera 103 is the photographing apparatus of the embodiment of the present invention, including the photographing lens of the embodiment of the present invention, and converting the optical image 15 formed by the photographing lens into an electric signal The photographic lens of the embodiment of the present invention has the above-described advantages, so that the camera cameras 101 and 102 and the in-vehicle camera 1 can be configured in a small and inexpensive manner, and have a wide angle of view and can reach the periphery of the imaging region. The present invention has been described with respect to the above embodiments, but the present invention is not limited to the above-described embodiments and examples, and various modifications can be made, for example, the radius of curvature, the surface interval, and the refraction of each lens component. The value of the rate and the Abbe number is not limited to the values shown in the above numerical examples, and other values may be used. 43 M369461 Further, in the above embodiment, all the lenses are composed of a homogeneous material, but a refractive index may also be used. a distributed lens. Further, in the above embodiment, the second lens L2 is formed by a refractive lens to which an aspherical surface is applied. The lens L4 may be formed on one surface or a plurality of surfaces. Further, in the embodiment of the photographing apparatus, an example in which the present invention is applied to a vehicle-mounted camera is illustrated, but the creation The present invention is not limited to this application, and can be applied to, for example, a camera for a portable terminal, a surveillance camera, etc. 10 [Brief Description of the Drawings] Fig. 1 is an optical path diagram of an imaging lens according to an embodiment of the present invention. Fig. 3 is a cross-sectional view showing the lens structure of the photographic lens of the first embodiment of the present invention. Fig. 4 is a view showing the lens structure of the photographic lens of the second embodiment of the present invention. Fig. 5 is a cross-sectional view showing the lens structure of the photographic lens of the third embodiment of the present invention. Fig. 5 is a cross-sectional view showing the lens structure of the photographic lens of the fourth embodiment. Section VIII of the lens structure of the photographic lens of the fifth embodiment. M369461 FIGS. 8(A) to 8(E) are aberration diagrams of the photographic lens of the first embodiment of the present invention. FIG. 9(A) to FIG. (E) is the second embodiment of the present creation Each aberration diagram of the photographic lens. Fig. 10(A) to Fig. 10(E) are aberration diagrams of the photographic lens of the third embodiment of the present invention. Fig. 11 (A) to Fig. 11 (E) are creations Fig. 12(A) to Fig. 12(E) are diagrams of the respective images of the photographic lens of the fifth embodiment of the present invention. Fig. 13 is a view for explaining the creation of the photographic lens. A diagram of the arrangement of the in-vehicle imaging device of the embodiment.

【主要元件符號說明】 1攝影透鏡 5攝影元件 101,102車外攝影機 L1第一透鏡 L4第四透鏡 St孔徑光闌 2ω全視場角 2軸上光束 11,12遮光機構 103車内攝影機 L2第二透鏡 ΡΡ光學部件 Ζ光軸 3,4轴外光束 100汽車 Pim成像位置 L3第三透鏡 Sim像面 RX3曲率半徑 Q3第二透鏡的物側的面與光的交點 CQ3通過點Q3且以光軸上的點為中心的圓 X3軸外光束最外側的光線與第二透鏡的物側面的交點 45 M369461 CX3通過點X3且以光軸上的點為中心的圓 P3點X3的透鏡面的法線與光轴的交點 ED 1第一透鏡的物側的面的有效直个u R1第一透鏡的物侧的面的近轴曲率半和 R2第一透鏡的像側的面的近軸曲率半徑 R3第二透鏡的物側的面的近轴曲率半徑 R4第二透鏡的像側的面的近轴曲率半徑 R5第三透鏡的物側的面的近軸曲率半和 R6第二透鏡的像侧的面的近軸曲率半和 R8第四透鏡的物側的面的近軸曲率半徑 R9第四透鏡的像側的面的近軸曲率半徑 R10光學部件的物側的面 R11光學部件的像側的面 D1第一透鏡的中心厚度 D2第一透鏡和第二透鏡的光軸上的空氣間隔 D3第二透鏡的中心厚度 D4第二透鏡和第三透鏡的光軸上的空氣間隔 D5第三透鏡的中心厚度 D6第三透鏡和孔徑光闌的光軸上的空氣間隔 D7孔徑光闌和第四透鏡的光軸上的空 D8第四透鏡的中心厚度 、 D9第四透鏡和光學部件的光軸上的空氣間隔 D10光學部件的中心厚度 光學部件和攝影元件的光轴上的空氣間隔 46[Description of main component symbols] 1 photographic lens 5 photographic element 101, 102 exterior camera L1 first lens L4 fourth lens St aperture stop 2ω full field angle 2 axis upper beam 11, 12 shading mechanism 103 in-vehicle camera L2 second lens ΡΡOptical part Ζ光 axis 3,4 axis outer beam 100 car Pim imaging position L3 third lens Sim image plane RX3 curvature radius Q3 The intersection of the object side surface of the second lens and the light CQ3 passes through the point Q3 and on the optical axis The intersection of the outermost light of the circle X3 off-axis beam and the object side of the second lens 45 M369461 CX3 passes through the point X3 and is normal to the lens surface of the circle P3 point X3 centered on the point on the optical axis The intersection ED 1 of the axis is an effective straight u R1 of the surface of the object side of the first lens u R1 the paraxial radius of the surface of the object side of the first lens and the paraxial radius of curvature R3 of the face of the image side of the R 2 second The paraxial radius of curvature R4 of the surface of the object side of the lens, the paraxial radius of curvature R5 of the surface of the image side of the second lens, the paraxial radius of the surface of the object side of the third lens, and the surface of the image side of the R6 second lens The paraxial radius of curvature of the paraxial radius and the object side surface of the R8 fourth lens R9, the paraxial radius of curvature of the image side surface of the fourth lens R10, the object side surface R11 of the optical member, the image side surface D1 of the optical member, the center thickness D2 of the first lens, and the optical axis of the first lens and the second lens Air gap D3 Center thickness of the second lens D4 Air space on the optical axis of the second lens and the third lens D5 Center thickness D6 of the third lens and air space on the optical axis of the aperture stop D7 aperture stop And the empty D8 on the optical axis of the fourth lens, the center thickness of the fourth lens, the D9 fourth lens, and the air gap on the optical axis of the optical component D10. The central thickness of the optical component. The optical component of the optical component and the optical axis of the photographic element. 46

Claims (1)

M369461 六、申請專利範圍: 1. 一種攝影透鏡,其中,從物側依次包括負的第一透 鏡、負的第二透鏡、正的第三透鏡、光闌、及正的第四透 鏡,該第二透鏡、該第三透鏡、該第四透鏡的各透鏡的至 5少單側的面為非球面,該第三透鏡的材質對d線的阿貝數為 3 5以下’滿足下述條件式(1): -〇.2<(R3+R4)/(R3-R4)<〇.2 ......(1) 其中, R3為該第二透鏡的物側的面的近軸曲率半徑, 10 114為該第二透鏡的像側的面的近轴曲率半徑。 2 ’種攝影透鏡,其中,從物侧依次包括:將凹面朝 向像側的彎月形狀的負的第一透鏡、物侧的面及像側的面 為非球面的第二透鏡、物側的面為非球面的正的第三透 鏡、光闌、像侧的面為非球面的正的第四透鏡,該第三透 鏡的材質對d線的阿貝數為35以下,滿足下述條件式(2): 1.0<D3/f<5.0 ……(2) 其中, f為整個系統的焦距, D3為該第二透鏡的中心厚度。 2〇 3.如申請專利範圍第1項或第2項所述之攝影透鏡,其 中’滿足下述條件式(3): 2.0<D2/f<5.0 ......(3) 其中, f為整個系統的焦距, 25 D2為該第—透鏡和該第二透鏡的光軸上的$氣間隔。 47 M369461 4. 如申請專利範圍第1項或第2項所述之攝影透鏡,其 中,滿足下述條件式(4): 0.01<|fl2/f34|<0.5 ......(4) 其中, 5 fl 2為該第一透鏡和該第二透鏡的合成焦距, f34為該第三透鏡和該第四透鏡的合成焦距。 5. 如申請專利範圍第1項或第2項所述之攝影透鏡,其 中’滿足下述條件式(5): 2.5<(D4+D5)/f<5.5 ......(5) 10 其中, f為整個系統的焦距, D4為該第二透鏡和該第三透鏡的光軸上的空氣間隔, D5為該第三透鏡的中心厚度。 6. 如申請專利範圍第1項或第2項所述之攝影透鏡,其 15中,滿足下述條件式(6): 2.1<Dl/f<5.5 ......(6) 其中, f為整個系統的焦距, D1為該第一透鏡的中心厚度。 20 7.如申請專利範圍第1項或第2項所述之攝影透鏡,其 中,滿足下述條件式(7): 10.0<L/f<20.0 ......(7) 其中, f為整個系統的焦距, 48 M369461 L為從該第一透鏡的物側的面到像面在光軸上的距 離0 8. 如申請專利範圍第1項或第2項所述之攝影透鏡,其 中,滿足下述條件式(8): 5 1.5<Bf/f<4.0 ......(8) 其中, f為整個系統的焦距, Bf為該第四透鏡的像側的面到像面在光軸上的距離。 9. 如申請專利範圍第丨項或第2項所述之攝影透鏡,其 10中,滿足下述條件式(9): 〇-3<(R8-R9)/(R8+R9)<1.〇 ......⑼ 其中, 15 R8為該第四透鏡物側的面的近軸曲率半徑, R9為該第四透鏡像側的面的近軸曲率半徑。 10. 一種攝影裝置,其包括如申請專利 9項中任一項所述之攝影透鏡。 範圍第1項至第 49M369461 VI. Patent Application Range: 1. A photographic lens, wherein a negative first lens, a negative second lens, a positive third lens, a diaphragm, and a positive fourth lens are sequentially included from the object side, the first The surface of each of the two lenses, the third lens, and the fourth lens that are on one side of the fifth lens is aspherical, and the material of the third lens has an Abbe number of 3 or less for the d line. (1): -〇.2<(R3+R4)/(R3-R4)<〇.2 (1) where R3 is the paraxial surface of the object side of the second lens The radius of curvature, 10 114 is the paraxial radius of curvature of the image side surface of the second lens. 2' kind of photographic lens, which includes, in order from the object side, a negative first lens having a meniscus shape having a concave surface toward the image side, a surface on the object side, and a second lens having an aspherical surface on the image side, and an object side The positive third lens, the pupil, and the positive side of the aspherical surface are aspherical positive fourth lenses, and the material of the third lens has an Abbe number of 35 or less on the d-line, and satisfies the following conditional expression. (2): 1.0 < D3/f < 5.0 (2) where f is the focal length of the entire system, and D3 is the center thickness of the second lens. 2. The photographic lens according to claim 1 or 2, wherein 'the following conditional expression (3) is satisfied: 2.0 < D2/f < 5.0 (3) , f is the focal length of the entire system, and 25 D2 is the $ air interval on the optical axis of the first lens and the second lens. 47 M369461 4. The photographic lens according to claim 1 or 2, wherein the following conditional expression (4) is satisfied: 0.01 <|fl2/f34|<0.5 ...... 4) wherein 5 fl 2 is a combined focal length of the first lens and the second lens, and f34 is a combined focal length of the third lens and the fourth lens. 5. The photographic lens according to claim 1 or 2, wherein 'the following conditional expression (5) is satisfied: 2.5 < (D4 + D5) / f < 5.5 ... (5 Wherein f is the focal length of the entire system, D4 is the air gap on the optical axis of the second lens and the third lens, and D5 is the center thickness of the third lens. 6. In the photographic lens of claim 1 or 2, in the case 15, the following conditional expression (6) is satisfied: 2.1 < Dl / f < 5.5 (6) , f is the focal length of the entire system, and D1 is the center thickness of the first lens. The photographic lens of claim 1 or 2, wherein the following conditional expression (7) is satisfied: 10.0<L/f<20.0 (7) wherein f is the focal length of the entire system, 48 M369461 L is the distance from the object side surface of the first lens to the image plane on the optical axis. 8. The photographic lens according to claim 1 or 2, Wherein, the following conditional expression (8) is satisfied: 5 1.5 < Bf / f < 4.0 (8) where f is the focal length of the entire system, and Bf is the image side of the fourth lens to The distance of the image plane on the optical axis. 9. In the photographic lens of claim 2 or 2, in the case 10, the following conditional expression (9) is satisfied: 〇-3<(R8-R9)/(R8+R9)<1 (9) where 15 R8 is the paraxial radius of curvature of the surface on the fourth lens object side, and R9 is the paraxial radius of curvature of the surface on the fourth lens image side. A photographic apparatus comprising the photographic lens of any one of the nine patents. Range 1 to 49
TW98210104U 2009-04-10 2009-06-08 Photographic lens and photographing apparatus TWM369461U (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009095569 2009-04-10

Publications (1)

Publication Number Publication Date
TWM369461U true TWM369461U (en) 2009-11-21

Family

ID=42627217

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98210104U TWM369461U (en) 2009-04-10 2009-06-08 Photographic lens and photographing apparatus

Country Status (2)

Country Link
CN (1) CN201562069U (en)
TW (1) TWM369461U (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5627215B2 (en) * 2009-11-04 2014-11-19 キヤノン株式会社 Image processing apparatus and control method thereof
CN106199893B (en) * 2015-04-27 2021-06-04 大立光电股份有限公司 Optical lens and electronic device
CN112630952B (en) * 2020-12-22 2022-05-27 之江实验室 Ultrathin small-caliber high-resolution endoscopic microscope objective

Also Published As

Publication number Publication date
CN201562069U (en) 2010-08-25

Similar Documents

Publication Publication Date Title
US9170404B2 (en) Imaging lens
US8902516B2 (en) Imaging lens and imaging apparatus
US9019634B2 (en) Imaging lens and imaging apparatus
US8896939B2 (en) Imaging lens and imaging apparatus
US20100226020A1 (en) Imaging lens and imaging apparatus
TWM394464U (en) Photographic lens and photographic device
US9075223B2 (en) Imaging lens and imaging apparatus
JP5889880B2 (en) Imaging lens and imaging apparatus
JP5650082B2 (en) Imaging lens and imaging apparatus
TWM369461U (en) Photographic lens and photographing apparatus
US9042039B2 (en) Imaging lens and imaging apparatus
TWM368071U (en) Photographing lens and photographing device
JP5778259B2 (en) Imaging lens and imaging apparatus
JP5667025B2 (en) Imaging lens and imaging apparatus
JP2013073154A (en) Image pickup lens and image pickup apparatus
JP2013073153A (en) Image pickup lens and image pickup apparatus
JP2013073148A (en) Image pickup lens and image pickup apparatus
JP2013073150A (en) Image pickup lens and image pickup apparatus
JP2013073146A (en) Image pickup lens and image pickup apparatus

Legal Events

Date Code Title Description
MK4K Expiration of patent term of a granted utility model