TWM368071U - Photographing lens and photographing device - Google Patents

Photographing lens and photographing device Download PDF

Info

Publication number
TWM368071U
TWM368071U TW098207695U TW98207695U TWM368071U TW M368071 U TWM368071 U TW M368071U TW 098207695 U TW098207695 U TW 098207695U TW 98207695 U TW98207695 U TW 98207695U TW M368071 U TWM368071 U TW M368071U
Authority
TW
Taiwan
Prior art keywords
lens
curvature
radius
photographic
conditional expression
Prior art date
Application number
TW098207695U
Other languages
Chinese (zh)
Inventor
Taro Asami
Original Assignee
Fujinon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujinon Corp filed Critical Fujinon Corp
Publication of TWM368071U publication Critical patent/TWM368071U/en

Links

Classifications

    • Y02E60/521

Landscapes

  • Lenses (AREA)

Description

M368071 五、新型說明: 【新型所屬之技術領域】 本創作係關於一種攝影透鏡及攝影裝置,尤指一種適 用 於利用 CCD(Charge Coupled Device)或 5 CMOS(Complementary Metal Oxide Semiconductor)等攝 影元件的車載用攝影機、移動終端用攝影機、監視攝影機 等攝影透鏡以及包括該攝影透鏡的攝影裝置。M368071 V. New description: [New technical field] This is a kind of photographic lens and photographic device, especially a vehicle suitable for photographic components such as CCD (Charge Coupled Device) or 5 CMOS (Complementary Metal Oxide Semiconductor). A photographic lens such as a camera, a camera for a mobile terminal, a surveillance camera, and the like, and an imaging device including the photographic lens are used.

【先前技術】 10 近幾年,CCD或CMOS等攝影元件的小型化及高像素 化飛速發展。與此同時,具備這些攝影元件的攝影設備本 體的小型化也發展,對搭載於攝影設備的攝影透鏡,除了 良好的光學性能以外,也要求小型化、輕量化。 作為過去習知的三片結構的廣角攝影透鏡,有在下述 15 專利文獻1〜5所述的廣角攝影透鏡。在專利文獻1〜5記載 有從物側依次配置負透鏡、正透鏡、光闌、正透鏡且具有 , 非球面的三組三片結構的攝影透鏡。而且,在專利文獻6 * 記載有從物側依次配置有負透鏡、正或負的透鏡、光闌、 正透鏡而構成的且具有非球面的三組三片結構的攝影透 20 鏡。 專利文獻1 :日本專利公開2001-337268號公報 專利文獻2:曰本專利公開2005-181596號公報 專利文獻3 :日本專利公開2007-133324號公報 專利文獻4:日本專利公開2008-89813號公報 3 M368071 專利文獻5 .日本專利公開2〇〇8_ι〇25〇〇號公報 專利文獻6 .日本專利公開2〇〇7_i 號公 但是,在上述領域的攝影裝£令,強烈要求低成本且 高性能的同時’要求進一步小型化。而且,在近幾年,除 5 了上述要求以外,也強烈要求廣角化,例如還要求可用超 過130°的寬的視角進行攝影的攝影透鏡。 。 然而’在專利文獻1 ' 2所記載的攝影透鏡的透鏡的小 3L化不充分。而且’在專利文獻3〜5所記載的攝影透鏡的 視角小,不滿足近幾年的廣角化的要求。而且,在專利文 H)獻2、5、6所記載的攝影透鏡由於作為第一透鏡的材質使用 了玻璃H雖然能夠製作耐氣候性良好的透鏡,但在 成本變两的方面有改進的餘地。 【新型内容】 15 丨創作借鑒於上述情況,其目的在於,提供—種攝影 透鏡及包括該攝影透鏡的攝影裝置,該攝影透鏡具有良好 的光學ί±⑧、低成本且小型構成、並具有寬的視角。 本創作的攝影透鏡從物側依次包括:像側的面為凹 面,至少一方的面為非球面的負的第一透鏡;至少一方的 20面為非球面的正的第二透鏡;和像側的面為凸面且至少— 方的面為非球面的正的第三透鏡,在第二透鏡和第三透鏡 之間配置光閣,將第二透鏡在d線的阿貝數設為以2,將第 二透鏡在樣的阿貝數設為以3,將第-透鏡的焦距設為 M368071 fi,將第二透鏡和第三透鏡的合成焦距設為f23時,滿足下 述條件式(1)、(2)。 1.5< d3/ v d2 ......(l) 0.0<|fl/f23j<0.5 ......(2) 另外,上述的「凹面」、「凸面」是指關於非球面在 近軸區域加以考慮。 本創作的攝影透鏡,由於是至少三片的較少的透鏡片[Prior Art] 10 In recent years, miniaturization and high pixelation of photographic elements such as CCD or CMOS have been rapidly developed. At the same time, the size of the photographic apparatus including these photographic elements has been reduced, and the photographic lens mounted on the photographic apparatus is required to be smaller and lighter in addition to good optical performance. There is a wide-angle photographic lens described in the following Patent Documents 1 to 5, as a wide-angle photographic lens of the conventional three-piece structure. Patent Literatures 1 to 5 disclose a three-group three-piece photographic lens having a negative lens, a positive lens, a diaphragm, and a positive lens arranged in this order from the object side. Further, Patent Document 6* describes a three-dimensional three-piece three-piece mirror structure in which a negative lens, a positive or negative lens, a diaphragm, and a positive lens are arranged in this order from the object side. Patent Document 1: Japanese Patent Publication No. 2001-337268, Patent Document 2: Japanese Patent Publication No. 2005-181596, Patent Document 3: Japanese Patent Publication No. 2007-133324, Patent Document 4: Japanese Patent Publication No. 2008-89813 Japanese Patent Laid-Open Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. 7-I. However, in the field of photography, there is a strong demand for low cost and high performance. At the same time 'requires further miniaturization. Further, in recent years, in addition to the above requirements, it is strongly required to widen the angle, and for example, a photographic lens which can perform photography with a wide viewing angle of more than 130° is also required. . However, the lens of the imaging lens described in Patent Document 1 '2 is not sufficiently small. Further, the viewing angles of the imaging lenses described in Patent Documents 3 to 5 are small, and do not satisfy the requirements for wide angle in recent years. Further, in the photographic lens described in the second, fifth, and sixth aspects of the patent document H), since the glass H is used as the material of the first lens, a lens having good weather resistance can be produced, but there is room for improvement in cost. . [New content] 15 丨 借鉴 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨Perspective. The photographic lens of the present invention includes, in order from the object side, a negative first surface of the image side surface, at least one surface is an aspherical negative first lens, and at least one of the 20 surfaces is a non-spherical positive second lens; and the image side a positive third lens having a convex surface and at least a square surface being aspherical, a light chamber disposed between the second lens and the third lens, and an Abbe number of the second lens on the d line being set to 2, When the Abbe number of the second lens is set to 3, the focal length of the first lens is M368071 fi, and the combined focal length of the second lens and the third lens is f23, the following conditional expression (1) is satisfied. ,(2). 1.5< d3/ v d2 ......(l) 0.0<|fl/f23j<0.5 (2) In addition, the above-mentioned "concave surface" and "convex surface" refer to an aspheric surface. Consider it in the paraxial region. The photographic lens of this creation is due to at least three fewer lens pieces

數,所以可低成本且小型地構成,在各透鏡設置非球面, 如上述適當地選擇各透鏡的構成,所以可確保高性能並實 10 現小型化及廣角化。而且,本創作的攝影透鏡透過滿足條 件式(1)地選擇配置於光闌前後的負的第二透鏡和正的第 三透鏡的材質,有利於倍率色像差的良好的校正,透過滿 足條件式(2)地進行光焦度分配而實現廣角化,並有利於像 面彎曲的良好的校正。Since the number of the lenses is low and small, and the aspherical surface is provided in each of the lenses, the configuration of each lens is appropriately selected as described above, so that high performance and compactness and wide angle can be ensured. Further, in the photographic lens of the present invention, the material of the negative second lens and the positive third lens disposed before and after the pupil is selected by satisfying the conditional expression (1), which is advantageous for good correction of the chromatic aberration of magnification, and the conditional expression is satisfied. (2) The power is distributed to achieve wide angle, and it is advantageous for good correction of field curvature.

在本創作的攝影透鏡中,將第—透鏡的像侧的面中心 的曲率半徑絕對值設雜2|,將在第—透鏡的像側的面的 有效直控端的曲率半徑絕對值設為啤鄉夺,較佳地滿足下 述條件式(3)。 1.5<|RX2|/|R2| ......(3) 2〇 卩外,在此透鏡面的「有效直徑端」表示考慮有助於 成像的所有光線和透鏡面交又的點時的、在各徑向的最外 則的點,「有效直徑」表示由該最外側的點構成的圓的直 25 徑。 在本創作中中心的曲率半徑」表示近軸的曲率半 5 M368071 而且,在本創作的攝影透鏡中,將第二透鏡的焦距設 為f2,將第三透鏡的焦距設為〇時,較佳地滿足下述條件 式(4)。 ” 0.8<f2/f3<2.2 ......(4) 而且’在本創作的攝影透鏡中’將從第一透鏡的物側 的面到像面的光軸上的距離設為L,將整個系統的舞距咬 為f時,較佳地滿足下述條件式(5)。料,在算出匕時,後 截距分為空氣換算長度。 •(5) 且,在本創作的攝影透鏡中,第一透鏡在d線的阿 貝數較佳為4G以上,第三透鏡在d線的阿貝數㈣以上,第 二透鏡在d線的阿貝數為29以下。 :且,在本創作的攝影透鏡中,將從最靠近像側的透 =像侧的面到像面的光轴上的距離設細,將整個系統 15的·'、'距设為f時,較佳地滿足下述條 相當於後截距,在該計算時使用空氣換算長度。 1.0<Bf/f<2.5 ......(6) 為f m本創作的攝影透鏡中,將整個系統的焦距設 如(為將第-透鏡的中心厚度設為_,滿足下述條件式 •W) 面的:二在!Γ的攝影透鏡中,將第二透鏡的像側 面的曲车+徑設為R4 較佳地滿足下述條件式⑻第-透鏡的中心厚度設為03時 〇.5<|R4/D3|<2〇.〇 .··, (8) 25 M368071 鏡 本創作的攝影裝置包括上述記载的本創作的攝影透 根據本創作,在最少三片的透鏡系統中,適當地設定 =的形狀及光焦度、光閣的位置等結構,以便滿足條 以)⑺’所以可提供具有良好的光學性能、低成本且 j里地構成、具有寬的視角的攝影透鏡、以及包括該 透鏡的攝影裝置。 【實施方式】 10 以下,參照圖式對本創作的實施方式詳細地進行說 明。 「攝影透鏡的實施方式」 在圖1表示本創作的一實施方式所涉及的攝影透鏡( 的透鏡剖視圖。在圖丨中,圖的左側為物側,右側為像側, 15也一併表示來自位於無限遠距離的物點的轴上光束2、全視 角2ω的軸外光束3、4。 在圖1中’考慮攝影透鏡1適用於攝影裝置的情況,也 圖示有配置在包括攝影透鏡1的像點pim的像面Mm的攝影 疋件5。攝影元件5將攝影透鏡1所形成的光學像變換成電信 20號’例如’可使用CCD影像感測器或CMOS影像感測器等。 另外’將攝影透鏡1適用於攝影裝置時,根據裝載透 鏡的攝影機側的結構,較佳地設置蓋玻璃、低通濾光片或 紅外線截止濾光片等,在圖1中表示將設想這些的平行平板 7 M368071 =料部件pp配置在最靠近像側的透鏡和攝以 面Sim)之間的例子。 、豕 攝影透鏡1從物側依次包括:像側的面為凹面,至,卜 -方的面為非球面的負的第—透鏡u;至少 球面的^的第二透鏡L2;孔徑光鬧st;和像側的面為凸面 且至少-方的面為非球面的正的第三透鏡L3。另外,圖】 中的孔徑光闌St不表示形狀或大小而表示光軸z上的位置。 攝影透鏡1透過由三片較少的透鏡片數構成,可以實 現低成本化的同時實現光軸方向的總長的小型化。 10 透過將配置在最#近物侧的第—透鏡u形成為將凹 面朝向像側的具有負的光焦度的透鏡’從而可以將整個透 鏡系統廣角化。 透過將第二透鏡L2形成為具有正的光焦度的透鏡,從 而容易良好地校正像面彎曲(也稱場曲)和倍率色像差。 15 透過將第三透鏡L3形成為像側的面為凸面的具有正 的光焦度的透鏡,從而可以良好地校正像面彎曲。 透過將第一透鏡L1、第二透鏡!^2、第三透鏡L3的各透 鏡設為至少單側的面為非球面的透鏡,從而是三片較少的 透鏡片數且可以得到校正了球面像差(也稱球差)、像面彎 20曲、彗形像差(也稱慧差)的良好的像。 透過在第二透鏡L2和第三透鏡L3之間設置孔徑光闌 St ’與在第一透鏡和第二透鏡之間設置孔徑光闌的情況相 比’可將第二透鏡的徑向小型化;與在比第一透鏡更靠物 側設置孔徑光闌St的情況相比,可將第二透鏡和第三透鏡 M368071 的徑向小型化;與在比第三透鏡更靠像側設置孔徑光闌St 的情況相比,可以將第一透鏡小型化。 而且,攝影透鏡1構成為:當將第二透鏡L2在d線的阿 貝數設為y d2,將第三透鏡L3在d線的阿貝數設為u d3, 將第一透鏡L1的焦距設為fl,將第二透鏡L2和第三透鏡L3 的合成焦距設為f23時,滿足下述條件式(1)、(2): 1.5< v d3/ v d2 ......(1) 0.0<|fl/f23|<0.5 ......(2)。 透過滿足條件式(1),可良好地校正倍率色像差。 透過滿足條件式(2)的上限,實現廣角化的同時,可以 良好地校正像面弯曲。 本創作的實施方式所涉及的攝影透鏡較佳還具有以 下結構。另外,作為較佳的方式也可具有以下任意一個結 構,或者也可具有組合任意二個以上的結構。 15 20 第-透鏡L1的物側面較佳為凸面。若設想將第一透鏡 U的物側的面設為凹®,則可以使第-透鏡L1具有大的負 的光焦度,有利於廣角卩,但來自寬的視㈣光線入射到 面時的人㈣變大’透鏡的周邊部的反射率升高,周邊光 量比減小。而透過將第一透鏡u的物側的面設為凸面,可 以抑制由透鏡的周邊部的反射引起的光量損失。 將第-透鏡L1的物側的面設為凸面 弱的光焦度的凸面。例如,第 叹為八有 U如第一透鏡L1的物側的面的曲率 另外’在此曲率半徑的符號將在物側 9 M368071 第透鏡L1的物側的面未必限於球面,也可以設為非 球面*此時可以更加良好地進行像差校正。 第—透鏡L1至少像側的面較佳為非球面。第一透鏡u 的像側的面較佳為中心具有負的光焦度並在有效直徑端其 負的光焦度小於中心的形狀。透過將第一透鏡l】設為這種 形狀’就為廣角且可以良好地校正畸變。 參照圖2並對第一透鏡L1的像側的面的形狀進行說 月圖2疋攝影透鏡1的光路圖,但是為了避免圖的複雜化 省略了部分符號的圖示。在圖2中,點Q2是第一透鏡li 10的像側的面的中心',是第一透鏡L i的像側的面和光轴z的 交點。圖2的點X2是第一透鏡u的像側的面的有效直徑端 的點疋第一透鏡L1的像侧的面和轴外光束3所包含的最 外側的光線的交點。 此時,如圖2所示,將在點X2的透鏡面的法線和光軸2 15的交點設為點P2,將連接點X2和點P2的線段的長度定義為 在點X2的曲率半徑絕對值丨RX2h即,線段的長度為丨χ2 — P2HRX2卜而且,將在點卩2的曲率半徑即第一透鏡幻的像 侧的面的中心的曲率半徑設為R2,且將其絕對值設為 |R2|(在圖2中未圖示)。 2〇 第一透鏡L1的像側的面的「中心具有負的光焦度」表 示包括點Q2的近軸區域為凹形狀。而且,第一透鏡u的像 側的面的「在有效直徑端其負的光焦度小於中心的形狀」 表示點P2比點Q2更位於像側,在點Χ2的曲率半徑絕對值 |RX2|大於在點Q2的曲率半徑絕對值丨R2|的形狀。 M368071 在圖2中,為了幫助理解用雙點劃線描繪以半徑丨汉2丨 並通過點Q2且以光軸上的點為中心的圓CQ2,用虛線描繪 以半徑|RX2|並通過點X2且以光軸上的點為中心的圓 CX2。圓CX2成為比圓CQ2大的圓,明示出|r2|<|RX2丨。 5 第一透鏡L2的物側的面較佳為中心具有正的光焦度 並在有效直徑端其正的光焦度小於中心的形狀。透過將第 二透鏡L2設為這種形狀,從而可以良好地校正像面彎曲。 第二透鏡L2的物侧的面的上述形狀與使用圖2說明的 第一透鏡L1的像側的面的形狀同樣地可以如下認為。在透 10鏡剖視圖中,將第二透鏡L2的物側的面的有效直徑端設為 點X3,將在該點的法線和光軸2的交點設為點?3時,將連 接點X3和點P3的線段的長度丨X3 — P3丨設為在點χ3的曲率 半徑絕對值丨RX3|。而且,將第二透鏡L2的物側的面和光軸 Z的父點即第二透鏡L2的物側的面的中心設為點q3,將在 15點Q3的曲率半徑絕對值設為|R3丨。 第二透鏡L2的物側的面的「中心具有正的光焦度並在 有效直徑端其正的光焦度小於中心的形狀」,是在包括點 Q3的近軸區域為凸形狀並點P3比點q3更位於物側且在點 X3的曲率半徑絕對值|RX3|大於在點卩3的曲率半徑絕對值 20 |R3|的形狀。 在點X3的曲率半徑絕對值丨RX3丨較佳地大於在點Q3的 曲率半徑絕對值|R3丨的1.〇5倍’即’丨^〈丨以3丨/|R;3丨,在此 時容易進行像面彎曲的校正。 M368071 第二透鏡L2的像側的面較佳為中心具有負光焦度並 在有效直控端其負的光焦度大於_心的形狀。透過將第二 透鏡L2設為這種形狀,可以良好地校正球面像差和像面 曲。 5 第二透鏡乙2的像側的面的上述形狀與利用圖2說明的 第透鏡L1的像側的面的形狀同樣地可以如下認為。在透 鏡剖視圖中,將第二透鏡!^2的像侧的面的有效直徑端設為 點X4,將在該點的法線和光軸z的交點設為點時將^ 接點X4和點P4的線段的長度|Χ4—p4丨設為在點χ4的曲率 10半徑絕對值|RX4|。而且,將第二透鏡L2的像側的面和光軸 z的交點即第二透鏡L2的像側的面的中心設為點Q4。並 且’將在點Q4的曲率半徑絕對值設為丨R4|。 第二透鏡L2的像側的面的「中心具有負的光焦度並在 有效直控端其負的光焦度大於中心的形狀」,是指在包括 I5點Q4的近軸區域為凹形狀並點p4比點Q4更位於像側且在 點X4的曲率半徑絕對值|RX4丨小於在點Q4的曲率半徑絕對 值IR4丨的形狀。 點X4的曲率半徑絕對值|RX4丨較佳地比點卩4的曲率半 徑絕對值|R4|的0.8倍小,即,〇.8>|RX4|/|R4|,在此時容易 20進行球面像差和像面彎曲的校正。 第三透鏡L3的物側的面較佳為中心具有正的光焦度 並在有效直徑端其正的光焦度小於中心的形狀。透過將第 三透鏡L3的物側的面設為這種形狀,可以減小軸外光線的 主光線入射到像面的角度,可使所謂像側的遠心性良好。 12 M368071 第三透鏡L3的物側的面的上述形狀與利用圖2所說明 的第一透鏡L1的像側的面的形狀同樣地可以如下認為。在 透鏡剖視圖中,將第三透鏡L3的物側的面的有效直徑端設 為點X6,將在該點的法線和光軸^;的交點設為點…時,將 5連接點X 6和點P 6的線段的長度丨X 6 — p 6丨設為在點χ 6的曲 率半徑絕對值|RX6|。而且,將第三透鏡匕3的物側的面和光 軸Z的父點即第二透鏡L3的物側的面的中心設為點Q6。並 且’將在點Q6的曲率半徑絕對值設為丨R6|。 第三透鏡L3的物侧的面的「中心具有正的光焦度並在 1〇有效直徑端其正的光焦度小於中心的形狀」,是指在包括 點Q6的近軸區域為凸形狀並點P6比點Q6更位於像側且在 點X6的曲率半徑絕對值丨RX6丨大於在點〇6的曲率半徑絕對 值|R6|的形狀。 點X6的曲率半徑絕對值丨RX6|較佳地大於點Q6的曲率 15半徑絕對值丨R6丨的0·8倍’即,〇.8<|RX6|/|R6|,在此時容易 進行球面像差的校正。 第二透鏡L3的像側的面較佳地為中心具有正的光焦 度並在有效直徑端其正的光焦度小於中心的形狀。透過將 第二透鏡L3的像惻的面設為這種形狀,可良好地校正球面 20 像差。 第二透鏡L3的像側的面的上述形狀與利用圖2所說明 的第一透鏡L1的像側的面的形狀同樣地可如下認為。在透 鏡剖視圖中,將第三透鏡L3的像側的面的有效直徑端設為 點X7,將在該點的法線和光軸z的交點設為點?7時,將連 13 M368071 接點X7和點P7的線段的長度|X7 - p7|設為在點χ7的曲率 半控絕對值|RX7卜而且’將第三透鏡L3的像側的面和光軸 Z的交點即第三透鏡L3的像側的面的中心設為點q?。並 且,將在點Q7的曲率半徑絕對值設為丨R7!。 5 第二透鏡L3的像侧的面的「中心具有正的光焦度並在 有效直徑端正的光焦度小於中心的形狀」,是指在包括點 Q7的近軸區域為凸形狀並點P7比點〇7位於物側且在點χ7 的曲率半徑絕對值|RX7|大於在點Q7的曲率半徑絕對值 |R7|的形狀。 10 點X7的曲率半徑絕對值|RX7|較佳地大於點Q7的曲率 半控絕對值|R7|的1·5倍’即為1.5<|RX7|/|R7|,在此時容易 進行球面像差的校正。 攝影透鏡1的全視角較佳為丨3〇。以上》透過將全視角 設為130°以上’例如,在作為車載攝影機用透鏡或監視攝 15影機用透鏡用而使用時也構成充分的視角。 第一透鏡L1在d線的阿貝數較佳為40以上,由此,可 抑制色像差的發生,得到良好的像。 第二透鏡L2在d線的阿貝數較佳為29以下,由此,可 良好地校正倍率色像差。 20 第二透鏡L3在d線的阿貝數較佳為40以上,由此,可 抑制色像差的發生,得到良好的像。 在將第一透鏡L1的焦距設為fi,將第二透鏡L2和第三 透鏡L3的合成焦距設為f23時,最佳地滿足下述條件式 (2-1)。透過滿足條件式(24)的下限’容易小型化透鏡系統。 25 (2-1) 0.15<|fl/f23|<0.5 M368071 將第一透鏡L1的像側的面中心 為陶,將第-透鏡U的像側的面的有絕對值設 徑絕對值設為|RX2丨時,較佳地 :編的曲率丰 5 15 20 滿足條件式⑺,可良好地校正崎條件式(3)°透過 1.5<|RX2|/|R2| ……(3) 而且’最佳地滿足下述條件式㈣。透過滿足條件式 (3-1)’可更加良好地校正畸變。 2.0<|RX2|/|R2| ......(3-1) 將第二透鏡L2的焦距設為f2,將第三透鏡 為£3時,較佳地滿足下述條件_。若成為條件式(Γ)的i 限以上LX進行像面彎曲的校正。若成為條件 的下限以下,則後截距變短,難以在透鏡系統和攝影元件 之間配置據光片或蓋玻璃等。 〇.8<f2/f3<2.2 ......(4) 而且,最佳地滿足下述條件式㈣。透過滿足條件式 (4-1)的上限’可更加良好地校正像面弯曲。透過滿足條件 式(4-1)的下限,更加容易確保後截距。 1.0<f2/f3<2.〇 ......(4_ι) 將從第-透鏡L1的物側的面到像面的光軸上的距離 設為L’將整個系統的焦距設為辦,較佳地滿足下述條件 式(5)。另外,在算出L時,後截距分為空氣換算長度。即, 在最靠近像侧的透鏡和像面Sim之間有蓋玻璃或濾光片等 時,蓋玻璃或濾光片等的厚度使用空氣換算的值。 5.0<L/f<12.0 ......(5) 15 M368071 若成為條件式(5)的上限以上,則 ,透:系統大型化。若成為條件式⑺的二二廣二 型化透鏡系統,但難以實現廣角化。 1 了小 而且,最佳地滿足下述條件式(5-1)。 5 (5-1)的上限,更加容易小型化。 ° ^、件式 限,則更加容易廣角化。 右滿足條件式㈣的下 7.0<L/f<l 1.0 ......(5-1) 將從最靠近像側的透鏡(在圖_示_ L3)的像側的面到像面的光軸上的距離設為 二兄 ,的焦距設為f時,較佳地滿足 個糸統 當於後截距,在該計算時利二外: 一間具有—等:: 1.0<Bf/f<2.5 ……(6) 15 20 成為^^条件式⑹的上限以上,則透鏡系統大型化。若In the photographic lens of the present invention, the absolute value of the radius of curvature of the center of the image side of the first lens is set to 2|, and the absolute value of the radius of curvature of the effective direct control end of the image side of the first lens is set to beer. It is preferable to satisfy the following conditional expression (3). 1.5<|RX2|/|R2| (3) 2 ,, the "effective diameter end" of the lens surface means that all the rays that contribute to imaging and the lens face are considered. In the outermost point of each radial direction, the "effective diameter" indicates the straight 25 diameter of the circle formed by the outermost point. In the present creation, the radius of curvature of the center represents the curvature of the paraxial half 5 M368071. Moreover, in the photographic lens of the present invention, when the focal length of the second lens is set to f2 and the focal length of the third lens is set to 〇, it is preferable. The conditional expression (4) below is satisfied. 0.8 <f2/f3<2.2 (4) and 'in the photographic lens of the present invention', the distance from the object side surface of the first lens to the optical axis of the image plane is set to L When the dance pitch of the entire system is bitten to f, it is preferable to satisfy the following conditional expression (5). When calculating the enthalpy, the back intercept is divided into the air conversion length. (5) Also, in the present creation In the photographic lens, the Abbe number of the first lens in the d line is preferably 4 G or more, the Abbe number of the third lens is equal to or greater than the d line, and the Abbe number of the second lens in the d line is 29 or less. In the photographic lens of the present invention, the distance from the image side closest to the image side to the optical axis of the image surface is thinned, and when the distance of the entire system 15 is set to f, it is preferable. The ground meets the following bar, which is equivalent to the back intercept, and the air conversion length is used in this calculation. 1.0<Bf/f<2.5 (6) In the photographic lens created by fm, the whole system is The focal length is set to (in order to set the center thickness of the first lens to _, satisfy the following conditional expression • W): In the photographic lens of the second lens, the curve + diameter of the image side of the second lens is set to R4 is preferably full In the following conditional expression (8), the center thickness of the first lens is set to 03 〇.5<|R4/D3|<2〇.〇.··, (8) 25 M368071 The photographic apparatus created by the mirror includes the above-described description. According to the creation of this creation, in a minimum of three lens systems, the shape of the shape, the power of the light, the position of the light cabinet, and the like are appropriately set so as to satisfy the strip (7)' so that good optics can be provided. An photographic lens having a wide viewing angle and a low-cost configuration, and an imaging device including the lens. [Embodiment] 10 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. EMBODIMENT OF THE INVENTION Fig. 1 shows a lens cross-sectional view of an imaging lens according to an embodiment of the present invention. In the figure, the left side of the figure is the object side, and the right side is the image side, and 15 is also shown from the infinity distance. On-axis beam 2 of object point 2, off-axis beam 3, 4 of full-view 2ω. In Fig. 1, 'considering the case where the photographic lens 1 is applied to a photographic apparatus, it is also shown that the pixel pim is included in the photographic lens 1. Image of Mm The imaging element 5 converts the optical image formed by the photographic lens 1 into a telecommunication number 20 'for example, a CCD image sensor or a CMOS image sensor can be used. In addition, the photographic lens 1 is applied to a photographic device. In the case of the camera side of the loading lens, a cover glass, a low-pass filter or an infrared cut filter or the like is preferably provided. In FIG. 1, a parallel plate 7 M368071 in which these elements are assumed is disposed. An example between the lens closest to the image side and the face Sim). The photographic lens 1 includes, in order from the object side, a surface on the image side as a concave surface, a surface of the negative lens that is aspherical, and a second lens L2 that is at least a spherical surface; And a positive third lens L3 whose surface on the image side is convex and at least the square surface is aspherical. In addition, the aperture stop St in the figure represents the position on the optical axis z without indicating the shape or size. The photographic lens 1 is formed by a small number of three lenses, and it is possible to reduce the total length of the optical axis direction while achieving cost reduction. The entire lens system can be widened by forming the first lens u disposed on the most near side as a lens having a negative refractive power toward the image side. By forming the second lens L2 as a lens having a positive refractive power, it is easy to correct the field curvature (also called field curvature) and the chromatic aberration of magnification. By forming the third lens L3 as a lens having a positive refractive power on the image side, the field curvature can be satisfactorily corrected. By arranging the lenses of the first lens L1, the second lens, and the third lens L3 to have at least one side of the lens having an aspherical surface, the number of the three lenses is small and the spherical surface can be corrected. A good image of aberrations (also called spherical aberration), 20 curvatures like face curvature, and coma aberration (also called coma). The radial direction of the second lens can be miniaturized by providing the aperture stop St ' between the second lens L2 and the third lens L3 compared to the case where the aperture stop is provided between the first lens and the second lens; The radial direction of the second lens and the third lens M368071 can be miniaturized as compared with the case where the aperture stop St is disposed on the object side of the first lens; and the aperture stop is disposed on the image side of the third lens. In the case of St, the first lens can be miniaturized. Further, the photographing lens 1 is configured such that when the Abbe number of the second lens L2 on the d line is y d2 and the Abbe number of the third lens L3 on the d line is u d3 , the focal length of the first lens L1 is set. When f is set and the combined focal length of the second lens L2 and the third lens L3 is f23, the following conditional expressions (1) and (2) are satisfied: 1.5 < v d3/ v d2 ( 1) 0.0<|fl/f23|<0.5 ......(2). By satisfying the conditional expression (1), the chromatic aberration of magnification can be satisfactorily corrected. By satisfying the upper limit of the conditional expression (2), it is possible to satisfactorily correct the field curvature while achieving wide angle. The photographic lens according to the embodiment of the present invention preferably further has the following structure. Further, as a preferred embodiment, any one of the following structures may be provided, or any two or more of the structures may be combined. 15 20 The object side surface of the first lens L1 is preferably convex. If it is assumed that the surface on the object side of the first lens U is a concave ®, the first lens L1 can have a large negative power, which is advantageous for a wide angle 卩, but when a wide (four) light ray is incident on the surface. When the person (4) becomes larger, the reflectance of the peripheral portion of the lens increases, and the peripheral light amount ratio decreases. On the other hand, by making the surface on the object side of the first lens u a convex surface, it is possible to suppress the amount of light loss caused by the reflection of the peripheral portion of the lens. The surface on the object side of the first lens L1 is a convex surface having a weak convex power. For example, the first sigh is eight, U is the curvature of the surface of the object side of the first lens L1, and the sign of the radius of curvature is on the object side 9 M368071. The surface of the object side of the lens L1 is not necessarily limited to the spherical surface, and may be set to Aspherical surface* At this time, aberration correction can be performed more satisfactorily. The surface of the first lens L1 at least on the image side is preferably aspherical. The image-side surface of the first lens u preferably has a negative refractive power at the center and a negative refractive power at the effective diameter end is smaller than the central shape. By setting the first lens 1 to such a shape, it is a wide angle and the distortion can be corrected well. Referring to Fig. 2, the shape of the image on the image side of the first lens L1 is shown in Fig. 2, and the optical path diagram of the photographic lens 1 is omitted. However, in order to avoid complication of the drawing, the illustration of some symbols is omitted. In Fig. 2, the point Q2 is the center '' of the image side surface of the first lens li 10, and is the intersection of the image side surface of the first lens Li and the optical axis z. Point X2 in Fig. 2 is the intersection of the effective diameter end of the image side surface of the first lens u, the image side surface of the first lens L1, and the outermost light ray included in the off-axis light beam 3. At this time, as shown in FIG. 2, the intersection of the normal line of the lens surface at the point X2 and the optical axis 2 15 is set as the point P2, and the length of the line segment connecting the point X2 and the point P2 is defined as the absolute radius of curvature at the point X2. The value 丨RX2h, that is, the length of the line segment is 丨χ2 - P2HRX2, and the radius of curvature at the center of the radius of the surface of the first lens on the phantom image side of the first lens is set to R2, and the absolute value thereof is set to |R2| (not shown in Figure 2). 2" "The center has a negative refractive power" on the image side surface of the first lens L1 means that the paraxial region including the point Q2 has a concave shape. Further, the surface of the image side of the first lens u "having a negative refractive power at the effective diameter end is smaller than the center shape" means that the point P2 is located more on the image side than the point Q2, and the absolute value of the curvature radius at the point | 2 |RX2| A shape larger than the absolute value of the radius of curvature 丨R2| at the point Q2. M368071 In Fig. 2, in order to help understand the circle CQ2 with a radius of 2 丨 and passing the point Q2 and centered on the point on the optical axis, the dashed line is drawn with a radius |RX2| and passes the point X2 And a circle CX2 centered on the point on the optical axis. The circle CX2 becomes a circle larger than the circle CQ2, and clearly shows |r2|<|RX2丨. 5 The object-side surface of the first lens L2 preferably has a positive power at the center and a positive power at the effective diameter end is smaller than the center shape. By setting the second lens L2 to such a shape, the field curvature can be satisfactorily corrected. The shape of the surface on the object side of the second lens L2 can be considered as follows, similarly to the shape of the surface on the image side of the first lens L1 described with reference to Fig. 2 . In the transmissive cross-sectional view, the effective diameter end of the object-side surface of the second lens L2 is set to point X3, and the intersection of the normal line at the point and the optical axis 2 is set as a point. At 3 o'clock, the length 丨X3 - P3 of the line segment connecting the point X3 and the point P3 is set to the absolute value of the curvature radius 丨RX3| at the point χ3. Further, the center of the second lens L2 and the center of the optical axis Z, that is, the center of the object side surface of the second lens L2, are referred to as a point q3, and the absolute value of the radius of curvature at 15 o'clock Q3 is set to |R3. . The "center of the surface of the object side of the second lens L2 has a positive refractive power and its positive refractive power is smaller than the central shape at the effective diameter end", and is a convex shape at a paraxial region including the point Q3 and a point P3 The absolute value of the radius of curvature |RX3| at the point X3 is larger than the point q3 and is larger than the absolute value of the radius of curvature 20 |R3| at the point 卩3. The absolute value of the radius of curvature 点RX3 点 at point X3 is preferably greater than the absolute value of the radius of curvature of the point Q3 |R3 丨 1. 〇 5 times 'that' 丨 ^ 丨 丨 丨 3 丨 / | R; 3 丨, in Correction of the field curvature is easy at this time. M368071 The image side surface of the second lens L2 preferably has a negative refractive power at the center and a negative refractive power greater than the _ heart shape at the effective direct control end. By setting the second lens L2 to such a shape, spherical aberration and image curvature can be satisfactorily corrected. The shape of the surface on the image side of the second lens B2 can be considered as follows, similarly to the shape of the surface on the image side of the lens L1 described with reference to Fig. 2 . In the lens cross-sectional view, the effective diameter end of the image side surface of the second lens Δ2 is set to a point X4, and when the intersection of the normal of the point and the optical axis z is set as a point, the contact point X4 and the point P4 are The length of the line segment | Χ 4 - p4 丨 is set to the curvature of the point χ 4 10 radius absolute value |RX4|. Further, the intersection of the image-side surface of the second lens L2 and the intersection of the optical axis z, that is, the center of the image-side surface of the second lens L2 is referred to as a point Q4. And the absolute value of the radius of curvature at point Q4 is set to 丨R4|. The "the center has a negative power at the center side of the image side of the second lens L2 and the negative power at the effective direct control end is larger than the center shape" means that the paraxial region including the I5 point Q4 has a concave shape. The point p4 is located further on the image side than the point Q4 and the absolute value of the radius of curvature |RX4 在 at the point X4 is smaller than the absolute value of the radius of curvature IR4 在 at the point Q4. The absolute value of the radius of curvature |RX4 of the point X4 is preferably smaller than 0.8 times the absolute value of the radius of curvature |R4| of the point 卩4, that is, 〇.8>|RX4|/|R4|, at this time, it is easy to perform 20 Correction of spherical aberration and field curvature. The object-side surface of the third lens L3 preferably has a positive refractive power at the center and a positive refractive power smaller than the central shape at the effective diameter end. By setting the surface on the object side of the third lens L3 to have such a shape, the angle at which the chief ray of the off-axis light is incident on the image plane can be reduced, and the telecentricity on the image side can be improved. 12 M368071 The above-described shape of the surface on the object side of the third lens L3 can be considered as follows, similarly to the shape of the surface on the image side of the first lens L1 described with reference to Fig. 2 . In the lens cross-sectional view, the effective diameter end of the object-side surface of the third lens L3 is set to a point X6, and when the intersection of the normal of the point and the optical axis is set to a point..., the connection point X 6 and The length of the line segment of point P 6 丨X 6 — p 6丨 is set to the absolute value of the radius of curvature |RX6| at point χ 6 . Further, the surface on the object side of the third lens 匕3 and the center of the optical axis Z, that is, the center of the surface on the object side of the second lens L3, are referred to as a point Q6. And the absolute value of the radius of curvature at point Q6 is set to 丨R6|. The "center of the object-side surface of the third lens L3 has a positive refractive power and its positive refractive power is smaller than the central shape at the effective diameter end", which means that the paraxial region including the point Q6 has a convex shape. The point P6 is located more on the image side than the point Q6 and the absolute value of the radius of curvature 丨RX6丨 at the point X6 is larger than the absolute value of the radius of curvature |R6| at the point 〇6. The absolute value of the radius of curvature of the point X6 丨 RX6| is preferably larger than the curvature of the point Q6. The absolute value of the radius 丨R6丨 is 0·8 times 'that is, 〇.8<|RX6|/|R6| is easy to perform at this time. Correction of spherical aberration. The image-side surface of the second lens L3 preferably has a positive refractive power at the center and a positive refractive power at the effective diameter end is smaller than the central shape. By setting the surface of the image pupil of the second lens L3 to such a shape, the spherical surface aberration can be satisfactorily corrected. The shape of the surface on the image side of the second lens L3 can be considered as follows, similarly to the shape of the surface on the image side of the first lens L1 described with reference to Fig. 2 . In the lens cross-sectional view, the effective diameter end of the image side surface of the third lens L3 is set to point X7, and the intersection of the normal line at the point and the optical axis z is set as a point. 7 o'clock, the length of the line segment of the 13 M368071 contact X7 and the point P7 |X7 - p7| is set to the absolute value of the curvature at the point 半7 | RX7 and 'the side of the image side of the third lens L3 and the optical axis The intersection of Z, that is, the center of the image side surface of the third lens L3 is set to a point q?. Also, the absolute value of the radius of curvature at point Q7 is set to 丨R7!. 5 "The center of the image on the image side of the second lens L3 has a positive refractive power and the positive power at the effective diameter end is smaller than the central shape", which means that the paraxial region including the point Q7 has a convex shape and points P7. The absolute value of the radius of curvature |RX7| at the point χ7 on the object side and at the point χ7 is larger than the shape of the absolute value of the radius of curvature |R7| at the point Q7. The absolute value of the radius of curvature of 10 points X7 |RX7| is preferably greater than the absolute value of the half-control absolute value of the point Q7 | 1.5 times of R7| is 1.5<|RX7|/|R7|, which is easy to perform at this time. Correction of spherical aberration. The full viewing angle of the photographic lens 1 is preferably 丨3〇. In the above, the full viewing angle is set to 130° or more. For example, when used as a lens for a car camera or a lens for monitoring a camera, a sufficient angle of view is also formed. The Abbe number of the first lens L1 on the d line is preferably 40 or more, whereby generation of chromatic aberration can be suppressed, and a good image can be obtained. The Abbe number of the second lens L2 on the d line is preferably 29 or less, whereby the chromatic aberration of magnification can be satisfactorily corrected. The Abbe number of the second lens L3 on the d line is preferably 40 or more, whereby generation of chromatic aberration can be suppressed, and a good image can be obtained. When the focal length of the first lens L1 is fi and the combined focal length of the second lens L2 and the third lens L3 is f23, the following conditional expression (2-1) is optimally satisfied. It is easy to miniaturize the lens system by satisfying the lower limit of conditional expression (24). 25 (2-1) 0.15 <|fl/f23|<0.5 M368071 The center of the image side of the first lens L1 is ceramic, and the absolute value of the surface of the image side of the first lens U is set to an absolute value. When it is set to |RX2丨, it is preferable that the curvature of the code is 5 15 20 and satisfies the conditional expression (7), and the condition condition (3)° can be satisfactorily corrected by 1.5<|RX2|/|R2| (3) Moreover, 'the following conditional formula (4) is optimally satisfied. The distortion can be corrected more satisfactorily by satisfying the conditional expression (3-1)'. 2.0<|RX2|/|R2| (3-1) When the focal length of the second lens L2 is f2 and the third lens is £3, the following condition _ is preferably satisfied. If it is the conditional (Γ) i limit or more, LX corrects the field curvature. When the temperature is less than or equal to the lower limit of the condition, the back intercept becomes short, and it is difficult to arrange a light guide sheet or a cover glass between the lens system and the imaging element. 8.8<f2/f3<2.2 (4) Further, the following conditional expression (4) is optimally satisfied. The field curvature can be corrected more satisfactorily by satisfying the upper limit ' of the conditional expression (4-1). By satisfying the lower limit of the conditional expression (4-1), it is easier to secure the back intercept. 1.0<f2/f3<2.〇...(4_ι) The distance from the object-side surface of the first lens L1 to the optical axis of the image plane is set to L' to set the focal length of the entire system to It is preferable to satisfy the following conditional expression (5). Further, when L is calculated, the back intercept is divided into air-converted lengths. In other words, when there is a cover glass or a filter between the lens closest to the image side and the image surface Sim, the thickness of the cover glass, the filter, or the like is a value converted by air. 5.0<L/f<12.0 ......(5) 15 M368071 If the upper limit of the conditional expression (5) is exceeded, the system is enlarged. If it is a two-two wide-type lens system of the conditional expression (7), it is difficult to achieve wide-angle. 1 is small and the following conditional expression (5-1) is optimally satisfied. The upper limit of 5 (5-1) is easier to miniaturize. ° ^, the part limit, it is easier to wide-angle. The right below satisfies the conditional expression (4) of the lower 7.0<L/f<l 1.0 (5-1) from the image side of the image closest to the image side (in the image_L3) to the image When the distance on the optical axis of the face is set to two brothers, when the focal length is set to f, it is better to satisfy the system as the back intercept, which is advantageous in the calculation: one has -etc:: 1.0< Bf / f < 2.5 ...... (6) 15 20 When the upper limit of the conditional expression (6) is equal to or higher than the upper limit, the lens system is enlarged. If

以下’則後截距變短,難以在透鏡系 杨攝a件之間插人各種濾以或蓋破璃等。 的上Γ且,佳地滿^下述條件式滿足條件式㈣ 的上限,則容易小型化甚 } 易確保後截距。右滿足條件式㈣的下限,則容 1.3<Bf/f<2.3 ......(6-1) 另外’ Bf較佳為1 jmni以上。 =個系統的焦距設為f,將第一透鏡u的中心厚度 時,較佳地料下述條件式⑺。透過滿足條件式⑺ 的上限,可以將透鏡系統小型化。 16 25 M368071In the following, the rear intercept is shortened, and it is difficult to insert various filters or cover the glass between the lens elements. In addition, if the conditional expression below satisfies the upper limit of the conditional expression (4), it is easy to miniaturize. When the right side satisfies the lower limit of the conditional expression (4), the capacity is 1.3 < Bf / f < 2.3 (6-1) and the 'Bf is preferably 1 jmni or more. The focal length of the system is set to f, and when the center thickness of the first lens u is set, the following conditional expression (7) is preferable. The lens system can be miniaturized by satisfying the upper limit of the conditional expression (7). 16 25 M368071

Dl/f<4 ......(7) 而且,最佳地滿足下述條件式(7_1}。透過滿足條件式 (7-1)的上限,可將透鏡系統更加小型化。透過滿足條件式 (7-1)的下限,可使第一透鏡L1難以破裂。 5 〇.7<Dl/f<2 ......(7-1) 而且,更進一步較佳地滿足下述條件式(7_2广透過滿 足條件式(7-2)的上限,可以將透鏡系統更進一步小型化。 透過滿足條件式(7-2)的下限,可以使第一透鏡u更加難以 破裂。 10 〇.9<Dl/f<1.5 ......(7-2) D1較佳為〇.7mm以上,透過將〇1設為〇7mm以上可 使透鏡系統難以破裂。而且,D1最佳為1〇mm以上,透過 將D1設為i.0mm以上,可以使透鏡系統更加難以破裂。而 且,更進一步優選D1為1.2mm以上,透過將]:^設為i 2mm 15以上,可以使透鏡系統更加難以破裂。 將第二透鏡L2的像側的面的曲率半徑設為R4,將第二 透鏡L2的中心厚度設為03時,較佳地滿足下述條件式(8卜 若成為條件式(8)的上限以上,則難以良好地校正像面彎 曲,若成為條件式(8)的下限以下,則第二透鏡的中心厚變 2〇 得過大’透鏡系統大型化。 .〇.5<|R4/D3|<20.0 ......(8) 將整個系統的焦距設為f,將第一透鏡L1和第二透鏡 L2的光軸上的空氣間隔設為d2時,較佳地滿足下述條件式 (9)。透過滿足條件式(9)的上限,可將透鏡系統小型化。若 17 M368071 的下限以下,則透鏡系統變薄,變得難以製 &或者成為成本上升的原因。 〇.9<D2/f<2 ......(9) =㈣、統的該設為卜㈣二透鏡U和孔徑光圈 的光轴上的空氣間隔設為D4時,較佳地滿足下述條件式 (^)。若成為條件式⑽的上限以上,則比孔徑光_更靠 物側的光學系統的徑向的大小大型化。若成為條件式⑽ 的下限以下,則孔徑光闌St過於接近第二透鏡U,所以難 以配置孔徑光闌St。 10 0.05<D4/f<0.30 ......(10) 而且,最佳地滿足下述條件式(1〇_1}。透過滿足條件 式(ιο-υ的上限,1易將透⑽統更小型化。若滿足條件 式(10-1)的下限,則孔徑光闌St的配置更加容易。 0.10<D4/f<0.20 ......(10-1) 15 將整個系統的焦距設為f,將第一透鏡L1和第二透鏡 L2的光軸上的空氣間隔設為D2,將第二透鏡L2的中心厚度 設為D3時,較佳地滿足下述條件式(11)。若成為條件式(ιι) 的上限以上,則透鏡系統大型化。若成為條件式(11)的下 限以下,則難以分離轴上光束和軸外光束,難以良好地校 2〇 正像面彎曲或者難以將透鏡系統廣角化。 2.5<(D2+D3)/f<5.0 ......(11) 將整個系統的焦距設為f,將第二透鏡L2的焦距設為 時,較佳地滿足下述條件式(12)。若成為條件式(12)的上限 以上’則第二透鏡L2的光焦度變弱,難以進行色像差的校 25 正。若成為條件式(12)的下限以下,則第二透鏡L2的光焦 M368071 量減小,組裝困難 度變得過強,偏心等的製造誤差的允許 或者成為成本上升的原因。 1.0<f2/f<5.0 ......(12) 第-透鏡則材質較佳為塑料。透過將第—透鏡^ 的材質設為塑料,可廉價且輕量地構成透鏡系統的同時, 可準確地製作非球面形狀,所以可以製作良好的性㈣透 鏡0Dl/f <4 (7) Further, the following conditional expression (7_1} is satisfactorily satisfied. By satisfying the upper limit of the conditional expression (7-1), the lens system can be further miniaturized. The lower limit of the conditional expression (7-1) makes it difficult for the first lens L1 to be broken. 5 〇.7 < Dl / f < 2 (7-1) Moreover, it is still more preferable to satisfy the following The conditional expression (7_2 wide transmission satisfies the upper limit of the conditional expression (7-2), and the lens system can be further miniaturized. By satisfying the lower limit of the conditional expression (7-2), the first lens u can be made more difficult to be broken. .9<Dl/f<1.5 (7-2) D1 is preferably 〇.7 mm or more, and it is difficult to break the lens system by setting 〇1 to 〇7 mm or more. Moreover, D1 is preferably 1 〇mm or more, the lens system can be made more difficult to break by setting D1 to 1.0 mm or more. Further, it is more preferable that D1 is 1.2 mm or more, and the lens system can be made by setting::^ to i 2 mm 15 or more. When the radius of curvature of the image side surface of the second lens L2 is R4 and the center thickness of the second lens L2 is 03, it is preferable to satisfy the following conditional expression (8 When the upper limit of the conditional expression (8) is equal to or higher than the upper limit of the conditional expression (8), it is difficult to correct the curvature of field, and if the lower limit of the conditional expression (8) is less than or equal to the lower limit of the conditional expression (8), the thickness of the second lens becomes too large, and the size of the lens system is increased. 5<|R4/D3|<20.0 (8) When the focal length of the entire system is f, and the air interval on the optical axes of the first lens L1 and the second lens L2 is set to d2, It is preferable to satisfy the following conditional expression (9): The lens system can be miniaturized by satisfying the upper limit of the conditional expression (9). When the lower limit of 17 M368071 or less, the lens system becomes thinner and becomes difficult to manufacture or become The reason for the increase in cost. 〇.9<D2/f<2 ......(9) = (4), the system is set to be (four) two lenses U and the air gap on the optical axis of the aperture stop is set to D4 When the conditional expression (10) is equal to or greater than the upper limit of the conditional expression (10), the size of the radial direction of the optical system on the object side is larger than that of the aperture light. , the aperture stop St is too close to the second lens U, so it is difficult to configure the aperture stop St. 10 0.05 < D4 / f < 0.30 (10) and, best The following conditional formula (1〇_1} is satisfied. By satisfying the conditional expression (the upper limit of ιο-υ, 1 is more compact). If the lower limit of the conditional expression (10-1) is satisfied, the aperture stop St The configuration is easier. 0.10<D4/f<0.20 (10-1) 15 Set the focal length of the entire system to f, and the air on the optical axes of the first lens L1 and the second lens L2 When the interval is D2 and the center thickness of the second lens L2 is D3, the following conditional expression (11) is preferably satisfied. When the temperature is equal to or higher than the upper limit of the conditional expression (1), the lens system is enlarged. When the conditional expression (11) is less than or equal to the lower limit, it is difficult to separate the on-axis beam and the off-axis beam, and it is difficult to accurately align the positive image plane or to widen the lens system. 2.5 < (D2 + D3) / f < 5.0 (11) When the focal length of the entire system is set to f and the focal length of the second lens L2 is set, the following conditional expression is preferably satisfied ( 12). When the upper limit of the conditional expression (12) is exceeded, the refractive power of the second lens L2 is weak, and it is difficult to correct the chromatic aberration. When the value is less than or equal to the lower limit of the conditional expression (12), the amount of the optical focus M368071 of the second lens L2 is reduced, and the difficulty in assembly becomes too strong, and the manufacturing error such as eccentricity is allowed or the cost is increased. 1.0<f2/f<5.0 (12) The first lens is preferably made of plastic. By using the material of the first lens ^ as a plastic, the lens system can be formed inexpensively and lightly, and the aspherical shape can be accurately produced, so that good performance can be produced. (IV) Transparency 0

10 料。 塑料 從如上述的情況來看,第二透鏡L2的材質較佳為塑 而且’從同樣的情況來看’第三透獻3的材f較佳為 在第一透鏡L1、第二透鏡乙2、第三透鏡L3的至少任意 ;-個上使用塑料㈣時,作為其材質也可以制在塑料中 混合比光的波長小的粒子的所謂奈米複合材料。 在以攝影透鏡1使用於例如車載用攝影機等嚴格的環 15境的用途而將第一透鏡L1設為塑料非球面透鏡時,較佳地 將用於保護透鏡系統的透明的保護部件配置得比第一透鏡 更靠物側。較佳地透明的保護部件幾乎不具有光焦度例 如可使用平行平板。較佳地透明的保護部件的耐藥品性高 且難以破壞。 20 上述透明的保護部件也可以是塑料制的。作為透明的 保護部件的材質較佳地使用丙烯酸、環氧樹脂、聚碳酸酯、 PET(聚對笨二甲酸乙二酯(p〇lyethylene terephthalateD、 PES(聚喊硬(p〇iy Ether Sulphone))、聚稀烴類的樹脂中的 任意一種。作為保護部件’透過使用如上述的塑料材質, 25可製作廉價且對衝擊難以破裂的保護部件。 19 M368071 在將第-透鏡Lm為塑料非球面透鏡時,也可以在第 ' -透鏡u的物側的面形成增強透鏡的強度的硬塗層。硬塗 層較佳地為用於提高對透鏡系統的衝擊的強度、耐割傷 性、耐藥品性的塗層。透過形成硬塗層,可以使透鏡系統 5 難以破裂。 另外,塑料具有與玻璃相比強度差但伸長性高的性 質,因此,透過將第一透鏡匕丨的材質設為塑料,在其表面 施加硬塗層等,可以使透鏡對各種衝擊難以破裂。 或者,也可以在第一透鏡L1的物側的面施加防水塗 · 1〇層。透過防水塗層,即使在雨天使用時也難以附著水滴且 難以附著污垢等。或者,也可以在第一透鏡u的物側的面 施加親水塗層。透過親水塗層,即使淋上水等的液體 可減少水潰,難以生成水滴,可確保透明感的同時,在存 在污垢時也可自然地沖洗污垢而確保良好的視野。 15 上述硬塗層、防水塗層、親水塗層也可以在比第一透 鏡更靠物側所配置的透明的保護部件的物側的面或兩面形 成。透過在上述保護部件施加硬塗層、防水塗層、親水塗 鲁 層等,可製作更高強度,耐劃傷、耐藥品性良好的保護 20 本創作的實施方式所涉及的攝影透鏡為廣角透鏡,設 想例如130。以上的全視角,所以在第一透鏡u的物側的面 的周邊部其光線的入射角大。因此,在第一透鏡物側的面 較佳地施加波長依存性少的塗層。 20 M368071 r 第一透扣的像側的面,在中心部其面的法線和光轴 Z所成的角小’但在周邊部其面的法線和光轴⑽成的角 大’所以在中心部和周邊部反射率之差增大,存在成為重 像的原因的憂慮。因此,較佳地在第—透鏡u的像側的面 5 施加波長依存性少的塗層。 另外,單層塗層若與意圖在規定的波長範圍防止反射 的多塗層相比,則在該多塗層的極限波長(限界波長)及豆 • 附近而反射率對波長的變化緩慢。由此,第一透鏡L1的物 側的面和第一透鏡L1的像側的面的至少任意一方的面的 10 塗層也可以是單層塗層。 另外,第一透鏡L1的材質也可以是玻璃。當攝影透鏡 1例如在車載用攝影機或監視攝影機用等的嚴格的環境中 使用時,配置在最靠近物側的第一透鏡[丨要求使用耐抗由 風雨引起的表面劣化、由直射曰光引起的溫度變化,且耐 15抗油脂、洗滌劑等化學藥品的材質,即,耐水性、耐氣候 性、耐酸性、耐藥品性等高的材質,而且,也要求使用堅 • 固且難以破裂的材質。透過將材質設為玻璃,可滿足這些 要求。 而且,也可將第二透鏡L2的材質設為玻璃。透過將第 20 二透鏡L2的材質設為玻璃,可抑制由溫度變化引起的性能 劣化。 同樣,也可將第三透鏡L3的材質設為玻璃。透過將第 三透鏡L3的材質設為玻璃,可抑制由溫度變化引起的性能 劣化。 21 M368071 在第一透鏡L1、第二透鏡L2、第三透鏡匕3中的至少一 個中使用玻璃材質時,該材質的玻璃化轉變溫度⑽較佳 為1451以上。透過使用玻璃化轉變溫度為145艺以上的材 質’可製作耐熱性良好的透鏡。而且,最佳材質的玻璃化 5轉變溫度為15G°C以上。透過使用玻璃化轉變溫度為15代 以上的材質,可製作耐熱性更加良好的透鏡。 另外,例如,在攝影透鏡丨使用於車载用攝影機,作 為夜間的視覺補助用夜視攝影機使用時,也可以在透鏡系 統和攝影元件5之間***截止從紫外光到藍色光的濾光片。 在圖1中表示有在透鏡系統和攝影元件5之間配置設 想各種濾光片等的光學部件PP的例子,但取代此也可以在 各透鏡之間配置各種滤光片。或者,也可以在攝影透鏡i 具有的任意透鏡的透鏡面施加具有與各種滤光片同樣的作 用的塗層。 15 另外,存在著透過各透鏡間的有效直徑外的光束成為 雜散光而到達像面且成為重像的憂慮,所以根據需要較佳 地設置遮斷該雜散光的遮光機構。作為該遮光機構,例如 可以在透鏡的有效直徑外的部分施加不透明的塗料或設置 不透明的板材。而且’也可以在成為雜散光的光束的光路 20设置不透明的板材作為遮光機構。或者,也可以在最靠近 物側的透鏡的更靠物側配置遮斷雜散光的如遮光罩的部 件。作為一例,在圖丨中表示將遮光機構丨丨設置在第一透鏡 L1的像側的面的有效直徑外的例子。另外,設置遮光機構 22 M368071 的部位不限於ι所示的例’也可配置在其他透鏡或透鏡之 間。 而且,也可以在各透鏡之間配置在周邊光量比在實用 上沒有問題的範圍且遮斷周邊光線的部件。周邊光線是在 5來自光軸Z外的物點的光線之中透過光學系統的入瞳的周 邊部分的光線。這樣,透過配置遮斷周邊光線的部件,可 以使成像區域周邊部的圖像質量提高。而且,透過用該部 件遮斷發生重像的光而可減少重像。 「攝影透鏡的數值實施例」 10 接著,對本創作的攝影透鏡的數值實施例進行說明。 將實施例-〜實施例六的攝影透鏡的透鏡剖視圖分別示於 圖3〜圖8。在圖3〜圖8中’圖的左側為物側,右侧為像側, 與圖1同樣也一併示出孔徑光闌St、光學部件pp、配置在像 面Sim的攝影元件5。各圖的孔徑光闌St不表示形狀或大 15小,而是表示光軸2上的位置。在各實施例中,透鐘判满 圖的符一(丨…………)對應於在以下; 鏡數據的Ri、Di。 將實施例一所涉及的攝影透鏡的透鏡數據及各種數 據示在表1,將非球面數據示在表2,將有關曲率半徑的數 2〇據示在表3。同樣地,將實施例二〜六所涉及的攝影透鏡的 透鏡數據及各種數據、非球面數據分別示在表4〜表Μ。在 以下,舉實施例一為例而對表中的符號的意義進行說明, 但對實施例二〜六也基本相同。 23 M368071 在表1的透鏡數據中’Si表示將最靠近物側的構成要素 的面作為第1個而隨著朝向像側依次增加的第H@(i=1、2、 3、......)的面號碼,Ri表示第i個面的曲率半徑,〇丨表示第i 個面和第i+1個面的光軸Z上的面間隔。另外,曲率半徑的 5符號將朝物側凸的情況設為正,將朝像側凸的情況設為負。 而且,在透鏡數據中’ Ndj表示將最靠物側的透鏡作 為第1個而隨著朝向像侧依次增加的第j個〇 = 1、2、3、 ) 的光學要素對d線(波長587.6nm)的折射率,Vdj表示第j個光 學要素對d線的阿貝數。另外,在透鏡數據中,也包括表示 10有孔徑光闌St和光學部件PP,在相當於孔徑光闌St的面的 曲率半徑的攔上記載有(孔徑光闌)的語句。 在表1的各種數據中,Fno.為F數,為全視角,IH 為在像面Sim上的最大像高’ Bf為從最靠近像側的透鏡的 像側的面到像面的光軸Z上的距離(相當於後截距、空氣換 15算長度广L為從第一透鏡L1的物側的面到像面Sim的光軸z 上的距離(後截距分為空氣換算長度),[為整個系統的焦 距,fl為第一透鏡L1的焦距’ f2為第二透鏡L2的焦距,f3 為第三透鏡L3的焦距,f12為第一透鏡L1和第二透鏡[2的 合成焦距,f23為第二透鏡L2和第三透鏡L3的合成焦距。 20 在表1的透鏡數據中,在非球面的面號碼附加有*號, 作為非球面的曲率半徑表示光軸附近的曲率半徑(中心的 曲率半徑)的數值。在表2的非球面數據中表示非球面的面 號碼、和有關各非球面的非球面係數。表2的非球面數據的 數值的「Ε—η」(η :整數)表示Γχ1〇-η」。另外,非球面係 24 M368071 數為由以下式(A)表示的非球面式中的各係數KA、 RBm(m=3、4、5、......10)的值。10 materials. From the above situation, the material of the second lens L2 is preferably plastic and 'from the same situation', the material f of the third permeable 3 is preferably in the first lens L1 and the second lens B 2 When at least one of the third lenses L3 is used, when a plastic (four) is used, a so-called nanocomposite in which particles having a smaller wavelength than light are mixed in the plastic may be used as the material. When the first lens L1 is used as a plastic aspherical lens for the purpose of using the photographic lens 1 for a strict loop such as a vehicle-mounted camera, it is preferable to arrange a transparent protective member for protecting the lens system. The first lens is further on the object side. Preferably, the transparent protective member has almost no power, for example, a parallel plate can be used. Preferably, the transparent protective member is highly resistant to chemicals and is difficult to break. 20 The above transparent protective member may also be made of plastic. As the material of the transparent protective member, acrylic acid, epoxy resin, polycarbonate, PET (p〇lyethylene terephthalate D, PES (p〇iy Ether Sulphone) is preferably used. Any one of the polybasic resins. As a protective member, by using the plastic material as described above, 25, it is possible to manufacture a protective member which is inexpensive and difficult to break the impact. 19 M368071 The lens Lm is a plastic aspheric lens. At the time of the object side of the '-lens u, a hard coat layer for enhancing the strength of the lens may be formed. The hard coat layer is preferably used for improving the impact on the lens system, the cut resistance, and the drug resistance. The coating layer can be made difficult to break by forming the hard coat layer. In addition, the plastic has a property of being inferior to the glass but having high elongation, and therefore, the material of the first lens 设为 is made of plastic. A hard coat layer or the like is applied to the surface to make the lens difficult to break against various impacts. Alternatively, a water-repellent coating layer may be applied to the surface of the object side of the first lens L1. It is difficult to adhere to water droplets when it is used in rainy days, and it is difficult to adhere to dirt or the like. Alternatively, a hydrophilic coating layer may be applied to the surface of the object side of the first lens u. The hydrophilic coating layer may be used to reduce water collapse even if water is dripped with water or the like. It is difficult to generate water droplets, which ensures a sense of transparency and naturally flushes dirt in the presence of dirt to ensure a good field of view. 15 The above-mentioned hard coat, water-repellent coating, and hydrophilic coating can also be closer to the first lens. The object side or both surfaces of the transparent protective member disposed on the object side are formed. By applying a hard coat layer, a water-repellent coating layer, a hydrophilic coating layer or the like to the protective member, higher strength, scratch resistance, and drug resistance can be produced. The photographic lens according to the embodiment of the present invention is a wide-angle lens, and for example, a full-view angle of 130 or more is assumed. Therefore, the incident angle of the light ray is large at the peripheral portion of the surface on the object side of the first lens u. Preferably, a coating having a small wavelength dependence is applied to the surface on the first lens object side. 20 M368071 r The image side surface of the first through hole has a small angle formed by the normal line of the surface and the optical axis Z at the center portion 'But the normal line on the surface of the peripheral portion and the angle formed by the optical axis (10) are large. Therefore, the difference in reflectance between the central portion and the peripheral portion increases, which may cause a problem of ghosting. Therefore, it is preferable to use the first lens. A coating having a small wavelength dependency is applied to the image side surface 5 of u. In addition, if the single layer coating is compared with a multicoat layer intended to prevent reflection in a predetermined wavelength range, the limit wavelength of the multicoat layer (limitation) In the vicinity of the wavelength) and the bean, the reflectance changes slowly with respect to the wavelength. Thus, the 10 coat of the surface of the object side of the first lens L1 and the surface of the image side of the first lens L1 may be The material of the first lens L1 may be glass. When the photographic lens 1 is used in a strict environment such as a vehicle-mounted camera or a surveillance camera, the first lens is disposed closest to the object side. [丨 It is required to use a material resistant to surface deterioration caused by wind and rain, temperature change caused by direct sunlight, and resistant to chemicals such as grease, detergent, etc., that is, water resistance, weather resistance, acid resistance, and drug resistance. Sexual material Also, it is required to use a material that is strong and difficult to break. These requirements can be met by setting the material to glass. Further, the material of the second lens L2 may be made of glass. By setting the material of the 20th lens L2 to glass, performance deterioration due to temperature change can be suppressed. Similarly, the material of the third lens L3 may be made of glass. By setting the material of the third lens L3 to glass, performance deterioration due to temperature change can be suppressed. 21 M368071 When a glass material is used for at least one of the first lens L1, the second lens L2, and the third lens 匕3, the glass transition temperature (10) of the material is preferably 1451 or more. A lens having a good heat resistance can be produced by using a material having a glass transition temperature of 145 or more. Moreover, the optimum material has a vitrification 5 transition temperature of 15 G ° C or more. By using a material having a glass transition temperature of 15 or more, a lens having better heat resistance can be produced. Further, for example, when the photographing lens is used for a vehicle-mounted camera and is used as a night vision visual assistance night vision camera, a filter that cuts off ultraviolet light to blue light may be inserted between the lens system and the photographing element 5. . In the example shown in Fig. 1, an optical member PP in which various filters or the like are disposed between the lens system and the imaging element 5 is shown. Alternatively, various filters may be disposed between the lenses. Alternatively, a coating having the same effect as various filters may be applied to the lens surface of any lens of the photographic lens i. Further, there is a concern that the light beam that passes through the effective diameter between the lenses becomes stray light and reaches the image surface and becomes a ghost image. Therefore, a light shielding mechanism that blocks the stray light is preferably provided as needed. As the light shielding means, for example, an opaque paint or an opaque plate may be applied to a portion other than the effective diameter of the lens. Further, an opaque plate material may be provided as a light blocking mechanism in the optical path 20 of the light beam that becomes stray light. Alternatively, a member such as a hood that blocks stray light may be disposed on the object side of the lens closest to the object side. As an example, an example in which the light shielding mechanism 丨丨 is provided outside the effective diameter of the image side surface of the first lens L1 is shown in the figure. Further, the portion where the light shielding mechanism 22 M368071 is provided is not limited to the example shown by ι, and may be disposed between other lenses or lenses. Further, it is also possible to arrange a member in which the peripheral light amount is in a range which is practically not problematic and the peripheral light is blocked, between the respective lenses. The peripheral light is light that passes through the peripheral portion of the entrance of the optical system among the light rays from the object point outside the optical axis Z. Thus, by arranging a member that blocks peripheral light, the image quality in the peripheral portion of the imaging area can be improved. Further, by blocking the light in which the ghost image is generated by the member, the ghost image can be reduced. "Numerical Example of Photographic Lens" 10 Next, a numerical embodiment of the photographic lens of the present invention will be described. The lens cross-sectional views of the photographic lenses of the embodiment - to the sixth embodiment are shown in Figs. 3 to 8 respectively. In Figs. 3 to 8, the left side of the figure is the object side, and the right side is the image side. Similarly to Fig. 1, the aperture stop St, the optical member pp, and the imaging element 5 disposed on the image surface Sim are also shown. The aperture stop St of each figure does not indicate a shape or a size of 15 small, but indicates a position on the optical axis 2. In each of the embodiments, the symbol 1 (丨.........) of the through-the-clock representation corresponds to the following; Ri, Di of the mirror data. The lens data and various data of the photographic lens according to the first embodiment are shown in Table 1, the aspherical surface data is shown in Table 2, and the number of curvature radii is shown in Table 3. Similarly, the lens data, various data, and aspherical data of the imaging lenses according to the second to sixth embodiments are shown in Tables 4 to 4, respectively. In the following, the meaning of the symbols in the table will be described by way of the first embodiment, but the same applies to the second to sixth embodiments. 23 M368071 In the lens data of Table 1, 'Si denotes the first H@(i=1, 2, 3, ...) in which the surface of the component closest to the object side is the first and the image is sequentially increased toward the image side. The face number of ...), Ri represents the radius of curvature of the i-th face, and 〇丨 represents the face interval on the optical axis Z of the i-th face and the i+1st face. Further, the 5 symbol of the radius of curvature is set to be positive toward the object side, and negative to the image side. Further, in the lens data, 'Ndj' indicates the optical element pair d-line (wavelength 587.6) of the jth 1 = 1, 2, 3, which increases the lens on the most object side as the first and sequentially increases toward the image side. The refractive index of nm), Vdj represents the Abbe number of the jth optical element to the d line. Further, in the lens data, a statement indicating that the aperture stop St and the optical member PP are included, and the radius of curvature of the surface corresponding to the aperture stop St is included is described as (aperture stop). In the various data of Table 1, Fno. is the F number, which is the full angle of view, and IH is the maximum image height on the image plane Sim' Bf is the image side from the image side of the lens closest to the image side to the optical axis of the image plane. The distance on Z (corresponding to the back intercept and the air exchange length) is the distance L from the object side surface of the first lens L1 to the optical axis z of the image plane Sim (the back intercept is divided into air conversion length) [For the focal length of the entire system, fl is the focal length of the first lens L1] f2 is the focal length of the second lens L2, f3 is the focal length of the third lens L3, and f12 is the combined focal length of the first lens L1 and the second lens [2] F23 is the combined focal length of the second lens L2 and the third lens L3. 20 In the lens data of Table 1, the * is added to the surface number of the aspherical surface, and the radius of curvature of the aspherical surface indicates the radius of curvature near the optical axis ( The numerical value of the radius of curvature of the center. The aspherical surface data of Table 2 indicates the aspherical surface number and the aspherical surface coefficient of each aspherical surface. The numerical value of the aspherical surface data of Table 2 is "Ε-η" (η: The integer is Γχ1〇-η". In addition, the number of aspherical systems 24 M368071 is represented by the following formula (A) Aspherical surface coefficients in each formula KA, value RBm (m = 3,4,5, ...... 10) a.

Zd=C-h2/{ 1+(1 - KA-C2-h2),/2}+ERBm-hm ......(A) 其中, 5 Zd :非球面深度(從高度h的非球面上的點下垂到非球 面頂點相切的垂直於光軸的平面的垂線長度) h:高度(從光軸到透鏡面的距離) C:近軸曲率半徑的倒數 KA、RBm :非球面係數(m=3、4、5、......10) 10 在有關表3的曲率半徑的數據中,使用上述的說明的 符號表示面號碼、有效直徑端的曲率半徑絕對值、有效直 徑端的曲率半徑絕對值與中心的曲率半徑絕對值之比。例 如’ |RX2|是第一透鏡L1的像側的面(第2面)的有效直徑端 的曲率半徑絕對值’ |RX2|/|R2|是第一透鏡L1的像側的面 15 (第2面)的有效直徑端的曲率半徑絕對值與中心的曲率半 徑絕對值之比。同樣,丨RX3|是第二透鏡L2的物側的面的有 效直徑端的曲率半徑絕對值’ |RX3|/|R3丨是第二透鏡L2的物 側的面的有效直徑端的曲率半徑絕對值與中心的曲率半徑 絕對值的比。丨RX4I是第二透鏡L2的像側的面的有效直徑端 20的曲率半徑絕對值,|RX4|/|R4|是第二透鏡L2的像側的面的 有效直徑端的曲率半徑絕對值與中心的曲率半徑絕對值之 比。|RX6|是第三透鏡L3的物側的面的有效直徑端的曲率半 k絕對值,|RX6|/|R6|是第三透鏡L3的物側的面的有效直徑 端的曲率半徑絕對值與中心的曲率半徑絕對值之比。丨RX7丨 25 M368071 是第三透鏡L3的像側的面的有效直徑端的曲率半徑絕對 值’ |RX7|/|R7|是第三透鏡L3的像侧的面的有效直徑端的曲 率半徑絕對值與中心的曲率半徑絕對值之比。 另外’在表1〜表3記載有以預定的位數取整的數值。 5作為各數值的單位對表1的2ω使用「度」,對長度使用 「mm」。但是’這些為一例,光學系統即使按比例放大或 按比例縮小也可得到同等的光學性能,所以也可使用其他 適當的單位。Zd=C-h2/{ 1+(1 - KA-C2-h2), /2}+ERBm-hm (A) where 5 Zd : aspheric depth (aspherical surface from height h) The vertical point of the upper point is slanted to the plane perpendicular to the plane of the optical axis. h: height (distance from the optical axis to the lens surface) C: reciprocal of the paraxial radius of curvature KA, RBm: aspheric coefficient ( m=3, 4, 5, ... 10) 10 In the data on the radius of curvature of Table 3, the symbol of the above description is used to indicate the face number, the absolute value of the radius of curvature of the effective diameter end, and the curvature of the effective diameter end. The ratio of the absolute value of the radius to the absolute value of the radius of curvature of the center. For example, ' |RX2| is the absolute value of the radius of curvature of the effective diameter end of the image side surface (the second surface) of the first lens L1. |RX2|/|R2| is the image side surface 15 of the first lens L1 (2nd) The ratio of the absolute value of the radius of curvature of the effective diameter end of the face to the absolute value of the radius of curvature of the center. Similarly, 丨RX3| is the absolute value of the radius of curvature of the effective diameter end of the surface of the object side of the second lens L2' | RX3|/|R3 丨 is the absolute value of the radius of curvature of the effective diameter end of the object side surface of the second lens L2 and The ratio of the absolute value of the radius of curvature of the center.丨RX4I is an absolute value of the radius of curvature of the effective diameter end 20 of the image side surface of the second lens L2, and |RX4|/|R4| is the absolute value and center of the radius of curvature of the effective diameter end of the image side surface of the second lens L2. The ratio of the absolute values of the radius of curvature. |RX6| is the absolute value of the radius of the effective diameter end of the surface of the object side of the third lens L3, and |RX6|/|R6| is the absolute value and the center of curvature of the effective diameter end of the object side surface of the third lens L3. The ratio of the absolute values of the radius of curvature.丨RX7丨25 M368071 is the absolute value of the radius of curvature of the effective diameter end of the image side surface of the third lens L3. |RX7|/|R7| is the absolute value of the radius of curvature of the effective diameter end of the image side surface of the third lens L3. The ratio of the absolute radius of curvature of the center. Further, in Tables 1 to 3, numerical values which are rounded up by a predetermined number of bits are described. 5 As the unit of each numerical value, "degree" is used for 2ω of Table 1, and "mm" is used for length. However, as an example, the optical system can obtain the same optical performance even if it is scaled up or scaled down, so other suitable units can be used.

「表1」"Table 1"

10實施例—透鏡數據 ------- __Si Ri Di Ndi ___vdj 1 200.00 1.20 1.53 55.2 2* 0.77 1.62 3* 1.65 2.12 1.61 25.5 4* 6.78 0.15 5 (孔徑光闌) 0.22 6 * 3.91 1 2.00 1 1.53 55.2 7* -1.20 1.00 8 〇〇 0.50 1.52 64.2 9 ----- 〇〇 0.48 _1象面 0.00 實施例一各種數據 2.8 2ω ^54.4 IH 2.25 Bf 1.79 L 9.09 f 1.02 fl -1.45 ~~~~f2 3.03 f3 1.99 26 M368071 fl2 -13.18 f23 3.00 「表2」 實施例一非球面數據10 Embodiment - Lens Data ------- __Si Ri Di Ndi ___vdj 1 200.00 1.20 1.53 55.2 2* 0.77 1.62 3* 1.65 2.12 1.61 25.5 4* 6.78 0.15 5 (Aperture stop) 0.22 6 * 3.91 1 2.00 1 1.53 55.2 7* -1.20 1.00 8 〇〇0.50 1.52 64.2 9 ----- 〇〇0.48 _1 象面 0.00 Example 1 Various data 2.8 2ω ^54.4 IH 2.25 Bf 1.79 L 9.09 f 1.02 fl -1.45 ~~~~ F2 3.03 f3 1.99 26 M368071 fl2 -13.18 f23 3.00 "Table 2" Example 1 Aspherical data

Si KA RB3 RB4 RB5 RB6 2 3.69E-02 -3.04E-02 -2.19E-02 1.26E-02 7.54E-03 3 0.00E+00 -4.30E-02 4.93E-02 -5.93E-03 8.09E-03 4 0.00E+00 -9.33E-02 2.09E-01 1.40E-01 -2.01E-01 6 0.00E+00 -6.09E-02 1.00E-02 2.48E-02 3.60E-02 7 0.00E+00 -4.67E-02 8.98E-02 -2.23E-02 -2.35E-02 Si RB7 RB8 RB9 RB10 2 4.17E-03 4.23E-04 -7.52E-04 -9.25E-04 3 -3.27E-03 -1.80E-03 -3.95E-04 4.62E-04 4 -5.21E-01 -5.76E-01 2.33E-01 2.68E+00 6 1.67E-02 -1.61E-02 -3.91E-02 -1.39E-02 7 1.01E-02 6.70E-03 1.66E-03 -1.74E-03Si KA RB3 RB4 RB5 RB6 2 3.69E-02 -3.04E-02 -2.19E-02 1.26E-02 7.54E-03 3 0.00E+00 -4.30E-02 4.93E-02 -5.93E-03 8.09E -03 4 0.00E+00 -9.33E-02 2.09E-01 1.40E-01 -2.01E-01 6 0.00E+00 -6.09E-02 1.00E-02 2.48E-02 3.60E-02 7 0.00E +00 -4.67E-02 8.98E-02 -2.23E-02 -2.35E-02 Si RB7 RB8 RB9 RB10 2 4.17E-03 4.23E-04 -7.52E-04 -9.25E-04 3 -3.27E- 03 -1.80E-03 -3.95E-04 4.62E-04 4 -5.21E-01 -5.76E-01 2.33E-01 2.68E+00 6 1.67E-02 -1.61E-02 -3.91E-02 - 1.39E-02 7 1.01E-02 6.70E-03 1.66E-03 -1.74E-03

「表3」 實施例一關於曲率半徑的數據"Table 3" Example 1 data on radius of curvature

Si 有效直徑端 有效直徑端和中心之比 2 |RX2| 1.87 |RX2|/|R2| 2.42 3 RX3| 2.03 1RX3|/|R3| 1.23 4 RX4 5.28 |RX4|/|R4| 0.78 6 |RX6| 4.83 |RX6|/|R6| 1.24 7 |RX7| 2.27 |RX7|/|R7| 1.89 表4」 實施例二 透鏡數據Si effective diameter end effective diameter end to center ratio 2 |RX2| 1.87 |RX2|/|R2| 2.42 3 RX3| 2.03 1RX3|/|R3| 1.23 4 RX4 5.28 |RX4|/|R4| 0.78 6 |RX6| 4.83 |RX6|/|R6| 1.24 7 |RX7| 2.27 |RX7|/|R7| 1.89 Table 4" Example 2 Lens Data

Si Ri Di Ndj vdj 1 oo 0.90 1.53 55.4 2* 0.74 1.82 3 * 1.82 2.12 1.61 25.5 4 * 6.29 0.15 27 M368071 5 (孔徑光闌) 0.22 6* 3.86 2.00 1.53 55.4 7 * -1.16 1.00 8 〇〇 0.50 1.52 64.2 9 〇〇 0.54 像面 - 0.00 實施例二 各種數據 Fno. 2.8 2ω 155.4 ΙΗ 2.25 Bf 1.87 L 9.08 f 0.90 fl -1.40 f2 3.53 f3 1.95 Π2 -6.47 f23 2.89 「表5」 實施例二 非球面數據Si Ri Di Ndj vdj 1 oo 0.90 1.53 55.4 2* 0.74 1.82 3 * 1.82 2.12 1.61 25.5 4 * 6.29 0.15 27 M368071 5 (Aperture stop) 0.22 6* 3.86 2.00 1.53 55.4 7 * -1.16 1.00 8 〇〇0.50 1.52 64.2 9 〇〇0.54 Image plane - 0.00 Example 2 Various data Fno. 2.8 2ω 155.4 ΙΗ 2.25 Bf 1.87 L 9.08 f 0.90 fl -1.40 f2 3.53 f3 1.95 Π2 -6.47 f23 2.89 "Table 5" Example 2 Aspherical data

Si KA RB3 RB4 RB5 RB6 2 1.81E-02 -7.25E-02 -1.75E-02 1.20E-02 4.14E-03 3 O.OOE+OO -2.37E-02 3.13E-02 -1.02E-02 1.06E-02 4 0.00E+00 -5.89E-02 1.93E-01 1.25E-01 -1.32E-01 6 0.00E+00 -4.35E-02 2.54E-02 2.37E-02 3.01E-02 7 0.00E+00 -3.05E-02 9.06E-02 -1.69E-02 -2.28E-02 Si RB7 RB8 RB9 RB10 2 2.41E-03 -5.78E-05 -3.66E-04 -1.77E-04 3 -1.1 IE-03 -6.13E-04 -1.67E-04 2.83E-04 4 -3.68E-01 -4.46E-01 7.20E-02 1.65E+00 6 1.56E-02 -9.74E-03 -3.19E-02 -1.92E-02 7 8.92E-03 5.82E-03 1.91E-03 -4.29E-04 「表6」Si KA RB3 RB4 RB5 RB6 2 1.81E-02 -7.25E-02 -1.75E-02 1.20E-02 4.14E-03 3 O.OOE+OO -2.37E-02 3.13E-02 -1.02E-02 1.06 E-02 4 0.00E+00 -5.89E-02 1.93E-01 1.25E-01 -1.32E-01 6 0.00E+00 -4.35E-02 2.54E-02 2.37E-02 3.01E-02 7 0.00 E+00 -3.05E-02 9.06E-02 -1.69E-02 -2.28E-02 Si RB7 RB8 RB9 RB10 2 2.41E-03 -5.78E-05 -3.66E-04 -1.77E-04 3 -1.1 IE-03 -6.13E-04 -1.67E-04 2.83E-04 4 -3.68E-01 -4.46E-01 7.20E-02 1.65E+00 6 1.56E-02 -9.74E-03 -3.19E- 02 -1.92E-02 7 8.92E-03 5.82E-03 1.91E-03 -4.29E-04 "Table 6"

28 M36807128 M368071

實施例二 關於曲率半徑的數據 Si 有效直徑端 有效直徑端和中心之比 2 |RX2| 1.90 |RX2|/|R2| 2.56 3 RX3| 1.94 |RX3|/|R3| 1.07 4 RX4| 4.33 |RX4|/|R4| 0.69 6 RX6| 3.71 |RX6|/|R6| 0.96 7 |RX7| 2.66 |RX7|/|R7| 2.30 「表7」 實施例三 透鏡數據 Si Ri Di Ndj vdj 1 500.00 1.20 1.53 55.2 2* 0.65 1.34 3 * 1.24 2.12 1.61 25.5 4 * 3.68 0.15 5 (孔徑光闌) 0.22 6* 4.09 2.00 1.53 55.2 η * -1.06 1.00 8 oo 0.50 1.52 64.2 9 oo 0.34 像面 - 0.00 實施例三 各種數據Example 2 Data on radius of curvature Si Effective diameter end effective diameter end to center ratio 2 |RX2| 1.90 |RX2|/|R2| 2.56 3 RX3| 1.94 |RX3|/|R3| 1.07 4 RX4| 4.33 |RX4 |/|R4| 0.69 6 RX6| 3.71 |RX6|/|R6| 0.96 7 |RX7| 2.66 |RX7|/|R7| 2.30 "Table 7" Example 3 Lens Data Si Ri Di Ndj vdj 1 500.00 1.20 1.53 55.2 2* 0.65 1.34 3 * 1.24 2.12 1.61 25.5 4 * 3.68 0.15 5 (Aperture stop) 0.22 6* 4.09 2.00 1.53 55.2 η * -1.06 1.00 8 oo 0.50 1.52 64.2 9 oo 0.34 Image plane - 0.00 Example 3 Various data

Fno. 2.8 2ω 158.0 IH 2.25 Bf 1.67 L 8.69 f 1.02 fl -1.22 f2 2.29 f3 1.83 fl2 -12.46 f23 3.93 29 M368071 「表8」 實施例三 非球面數據Fno. 2.8 2ω 158.0 IH 2.25 Bf 1.67 L 8.69 f 1.02 fl -1.22 f2 2.29 f3 1.83 fl2 -12.46 f23 3.93 29 M368071 "Table 8" Example 3 Aspherical data

Si KA RB3 RB4 RB5 RB6 2 3.92E-02 -6.99E-02 -2.96E-02 1.25E-02 8.13E-03 3 O.OOE+OO -6.29E-02 5.39E-02 -1.83E-03 8.86E-03 4 O.OOE+OO -9.89E-02 2.15E-01 1.26E-01 -1.10E-01 6 0.00E+00 -6.19E-02 4.98E-03 1.94E-02 2.93E-02 7 0.00E+00 -6.11E-02 8.22E-02 -2.74E-02 -2.67E-02 Si RB7 RB8 RB9 RB10 2 4.52E-03 4.60E-04 -8.84E-04 -1.13E-03 3 -2.10E-03 -1.18E-03 3.15E-05 8.54E-04 4 -2.47E-01 -1.72E-01 1.52E-03 1.22E+00 6 1.21E-02 -1.44E-02 -2.73E-02 1.02E-02 7 8.71E-03 6.53E-03 2.09E-03 -1.09E-03Si KA RB3 RB4 RB5 RB6 2 3.92E-02 -6.99E-02 -2.96E-02 1.25E-02 8.13E-03 3 O.OOE+OO -6.29E-02 5.39E-02 -1.83E-03 8.86 E-03 4 O.OOE+OO -9.89E-02 2.15E-01 1.26E-01 -1.10E-01 6 0.00E+00 -6.19E-02 4.98E-03 1.94E-02 2.93E-02 7 0.00E+00 -6.11E-02 8.22E-02 -2.74E-02 -2.67E-02 Si RB7 RB8 RB9 RB10 2 4.52E-03 4.60E-04 -8.84E-04 -1.13E-03 3 -2.10 E-03 -1.18E-03 3.15E-05 8.54E-04 4 -2.47E-01 -1.72E-01 1.52E-03 1.22E+00 6 1.21E-02 -1.44E-02 -2.73E-02 1.02E-02 7 8.71E-03 6.53E-03 2.09E-03 -1.09E-03

「表9」 5 實施例三 關於曲率半徑的數據"Table 9" 5 Example 3 Data on radius of curvature

Si 有效直徑端 有效直徑端和中心之比 2 |RX2| 1.82 |RX2|/|R2| 2.79 3 |RX3 1.69 |RX3|/|R3| 1.36 4 RX4 2.79 RX4 /|R4 0.76 6 |RX6| 5.18 RX6|/ R6 1.27 7 |RX7| 1.90 |RX7|/|R7| 1.79 表10」 實施例四 透鏡數據Si effective diameter end effective diameter end to center ratio 2 |RX2| 1.82 |RX2|/|R2| 2.79 3 |RX3 1.69 |RX3|/|R3| 1.36 4 RX4 2.79 RX4 /|R4 0.76 6 |RX6| 5.18 RX6 |/ R6 1.27 7 |RX7| 1.90 |RX7|/|R7| 1.79 Table 10" Example 4 Lens Data

Si Ri Di Ndj vdj 1 800.00 1.20 1.53 55.2 2* 0.58 1.04 3* 1.11 2.12 1.61 25.5 4 * 4.92 0.15 5 (孔徑光闌) 0.22 6* 4.50 2.00 1.53 55.2 7* -0.97 1.00 8 oo 0.50 1.52 64.2 30 M368071 9 〇〇 0.21 像面 - 0.00 實施例四 各種數據Si Ri Di Ndj vdj 1 800.00 1.20 1.53 55.2 2* 0.58 1.04 3* 1.11 2.12 1.61 25.5 4 * 4.92 0.15 5 (Aperture stop) 0.22 6* 4.50 2.00 1.53 55.2 7* -0.97 1.00 8 oo 0.50 1.52 64.2 30 M368071 9 〇〇0.21 image surface - 0.00 Example 4 various data

Fno. 2.8 2ω 158.0 ΙΗ 2.25 Bf 1.54 L 8.26 f 0.99 fl -1.09 f2 1.93 f3 1.71 fl2 -18.07 f23 5.13Fno. 2.8 2ω 158.0 ΙΗ 2.25 Bf 1.54 L 8.26 f 0.99 fl -1.09 f2 1.93 f3 1.71 fl2 -18.07 f23 5.13

「表11」 5 實施例四 非球面數據"Table 11" 5 Example 4 Aspherical data

Si KA RB3 RB4 RB5 RB6 2 3.54E-02 -9.42E-02 -3.45E-02 1.09E-02 7.40E-03 3 0.00E+00 -9.51E-02 5.94E-02 -7.26E-04 8.70E-03 4 0.00E+00 -9.79E-02 7.59E-02 8.49E-02 4.65E-03 6 0.00E+00 -5.86E-02 1.34E-02 1.99E-02 2.99E-02 7 0.00E+00 -5.48E-02 8.48E-02 -2.60E-02 -2.61E-02 Si RB7 RB8 RB9 RB10 2 4.40E-03 3.35E-04 -1.00E-03 -1.23E-03 3 -2.34E-03 -1.51E-03 -3.14E-04 4.98E-04 4 9.37E-02 1.64E-01 -4.79E-01 -3.08E-01 6 9.88E-03 -1.61E-02 -2.76E-02 1.13E-02 7 8.99E-03 6.68E-03 2.20E-03 -9.83E-04 「表12」 實施例四 關於曲率半徑的數據Si KA RB3 RB4 RB5 RB6 2 3.54E-02 -9.42E-02 -3.45E-02 1.09E-02 7.40E-03 3 0.00E+00 -9.51E-02 5.94E-02 -7.26E-04 8.70E -03 4 0.00E+00 -9.79E-02 7.59E-02 8.49E-02 4.65E-03 6 0.00E+00 -5.86E-02 1.34E-02 1.99E-02 2.99E-02 7 0.00E+ 00 -5.48E-02 8.48E-02 -2.60E-02 -2.61E-02 Si RB7 RB8 RB9 RB10 2 4.40E-03 3.35E-04 -1.00E-03 -1.23E-03 3 -2.34E-03 -1.51E-03 -3.14E-04 4.98E-04 4 9.37E-02 1.64E-01 -4.79E-01 -3.08E-01 6 9.88E-03 -1.61E-02 -2.76E-02 1.13E -02 7 8.99E-03 6.68E-03 2.20E-03 -9.83E-04 "Table 12" Example 4 Data on radius of curvature

Si 有效直徑端 有效直徑端和中心之比 2 RX2 1.70 |RX2|/ R2| 2.94 31 M368071 3 RX3| 1.74 |RX3|/|R3| 1.57 4 RX4| 5.45 RX4|/|R4| 1.11 6 丨 RX6| 5.09 |RX6|/|R6| 1.13 7 |RX7| 1.90 |RX7|/|R7| 1.96 「表13」 實施例五 透鏡數據Si effective diameter end effective diameter end to center ratio 2 RX2 1.70 |RX2|/ R2| 2.94 31 M368071 3 RX3| 1.74 |RX3|/|R3| 1.57 4 RX4| 5.45 RX4|/|R4| 1.11 6 丨RX6| 5.09 |RX6|/|R6| 1.13 7 |RX7| 1.90 |RX7|/|R7| 1.96 "Table 13" Example 5 Lens Data

Si Ri Di Ndj vdj 1 300.00 0.90 1,53 55.4 2* 0.69 1.45 3* 1.95 2.12 1.61 25.5 4 * 36.89 0.15 5 (孔徑光闌) 0.22 6* 4.19 2.00 1.53 55.4 η * -1.14 1.00 8 oo 0.50 1.52 64.2 9 oo 0.54 像面 - 0.00Si Ri Di Ndj vdj 1 300.00 0.90 1,53 55.4 2* 0.69 1.45 3* 1.95 2.12 1.61 25.5 4 * 36.89 0.15 5 (Aperture stop) 0.22 6* 4.19 2.00 1.53 55.4 η * -1.14 1.00 8 oo 0.50 1.52 64.2 9 Oo 0.54 Image Noodles - 0.00

5 實施例五 各種數據5 Example 5 Various data

Fno. 2.8 2ω 155.2 IH 2.25 Bf 1.87 L 8.70 f 0.89 fl -1.30 f2 3.28 f3 1.94 fl2 -7.02 f23 2.75Fno. 2.8 2ω 155.2 IH 2.25 Bf 1.87 L 8.70 f 0.89 fl -1.30 f2 3.28 f3 1.94 fl2 -7.02 f23 2.75

「表14」 實施例五 非球面數據 KA RB3 RB4 RB5 RB6 32 M368071 2 -1.96E-02 -6.40E-02 -1.35E-02 1.64E-02 2.98E-03 3 0.00E+00 -1.88E-02 2.30E-02 -1.80E-02 7.21E-03 4 0.00E+00 -5.46E-02 1.85E-01 -7.84E-02 -1.13E-01 6 0.00E+00 -6.26E-02 4.17E-02 2.39E-03 3.91E-02 7 0.00E+00 -3.41E-02 8.94E-02 -1.16E-02 -2.07E-02 RB7 RB8 RB9 RB10 2 -6.67E-04 -1.88E-03 -7.34E-04 3.80E-04 3 -1.92E-03 -7.93E-04 -1.84E-04 3.71E-04 4 -8.53E-02 -1.07E-01 2.42E-01 5.35E-01 6 -3.82E-02 -4.40E-02 -1.85E-02 6.32E-02 7 1.07E-02 5.68E-03 5.66E-04 -2.18E-03 「表15」 實施例五 關於曲率半徑的數據"Table 14" Example 5 Aspherical data KA RB3 RB4 RB5 RB6 32 M368071 2 -1.96E-02 -6.40E-02 -1.35E-02 1.64E-02 2.98E-03 3 0.00E+00 -1.88E- 02 2.30E-02 -1.80E-02 7.21E-03 4 0.00E+00 -5.46E-02 1.85E-01 -7.84E-02 -1.13E-01 6 0.00E+00 -6.26E-02 4.17E -02 2.39E-03 3.91E-02 7 0.00E+00 -3.41E-02 8.94E-02 -1.16E-02 -2.07E-02 RB7 RB8 RB9 RB10 2 -6.67E-04 -1.88E-03 - 7.34E-04 3.80E-04 3 -1.92E-03 -7.93E-04 -1.84E-04 3.71E-04 4 -8.53E-02 -1.07E-01 2.42E-01 5.35E-01 6 -3.82 E-02 -4.40E-02 -1.85E-02 6.32E-02 7 1.07E-02 5.68E-03 5.66E-04 -2.18E-03 "Table 15" Example 5 Data on radius of curvature

Si 有效直徑端 有效直徑端和中心之比 2 RX2 1.92 |RX2|/|R2| 2.79 3 |RX3 2.71 RX3|/ R3 1.39 4 |RX4 17.41 |RX4|/|R4| 0.47 6 RX6| 5.40 RX6|/|R6| 1.29 7 RX7| 2.29 |RX7|/|R7| 2.00Si effective diameter end effective diameter end to center ratio 2 RX2 1.92 |RX2|/|R2| 2.79 3 |RX3 2.71 RX3|/ R3 1.39 4 |RX4 17.41 |RX4|/|R4| 0.47 6 RX6| 5.40 RX6|/ |R6| 1.29 7 RX7| 2.29 |RX7|/|R7| 2.00

「表16」 實施例六 透鏡數據"Table 16" Example 6 Lens data

Si Ri Di Ndj vdj 1 200.00 1.20 1.53 55.2 2* 0.78 1.62 3 * 1.69 2.12 1.61 25.5 4 * 5.40 0.15 5 (孔徑光闌) 0.22 6* 3.66 2.00 1.53 55.2 7* -1.20 1.00 8 oo 0.50 1.52 64.2 9 oo 0.52 像面 - 0.00 33 M368071 實施例六 各種數據Si Ri Di Ndj vdj 1 200.00 1.20 1.53 55.2 2* 0.78 1.62 3 * 1.69 2.12 1.61 25.5 4 * 5.40 0.15 5 (Aperture stop) 0.22 6* 3.66 2.00 1.53 55.2 7* -1.20 1.00 8 oo 0.50 1.52 64.2 9 oo 0.52 Image surface - 0.00 33 M368071 Example 6 various data

Fno. 2.8 2ω 155.4 ΙΗ 2.25 Bf 1.85 L 9.16 f 1.03 fl -1.47 f2 3.17 f3 1.97 fl2 -8.17 f23 3.01Fno. 2.8 2ω 155.4 ΙΗ 2.25 Bf 1.85 L 9.16 f 1.03 fl -1.47 f2 3.17 f3 1.97 fl2 -8.17 f23 3.01

「表17」 實施例六 非球面數據"Table 17" Example 6 Aspherical data

Si KA RB3 RB4 RB5 RB6 2 3.11E-02 -3.77E-02 -2.59E-02 1.05E-02 7.78E-03 3 0.00E+00 -5.79E-02 5.23E-02 -4.90E-03 6.74E-03 4 0.00E+00 -1.09E-01 2.03E-01 1.71E-01 -1.81E-01 6 0.00E+00 -5.91E-02 1.62E-02 2.76E-02 3.16E-02 7 0.00E+00 -4.31E-02 8.61E-02 -2.47E-02 -2.33E-02 RB7 RB8 RB9 RB10 2 4.66E-03 6.88E-04 -7.00E-04 -9.73E-04 3 -2.90E-03 -1.73E-03 -4.49E-04 3.56E-04 4 -5.54E-01 -6.72E-01 1.32E-01 2.99E+00 6 7.63E-03 -2.40E-02 -3.61E-02 1.14E-02 7 1.13E-02 7.74E-03 1.91E-03 -2.27E-03Si KA RB3 RB4 RB5 RB6 2 3.11E-02 -3.77E-02 -2.59E-02 1.05E-02 7.78E-03 3 0.00E+00 -5.79E-02 5.23E-02 -4.90E-03 6.74E -03 4 0.00E+00 -1.09E-01 2.03E-01 1.71E-01 -1.81E-01 6 0.00E+00 -5.91E-02 1.62E-02 2.76E-02 3.16E-02 7 0.00E +00 -4.31E-02 8.61E-02 -2.47E-02 -2.33E-02 RB7 RB8 RB9 RB10 2 4.66E-03 6.88E-04 -7.00E-04 -9.73E-04 3 -2.90E-03 -1.73E-03 -4.49E-04 3.56E-04 4 -5.54E-01 -6.72E-01 1.32E-01 2.99E+00 6 7.63E-03 -2.40E-02 -3.61E-02 1.14E -02 7 1.13E-02 7.74E-03 1.91E-03 -2.27E-03

「表18」 實施例六 關於曲率半徑的數據"Table 18" Example 6 Data on radius of curvature

Si 有效直徑端 有效直徑端和中心之比 2 RX2 1.91 |RX2|/|R2| 2.46 3 |RX3| 2.17 |RX3|/ R3 1.29 4 |RX4| 4.94 |RX4|/|R4| 0.91 6 RX6 4.21 |RX6|/|R6| 1.15 7 |RX7| 2.30 RX7 / R7 1.92 34 M368071 另外,在實施例一〜六的攝影透鏡中的第一透鏡Ll、 第二透鏡L2、第三透鏡L3的材質皆為塑料。 將對應於實施例--六的攝影透鏡的條件式(1)〜(12) 5 的值示於表19。在實施例一〜六中,以d線作為基準波長, 在表19表示在s亥基準波長中的各值。從表19可得知,實施 例一〜六皆滿足條件式(1)〜(8)。 表19」 條件式 實施例 ⑴ (2) (3) (4) (5) Γ (6) vd3/vd2 |fl/f23 |RX2 / R2I |f2/f3| L/f Bf/f 1 2.16 0.48 2.42 1.52 8.88 1.75 2 2.17 0.48 2.56 1.81 10.07 2.07 3 2.16 0.31 2.79 1.25 8.48 1.63 4 2.16 0.21 2.94 1.13 8.37 1.56 5 2.17 0.47 2.79 1.69 9.81 2.11 6 2.16 0.49 2.46 1.60 8.85 1.79 條件式 音施例 ⑺ ⑻ .(9) (10) (11) (12) Dl/f R4/D3 D2/f~~ D4/f (D2+D3)/f f2/f 1 1.17 3.20 1.58 0.15 3.65 2.96 2 1.00 2.96 2.02 0.17 4.37 3.91 3 1.17 1.74 1.31 0.15 3.38 2.23 4 1.21 2.32 1.05 0.15 3.20 1.95 5 1.02 17.40 1.63 0.17 4.02 3.70 6 1.16 2.55 Ϊ.5 7 0.14 3.61 3.06 35 M368071 在圖9(A)、圖9(B)、圖9(C)、圖9(D)、圖9(E)分別表示 實施例一的攝影透鏡的球面像差、非點像差 '畸變(畸變像 差)、倍率色像差(倍率色像差)、彗形像差的像差圖。在各 5像差圖表示以d線(587.56nm)為基準波長的像差,但在球面 像差圖及倍率色像差圖也表示對!?線(波長486 13nm)、c線 (波長656.27nm)的像差。球面像差圖的Fn〇.是ρ數,其他像 差圖的ω表示半視角。畸變像差的圖使用整個系統的焦距 f、視角φ (變數處理,os p s ω),將理想像高設為fxtan 10史,表示與其的偏移量。在圖9(E)中總結在各半視角中的 子午方向、弧矢方向的五個彗形像差圖而表示。 而且,同樣地在圖10(A)〜圖l〇(E)、1 1(a)〜圖11(e)、 12(A)〜圖 12(E)、13(A)〜圖 13(E)、14(A)〜圖 14(E)分別表 示實施例二〜六所涉及的攝影透鏡的球面像差、非點像 15差、畸變(畸變像差)、倍率色像差、彗形像差的像差圖。 從各像差圖可得知’實施例一〜六在可見區域中良好地校 正各像差。 如上所述’實施例·--六的攝影透鏡為三片較少的透 鏡片數且由塑料材質構成,所以可小型且廉價製作。而且, 20實施例 ^六的攝影透鏡的全視角為150度以上而構成為 廣角,F數小到2.8,各像差被良好地校正且具有良好的光 學性能。這些攝影透鏡可適當地使用在用於拍攝汽車前 方、側方、後方等影像的車載用攝影機等。 「攝影裝置的實施方式」 36 M368071 5Si effective diameter end effective diameter end to center ratio 2 RX2 1.91 |RX2|/|R2| 2.46 3 |RX3| 2.17 |RX3|/ R3 1.29 4 |RX4| 4.94 |RX4|/|R4| 0.91 6 RX6 4.21 | RX6|/|R6| 1.15 7 |RX7| 2.30 RX7 / R7 1.92 34 M368071 In addition, in the photographic lenses of the first to sixth embodiments, the materials of the first lens L1, the second lens L2, and the third lens L3 are all plastic. . The values of the conditional expressions (1) to (12) 5 corresponding to the photographic lens of the embodiment - six are shown in Table 19. In the first to sixth embodiments, the d line is used as the reference wavelength, and the values in the reference wavelength of shai are shown in Table 19. As can be seen from Table 19, the first to sixth embodiments satisfy the conditional expressions (1) to (8). Table 19" Conditional Example (1) (2) (3) (4) (5) Γ (6) vd3/vd2 |fl/f23 |RX2 / R2I |f2/f3| L/f Bf/f 1 2.16 0.48 2.42 1.52 8.88 1.75 2 2.17 0.48 2.56 1.81 10.07 2.07 3 2.16 0.31 2.79 1.25 8.48 1.63 4 2.16 0.21 2.94 1.13 8.37 1.56 5 2.17 0.47 2.79 1.69 9.81 2.11 6 2.16 0.49 2.46 1.60 8.85 1.79 Conditional sound example (7) (8) .(9) ( 10) (11) (12) Dl/f R4/D3 D2/f~~ D4/f (D2+D3)/f f2/f 1 1.17 3.20 1.58 0.15 3.65 2.96 2 1.00 2.96 2.02 0.17 4.37 3.91 3 1.17 1.74 1.31 0.15 3.38 2.23 4 1.21 2.32 1.05 0.15 3.20 1.95 5 1.02 17.40 1.63 0.17 4.02 3.70 6 1.16 2.55 Ϊ.5 7 0.14 3.61 3.06 35 M368071 In Figure 9(A), Figure 9(B), Figure 9(C), Figure 9 (D) and FIG. 9(E) show spherical aberration, astigmatism 'distortion (distortion aberration), chromatic aberration of magnification (magnification chromatic aberration), and coma aberration of the imaging lens of the first embodiment, respectively. Aberration map. In each of the five aberration diagrams, the aberration with the d line (587.56 nm) as the reference wavelength is shown. However, the spherical aberration diagram and the chromatic aberration diagram of the magnification also show the pair of lines (wavelength 486 13 nm) and c line (wavelength 656.27). Aberration of nm). The Fn 〇 of the spherical aberration diagram is the ρ number, and the ω of the other aberration diagrams represents the half angle of view. The distortion aberration map uses the focal length f of the entire system, the angle of view φ (variable processing, os p s ω), and sets the ideal image height to fxtan 10 history, indicating the offset with it. In Fig. 9(E), five coma aberration diagrams in the meridional direction and the sagittal direction in each half angle of view are summarized. Further, similarly in Fig. 10(A) to Fig. 1(E), 1 1(a) to Fig. 11(e), 12(A) to 12(E), 13(A) to 13(E) 14(A) to 14(E) respectively show spherical aberration, non-point image 15 difference, distortion (distortion aberration), magnification chromatic aberration, and 彗 image of the imaging lenses according to the second to sixth embodiments. Poor aberration diagram. It can be seen from the respective aberration diagrams that the first to sixth embodiments correct the aberrations well in the visible region. As described above, the photographic lens of the sixth embodiment has three fewer lenses and is made of a plastic material, so that it can be produced in a small size and at a low cost. Further, the photographic lens of the twenty-sixth embodiment has a full viewing angle of 150 degrees or more and a wide angle, and the F number is as small as 2.8, and the aberrations are well corrected and have excellent optical properties. These photographic lenses can be suitably used in an in-vehicle camera for photographing images such as the front side, the side, and the rear of the automobile. "Implementation of Photographic Apparatus" 36 M368071 5

10 r的為使關表*將包括本實施方式的攝影透 兄的攝衫裝置搭载於汽#⑼的樣子。在心中,汽車⑽ 。括用於拍攝其副駕駛席側的側面的死角範圍的車外攝 影機H用於拍攝汽車!⑼的後側的死角範圍的車外攝影 iL〇l,和安襄在後視鏡的背面,料拍攝與駕駛者同樣的 視野範圍的車内攝影機1Q3。車外攝影機iQi、車外攝影機 車内攝衫機1 〇 3為本創作的實施方式所涉及的攝影裝 置,包括本創作的實施例的攝影透鏡、和將由該攝影透鏡i 形成的光學像變換成電信號的攝影元件。 本創作的實施方式所涉及的攝影透鏡具有上述優 點^以車外攝影機⑻、1〇2及車内攝影機⑻也可小型且 廉價構成’能夠以寬的視角進行拍攝,可得到良好的影像。 15In the case of the closing table*, the camera device including the camera of the present embodiment is mounted on the steam #(9). In the heart, the car (10). An off-camera camera H for shooting a dead angle range on the side of the passenger's seat side is used to shoot a car! (9) On the rear side of the rear corner of the range of out-of-vehicle photography iL〇l, and the ampoule on the back of the rearview mirror, it is expected to shoot the same camera with the driver's field of view 1Q3. The outside camera iQi and the in-vehicle camera in-vehicle camera 1 are the photographing apparatus according to the embodiment of the present invention, including the photographing lens of the embodiment of the present invention, and converting the optical image formed by the photographing lens i into an electric signal. Photography component. The photographic lens according to the embodiment of the present invention has the above-described advantages. The external camera (8), the camera 2, and the in-vehicle camera (8) can be configured in a small and inexpensive manner. The image can be captured at a wide angle of view, and a good image can be obtained. 15

以上,例舉實施方式及實施例說明了本創作,但本創 作不限於上述實施方式及實施例,可進行各種變形。例如, 各透鏡成分的曲率半徑、面間隔、折射率、阿貝數的值不 限於在上述各數值實施例中所示的值,可取其他值。 20 另外,在上述的實施例中,由均質的材料構成了所有 的透鏡,但也可使用折射率分佈型的透鏡。而且,在上述 的實施例中’全部由施加非球面的折射型透鏡構成,但也 可以在一個面或者多個面形成衍射光學元件。 而且,在攝影裝置的實施方式令,對將本創作適用於 車載用攝影機的例進行了圖示說明,但本創作不限於該用 途,例如,也可適用於移動終端用攝影機或監視攝影機等。 「工業上的可利用性| 37 M368071 本創作可使用於攝影裝置,尤其可適當地適用於車载 用攝影機、移動終端用攝影機、監視攝影機等。 【圖式簡單說明】 5圖1是本創作的一實施方式所涉及的攝影透鏡的光路圖。 圖2是用於說明第一透鏡的面形狀的圖。 圖3是表示本創作的實施例一的攝影透鏡的透鏡結構的剖 視圖。 圖4是表示本創作的實施例二的攝影透鏡的透鏡結構的剖 10 視圖。 圖5是表示本創作的實施例三的攝影透鏡的透鏡結構的剖 視圖。 圖6是表示本創作的實施例四的攝影透鏡的透鏡結構的剖 視圖。 15圖7是表示本創作的實施例五的攝影透鏡的透鏡結構的剖 視圖。 圖8是表示本創作的實施例六的攝影透鏡的透鏡結構的剖 視圖。 圖9(A)〜圖9(E)是本創作的實施例一的攝影透鏡的各像差 20 圖。 圖10(A)〜圖10(E)是本創作的實施例二的攝影透鏡的各像 差圖。 圖11(A)〜圖U(E)是本創作的實施例三的攝影透鏡的各像 差圖。 38 M368071 圖12(A)〜圖12(E)是本創作的實施例四的攝影透鏡的各像 差圖。 圖13(A)〜圖13(E)是本創作的實施例五的攝影透鏡的各像 差圖。 5圖14(A)〜圖14(E)是本創作的實施例六的攝影透鏡的各像 差圖。 圖15是用於說明本創作的實施方式所涉及的車載用攝影裝 置的配置的圖。 10The present invention has been described above by way of embodiments and examples, but the present invention is not limited to the above-described embodiments and examples, and various modifications can be made. For example, the values of the radius of curvature, the interplanar spacing, the refractive index, and the Abbe number of each lens component are not limited to those shown in the above numerical examples, and other values may be employed. Further, in the above embodiment, all the lenses are composed of a homogeneous material, but a refractive index distribution type lens may also be used. Further, in the above-described embodiments, all of them are constituted by a refractive lens to which an aspherical surface is applied, but the diffractive optical element may be formed on one surface or a plurality of surfaces. Further, in the embodiment of the photographing apparatus, an example in which the present invention is applied to a vehicle-mounted camera has been described. However, the present invention is not limited to this use, and may be applied to, for example, a camera for a mobile terminal or a surveillance camera. "Industrial Applicability | 37 M368071 This creation can be used for photography devices, especially for car cameras, mobile terminal cameras, surveillance cameras, etc. [Simplified illustration] 5 Figure 1 is the creation Fig. 2 is a view for explaining a surface shape of a first lens, Fig. 3 is a cross-sectional view showing a lens configuration of a photographic lens according to a first embodiment of the present invention. Fig. 4 is a view showing a lens configuration of a photographic lens according to a first embodiment of the present invention. Fig. 5 is a cross-sectional view showing a lens configuration of a photographic lens of the third embodiment of the present invention. Fig. 6 is a photographic lens showing a fourth embodiment of the present invention. Fig. 7 is a cross-sectional view showing the lens structure of the photographic lens of the fifth embodiment of the present invention. Fig. 8 is a cross-sectional view showing the lens configuration of the photographic lens of the sixth embodiment of the present invention. Fig. 9(A) Fig. 9(E) is a diagram showing aberrations of the photographic lens of the first embodiment of the present invention. Fig. 10(A) to Fig. 10(E) are diagrams showing aberrations of the photographic lens of the second embodiment of the present invention.11(A) to U(E) are aberration diagrams of the photographic lens of the third embodiment of the present invention. 38 M368071 FIGS. 12(A) to 12(E) are photographic lenses of the fourth embodiment of the present creation. Fig. 13 (A) to Fig. 13 (E) are aberration diagrams of the photographic lens of the fifth embodiment of the present invention. Fig. 14 (A) to Fig. 14 (E) are examples of the present creation. FIG. 15 is a view for explaining the arrangement of the vehicle-mounted imaging device according to the embodiment of the present invention.

【主要元件符號說明】 3、4軸外光束 L2第二透鏡 PP光學部件 z光轴 1攝影透鏡 2轴上光束 5攝影元件 L1第一透鏡 L3第三透鏡 Pim成像位置[Main component symbol description] 3, 4 axis outer beam L2 second lens PP optical part z optical axis 1 photographic lens 2 axis upper beam 5 photographic element L1 first lens L3 third lens Pim imaging position

Sim像面 St孔徑光闌 Q2第一透鏡l 1的像側的面的中心 X2第一透鏡L1的像側的面的有效直徑端的點 P2點X2的透鏡面的法線和光軸z的交點 RX2曲率半徑 11遮光機構 CQ2通過點Q2且以光軸上的點為中心的圓 CX2通過點X2且以光軸上的點為中心的圓 100汽車 1〇1、1〇2車外攝影機1〇3車内攝影機 R1第一透鏡L1的物側的面的中心的曲率半徑 R2第一透鏡L1的像側的面的中心的曲率半徑 R3第二透鏡L2的物側的面的中心的曲率半徑 39 M368071 R4第二透鏡L2的像側的面的中心的曲率半徑 R6第二透鏡L3的物側的面的中心的曲率半徑 R7第二透鏡L3的像側的面的中心的曲率半徑 R8光學部件PP的物側的面的中心的曲率半^ R9光學部件PP的像側的面的中心的曲率半^ D1第一透鏡的中心厚度 D2第透鏡L1和第二透鏡L2的光軸上的空氣間隔 D3第二透鏡L2的中心厚度 D4第二透鏡L2和孔徑光圈St的光軸上的空氣間隔 D5孔徑光圈St和第三透鏡L3的光軸上的空氣間隔 D6第三透鏡L3的中心厚度 D7第三透鏡L3和第四透鏡L4的光軸上的空氣間隔 D8光學部件ρρ的中心厚度 D9光學部件pp和攝影元件的光軸上的空氣間隔Sim image surface St aperture stop Q2 Center X2 of the image side surface of the first lens l 1 The point P2 of the effective diameter end of the image side surface of the first lens L1 and the intersection of the normal of the lens surface and the optical axis z of the optical axis z The radius of curvature 11 of the light-shielding mechanism CQ2 passes through the point Q2 and the circle CX2 centered on the point on the optical axis passes through the point X2 and is centered on the point on the optical axis. The car 1〇1, 1〇2 the outside camera 1〇3 inside the car The radius of curvature R2 of the center of the surface on the object side of the first lens L1 of the camera R1, the radius of curvature R3 of the center of the surface of the image side of the first lens L1, and the radius of curvature of the center of the surface of the object side of the second lens L2 39 M368071 R4 The radius of curvature R6 of the center of the image side surface of the second lens L2, the radius of curvature R7 of the center of the object side surface of the second lens L3, and the curvature radius R8 of the center of the image side surface of the second lens L3. Curvature of the center of the face half ^R9 The curvature of the center of the face of the image side of the optical member PP half D1 The center thickness D1 of the first lens D2 The air gap D3 of the first lens L1 and the second lens L2 The second lens Center thickness of L2 D4 Air space on the optical axis of the second lens L2 and the aperture stop St D 5 Air gaps on the optical axis of the aperture stop St and the third lens L3 D6 The center thickness D7 of the third lens L3 The air gap on the optical axis of the third lens L3 and the fourth lens L4 D8 The optical thickness of the optical member ρρ D9 optical The air gap on the optical axis of the component pp and the photographic element

Claims (1)

M368071 六、申請專利範圍: l 一種攝影透鏡,其中,從物側依次包括: 負的第一透鏡,像側的面為凹面,且至少一方的面為 非球面; 5 正的第二透鏡,至少一方的面為非球面;以及 正的第三透鏡,像側的面為凸面,且至少一方的面為 非球面, _ 光闌配置在該第二透鏡和該第三透鏡之間, 將該第一透鏡在d線的阿貝數設為^ d2,將該第三透 1〇鏡在d線的阿貝數設為vd3,將該第一透鏡的焦距設為fi, 將該第二透鏡和該第三透鏡的合成焦距設為f23時,滿足下 述條件式(1)、(2): 1.5< u d3/d2 ......(1) 0.0<|fl/f23|<0.5 ......(2)。 15 2.如申請專利範圍第1項所述之攝影透鏡,其中,將 該第一透鏡的像側的面的中心的曲率半徑絕對值設為 ® |R2| ’將在該第一透鏡的像側的面的有效直徑端的曲率半 徑絕對值設為|RX2|時,滿足下述條件式(3): 1.5<|RX2|/|R2丨......(3)。 20 3.如申請專利範圍第1項所述之攝影透鏡,其中,將 該第二透鏡的焦距設為f 2 ’將該第三透鏡的焦距設為f 3 時,滿足下述條件式(4): 0.8<f2/f3<2.2 ......(4)。 41 M368071 4.如申請專利範圍第2項所述之攝影透鏡,其中,將 該第一透鏡的焦距没為f2,將該第三透鏡的焦距設為 時,滿足下述條件式(4): 0.8<f2/f3<2.2 ......(4) ° 5 5.如申請專利範圍第1項至第4項中任一項所述之攝 影透鏡,其中,將從該第一透鏡的物側的面到像面的光軸 上的距離設為L,將整個系統的焦距設為f時,滿足下述條 件式(5): 5.0<L/f<12.0 ......(5)。 10 6.如申請專利範圍第1項至第4項中任一項所述之攝 影透鏡,其中,該第一透鏡在d線的阿貝數為4〇以上,該第 三透鏡在d線的阿貝數為40以上,該第二透鏡在么線的阿貝 數為29以下。 7. 如申請專利範:圍第!項至第4項中任一項所述之攝 I5影透鏡,其中,將從最靠近像側的透鏡的像側的面到像面 的光軸上的距離設為Bf,將整個系統的焦距設為f 下述條件式(6): 1.0<Bf/f<2.5 ......(6) 〇 8. 如申請專利範圍第丨項至第4項中任一項所述之攝 2〇影透鏡,其中,將整個系統的焦距設為f,將該第一透鏡的 中心厚度設為D1時,滿足下述條件式(7): Dl/f<4 ......(7) 〇 ^ 9.如申請專利範圍第1項至第4項中任一項所述之攝 衫透鏡,其中,將該第二透鏡的像側的面的曲率半徑設為 M368071 R4,將該第二透鏡的中心厚度設為D3時,滿足下述條件式 (8): 0.5<|R4/D3|<20.0 ......(8)。 10. —種攝影裝置,其包括申請專利範圍第1項至第4 5 項中任一項所述之攝影透鏡。M368071 VI. Patent application scope: l A photographic lens, wherein, in order from the object side, comprises: a negative first lens, the image side surface is concave, and at least one surface is aspherical; 5 positive second lens, at least One surface is an aspherical surface; and the positive third lens has a convex surface on the image side, and at least one surface is aspherical, and the _ aperture is disposed between the second lens and the third lens. The Abbe number of a lens on the d line is set to ^d2, the Abbe number of the third through mirror on the d line is set to vd3, and the focal length of the first lens is set to fi, the second lens and When the combined focal length of the third lens is f23, the following conditional expressions (1) and (2) are satisfied: 1.5 < u d3/d2 (1) 0.0 <|fl/f23|<;0.5 ......(2). The photographic lens according to claim 1, wherein the absolute value of the radius of curvature of the center of the image side surface of the first lens is set to ® |R2| 'the image of the first lens When the absolute value of the radius of curvature of the effective diameter end of the side surface is set to |RX2|, the following conditional expression (3) is satisfied: 1.5 <|RX2|/|R2丨 (3). The photographic lens according to the first aspect of the invention, wherein the focal length of the second lens is f 2 ', and the focal length of the third lens is f 3 , the following conditional expression is satisfied (4) ): 0.8<f2/f3<2.2 ......(4). The photographic lens according to claim 2, wherein the focal length of the first lens is not f2, and the focal length of the third lens is set to satisfy the following conditional expression (4): And a photographic lens according to any one of the preceding claims, wherein the first lens will be used from the first lens When the distance from the object side surface to the optical axis of the image plane is L, and the focal length of the entire system is f, the following conditional expression (5) is satisfied: 5.0 < L/f <12.0 ..... (5). The photographic lens according to any one of claims 1 to 4, wherein the first lens has an Abbe number of 4 Å or more in the d line, and the third lens is in the d line The Abbe number is 40 or more, and the Abbe number of the second lens in the line is 29 or less. 7. For example, apply for a patent: Wai! The I5 shadow lens according to any one of the preceding claims, wherein the distance from the image side of the lens closest to the image side to the optical axis of the image plane is Bf, and the focal length of the entire system is obtained. Let f be the following conditional expression (6): 1.0 < Bf / f < 2.5 ...... (6) 〇 8. As described in any one of the claims 1-4 to 4 2 〇 lens in which the focal length of the entire system is f, and when the center thickness of the first lens is D1, the following conditional expression (7) is satisfied: Dl/f<4 ......( The lens of any one of the first to fourth aspect of the invention, wherein the radius of curvature of the image side surface of the second lens is M368071 R4, When the center thickness of the second lens is D3, the following conditional expression (8) is satisfied: 0.5 < | R4 / D3 | < 20.0 (8). A photographic apparatus comprising the photographic lens according to any one of claims 1 to 45. 4343
TW098207695U 2009-03-06 2009-05-06 Photographing lens and photographing device TWM368071U (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009053515 2009-03-06

Publications (1)

Publication Number Publication Date
TWM368071U true TWM368071U (en) 2009-11-01

Family

ID=42527891

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098207695U TWM368071U (en) 2009-03-06 2009-05-06 Photographing lens and photographing device

Country Status (2)

Country Link
CN (1) CN201532488U (en)
TW (1) TWM368071U (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5689480B2 (en) 2010-11-15 2015-03-25 富士フイルム株式会社 Imaging lens and imaging apparatus
EP2923990B1 (en) * 2014-03-28 2018-01-03 Konecranes Global Corporation Optical measurement device, load handling apparatus, method for protecting optical measurement device and method for updating load handling apparatus
TWI721686B (en) * 2019-12-06 2021-03-11 聲遠精密光學股份有限公司 Fingerprint identification module and optical imaging lens

Also Published As

Publication number Publication date
CN201532488U (en) 2010-07-21

Similar Documents

Publication Publication Date Title
JP5042767B2 (en) Imaging lens and imaging apparatus
JP5335710B2 (en) Imaging lens and imaging apparatus
CN201765374U (en) Camera lens and camera device
JP5438583B2 (en) Imaging lens and imaging apparatus
JP5393521B2 (en) Imaging lens and imaging apparatus
CN104914554B (en) Imaging lens system and photographic device
JP5405324B2 (en) Imaging lens and imaging apparatus
JP5466569B2 (en) Imaging lens and imaging apparatus
CN201837767U (en) Shooting lens and shooting device
CN104914553B (en) Imaging lens system and photographic device
JP5399306B2 (en) Imaging lens and imaging apparatus
JP2009092798A (en) Imaging lens and imaging device
JP2010072622A (en) Imaging lens and imaging apparatus
US9201214B2 (en) Imaging lens and imaging apparatus
JP2009098322A (en) Imaging lens and imaging apparatus
CN104914552B (en) Imaging lens system and photographic device
JP5313566B2 (en) Imaging lens and imaging apparatus using the same
US8314998B2 (en) Imaging lens and imaging apparatus
US20160004036A1 (en) Imaging lens and imaging apparatus
JP5113001B2 (en) Wide-angle imaging lens and imaging device
JP5474668B2 (en) Imaging lens and imaging apparatus
TWM368071U (en) Photographing lens and photographing device
TWM369461U (en) Photographic lens and photographing apparatus
JP5667025B2 (en) Imaging lens and imaging apparatus
JP2021128298A (en) Image capturing lens and image capturing device

Legal Events

Date Code Title Description
MK4K Expiration of patent term of a granted utility model