TWM354858U - Solar cell - Google Patents

Solar cell Download PDF

Info

Publication number
TWM354858U
TWM354858U TW97218622U TW97218622U TWM354858U TW M354858 U TWM354858 U TW M354858U TW 97218622 U TW97218622 U TW 97218622U TW 97218622 U TW97218622 U TW 97218622U TW M354858 U TWM354858 U TW M354858U
Authority
TW
Taiwan
Prior art keywords
metal oxide
layer
oxide layer
top surface
solar cell
Prior art date
Application number
TW97218622U
Other languages
Chinese (zh)
Inventor
Bo-Ren Zheng
Gu-Wei Jian
Yong-Zhao Huang
Dao-Yang Huang
Original Assignee
Bay Zu Prec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bay Zu Prec Co Ltd filed Critical Bay Zu Prec Co Ltd
Priority to TW97218622U priority Critical patent/TWM354858U/en
Publication of TWM354858U publication Critical patent/TWM354858U/en

Links

Landscapes

  • Photovoltaic Devices (AREA)

Description

M354858 八、新型說明: 【新型所屬之技術領域】 本新型是有關於一種太陽能電池,特別是指一種光電 轉換效率較高之太陽能電池。 【先前技術】 參閱圖1 ’ 一般太陽能電池的構造是於一玻璃基板11 頂面上依序成形一第一導電層12、一光電轉換層13,及一 第二導電層14。使用時入射光線經玻璃基板u底面往上照 射,經折射後,光線透過玻璃基板11與第一導電層12後, 到達光電轉換層13,以使光電轉換層13產生電子流與電洞 流’並經過該第一、第二導電層12、14傳送至外部。 但是,一般第一導電層12與光電轉換層13間之介面 是呈平面,入射光線折射進入光電轉換層13前,部份光源 會被上述第一導電層12與光電轉換層13間之平面反射而 遠離光電轉換層13 ’形成光源未完全被光電轉換層13吸收 k成太1¼能電池之效率較低。 【新型内容】 因此,本新型之目的即在提供一種光電轉換效率較高 之太陽能電池。 於疋本新型太陽能電池包含:一透明之基板、一呈 透明狀並鋪設於該透明基板頂面之第—導電層、_鋪設於 °亥第一導電層頂面金屬氧化層、-鋪設於該金屬氧化層頂 面之光電轉換層’及_鋪設於該光電轉換層頂面之第二導 電層。金屬氧化層是以透明狀並可導電之摻鋁氧化鋅材質 5 M354858 製成,且金屬氧化層之頂面是蝕刻成尖銳凹凸之形狀。 藉由形成於該第一導電層頂面並以摻鋁氧化辞材質製 成之金屬氧北層’以降低傳導電流之阻抗,同時藉由金屬 氧化層可蝕刻之特性以於其頂面上蝕刻出可減少光源反射 之鋸齒形狀或角錐形狀,提升光電轉換效率。 【實施方式】 有關本新型之前述及其他技術内容、特點與功效,在 以下配合參考圖式之二個較佳實施例的詳細說明中,將可 清楚的呈現。 參閱圖2與圖3,本新型太陽能電池之第一較佳實施例 包含一透明之基板2,及依序鋪設於基板2頂面之之一第一 導電層3、一金屬氧化層4、一光電轉換層5及一第二導電 層6 〇 本實施例中該基板2是以玻璃材質製成,但實際實施 時亦可以其他透光材質製成,實施範圍不以基板2材質為 限。 ' 該第一導電層3是鋪設於該透明基板2頂面。該第— 導電層3是以透明導電之材質製成,本實施例中該第—導 之材為疋選自於氧化銦錫或氧化錮辞,但實施範圍 不以第-導電層3之材質為限。 ”金屬氧化層4是以透明狀並可導電之摻鋁的氧化鋅 材質裝成’並鋪設於該第—導電層3頂面,且金屬氧化層4 之頂面是Μ成尖銳凹凸之形狀,本實施例中該 ^ 4 ^ ΎΈ 〇 面疋蝕刻成鋸齒形狀,但實際實施時亦可將金屬 M354858 氧化層4 之頂面蝕刻成其他尖錐的形狀 屬氧化層4之頂面形狀為限。 ,實施範圍不以金 該光電轉換層5鋪 鋪設於該金屬氧化層4頂M354858 VIII. New description: [New technology field] The present invention relates to a solar cell, in particular to a solar cell with high photoelectric conversion efficiency. [Prior Art] Referring to Fig. 1 ', a general solar cell is constructed by sequentially forming a first conductive layer 12, a photoelectric conversion layer 13, and a second conductive layer 14 on a top surface of a glass substrate 11. When in use, the incident light is irradiated upward through the bottom surface of the glass substrate u. After being refracted, the light passes through the glass substrate 11 and the first conductive layer 12, and then reaches the photoelectric conversion layer 13 so that the photoelectric conversion layer 13 generates electron flow and hole flow. And passing through the first and second conductive layers 12, 14 to the outside. However, generally, the interface between the first conductive layer 12 and the photoelectric conversion layer 13 is a plane, and before the incident light is refracted into the photoelectric conversion layer 13, a part of the light source is reflected by the plane between the first conductive layer 12 and the photoelectric conversion layer 13. The light source formed away from the photoelectric conversion layer 13' is not completely absorbed by the photoelectric conversion layer 13, and the efficiency of the battery is low. [New content] Therefore, the object of the present invention is to provide a solar cell having high photoelectric conversion efficiency. The solar cell of the present invention comprises: a transparent substrate, a first conductive layer which is transparent and laid on the top surface of the transparent substrate, a metal oxide layer deposited on the top surface of the first conductive layer, and is laid on the a photoelectric conversion layer 'on the top surface of the metal oxide layer' and a second conductive layer laid on the top surface of the photoelectric conversion layer. The metal oxide layer is made of a transparent and electrically conductive aluminum-doped zinc oxide material 5 M354858, and the top surface of the metal oxide layer is etched into a sharp concavo-convex shape. Forming a metal oxynitride layer formed on the top surface of the first conductive layer and made of an aluminum-doped oxidized material to reduce the impedance of the conduction current, and etching the top surface by etching the metal oxide layer The sawtooth shape or the pyramid shape can be reduced to improve the photoelectric conversion efficiency. The above and other technical contents, features and effects of the present invention will be apparent from the following detailed description of the preferred embodiments. Referring to FIG. 2 and FIG. 3, a first preferred embodiment of the solar cell of the present invention comprises a transparent substrate 2, and a first conductive layer 3, a metal oxide layer 4, and a first layer disposed on the top surface of the substrate 2. The photoelectric conversion layer 5 and the second conductive layer 6 are formed of a glass material in the present embodiment, but may be made of other light-transmissive materials in practice, and the implementation range is not limited to the material of the substrate 2. The first conductive layer 3 is laid on the top surface of the transparent substrate 2. The first conductive layer 3 is made of a transparent conductive material. In the embodiment, the first conductive material is selected from indium tin oxide or yttrium oxide, but the implementation range is not the material of the first conductive layer 3. Limited. The metal oxide layer 4 is made of a transparent and electrically conductive aluminum-doped zinc oxide material and is laid on the top surface of the first conductive layer 3, and the top surface of the metal oxide layer 4 is in the shape of sharp concavities and convexities. In this embodiment, the surface is etched into a zigzag shape, but in practice, the top surface of the metal M354858 oxide layer 4 may be etched into other tip shapes, which are limited to the top surface shape of the oxide layer 4. The implementation range is not gold, the photoelectric conversion layer 5 is laid on the top of the metal oxide layer 4

電效應而形成電子流與電洞流。The electrical effect forms an electron flow and a hole flow.

頂面,且光電 71,並產生光 疋以導電材質製成並鋪設於亨光電轉 電子流與電洞流經由該第一、第二導 供運用。該光電轉換層5與第二導電 # 9 ,由於該金屬氧化層4是呈透明狀且具有良好之 ^電!·生質’當金屬氧化| 4疊合於該第—導電層3頂面後 等於是並聯於第一導電層 頂面,降低第一導電層3之 電阻減少第一導電層3與金屬氧化層4傳遞電子流與 電/同流之損耗。且更重要的是可利用蝕刻技術於金屬氧化 層4頂面刻出預定設計之形狀,以使經過第一導電層3之 光源71到達金屬氧化層4頂面時,部分光源72折射進入 光電轉換層5,部分光源73被金屬氧化層4之斜頂面反射 後’照射到另一斜面時’部分光源74又折射進入光電轉換 層5 ’部份光源75反射,也就是利用金屬氧化層4之鋸齒 狀頂面可減少反射遠離光電轉換層5的光源,提升太陽能 電池之效率。 以下續以本新型之第一導電層3與金屬氧化層4之相 關尺寸規格範圍與面電阻之關係做一詳細說明: 本實施例中該第一導電層3之厚度範圍是1500〜2000 7 M354858 埃(Angstrom,1〇 的 _1〇 士 古丰、 ^ 扪υ -人方未),该金屬氧化層4成型於 "亥第‘電層3頂面時之厚度範圍是4〇〇〇〜8〇〇〇埃。 請同時參閱表-,表—為第—導電層3與金屬氧化層4 之厚度及相對應之面電阻數值,當第―導電層3厚度於 2000埃時,其面電阻約為9犯,該金屬氧化層4厚^為 8_埃時,其面電阻約為_/□,同時設置2_埃^ 之第-導電層3及8_埃厚度之金屬氧化層4時雖可= 降低面電阻至4.7Ω/□’減少該光電轉換層5產生之電子; 或電洞流的耗損’但是整體之製作成本卻大幅提升增:二 %,而且厚度過大之金屬氧化層4也大幅影響光^之 率’故以成本與穿透率考量下’第一導 3之厚度勢必 小於2000埃,金屬氧化層4厚度勢必須要小於嶋^。 導電層 1------ 金屬氧化層 1500 埃 15Q /□ 4000 埃 20Q/D B.6Q/Q 4500 埃 18Q/D B.2Q/D 8000 埃 10Q/D — 6Ω/口 9000 埃 9Q/D —-- 5.6Ω /□ 2000 埃 表一各元件之面電阻值The top surface, and the photoelectric 71, is produced by a conductive material and is placed on the hengguang photoelectric electron flow and the hole flow through the first and second guides. The photoelectric conversion layer 5 and the second conductive #9, since the metal oxide layer 4 is transparent and has a good electric charge! · Biomass 'When metal oxide| 4 is superposed on the top surface of the first conductive layer 3 It is equal to being parallel to the top surface of the first conductive layer, and reducing the resistance of the first conductive layer 3 reduces the loss of electron flow and electric/cocurrent transmission of the first conductive layer 3 and the metal oxide layer 4. More importantly, the shape of the predetermined design can be engraved on the top surface of the metal oxide layer 4 by etching technology, so that when the light source 71 passing through the first conductive layer 3 reaches the top surface of the metal oxide layer 4, part of the light source 72 is refracted into the photoelectric conversion. Layer 5, part of the light source 73 is reflected by the oblique top surface of the metal oxide layer 4, and when the other oblique surface is irradiated, the partial light source 74 is refracted into the photoelectric conversion layer 5', and the partial light source 75 reflects, that is, the metal oxide layer 4 is used. The serrated top surface reduces the light source that is reflected away from the photoelectric conversion layer 5, improving the efficiency of the solar cell. The following is a detailed description of the relationship between the size range and the surface resistance of the first conductive layer 3 and the metal oxide layer 4 of the present invention: In the embodiment, the thickness of the first conductive layer 3 ranges from 1500 to 2000 7 M354858. Angstrom (Angstrom, 1〇1〇士古丰, ^扪υ-人方不), the thickness of the metal oxide layer 4 formed on the top surface of the "Haidian' electric layer 3 is 4〇〇〇~ 8 〇〇〇. Please also refer to Table-, Table - for the thickness of the first conductive layer 3 and the metal oxide layer 4 and the corresponding surface resistance value. When the thickness of the first conductive layer 3 is 2000 angstroms, the sheet resistance is about 9 When the thickness of the metal oxide layer 4 is 8 Å, the sheet resistance is about _/□, and when the second conductive layer 3 of 2 Å and the metal oxide layer 4 of 8 Å thick are provided, the surface resistance can be reduced. To 4.7 Ω / □ ' reduce the electrons generated by the photoelectric conversion layer 5; or the loss of the hole flow 'but the overall production cost has increased significantly: two percent, and the excessive thickness of the metal oxide layer 4 also greatly affects the light ^ The rate 'is considered to be less than 2000 angstroms in terms of cost and transmittance. The thickness of the metal oxide layer 4 must be less than 嶋^. Conductive layer 1------ metal oxide layer 1500 angstrom 15Q / □ 4000 angstrom 20Q/D B.6Q/Q 4500 angstrom 18Q/D B.2Q/D 8000 angstrom 10Q/D — 6Ω/port 9000 angstrom 9Q/ D —-- 5.6 Ω / □ 2000 ohms surface resistance of each component

9Q/Q9Q/Q

6.2Q /Q ------ 6Ω/〇 ~~~~—--6.2Q /Q ------ 6Ω/〇 ~~~~—--

4.7 Ω/Q ---_4.7 Ω/Q ---_

4.5Q /Q 另外,當第一導電層3厚度於15〇〇埃時 ^ 具面電pj 為15Ω/[Ι1 ,該金屬氧化層4厚度為4000埃時,其面 約為20Ω/□,結合之面電阻約為8·6Ω/口, ^ Λ罘一導1 M354858 3厚度小於1500埃,且該金屬氧化層4厚度小4000埃時, 易造成面電阻高於9 Ω /□以上,而有電子流或電洞流損耗 過大的缺點。 本較佳實施例之第一導電層3厚度就是15〇〇埃,該金 屬氧化層4厚度為4500埃、波谷厚度為500埃,其結合之 面電阻約為8.2Ω/□,可降低電流損耗》 且最重要的是’將該金屬氧化層4設置於該第一導電 層3頂面後,可用蚀刻技術在金屬氧化層4頂面上刻出鑛 齒表面或尖錐表面的形狀,以提升光源進入光電轉換層5 之比例,本新型太陽能電池經實驗測試後,如將該金屬氧 化層4钱刻成鑛齒狀,且餘刻出之波岭厚度為39〇〇〜⑽ 埃,且波谷厚度為1〇〇〜1〇〇〇埃時,可大幅增加光電轉換 效率1〜3%。 本新型太陽能電池之第二較佳實施例的構造大致與第 一較佳實施例相同,其不同之處在於該金屬氧化層4之頂 面是蝕刻成四方角錐形狀,以降低光源反射遠離光電轉換 層5’提高光電轉換效率。 綜上所述,本新型藉由形成於該第一導電層3頂面並 乂摻銘氧化鋅材質製成之金屬氧化層4,以降低傳導電流之 阻抗,同時藉由金屬氧化層4可蝕刻之特性以於其頂面上 姓刻出可減少光源反射之鑛齒形狀或角錐形狀,提升光電 轉換效率’㈣確實可達到本新型之目的。 准以上所述者,僅為本新型之較佳實施例而已,當不 能以此限定本靳型眚# > ^闻 所孓貫施之範圍,即大凡依本新型申請專利 9 M354858 範圍及新型說明内容所作之簡單的等效變化與修飾,皆仍 屬本新型專利涵蓋之範圍内。 【圖式簡單說明】 圖1是一般太陽能電池之側面視圖; 圖2疋本新型太陽能電池之第一較佳實施例的立體圖 9 圖3是該第一較佳實施例較佳實施例的側面剖視圖; 及 圖4是本新型太陽能電池之第二較佳實施例的立體圖 10 M354858 【主要元件符號說明】 2 基板 5 3 第一導電層 6 4 金屬氧化層 71 光電轉換層 第二導電層 光源 114.5Q /Q In addition, when the thickness of the first conductive layer 3 is 15 〇〇, the surface electric power pj is 15 Ω/[Ι1, and when the thickness of the metal oxide layer 4 is 4000 angstroms, the surface thereof is about 20 Ω/□, The surface resistance is about 8·6 Ω/□, ^ Λ罘一导1 M354858 3 thickness is less than 1500 angstroms, and the thickness of the metal oxide layer 4 is 4000 angstroms, which easily causes the sheet resistance to be higher than 9 Ω / □, and The disadvantage of excessive loss of electron flow or hole flow. The first conductive layer 3 of the preferred embodiment has a thickness of 15 Å, and the metal oxide layer 4 has a thickness of 4500 Å and a valley thickness of 500 Å, and the combined surface resistance is about 8.2 Ω/□, which can reduce current loss. And most importantly, after the metal oxide layer 4 is disposed on the top surface of the first conductive layer 3, the shape of the mineral tooth surface or the tapered surface can be carved on the top surface of the metal oxide layer 4 by etching to enhance The proportion of the light source entering the photoelectric conversion layer 5, after the experimental test of the novel solar cell, if the metal oxide layer is carved into a mineral tooth shape, and the remaining wave thickness is 39〇〇~(10) angstrom, and the trough When the thickness is 1 〇〇 to 1 〇〇〇, the photoelectric conversion efficiency can be greatly increased by 1 to 3%. The structure of the second preferred embodiment of the novel solar cell is substantially the same as that of the first preferred embodiment, except that the top surface of the metal oxide layer 4 is etched into a square pyramid shape to reduce the reflection of the light source away from the photoelectric conversion. Layer 5' improves the photoelectric conversion efficiency. In summary, the present invention reduces the conduction current impedance by forming a metal oxide layer 4 formed on the top surface of the first conductive layer 3 and doped with a zinc oxide material, and is etchable by the metal oxide layer 4. The characteristic is that the surname of the top surface can be reduced to reduce the shape of the ore tooth or the shape of the pyramid of the light source, and the photoelectric conversion efficiency can be improved. (4) It is indeed possible to achieve the purpose of the novel. The above-mentioned ones are only the preferred embodiments of the present invention, and it is not possible to limit the scope of the present invention to the scope of the application, that is, the scope and new type of the patent application 9 M354858 The simple equivalent changes and modifications made to the description are still within the scope of this new patent. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a side elevational view of a general solar cell; FIG. 2 is a perspective view of a first preferred embodiment of the novel solar cell. FIG. 3 is a side cross-sectional view of the preferred embodiment of the first preferred embodiment. 4 and FIG. 4 is a perspective view of a second preferred embodiment of the solar cell of the present invention. M354858 [Description of main components] 2 substrate 5 3 first conductive layer 6 4 metal oxide layer 71 photoelectric conversion layer second conductive layer light source 11

Claims (1)

M354858 九、申請專利範圍: 1 一種太陽能電池,包含. 一透明之基板; "^第一導雷屠 . 尽’呈透明狀並鋪設於該透明基板頂面 , 金屬氧化層,是以透明狀並可導電之摻!呂氧化鋅 材質製成並鋪設於兮贫 、°亥第一導電層頂面,且金屬氧化層之 頂面是蝕刻成尖銳凹凸之形狀; 光電轉換層,鋪設於該金屬氧化層頂面;及 第一導電層,鋪設於該光電轉換層頂面。 2.依據中請專利範圍第i項所述之太陽能電池,其中,該 金屬氧化層是蝕刻出鋸齒形狀。 3·依據^請專利範圍第i項所述之太陽能電池,其中,該 金屬氧化層是蝕刻出角錐形狀。 依據申请專利範圍第丨項所述之太陽能電池,其中,該 第導電層之厚度範圍是1500〜2〇〇〇埃,該金屬氣化層 之厚度為4〇〇〇〜8〇〇〇埃。 依據申睛專利範圍第4項所述之太陽能電池,其中,該 第一導電層厚度是1500埃’該金屬氧化層厚度為45 = 埃。 6·依據申請專利範圍第2項或第3項所述之太陽能電池, ^中,該金屬氧化層蝕刻出之波峰厚度為39〇〇〜7〇⑻埃 ’且波谷厚度為100〜1000埃Q ' 12M354858 Nine, the scope of application for patents: 1 a solar cell, including: a transparent substrate; " ^ first guided thunder butt. 'transparently placed on the top surface of the transparent substrate, the metal oxide layer is transparent And can be conductive! The galvanized zinc material is made and laid on the top surface of the first conductive layer of the poor, and the top surface of the metal oxide layer is etched into a shape of sharp irregularities; a photoelectric conversion layer is laid on the top surface of the metal oxide layer; The first conductive layer is laid on the top surface of the photoelectric conversion layer. 2. The solar cell of claim i, wherein the metal oxide layer is etched into a sawtooth shape. 3. The solar cell according to the invention of claim 1, wherein the metal oxide layer is etched into a pyramid shape. The solar cell according to the above aspect of the invention, wherein the thickness of the first conductive layer ranges from 1500 to 2 Å, and the thickness of the metal vaporized layer is from 4 Å to 8 Å. The solar cell according to claim 4, wherein the first conductive layer has a thickness of 1500 Å and the metal oxide layer has a thickness of 45 Å. 6. According to the solar cell of claim 2 or 3, the metal oxide layer is etched to have a peak thickness of 39 〇〇 to 7 〇 (8) angstroms and a trough thickness of 100 to 1000 angstroms Q. ' 12
TW97218622U 2008-10-17 2008-10-17 Solar cell TWM354858U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97218622U TWM354858U (en) 2008-10-17 2008-10-17 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97218622U TWM354858U (en) 2008-10-17 2008-10-17 Solar cell

Publications (1)

Publication Number Publication Date
TWM354858U true TWM354858U (en) 2009-04-11

Family

ID=44377328

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97218622U TWM354858U (en) 2008-10-17 2008-10-17 Solar cell

Country Status (1)

Country Link
TW (1) TWM354858U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8919974B2 (en) 2011-06-29 2014-12-30 Industrial Technology Research Institute Multi-reflection structure and photo-electric device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8919974B2 (en) 2011-06-29 2014-12-30 Industrial Technology Research Institute Multi-reflection structure and photo-electric device

Similar Documents

Publication Publication Date Title
JP4404753B2 (en) Solar cell module
TW200816502A (en) Solar battery module
TW200910618A (en) Solar cell and method for manufacturing the same
CN206812540U (en) A kind of compound transparent electricity conductive film
JP2011508946A (en) Conductive glass for dye-sensitized solar cell and method for producing the same
WO2013018763A1 (en) Solar cell module and method of manufacturing same
CN106098801A (en) A kind of heterojunction solar battery and preparation method thereof
CN106531835A (en) Silicon heterojunction solar cell and solar cell module
JP5724581B2 (en) Conductive substrate, solar cell, and display device
JP2014165504A (en) Solar cell module
US8729383B2 (en) Stacked-layered thin film solar cell and manufacturing method thereof
JP2000124485A (en) Photoelectric conversion device and its manufacture
TWM354858U (en) Solar cell
CN106784378A (en) Light-emitting device and its manufacture method
TW201005963A (en) Solar cell with high photon utilization and method of manufacturing the same
CN207611782U (en) A kind of photovoltaic module
TW201349613A (en) Transparent supported electrode for OLED
CN105405910A (en) Heterojunction solar cell, preparation method thereof and solar cell module
JP2012019128A (en) Thin film photoelectric conversion device
CN209747526U (en) Solar cell
TW201042774A (en) Thin film solar cell and manufacturing method thereof
CN207602583U (en) The gate line electrode structure and solar cell of a kind of solar cell
CN208580753U (en) A kind of photovoltaic welding belt connecting battery component
CN204315610U (en) Based on the solar cell of GaN nano wire three-dimensional structure
CN204315586U (en) The Graphene electrodes solar cell of GaN nanometer grid line

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees