TWI844078B - 一種半導體廢氣處理系統 - Google Patents

一種半導體廢氣處理系統 Download PDF

Info

Publication number
TWI844078B
TWI844078B TW111131934A TW111131934A TWI844078B TW I844078 B TWI844078 B TW I844078B TW 111131934 A TW111131934 A TW 111131934A TW 111131934 A TW111131934 A TW 111131934A TW I844078 B TWI844078 B TW I844078B
Authority
TW
Taiwan
Prior art keywords
gas
pump
exhaust gas
waste gas
semiconductor
Prior art date
Application number
TW111131934A
Other languages
English (en)
Other versions
TW202310915A (zh
Inventor
寇崇善
Original Assignee
日揚科技股份有限公司
明遠精密科技股份有限公司
Filing date
Publication date
Application filed by 日揚科技股份有限公司, 明遠精密科技股份有限公司 filed Critical 日揚科技股份有限公司
Priority to TW111131934A priority Critical patent/TWI844078B/zh
Publication of TW202310915A publication Critical patent/TW202310915A/zh
Application granted granted Critical
Publication of TWI844078B publication Critical patent/TWI844078B/zh

Links

Abstract

一種半導體廢氣處理系統係由真空抽氣裝置、電漿處理裝置及射流式微氣泡溼式洗滌裝置組成。真空抽氣裝置採增壓幫浦及乾式幫浦之兩段式組合。電漿處理裝置安裝在兩幫浦之間進行低氣壓電漿處理,可在低耗能下完成高效率的氣體解離反應,同時克服生成物可能回流污染製程系統的困難。尤其在操作上不需要使用大量稀釋氮氣,可降低真空抽氣裝置的操作規格,更可以減少產生氮氧化物。最後採用射流式微氣泡濕式洗滌裝置,可有效處理電漿解離後的反應生成氣體及微粒,更可於真空抽氣裝置輸出端產生粗真空,提升排氣效率,並大幅降低微粒阻塞的問題。

Description

一種半導體廢氣處理系統
本發明是有關於一種廢氣處理系統,特別是有關於一種半導體廢氣處理系統。
半導體的生產過程會使用大量的易燃性、腐蝕性或高毒性的反應氣體,但是在許多半導體製程中反應氣體的利用率非常低,因此在製程中未完全反應的殘餘氣體及反應生成物必須排出反應製程室。這些混合氣體一般稱為製程廢氣或是尾氣都必須經由轉化為無害或可處理的物質才能排出。
現行廢氣系統主要由和反應製程室相接的渦輪真空幫浦(turbo pump)、機械幫浦及局部廢氣處理系統(local scrubber system)所構成。製程廢氣經由渦輪真空幫浦、排氣管道及機械幫浦依序抽出反應製程室,再送入局部廢氣處理系統進行處理後送到中央廢氣處理系統(central scrubber system)排出。
為了妥善處理製程廢氣,目前有許多種技術被提出及使用。舉例而言,目前有一種現有技術在排放製程廢氣之前,會使用抽氣幫浦將製程廢氣排放至燃燒洗滌塔進行廢氣處理,如臺灣第I487872號發明專利。然而,燃燒洗滌塔對於含氟化合物處理效果不佳,而且須隨時保持運作並提供大量燃料氣體,因此成本大幅增加且耗費能源,且燃料氣體為易燃***性氣體,會增加公安危險。又,目前雖然有另一種現有技術採用觸媒熱裂解法,惟觸媒會有老化及毒化問題,且觸媒更換及回收處理成本相當高。此外,觸媒熱裂解法同樣須隨時保持運作且同樣會耗費大量能源。
除此之外,目前雖有技術使用電漿火炬洗滌塔進行廢氣處理,如臺灣第I285066 號發明專利,電漿雖已被證實可有效分解製程廢氣,尤其針對須高溫處理的全氟碳化合物((Perfluorinated Compounds, PFCs)。惟其係在大氣壓力下運行,須耗費大量能源,同時因為電漿溫度超過上千度,系統零組件不但成本髙且使用壽命短。尤其大氣電漿的穩定性不佳,容易因為操作條件的變化而產生電漿熄滅的問題。
另一方面目前已有理論技術提出在機械幫浦前加裝電漿處理裝置,在低氣壓下進行廢氣處理。結果顯示,因為在低氣壓下電子能量較高能有效解離廢氣,雖然處理效果良好,但是因為電漿處理裝置直接和渦輪真空幫浦後端相接,會有氣體反應物回流污染製程的疑慮,故無法被半導體製程所接受,目前並未使用。
現行機械幫浦多採兩段式組合,即第一段為增壓幫浦(Booster Pump),第二段為乾式幫浦(Dry Pump)。增壓幫浦因抽氣速率(pumping rate)大能加速系統達到較低氣壓,以利於第二段乾式幫浦達成操作設定氣壓。現有機械幫浦操作必須在第二段(後段)乾式幫浦引入大量吹淨氣體(purge gas),如氮氣以稀釋易燃性、腐蝕性或高毒性的製程廢氣,同時以減緩在製程中生成之固體微粒造成之管道堵塞問題。由於氣體流量相當大,必須使用大功率的抽氣幫浦,無形中增加運作成本且耗費能源。而且,大量氮氣後續進入現行之局部廢氣處理系統如燃燒式或是熱反應式洗滌塔,會產生大量氮氧化物(NOx)等溫室氣體,造成二次污染環境。
再者,即使引入大量吹淨氣體,在某些製程中固態粒子依然會阻塞第二段(後段)的乾式幫浦,尤其是其出口處。這會嚴重降低 氣效率,同時提高乾式幫浦的操作電流,不但增加能源消耗增加營運成本,甚至造成乾式幫浦損壞引發製程停機。
為了解決上述習知技術之問題,本發明之目的係在提供一種可以有效處理廢氣的系統,且能降低機械幫浦能源消耗及大幅減少氮氧化物(NOx)等溫室氣體產生量,同時能有效解決固態粒阻塞的問題以提升乾式幫浦使用壽命。另一方面,本發明採用低氣壓電漿廢氣處理,同時與常壓電漿火炬比較,低氣壓電漿容易激發,且運作穩定耗能較低,部件損壞率較低,且維修週期長。更重要的是無生成氣體及粒子回流污染半導體製程室的問題,因此可為現行半導體製程系統接受。
與之前技術不同,本發明之半導體廢氣處理系統包含兩段式真空裝置、電漿處理腔、反應氣體供應腔以及射流式微氣泡溼式洗滌裝置。同時亦包含整合控制訊號以確保在有製程廢氣需要處理時才激發電漿及輸入混合反應氣體的操作模式用以節約能源,提高電漿系統使用壽命。
為達成前述目的,本發明提出一種半導體廢氣處理系統,適用於處理製程廢氣源所產生之至少一製程廢氣,其特徵在於:半導體廢氣處理系統係由真空抽氣裝置、電漿處理裝置及廢氣洗滌處理裝置組成。其中,真空抽氣裝置為兩段式幫浦結構,其包含第一幫浦及第二幫浦。第一幫浦產生一第一低壓環境抽出製程廢氣源所產生之製程廢氣, 第二幫浦於第一幫浦與第二幫浦之間產生第二低壓環境,電漿處理裝置係設於第二低壓環境下對製程廢氣進行一低壓電漿處理,同時加入適當的混合反應氣體將該製程廢氣轉化成無害、穩定或是可溶於水的反應生成氣體,例如處理 CH 4及 CHF 3的混合氣體通入水氣,處理效率(Destruction Removal Efficiency,DRE)可超過 90%。利用水氣混合處理NF 3,水氣在電漿中被電子解離成 O、H、OH的活性粒子,它們可以和 NF 3被電漿解離的粒子 NF x反應。例如: OH + NF 2→ NOF + HF, H + NF → N + HF, H + F → HF。而 HF可以用溼式洗滌方式有效處理。
同時低壓電漿處理亦可以用於微小化或去除製程廢氣所攜帶固態微粒,例如在使用NF 3進行製程腔體清潔時會產生SiF 4、F、NF x等混合氣體,同時之前製程的殘餘 SiO 2的微粒也一起混入廢氣中,這些微粒往往會聚合在一起轉化為大顆的粒子,進而沈積在乾式幫浦中形成阻塞。如果在進入乾式幫浦前激發電漿使得SiO 2和廢氣中殘留的NF x及F反應,便能減少SiO 2的大小使其隨著氣體排出而不易累積於幫浦中。
其中,廢氣洗滌處理裝置係一種射流式微氣泡溼式廢氣洗滌裝置,其係藉由文丘里管(Venturi throat)原理在第二幫浦出氣端產生第三低壓環境,藉由此第三低壓環境提升第二幫浦的抽氣效率進而能大幅降低第二幫浦累積的固體微粒。最後上述之反應生成氣體及微粒的混合氣體被溼式洗滌處理裝置吸入進一步在洗滌液中形成微氣泡,使得洗滌液充分溶解上述之反應生成氣體以及捕捉上述之反應生成氣體所攜帶之微粒。
其中,真空抽氣裝置係兩段式真空裝置,其第一幫浦係設於製程廢氣源與電漿處理裝置之間,藉以利用該第一幫浦隔絕低壓電漿處理後所得之反應生成氣體及微粒,防止其回流而污染製程廢氣源。
其中,製程廢氣係在被吸入第二幫浦之前會預先被電漿處理裝置轉化成穩定安全或可被後面所接之溼式洗滌裝置有效處理的氣體,如此在舊技術中第二幫浦(乾式幫浦)必須輸入大流量的吹淨氣體(如氮氣)以稀釋易燃性、腐蝕性或高毒性的製程廢氣的措施可以大幅減量操作。
其中,電漿處理裝置係依據一控制訊號於待機狀態及運作狀態之間進行切換,當製程廢氣源開始排放製程廢氣時,電漿處理裝置才由待機狀態切換成運作狀態藉以在第一低壓環境下對製程廢氣進行低壓電漿處理,當製程廢氣源停止排放製程廢氣時,電漿處理裝置係由運作狀態切換成待機狀態。
其中,電漿處理裝置對製程廢氣進行低壓電漿處理時係同時依據上述之控制訊號先以一反應氣體混合製程廢氣。
其中,電漿處理裝置係電漿處理腔且利用混合器作為反應氣體供應腔,用以導入反應氣體,藉以使得反應氣體混合製程廢氣。
其中,製程廢氣為全氟碳化物(PFCs)、氮氧化物(NO x)、六氟化硫(SF 6)、三氟化氮(NF 3)、氨氣(NH 3)、硼乙烷(B 2H 6)、氫氟碳化物(HFCs)、碳氫化合物(C xH y)及/或CCl 4等。
其中,若半導體製程為原子層沉積(Atomic layer deposition,ALD)製程,則製程廢氣為三甲基鋁 (TMA)、四(乙基甲基氨基)鋯(TEMAZ)及/或四(乙基甲基氨基)鉿(TEMAH)。
其中,反應氣體可為氧氣(O 2)、氦氣(He)、氬氣(Ar)、氮氣(N 2)、氫氣(H 2) 及/或水氣(H 2O)。
其中,真空抽氣裝置之第一幫浦為增壓幫浦(Booster Pump),真空抽氣裝置之第二幫浦為乾式幫浦(Dry Pump)。
其中,真空抽氣裝置之該第一幫浦所產生之第一低壓環境之氣壓為100 torr 至10 -3torr。
其中,真空抽氣裝置之該第二幫浦所產生之第二低壓環境之氣壓為100 torr 至10 -3torr。
其中,廢氣洗滌處理裝置係一種射流式微氣泡溼式廢氣洗滌裝置,其所產生之第三低壓環境之氣壓為400 torr至600 torr。
其中,廢氣洗滌處理裝置係一種射流式微氣泡溼式廢氣洗滌裝置,其包含:處理槽包含內槽及外槽用以盛裝洗滌液;以及射流管,其中洗滌液係經由射流管噴射注入處理槽的內槽中,藉以將上述之反應生成氣體切割形成微氣泡以溶解於洗滌液中,再使得微氣泡所揚起之洗滌液之水氣滿溢至外槽中。
其中,電漿處理裝置為射頻電漿產生源、微波電漿產生源或高壓放電源。
其中,電漿處理裝置為具有同軸微波共振腔之微波電漿產生源。
其中,微波電漿產生源包含微波源以及同軸設置之金屬偶合天線、陶瓷管及中空之圓柱,其中陶瓷管位於圓柱之中心且金屬偶合天線位於陶瓷管之中心,微波源設於陶瓷管上且位於金屬偶合天線之一側。
其中,微波電漿產生源的功率介於 1,000W 至 5,000W之間。
其中,製程廢氣源為半導體製程室或者是渦輪真空幫浦連接半導體製程室以排放製程廢氣。
承上所述,本發明之半導體廢氣處理系統,採用低壓(low pressure)電漿處理裝置,具有以下優點:
(1) 真空抽氣裝置可產生第一低壓環境抽出製程廢氣源所產生的製程廢氣,真空抽氣裝置可於第一幫浦與第二幫浦之間形成第二低壓環境,且電漿處理裝置可同時利用第二低壓環境對製程廢氣進行低壓電漿處理。又電漿處理裝置可在製程廢氣開始被排放時才由待機狀態切換成運行狀態,以節省能源。
(2) 廢氣洗滌處理裝置係一種射流式微氣泡溼式廢氣洗滌裝置,其高速噴出洗滌液時可將低壓電漿處理後所得之反應生成氣體轉化成微氣泡,大幅度增加接觸面積及接觸時間,有助於溶解上述之反應生成氣體及捕捉微粒,並且可同時在進氣囗處產生約400torr至600torr之間的粗真空(rough vacuum)狀態,藉以從其所連接之真空抽氣裝置有效的吸入上述之反應生成氣體及微粒以便進行洗滌,還可避免真空抽氣裝置產生堵塞現象,提升真空抽氣裝置運行效率並減少所需功率。
(3) 藉由設置電漿處理裝置在有害製程廢氣進入第二幫浦(乾式幫浦)之前先行處理製程廢氣,可大幅減少通入氮氣稀釋有毒氣體甚至不需通入氮氣,故能減少氮氧化物及一氧化碳之產生以避免二次污染,且能降低所需操作規格,如抽氣功率及抽氣流量。
(4) 藉由導入對應之反應氣體,例如氧氣及水氣,可形成穩定之前驅物,如氧化物,可有效使得較難處理之製程廢氣形成較易處理之反應生成氣體,並且微小化微粒,甚至消除微粒,藉以減少有毒氣體及溫室氣體。
(5) 電漿處理裝置設於真空抽氣裝置之第一幫浦後,能有效防止低壓電漿處理後所得之反應生成氣體及微粒回流至製程廢氣源中,再者第二幫浦及廢氣洗滌處理裝置也能提供負壓吸力,更有助於上述之反應生成氣體及微粒回流至製程廢氣源中且能防止堵塞現象。
(6) 電漿處理裝置可有效分解原子層沉積(ALD)製程之前驅物之化學鍵結,且可使得上述之反應生成氣體成為氣相以降低產生微粒的可能性,故能有效延長維修週期。
(7) 電漿處理裝置可使用同軸微波共振腔的結構,其優點在於能加長微波和電漿的反應長度而達到電漿均勻分布的目標。使用功率例如為介於 1,000W 至 5,000W之間,視處理廢氣種類及流量而決定。
茲為使鈞審對本發明的技術特徵及所能達到的技術功效有更進一步的瞭解與認識,謹佐以較佳的實施例及配合詳細的說明如後。
為利瞭解本創作之技術特徵、內容與優點及其所能達成之功效,茲將本創作配合圖式,並以實施例之表達形式詳細說明如下,而其中所使用之圖式,其主旨僅為示意及輔助說明書之用,未必為本創作實施後之真實比例與精準配置,故不應就所附之圖式的比例與配置關係解讀、侷限本創作於實際實施上的權利範圍。此外,為使便於理解,下述實施例中的相同元件係以相同的符號標示來說明。
另外,在全篇說明書與申請專利範圍所使用的用詞,除有特別註明外,通常具有每個用詞使用在此領域中、在此揭露的內容中與特殊內容中的平常意義。某些用以描述本創作的用詞將於下或在此說明書的別處討論,以提供本領域技術人員在有關本創作的描述上額外的引導。
關於本文中如使用“第一”、“第二”、“第三”等,並非特別指稱次序或順位的意思,亦非用以限定本創作,其僅僅是為了區別以相同技術用語描述的組件或操作而已。
其次,在本文中如使用用詞“包含”、“包括”、“具有”、“含有”等,其均為開放性的用語,即意指包含但不限於。
請參閱圖1至圖5,圖1為本發明之半導體廢氣處理系統之示意圖,圖2為本發明之半導體廢氣處理系統應用於處理製程廢氣之示意圖,圖3為本發明之廢氣洗滌處理裝置採用射流式微氣泡溼式廢氣洗滌裝置之示意圖,圖4為本發明之微波電漿產生源之示意圖,圖5為本發明之半導體廢氣處理概念應用於改造現行廢氣處理系統之示意圖。
如圖1至圖3所示,本發明之半導體廢氣處理系統10係由真空抽氣裝置30、電漿處理裝置40及廢氣洗滌處理裝置50組成。當應用於處理製程廢氣時,本發明係以真空抽氣裝置30連接製程廢氣源20之排氣端,且真空抽氣裝置30於運作時可於製程廢氣源20與真空抽氣裝置30之間產生第一低壓環境,藉由產生負壓可吸入製程廢氣源20所產生之製程廢氣12。電漿處理裝置40係設於真空抽氣裝置30上(於第一幫浦32及第二幫浦34之間),且藉由第一幫浦32及第二幫浦34之間的第二低壓環境對製程廢氣進行低壓電漿處理,藉以使得原本較難處理之製程廢氣12成為較易處理之反應生成氣體16,以便較易溶解於洗滌液中,並且微小化製程廢氣12所攜帶之微粒,甚至消除微粒,以防止堵塞發生且較易被捕捉。故,本發明可大幅度減少或不需稀釋製程廢氣,由於氣體流量變低,自然可大幅度降低真空抽氣裝置30的操作規格,如抽氣功率及/或抽氣速率。同時真空抽氣裝置之第一幫浦32建立電漿處理裝置40和製程廢氣源20的隔絶,使得低壓電漿處理後所得之反應生成氣體16或微粒無法回流至製程廢氣源20造成汚染。廢氣洗滌處理裝置50於運作時可產生第三低壓環境(於第二幫浦34及廢氣洗滌處理裝置50之間),藉由產生負壓可有效吸入低壓電漿處理後所得之反應生成氣體16,以防止堵塞及回流現象,並且反應生成氣體16可被洗滌液轉化成微氣泡,藉由大幅度增加接觸面積及接觸時間,可使得洗滌液充分溶解反應生成氣體16以及其所攜帶之微粒。
詳言之,上述之製程廢氣源20例如為用以進行半導體製程之半導體製程室,製程廢氣12則例如為上述之半導體製程所排放之廢氣,例如有毒廢氣或溫室氣體等攜帶有微粒之廢氣,其中本發明並不侷限於特定之半導體製程室及其所實施之半導體製程之類型,只要會產生製程廢氣12即可適合以本發明之半導體廢氣處理系統10進行廢氣處理。舉例而言,依據實際進行之半導體製程而定,本發明之製程廢氣源20除了可例如為半導體製程室,也可例如為半導體製程室搭配有渦輪幫浦(Turbo Pump)以排放製程廢氣之半導體製程系統。換言之,本發明之半導體廢氣處理系統10所適用之製程廢氣源20不限於上述舉例,任何會排放半導體製程廢氣之廢氣來源均可適用於本發明。其中,製程廢氣12為半導體製程中所產生的製程廢氣例如為,但不限於,全氟碳化物(PFCs)、氮氧化物(NOx)、六氟化硫(SF 6)、三氟化氮(NF 3)、氨氣(NH 3)、硼乙烷(B 2H 6)、氫氟碳化物(HFCs) 及/或碳氫化合物(C xH y)等有毒氣體或溫室氣體。若上述之半導體製程為原子層沉積(Atomic layer deposition,ALD)製程,則製程廢氣例如為,但不限於,三甲基鋁 (TMA)、四(乙基甲基氨基)鋯(TEMAZ)及/或四(乙基甲基氨基)鉿(TEMAH)。
詳言之,本發明之半導體廢氣處理系統10之真空抽氣裝置30例如包含連通之第一幫浦32及第二幫浦34之兩段式組合。第一幫浦32之進氣端32a經由第一管件a1連通製程廢氣源20之排氣端,在第一管件a1中(即第一幫浦32及製程廢氣源20之間)産生第一低壓環境用以抽出製程廢氣源20所產生之製程廢氣12。第一幫浦32之排氣端32b經由第二管件a2連通混合器60、電漿處理裝置40及第二幫浦34之進氣端34a。真空抽氣裝置30之第二幫浦34建立第二低壓環境於第一幫浦32及第二幫浦34之間。其中,第一幫浦32所產生之第一低壓環境之氣壓例如為約100 torr至10 -3torr,第二幫浦34所產生之第二低壓環境之氣壓例如為約100 torr至10 -3torr。舉例來說,第一幫浦32之工作壓力範圍例如為約100 torr至10 -3torr,第二幫浦34之工作壓力範圍例如為約100 torr至10 -3torr。第一幫浦32例如為增壓幫浦,第二幫浦34例如為乾式幫浦。本發明之真空抽氣裝置30除了使用第一幫浦32,還加上第二幫浦34,藉此可提除供輔助吸力,有助於加速達到所需之真空程度外,第一幫浦32同時隔絕第二管件a2中的氣體及微粒回流到製程廢氣源20。真空抽氣裝置30之第一低壓環境及第二低壓環境之氣壓範圍以及第一幫浦32與第二幫浦34之工作壓力範圍雖列舉如上,惟本發明之範圍並非限定於此,只要幫浦可提供低壓環境,即落入本發明請求保護之範圍。
續言之,本發明之半導體廢氣處理系統10之電漿處理裝置40設於真空抽氣裝置30之第一幫浦32及第二幫浦34之間,藉以在製程廢氣進入第二幫浦34之前,電漿處理裝置40先利用第二幫浦34所產生之第二低壓環境對較難處理之製程廢氣進行低壓電漿處理,以便將製程廢氣轉化成較易處理之反應生成氣體16並能微小化製程廢氣所攜帶之微粒,故本發明可大幅度減少第二幫浦34所需之吹淨氣體(如氮氣)稀釋製程廢氣,大幅度降低抽氣所需之功率 ; 同時亦可防止真空抽氣裝置產生微小堵塞。而且真空抽氣裝置30建立電漿處理裝置40和製程廢氣源20的隔絶,使得反應生成氣體16或微粒無法回流至製程廢氣源20造成汚染。
此外,本發明之電漿處理裝置40可依據控制訊號80選擇性於一待機狀態及一運作狀態之間進行切換。例如,當製程廢氣源20開始排放製程廢氣12時,電漿處理裝置40才由待機狀態切換成運作狀態藉以在第二低壓環境下對製程廢氣12進行低壓電漿處理;當製程廢氣源20停止排放製程廢氣12時,電漿處理裝置40則由運作狀態切換成待機狀態,毋需隨時保持運行,故能節省所需能源。
詳言之,本發明之電漿處理裝置40係提供具有電漿之電漿通道42連通於真空抽氣裝置30之第一幫浦32之排氣端32b與第二幫浦34之進氣端34a之間,例如可拆卸式或固定式設於第二管件a2上。其中,製程廢氣12係例如先混合對應於製程廢氣12之至少一反應氣體14,再穿過電漿通道42,藉以使得製程廢氣12與反應氣體14利用電漿通道42中的電漿進行反應,以便將製程廢氣12轉化成至少一反應生成氣體16,並微小化製程廢氣12所攜帶之微粒,甚至完全去除微粒。反應氣體14之種類係對應於上述之製程廢氣12,亦即反應氣體14之種類係由製程廢氣12而定,藉以使得製程廢氣12與反應氣體14利用電漿進行反應以形成預定之反應生成氣體16。上述之反應氣體14例如為氧氣(O 2)、氦氣(He)、氬氣(Ar)、氮氣(N 2)、氫氣(H 2) 及/或水氣(H 2O)等。低壓電漿處理後所得之反應生成氣體16則為無害、穩定或是可溶於水等較易處理之氣體。例如處理 CH 4及 CHF 3的混合氣體通入水氣,處理效率(Destruction Removal Efficiency,DRE)可超過 90%。例如,利用水氣混合處理NF 3,水氣在電漿中被電子解離成 O、H、OH的活性粒子,它們可以和 NF 3被電漿解離的粒子 NF x反應。例如:OH + NF 2→ NOF + HF,H + NF → N + HF,H + F → HF。而 HF可以用溼式洗滌方式有效處理。以射頻電漿產生源為例,電漿處理裝置40之電極結構可例如為柱狀、板狀或網狀等,只要可形成具有電漿之電漿通道42即可適用於本發明。
除此之外,本發明可選擇性同時依據控制訊號80經由混合器60導入上述之反應氣體14,亦即當製程廢氣源20開始排放製程廢氣12時,才導入反應氣體14,其中電漿處理裝置40之電漿通道42係連通混合器60,且製程廢氣12係例如藉由混合器60先混合反應氣體14再進入電漿通道42中以進行反應。混合器60例如設於第二管件a2上且設於電漿處理裝置40之電漿通道42之進氣端42a之前方。亦即,混合器60例如具有第一進氣端60a、第二進氣端60c及排氣端60b連通至混合腔61,其中混合器60之第一進氣端60a連通第一幫浦32之排氣端32b,用以導入製程廢氣12,混合器60之排氣端60b連通電漿處理裝置40之電漿通道42之進氣端42a,用以導出混合後之製程廢氣12與反應氣體14。其中,混合器60例如具有第四管件a4,且第四管件a4之一端連通混合器60之混合腔61,而第四管件a4之另一端具有第二進氣端60c,用以導入反應氣體14,使得製程廢氣12能夠在混合腔61中與反應氣體14均勻混合。其中,混合器60及其混合腔61之形式及尺寸無特別限定,只要可使得製程廢氣12混合反應氣體14即可適用於本發明。此外,本發明所採用之混合器60也可例如具有調節閥(未繪示)設於第一進氣端60a及第二進氣端60c,用以調節製程廢氣12與反應氣體14之對應供應量,藉以獲得較佳反應效果。換言之,本發明可整合控制訊號80以確保在有製程廢氣需要處理時才激發電漿及輸入混合反應氣體的操作模式用以節約能源,提高電漿系統使用壽命。
以電漿處理裝置40為微波電漿產生源,如圖4所示之微波電漿處理裝置為例,其中製程廢氣12與反應氣體14之混合氣體由混合器60之排氣端60b排出,且經由管道1及管道2進入圓柱形微波共振腔,高功率微波(約1,000 W至約5,000 W) 在電漿通道42中將混合氣體解離為電漿狀態。在低氣壓下,電子能得到足夠的能量對於氣體分子進行碰撞行解離反應,同時所產生的分子、原子及活化粒子亦產生各種不同的化學及物理反應,進而達成廢氣處理的目標。低壓電漿處理後所得之反應生成氣體16再經由管道3及管道4進入第二幫浦34。詳言之,微波電漿產生源之圓柱形微波共振腔包含同軸設置之金屬偶合天線6、陶瓷管7及圓柱8,其中陶瓷管7位於中空之圓柱8之中心且天線6位於陶瓷管7之中心,微波源5設於陶瓷管7上且位於天線6之一側。
上述之微波電漿處理裝置使用同軸微波共振腔的結構,其優點在由能加長微波和電漿的反應長度而達到電漿均勻分布的目標。一般圓柱型或矩型微波共振腔的電漿往往容易集中在進入口附近,無法有效形成均勻電漿。同軸微波分佈由微波源5經由金屬偶合天線6及陶瓷管7和外部圓柱8達成。陶瓷管7能使得微波有效的在天線6上傳遞,而不致使微波源偶合電漿反應集中在進入口附近,同時也達到隔離真空及保護天線6避免被電漿破壞的功能。惟,本發明之電漿處理裝置40之種類不限於上述之微波電漿產生源,可採用任何現有技術如射頻電漿產生源或高壓放電源等,只要可於低壓環境下形成電漿通道42並使製程廢氣12與反應氣體14進行反應,均可適用於本發明。
本發明之半導體廢氣處理系統10之廢氣洗滌處理裝置50係藉由文丘里管(Venturi throat)原理使射流結構噴射出洗滌液59,於第二幫浦34與廢氣洗滌處理裝置50之間產生上述之第三低壓環境,以吸入低壓電漿處理後所得之反應生成氣體16,並且將反應生成氣體16轉化成微氣泡,藉由大幅度增加接觸面積及接觸時間,可使得洗滌液充分溶解反應生成氣體16以及捕捉微粒,故本發明可防止真空抽氣裝置堵塞,有效延長維修週期,還能防止回流污染,故可節能、環保及穩定地處理製程廢氣。詳言之,如圖3所示,本發明所使用的廢氣洗滌處理裝置50係以採用文丘里管原理之射流式微氣泡濕式廢氣洗滌器為例。其中,廢氣洗滌處理裝置50係利用負壓射流管51高速縱向噴出洗滌液59且產生第三低壓環境(約400 torr至600 torr之負壓),以利用第三管件a3經由第二幫浦34吸入製程廢氣12所轉化的反應生成氣體16。洗滌液59的體積例如約占處理槽之內槽53體積的50%至90%,較佳為約占60%至80%,更佳為約佔70%。而且,當洗滌液59由負壓射流管51高速向下沖擊處理槽之內槽53中的洗滌液59時,反應生成氣體16將會被切割而在洗滌液59中形成複數個微氣泡(平均直徑小於約1.0毫米),其尺寸遠小於傳統氣泡,故表面積遠大於傳統氣泡,且在微氣泡由處理槽之內槽53之洗滌液59之深處向上移動的過程中,由於接觸面積及接觸時間大幅度增加,使得微氣泡可充分接觸洗滌液59。因為反應生成氣體16會溶解於洗滌液59中,所以微氣泡在上升的過程中會逐漸縮小體積,進而消失於洗滌液59中。微氣泡所揚起之洗滌液59之水氣則會滿溢至外槽54中。洗滌液59係包含處理對應之反應生成氣體16之化學品。化學品例如但不限於選自於由鹽水溶液、氫氧化鈉、氫氧化鈣、碳酸鈣及碳酸氫鈉所組成之族群。亦即,洗滌液59之組成可由需要被處理的反應生成氣體16來決定,合適的鹼可用於中和以降低酸性溶液的形成,例如由淡水和氫氧化鈉或其他中和劑(如石灰)組成的溶液則可以有效地提取及中和大量的HCl、SO 2或反應生成氣體16中的其他含酸成分。例如氫氧化鈣(Ca(OH) 2),碳酸鈣(CaCO 3)和/或碳酸氫鈉(NaHCO 3)也可與洗滌液59混合,以幫助吸收各種生產來源中的其他酸性的製程廢氣。因此,在微氣泡接觸洗滌液59的過程中,反應生成氣體16將可充分地溶解於洗滌液59中,且洗滌液59可充分地捕捉微粒。
後續,未被洗滌液59溶解之洗滌後氣體則伴隨洗滌液59擴散至內槽53之液面上,而形成水氣,因此內槽53上方之氣液分離組件56可扮演過濾及捕捉水氣之角色且僅允許上述洗滌後氣體穿過氣液分離組件56,故可從排放通道57將已處理完成之乾燥洗滌後氣體例如排放至中央廢氣處理系統。此外,排放通道57中也可增設上述之氣液分離組件,藉由捕捉水氣以排放更乾燥之洗滌後氣體。上述之氣液分離組件56可為任何能夠分離液體與氣體之結構,例如由直徑約為100微米至1微米玻璃纖維所組成的纖維床除霧器,藉以過濾水氣且僅允許氣體穿過其中。至於,被氣液分離組件56阻擋之洗滌液59則會掉落至外槽54中。隨後,可例如利用過濾組件55過濾處理槽之外槽54中的洗滌液59,再利用水泵58將外槽54中已過濾之洗滌液59,重新經由負壓射流管51注入處理槽之內槽53中,藉以循環地產生負壓以及切割反應生成氣體16而在洗滌液59中形成複數個微氣泡。
上述之負壓射流管51例如具有吸入腔72及噴射管74,吸入腔72之側壁具有至少一吸入口用以經由氣體管路52連通第三管件a3,噴射管74之頂端為入射口,用以注入洗滌液59,噴射管74之底端為出射口延伸至吸入腔72之內部,藉由噴出洗滌液59於吸入腔72中,以產生負壓吸力。氣體管路52可例如為垂直式或傾斜式設於吸入腔72之側壁,氣體管路52較佳為傾斜式設於吸入腔72之側壁。其中,吸入腔72的底部依序連接有混合管76及擴散管78,且混合管76及/或擴散管78係沉浸於內槽53之洗滌液59中,較佳為可使微氣泡藉由向下噴射衝擊的動量抵達內槽53的最底部,再由最底部往上移動,藉以增加微氣泡接觸洗滌液59的時間,微氣泡通過洗滌液59的時間例如約為1至20秒,較佳為約1至10秒。除此之外,吸入腔72及/或氣體管路52之腔壁可選擇性具有清洗件,例如為噴嘴,用以例如先噴出洗滌液59後,再噴出空氣,藉以達到清潔腔壁內部之功效,並可保持吸入腔72及/或氣體管路52之腔壁乾燥。此外,清洗件較佳為沿著吸入腔72及/或氣體管路52之腔壁之切線方向且略呈傾斜地依序將洗滌液59及空氣高速噴入吸入腔72及/或氣體管路52中,藉以產生由上而下沿著吸入腔72及/或氣體管路52流動之螺旋氣流,可有效防止產生沉積物。
由於半導體製程所產生的製程廢氣會攜帶大量的微粒,因此傳統技術為了避免產生堵塞,例如真空抽氣裝置堵塞,必須要使用大量吹淨氣體(如氮氣)稀釋泵送氣體(即製程廢氣),始能防止堵塞問題,故必須使用較高操作規格的抽氣幫浦進行抽氣,無形中增加運作成本且耗費能源。相較於傳統技術,本發明可大幅度減少稀釋製程廢氣或不需稀釋製程廢氣,也可大幅度降低所需操作規格,如抽氣功率或抽氣速率。本發明在製程廢氣進入第二幫浦34之前,藉由電漿處理裝置40預先處理製程廢氣12,能夠有效分解前驅物之化學鍵結以降低產生微粒的可能性,且使得反應生成氣體16成為氣相。換言之,本發明不僅可使得製程廢氣12轉化成無害、穩定或是較易溶解於洗滌液之反應生成氣體16,還能使得固體微粒之尺寸縮小,以便容易被洗滌液捕捉,甚至完全去除微粒,所以本發明不容易發生堵塞現象。由此可知,本發明可採用較低之抽氣功率,且可延長維修週期,並防止二次污染環境,而且本發明之半導體廢氣處理系統係在低氣壓的狀況下進行電漿處理,部件損壞率較低,較穩定。因此,本發明可達到節能、環保及穩定地處理製程廢氣之功效。
除此之外,本發明之廢氣洗滌處理裝置50不僅可處理反應生成氣體16,還可產生第三低壓環境,其可提供負壓吸力,減輕真空抽氣裝置30運行所需功率,且能避免真空抽氣裝置30產生堵塞現象。詳言之,廢氣洗滌處理裝置50之進氣端50a係經由第三管件a3連通真空抽氣裝置30之第二幫浦34之排氣端34b吸入反應生成氣體16。其中,廢氣洗滌處理裝置50例如為濕式廢氣洗滌處理器及/或乾式廢氣洗滌處理器。本發明之廢氣洗滌處理裝置50較佳為可提供負壓吸力之濕式廢氣洗滌器,且更佳為一種射流式微氣泡溼式廢氣洗滌裝置,其可產生粗真空狀態(約400 torr-600 torr)的第三低壓環境。由於廢氣洗滌處理裝置50係連通第二幫浦34,因此廢氣洗滌處理裝置50在第二幫浦34與廢氣洗滌處理裝置50之間所產生的負壓吸力可提供輔助吸力,有助於反應生成氣體16經由第二幫浦34排放至廢氣洗滌處理裝置50中。換言之,藉由廢氣洗滌處理裝置50所產生的負壓吸力,本發明可防止低壓電漿處理後所得之反應生成氣體16及微粒產生回流現象,且可防止第二幫浦34產生堵塞現象,並減輕真空抽氣裝置30運行所需功率。
除此之外,依據本發明之半導體廢氣處理概念,如圖5所示,本發明可應用於改造現行廢氣處理系統,例如可就現有半導體已設置之真空幫浦進行改裝,分離其中增壓幫浦(即第一幫浦32)及乾式幫浦(即第二幫浦34),加入氣體混合器(即混合器60)及電漿處理裝置40,同時加入射流式微氣泡濕式廢氣洗滌裝置組成局部廢氣處理系統,取代現有電熱式或燃燒式局部廢氣處理系統。
綜上所述,本發明之半導體廢氣處理系統,採用低壓(low pressure)電漿處理裝置,具有以下優點:
(1) 真空抽氣裝置可產生第一低壓環境以抽出製程廢氣源所產生的製程廢氣,真空抽氣裝置可於第一幫浦與第二幫浦之間形成第二低壓環境,且電漿處理裝置可同時利用第二低壓環境對製程廢氣進行低壓電漿處理。又,電漿處理裝置可在製程廢氣開始被排放時才由待機狀態切換成運行狀態,以節省能源。
(2) 廢氣洗滌處理裝置係一種射流式微氣泡溼式廢氣洗滌裝置,其高速噴出洗滌液時可將低壓電漿處理後所得之反應生成氣體轉化成微氣泡,大幅度增加接觸面積及接觸時間,有助於溶解上述之反應生成氣體及捕捉微粒,並且可同時在進氣囗處產生約400torr至600torr之間的粗真空狀態,藉以吸入上述反應生成氣體及微粒以便進行洗滌,還可避免真空抽氣裝置產生堵塞現象,提升真空抽氣裝置運行效率並減少所需功率。
(3) 藉由設置電漿處理裝置在有害製程廢氣進入第二幫浦(乾式幫浦)之前先行處理製程廢氣,可大幅減少通入氮氣稀釋有毒氣體甚至不需通入氮氣,故能減少氮氧化物及一氧化碳之產生以避免二次污染,且能降低所需操作規格,如抽氣功率及抽氣流量。
(4) 藉由導入對應之反應氣體,例如氧氣及水氣,可形成穩定之前驅物,如氧化物,可有效使得較難處理製程廢氣形成較易處理之反應生成氣體,並且微小化微粒,甚至消除微粒,藉以減少有毒氣體及溫室氣體。
(5) 電漿處理裝置設於真空抽氣裝置之第一幫浦後,能有效防止電漿處理後所得之反應生成氣體及微粒回流至製程廢氣源中,再者第二幫浦及廢氣洗滌處理裝置也能提供負壓吸力,更有助於防止反應生成氣體及微粒回流至製程廢氣源中且能防止堵塞現象。
(6) 電漿處理裝置可有效分解原子層沉積(ALD)製程之前驅物之化學鍵結,且可使得反應生成氣體成為氣相以降低產生微粒的可能性,故能有效延長維修週期。
(7) 電漿處理裝置可使用同軸微波共振腔的結構,其優點在於能加長微波和電漿的反應長度而達到電漿均勻分布的目標。使用功率例如為介於 1,000W 至 5,000W之間,視處理廢氣種類及流量而決定。
以上所述僅為舉例性,而非為限制性者。任何未脫離本發明之精神與範疇,而對其進行之等效修改或變更,均應包含於後附之申請專利範圍中。
圖1為本發明之半導體廢氣處理系統之示意圖。
圖2為本發明之半導體廢氣處理系統應用於處理製程廢氣之示意圖。
圖3為本發明之廢氣洗滌處理裝置採用射流式微氣泡溼式廢氣洗滌裝置之示意圖。
圖4為本發明之電漿處理裝置採用微波電漿產生源之示意圖,其中圖4(B)為沿圖4(A)之I-I’剖面線所得之示意圖。
圖5為本發明之半導體廢氣處理概念應用於改造現行廢氣處理系統之示意圖。
10:半導體廢氣處理系統
12:製程廢氣
14:反應氣體
16:反應生成氣體
30:真空抽氣裝置
32:第一幫浦
32a:進氣端
32b:排氣端
34:第二幫浦
34a:進氣端
34b:排氣端
40:電漿處理裝置
42a:進氣端
42:電漿通道
50:廢氣洗滌處理裝置
50a:進氣端
60:混合器
60a:第一進氣端
60b:排氣端
60c:第二進氣端
61:混合腔
a1:第一管件
a2:第二管件
a3:第三管件
a4:第四管件
80:控制訊號

Claims (17)

  1. 一種半導體廢氣處理系統,適用於處理一製程廢氣源所產生之至少一製程廢氣,其特徵在於: 該半導體廢氣處理系統由一真空抽氣裝置、一電漿處理裝置及一廢氣洗滌處理裝置組成; 其中,該真空抽氣裝置採一第一幫浦及一第二幫浦之兩段式組合,該第一幫浦產生一第一低壓環境用以抽出該製程廢氣源所產生之該製程廢氣,該第二幫浦於該第一幫浦及該第二幫浦之間產生一第二低壓環境; 其中,該電漿處理裝置設於該第一幫浦與該第二幫浦之間,藉以使得該製程廢氣在進入該第二幫浦之前,該電漿處理裝置先在該第二低壓環境下對該製程廢氣進行一低壓電漿處理,以便將該製程廢氣轉化成一反應生成氣體並微小化或去除該製程廢氣所攜帶之複數個微粒;以及 其中,該廢氣洗滌處理裝置藉由一負壓射流管噴射出一洗滌液於該第二幫浦與該廢氣洗滌處理裝置之間產生一第三低壓環境,該負壓射流管經由該第二幫浦吸入該低壓電漿處理後所得之該反應生成氣體及該些微粒,且該反應生成氣體被噴射出之該洗滌液切割成複數個微氣泡,使得該洗滌液充分溶解該反應生成氣體以及捕捉該反應生成氣體所攜帶之該些微粒,其中該廢氣洗滌處理裝置所產生之該第三低壓環境之氣壓為400 torr至600 torr。
  2. 如請求項1所述之半導體廢氣處理系統,其中該真空抽氣裝置之該第一幫浦設於該製程廢氣源與該電漿處理裝置之間,藉以利用該第一幫浦隔絕該低壓電漿處理後所得之該反應生成氣體及其所攜帶之該些微粒,防止其產生回流而污染該製程廢氣源。
  3. 如請求項1所述之半導體廢氣處理系統,其中該電漿處理裝置依據一控制訊號於一待機狀態及一運作狀態之間進行切換,當該製程廢氣源開始排放該製程廢氣時,該電漿處理裝置才由該待機狀態切換成該運作狀態藉以在該第二低壓環境下對該製程廢氣進行該低壓電漿處理,當該製程廢氣源停止排放該製程廢氣時,該電漿處理裝置係由該運作狀態切換成該待機狀態。
  4. 如請求項3所述之半導體廢氣處理系統,其中該電漿處理裝置對該製程廢氣進行該低壓電漿處理時係同時依據該控制訊號先以一反應氣體混合該製程廢氣。
  5. 如請求項4所述之半導體廢氣處理系統,其中該電漿處理裝置利用一混合器導入該反應氣體,藉以使得該反應氣體混合該製程廢氣。
  6. 如請求項1所述之半導體廢氣處理系統,其中該製程廢氣為全氟碳化物(PFCs)、氮氧化物(NOx)、六氟化硫(SF 6)、三氟化氮(NF 3)、氨氣(NH 3)、硼乙烷(B 2H 6)、氫氟碳化物(HFCs)、碳氫化合物(C xH y)及/或CCl 4
  7. 如請求項1所述之半導體廢氣處理系統,其中該製程廢氣源若進行一原子層沉積(ALD)製程,則該製程廢氣為三甲基鋁(TMA)、四(乙基甲基氨基)鋯(TEMAZ)及/或四(乙基甲基氨基)鉿(TEMAH)。
  8. 如請求項6或7所述之半導體廢氣處理系統,其中該反應氣體為氧氣(O 2)、氦氣(He)、氬氣(Ar)、氮氣(N 2)、氫氣(H 2)及/或水氣(H 2O)。
  9. 如請求項1所述之半導體廢氣處理系統,其中該第一幫浦為增壓幫浦,該第二幫浦為乾式幫浦。
  10. 如請求項1所述之半導體廢氣處理系統,其中該真空抽氣裝置之該第一幫浦所產生之該第一低壓環境之氣壓為100 torr 至10 -3torr。
  11. 如請求項1所述之半導體廢氣處理系統,其中該真空抽氣裝置之該第二幫浦所產生之該第二低壓環境之氣壓為100 torr 至10 -3torr。
  12. 如請求項1所述之半導體廢氣處理系統,其中該廢氣洗滌處理裝置包含: 一處理槽,包含一內槽及一外槽,用以盛裝該洗滌液;以及 該負壓射流管,其中該洗滌液係經由該負壓射流管噴射注入該處理槽的該內槽中,藉以將該反應生成氣體切割形成該些微氣泡以溶解於該洗滌液中,再使得該些微氣泡所揚起之該洗滌液之水氣滿溢至該外槽中。
  13. 如請求項1所述之半導體廢氣處理系統,其中該電漿處理裝置為射頻電漿產生源、微波電漿產生源或高壓放電源。
  14. 如請求項1所述之半導體廢氣處理系統,其中該電漿處理裝置為具有同軸微波共振腔之微波電漿產生源。
  15. 如請求項14所述之半導體廢氣處理系統,其中該微波電漿產生源包含一微波源以及同軸設置之一金屬偶合天線、一陶瓷管及中空之一圓柱,其中該陶瓷管位於該圓柱之中心且該金屬偶合天線位於該陶瓷管之中心,該微波源設於該陶瓷管上且位於該金屬偶合天線之一側。
  16. 如請求項14所述之半導體廢氣處理系統,其中該微波電漿產生源的功率介於 1,000W 至 5,000W之間。
  17. 如請求項1所述之半導體廢氣處理系統,其中該製程廢氣源為一半導體製程室或者是一渦輪真空幫浦連接該半導體製程室以排放該製程廢氣。
TW111131934A 2021-09-08 一種半導體廢氣處理系統 TWI844078B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111131934A TWI844078B (zh) 2021-09-08 一種半導體廢氣處理系統

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111131934A TWI844078B (zh) 2021-09-08 一種半導體廢氣處理系統

Publications (2)

Publication Number Publication Date
TW202310915A TW202310915A (zh) 2023-03-16
TWI844078B true TWI844078B (zh) 2024-06-01

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120060759A1 (en) 1999-11-01 2012-03-15 Moore Robert R Falling film plasma reactor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120060759A1 (en) 1999-11-01 2012-03-15 Moore Robert R Falling film plasma reactor

Similar Documents

Publication Publication Date Title
CN101124410B (zh) 喷射泵
CN101472666B (zh) 从气流中除氟用的方法和装置
US8647580B2 (en) Gas abatement
US7438869B1 (en) Emission control system
CN1217704A (zh) 空气臭氧混合器及臭氧雾发生装置
TW202310916A (zh) 一種半導體廢氣處理系統
JP3235867U (ja) 半導体排気ガス処理システム
TWI844078B (zh) 一種半導體廢氣處理系統
KR101311834B1 (ko) Pfc 처리시스템
CN216825596U (zh) 一种半导体废气处理***
TW202310915A (zh) 一種半導體廢氣處理系統
CN115770468A (zh) 一种半导体废气处理***
CN205435428U (zh) 一种工业废气等离子体多重净化***
CN209872485U (zh) 一种雾化与射流曝气复合式污水臭氧氧化处理***
CN1253236C (zh) 全氟化物废气处理方法
CN110813068A (zh) 一种酚类废气的处理工艺
CN201618514U (zh) 电催化氧化联合石灰-石膏法的多种污染物同时脱除装置
CN113440989B (zh) 碳纳米管原位净化污染物的介质阻挡放电反应器及应用
CN111167246B (zh) 一种间接低温等离子活化还原脱硝的***和方法
CN213160190U (zh) 一种减水剂生产用废气处理装置
CN116036834A (zh) 一种半导体废气脱硝***和脱硝方法
GB2428599A (en) Apparatus for treating a gas stream
JP2004074058A (ja) 湿式排煙脱硫装置と方法
RU2317846C2 (ru) Барботажно-пенный аппарат
JP2003024746A (ja) 排ガス処理方法