TWI838307B - Light path adjustment mechanism - Google Patents

Light path adjustment mechanism Download PDF

Info

Publication number
TWI838307B
TWI838307B TW112131250A TW112131250A TWI838307B TW I838307 B TWI838307 B TW I838307B TW 112131250 A TW112131250 A TW 112131250A TW 112131250 A TW112131250 A TW 112131250A TW I838307 B TWI838307 B TW I838307B
Authority
TW
Taiwan
Prior art keywords
drive signal
segment
adjustment mechanism
path adjustment
optical path
Prior art date
Application number
TW112131250A
Other languages
Chinese (zh)
Other versions
TW202349101A (en
Inventor
林維賜
張語宸
程冠倫
Original Assignee
揚明光學股份有限公司
Filing date
Publication date
Application filed by 揚明光學股份有限公司 filed Critical 揚明光學股份有限公司
Priority to TW112131250A priority Critical patent/TWI838307B/en
Publication of TW202349101A publication Critical patent/TW202349101A/en
Application granted granted Critical
Publication of TWI838307B publication Critical patent/TWI838307B/en

Links

Abstract

A light path adjustment mechanism includes a carrier, an optical element, and an actuator that receives a drive signal. During the rise time in one period of the driving signal, at the stage when the voltage value continually increases would not be then subject to a decrease in voltage value. During the falling time in one period of the driving signal, at the stage when the voltage value continually decreases would not be then subject to an increase in voltage value.

Description

光路調整機構Optical path adjustment mechanism

本發明關於一種光路調整機構。The present invention relates to an optical path adjustment mechanism.

近年來,各種影像顯示技術已廣泛地應用於日常生活上。於一影像顯示裝置中,例如可設置一光路調整機構改變光線於裝置內的行進光路,以提供例如提高成像解析度、改善畫面品質等各種效果。然而,習知光路調整機構的構件數目、重量、體積均較大,難以進一步微型化。因此,亟需一種結構簡單、可靠度高且可大幅減少重量及體積的光路調整機構設計。In recent years, various image display technologies have been widely used in daily life. In an image display device, for example, an optical path adjustment mechanism can be set to change the optical path of light in the device to provide various effects such as improving imaging resolution and improving picture quality. However, the number of components, weight, and volume of conventional optical path adjustment mechanisms are large, making it difficult to further miniaturize. Therefore, there is an urgent need for an optical path adjustment mechanism design that has a simple structure, high reliability, and can significantly reduce weight and volume.

本發明的其他目的和優點可以從本發明所揭露的技術特徵中得到進一步的了解。為讓本發明之上述和其他目的、特徵和優點能更明顯易懂,下文特舉實施例並配合所附圖式,作詳細說明如下。Other purposes and advantages of the present invention can be further understood from the technical features disclosed in the present invention. In order to make the above and other purposes, features and advantages of the present invention more obvious and easy to understand, the following is a detailed description of the embodiments and the accompanying drawings.

根據本發明的一個觀點,提供一種光路調整機構,包含承載座、光學元件以及第一致動器。光學元件設在承載座,第一致動器用以使光學元件以第一軸為軸心作動,且第一致動器接收第一驅動訊號。第一驅動訊號符合以下特性:第一驅動訊號在一周期中,僅包含一脈衝上升段及一脈衝下降段,第一驅動訊號在脈衝上升段的時間內,電壓值增加後不再減少,且在脈衝下降段的時間內,電壓值減少後不再增加。According to one aspect of the present invention, an optical path adjustment mechanism is provided, comprising a support, an optical element, and a first actuator. The optical element is disposed on the support, the first actuator is used to actuate the optical element with a first axis as the axis, and the first actuator receives a first drive signal. The first drive signal meets the following characteristics: the first drive signal only includes a pulse rising segment and a pulse falling segment in one cycle, the voltage value of the first drive signal increases and then does not decrease during the pulse rising segment, and the voltage value decreases and then does not increase during the pulse falling segment.

根據本發明的上述觀點,可降低中高頻段的頻率響應,減少光學元件作動的噪音並使擺動角度的控制更為穩定及精確。According to the above viewpoints of the present invention, the frequency response of the mid- and high-frequency bands can be reduced, the noise of the optical element operation can be reduced, and the control of the swing angle can be made more stable and accurate.

根據本發明的一個觀點,提供一種光路調整機構,包含承載座、光學元件以及第一致動器。光學元件設在承載座,第一致動器用以使光學元件以第一軸為軸心作動。第一致動器接收第一驅動訊號,第一驅動訊號在一周期中,僅包含一脈衝上升段及一脈衝下降段。第一驅動訊號在脈衝上升段的時間內,第一驅動訊號的電壓值與時間的相對曲線變化,僅具有斜率實質大於等於零的區段,第一驅動訊號在脈衝下降段的時間內,第一驅動訊號的電壓值與時間的相對曲線變化,僅具有斜率實質小於等於零的區段。According to one viewpoint of the present invention, an optical path adjustment mechanism is provided, comprising a support seat, an optical element and a first actuator. The optical element is disposed on the support seat, and the first actuator is used to cause the optical element to actuate around the first axis. The first actuator receives a first drive signal, and the first drive signal only comprises a pulse rising segment and a pulse falling segment in one cycle. During the time of the pulse rising segment, the relative curve change of the voltage value of the first drive signal and time has only a section where the slope is substantially greater than or equal to zero, and during the time of the pulse falling segment, the relative curve change of the voltage value of the first drive signal and time has only a section where the slope is substantially less than or equal to zero.

根據本發明的上述觀點,可降低基頻外不同頻段的響應,且特別是偶數倍頻的頻段其降低響應的效果更佳,因此可減少光學元件作動的噪音並使擺動角度的控制更為穩定及精確。According to the above viewpoints of the present invention, the response of different frequency bands outside the baseband can be reduced, and the effect of reducing the response of the frequency band with even multiples is particularly good, thereby reducing the noise of the optical element operation and making the control of the swing angle more stable and accurate.

本發明的其他目的和優點可以從本發明所揭露的技術特徵中得到進一步的了解。為讓本發明之上述和其他目的、特徵和優點能更明顯易懂,下文特舉實施例並配合所附圖式,作詳細說明如下。Other purposes and advantages of the present invention can be further understood from the technical features disclosed in the present invention. In order to make the above and other purposes, features and advantages of the present invention more obvious and easy to understand, the following is a detailed description of the embodiments and the accompanying drawings.

有關下列實施例中所使用的用語「第一」、「第二」是為了辨識相同或相似本發明之前述及其他技術內容、特點與功效,在以下配合參考圖式之實施例的詳細說明中,將可清楚的呈現。的元件而使用。以下實施例中所提到的方向用語,例如:上、下、左、右、前或後等,僅是參考附加圖式的方向。因此,使用的方向用語是用來說明並非用來限制本發明。The terms "first" and "second" used in the following embodiments are used to identify the same or similar other technical contents, features and effects of the present invention as described above, which will be clearly presented in the detailed description of the embodiments with reference to the drawings. The directional terms mentioned in the following embodiments, such as up, down, left, right, front or back, etc., are only used to refer to the directions of the attached drawings. Therefore, the directional terms used are used to illustrate and are not used to limit the present invention.

下述實施例中之揭露內容揭示一種光路調整機構,其可運用於不同光學系統(例如顯示裝置、投影裝置等等)以調整或變化光路俾提供例如提升成像解析度、提高影像品質(消除暗區、柔和化影像邊緣)等效果而不限定,且光路調整機構於光學系統中的設置位置及配置方式完全不限定。The disclosed contents in the following embodiments reveal a light path adjustment mechanism, which can be used in different optical systems (such as display devices, projection devices, etc.) to adjust or change the light path to provide effects such as improving imaging resolution, improving image quality (eliminating dark areas, softening image edges) without limitation, and the setting position and configuration method of the light path adjustment mechanism in the optical system are completely unlimited.

圖1為本發明一實施例之光路調整機構的構件分解圖,圖2為圖1的光路調整機構於組裝後的平面示意圖。如圖1所示,光路調整機構100包含一承載座110、一基座120、一磁鐵座130、一支架140、一第一對可撓件152、一第二對可撓件154。承載座110包含一內框112及一外框114,外框114位於內框112的外側且藉由第一對可撓件152連接內框112,且內框112與外框114例如可具有同一水平高度。承載座110的外框114可藉由第二對可撓件154連接至基座120。承載座110及基座120可設置於支架140的一側,且磁鐵座130可設置於支架140的另一側。於本實施例中,支架140為具有一第一側142、一第二側144及一第三側146的U型外形,且可形成一缺口140a供其他光學構件置入或穿過。再者,光路調整機構100可包含一光學元件180及複數個致動器。光學元件180可設在承載座110,且例如可設在承載座110的內框112上,光學元件180例如可為一鏡片,且鏡片僅需能提供偏折光線的效果即可,其形式及種類並不限定,例如可為一透鏡(Lens)或一反射鏡(Mirror)。於本實施例中,複數個致動器例如可包含設在光學元件180的兩不同側的致動器160及致動器170,致動器160例如可包括線圈162及磁鐵164,且致動器170例如可包括線圈172與磁鐵174,磁鐵164、174可固定於磁鐵座130,因此當磁鐵座130固定於支架140的一側時,磁鐵164、174可隨之固定於支架140上。線圈162可固定於光學元件180的一側,且另一線圈172可固定於一線圈座176,線圈座176可固定於承載座110的外框114進而使線圈172固定於承載座110的外框114上。另外,上述承載座110、基座120及磁鐵座130例如可藉由螺絲或插銷的固定件190分別連接並固定至支架140。於另一實施例中,基座120亦可由支架140的一部分所構成,因基座120可直接固定於支架140或可為支架140的一部分,故承載座110的外框114可藉由第二對可撓件154連接至支架140。再者,於一實施例中,可設置一鏡片座192抵靠光學元件180的周緣以助於定位光學元件180。FIG. 1 is an exploded view of the components of the optical path adjustment mechanism of an embodiment of the present invention, and FIG. 2 is a schematic plan view of the optical path adjustment mechanism of FIG. 1 after assembly. As shown in FIG. 1 , the optical path adjustment mechanism 100 includes a support seat 110, a base 120, a magnet seat 130, a bracket 140, a first pair of flexible parts 152, and a second pair of flexible parts 154. The support seat 110 includes an inner frame 112 and an outer frame 114, the outer frame 114 is located on the outer side of the inner frame 112 and is connected to the inner frame 112 by the first pair of flexible parts 152, and the inner frame 112 and the outer frame 114 can have the same horizontal height, for example. The outer frame 114 of the support seat 110 can be connected to the base 120 by the second pair of flexible parts 154. The support seat 110 and the base 120 may be disposed on one side of the bracket 140, and the magnet seat 130 may be disposed on the other side of the bracket 140. In the present embodiment, the bracket 140 is a U-shaped shape having a first side 142, a second side 144 and a third side 146, and may form a notch 140a for other optical components to be placed in or pass through. Furthermore, the optical path adjustment mechanism 100 may include an optical element 180 and a plurality of actuators. The optical element 180 may be disposed on the support seat 110, and for example, may be disposed on the inner frame 112 of the support seat 110. The optical element 180 may be, for example, a lens, and the lens only needs to be able to provide the effect of deflecting light. Its form and type are not limited, for example, it may be a lens or a mirror. In this embodiment, the plurality of actuators may include, for example, an actuator 160 and an actuator 170 disposed on two different sides of the optical element 180. The actuator 160 may include, for example, a coil 162 and a magnet 164, and the actuator 170 may include, for example, a coil 172 and a magnet 174. The magnets 164 and 174 may be fixed to the magnet holder 130. Therefore, when the magnet holder 130 is fixed to one side of the bracket 140, the magnets 164 and 174 may be fixed to the bracket 140. The coil 162 may be fixed to one side of the optical element 180, and another coil 172 may be fixed to a coil holder 176. The coil holder 176 may be fixed to the outer frame 114 of the carrier 110, thereby fixing the coil 172 to the outer frame 114 of the carrier 110. In addition, the support 110, the base 120 and the magnet base 130 can be connected and fixed to the bracket 140 respectively by means of a fixing member 190 such as a screw or a latch. In another embodiment, the base 120 can also be formed by a part of the bracket 140. Since the base 120 can be directly fixed to the bracket 140 or can be a part of the bracket 140, the outer frame 114 of the support 110 can be connected to the bracket 140 by means of a second pair of flexible members 154. Furthermore, in one embodiment, a lens seat 192 can be provided against the periphery of the optical element 180 to help position the optical element 180.

如圖2所示,連接於內框112及外框114之間的第一對可撓件152可構成例如平行X軸方向的第一軸,且連接於外框114及基座120(支架140)之間的第二對可撓件154可構成例如平行Y軸方向的第二軸。於本實施例中,致動器160及致動器170分別設在光學元件180互成直角的相鄰兩側,但本發明不限於此。致動器160(包含圖1所示設在光學元件180的線圈162及設在支架140的磁鐵164)於通電時產生的磁吸力或磁斥力可作用於光學元件180的一端,使光學元件180連同內框112以圖2所示的第一對可撓件152的軸向(X軸)為軸心往復擺動。同理,致動器170(包含圖1所示設在承載座外框114的線圈172及設在支架140的磁鐵174)於通電時產生的磁吸力或磁斥力可作用於承載座外框114的一端,使光學元件180連同外框114以圖2所示的第二對可撓件154的軸向(Y軸)為軸心往復擺動。因此光學元件180可以產生兩個不同軸向上的擺動角度範圍,往復擺動或轉動至不同位置以將入射光偏折至不同方向,獲得調整或變化光線行進光路的效果。舉例而言,光學元件180可於兩個不同軸向上快速擺動而相對支架140產生四個不同的傾斜位置,因此原本入射至光學元件180的一畫素影像,被於四個不同傾斜位置快速變換的光學元件180偏折後可產生四個畫素影像,獲得將畫素解析度提高至4倍的效果。藉由本發明實施例的光路調整機構調整或變化光路,可視實際需求產生不同的效果,例如可用以提升投影解析度、提高影像品質(消除暗區、柔和化影像邊緣)等等而不限定。再者,藉由上述實施例的設計,因致動器的部分結構可直接設置於承載座上,可減少光路調整機構整體的體積、重量或元件數,且針對每一軸僅單側設有致動器可進一步減少體積及重量並降低製造成本。As shown in FIG. 2 , the first pair of flexible members 152 connected between the inner frame 112 and the outer frame 114 may constitute, for example, a first axis parallel to the X-axis direction, and the second pair of flexible members 154 connected between the outer frame 114 and the base 120 (bracket 140) may constitute, for example, a second axis parallel to the Y-axis direction. In this embodiment, the actuator 160 and the actuator 170 are respectively disposed on two adjacent sides of the optical element 180 at right angles to each other, but the present invention is not limited thereto. The magnetic attraction or repulsion generated by the actuator 160 (including the coil 162 provided on the optical element 180 and the magnet 164 provided on the bracket 140 as shown in FIG. 1 ) when powered on can act on one end of the optical element 180, so that the optical element 180 and the inner frame 112 can reciprocate around the axis (X axis) of the first pair of flexible members 152 shown in FIG. 2 . Similarly, the magnetic attraction or repulsion generated by the actuator 170 (including the coil 172 provided on the carrier outer frame 114 and the magnet 174 provided on the bracket 140 as shown in FIG. 1 ) when powered on can act on one end of the carrier outer frame 114, so that the optical element 180 and the outer frame 114 can reciprocate around the axis (Y axis) of the second pair of flexible members 154 shown in FIG. 2 . Therefore, the optical element 180 can generate a swing angle range in two different axial directions, and reciprocate or rotate to different positions to deflect the incident light to different directions, thereby obtaining the effect of adjusting or changing the optical path of the light. For example, the optical element 180 can be quickly swung in two different axial directions to generate four different tilt positions relative to the bracket 140, so that a pixel image originally incident on the optical element 180 can be deflected by the optical element 180 that changes rapidly in four different tilt positions to generate four pixel images, thereby obtaining the effect of increasing the pixel resolution by 4 times. By adjusting or changing the optical path through the optical path adjustment mechanism of the embodiment of the present invention, different effects can be generated according to actual needs, such as improving projection resolution, improving image quality (eliminating dark areas, softening image edges), etc. without limitation. Furthermore, through the design of the above-mentioned embodiment, since part of the structure of the actuator can be directly arranged on the supporting base, the overall volume, weight or number of components of the optical path adjustment mechanism can be reduced, and only one side of each axis is provided with an actuator, which can further reduce the volume and weight and reduce the manufacturing cost.

圖3A為依本發明一實施例,顯示於一光學系統中光路調整機構搭配其他光學元件的構件示意圖。如圖3A所示,於光學系統200中,光路調整機構100例如可配置於鄰近光閥模組210和稜鏡220位置處。光閥模組210例如可為一數位微鏡元件(Digital Micro-mirror Device, DMD)、矽基液晶面板(liquid-crystal-on-silicon panel, LCOS Panel)或是穿透式液晶面板等,且稜鏡220例如可為全內反射稜鏡(TIR Prism)、反向全內反射稜鏡(RTIR Prism)或偏振分光稜鏡(PBS prism)等等而不限定。於一實施例中,因支架140的一端可形成一缺口140a,故光閥模組210的一部分可伸入支架140的缺口140a,因此光路調整機構100可避開光閥模組210使組裝後的位置更靠近稜鏡220,如此可進一步縮小整體的體積且可縮短鏡頭的背焦。圖3B為圖3A的光閥模組相對光路調整機構的配置關係例的示意簡圖。於此光閥模組210的一表面定義為輸出影像光束的一側的最外圍構件(例如玻璃保護蓋212)的表面,舉例而言,若圖3A的光閥模組210為一數位微鏡元件,則光閥模組210的表面210a可為玻璃保護蓋212的表面。於其他的實施例中,若光閥模組210為一矽基液晶面板,則光閥模組210的表面210a可為玻璃基板的表面;若光閥模組210為一穿透式液晶面板,則光閥模組210的表面210a可為偏光板的表面。如圖3B所示,光閥模組210的表面210a的法線N與支架140有最靠近表面210a的交點P,亦即交點P為表面210a的法線N與支架140交會所可能形成的多個交點中,最靠近表面210a的交點。再者,支架140具有當投影在法線N上會最遠離交點P的一端點Q,則於一實施例中,可配置使交點P至表面210a在法線N的距離D1,小於端點Q投影在法線N上的投影點C與交點P在法線N的距離D2,如此光閥模組210可更靠近例如圖3A所示的鏡片180a及稜鏡220,獲得縮小整體的體積且可縮短鏡頭背焦的效果。於一實施例中,如圖3A所示,光學元件180可為一鏡片180a,鏡片180a的表面與稜鏡220的最短間距可小於3mm,且光學元件180(鏡片180a)的表面與光閥模組210的表面210a的間距可小於1mm。需注意於上述實施例中,支架140的U型外形僅為例示而不限定,支架140僅需具有能讓光閥模組210(或於空間上可能干涉光路調整機構的其他構件)的一部分伸入的空間即可,其外型完全不限定。於另一實施例中,如圖3C所示,支架140於臨近光閥模組210的一端可延伸形成一凸耳結構140c,且光閥模組210可置入凸耳結構140c圈圍出的開口140d,亦即支架140僅需於臨近光閥模組210的一端對應光閥模組210形成缺口或延伸部,且缺口或延伸部可界定出容置至少部分光閥模組210的空間,即可獲得讓光路調整機構200組裝後的位置得以更靠近稜鏡220的效果。FIG3A is a schematic diagram showing a light path adjustment mechanism in an optical system in combination with other optical elements according to an embodiment of the present invention. As shown in FIG3A , in the optical system 200, the light path adjustment mechanism 100 can be configured near the position of the light valve module 210 and the prism 220, for example. The light valve module 210 can be, for example, a digital micro-mirror device (DMD), a liquid crystal on silicon panel (LCOS Panel), or a transmissive liquid crystal panel, and the prism 220 can be, for example, a total internal reflection prism (TIR Prism), a reverse total internal reflection prism (RTIR Prism), or a polarization splitting prism (PBS prism), etc., without limitation. In one embodiment, since a notch 140a can be formed at one end of the bracket 140, a portion of the light valve module 210 can extend into the notch 140a of the bracket 140, so that the optical path adjustment mechanism 100 can avoid the light valve module 210 so that the assembled position is closer to the prism 220, which can further reduce the overall volume and shorten the back focus of the lens. FIG3B is a schematic diagram of an example of the configuration relationship between the light valve module of FIG3A and the light path adjustment mechanism. Here, a surface of the light valve module 210 is defined as the surface of the outermost component (such as the glass protective cover 212) on one side of the output image light beam. For example, if the light valve module 210 of FIG3A is a digital microlens element, the surface 210a of the light valve module 210 can be the surface of the glass protective cover 212. In other embodiments, if the light valve module 210 is a liquid crystal on silicon panel, the surface 210a of the light valve module 210 may be the surface of a glass substrate; if the light valve module 210 is a transmissive liquid crystal panel, the surface 210a of the light valve module 210 may be the surface of a polarizing plate. As shown in FIG. 3B , the normal line N of the surface 210a of the light valve module 210 and the bracket 140 have an intersection point P closest to the surface 210a, that is, the intersection point P is the intersection point closest to the surface 210a among the multiple intersection points that may be formed by the intersection of the normal line N of the surface 210a and the bracket 140. Furthermore, the bracket 140 has an end point Q that is farthest from the intersection point P when projected on the normal line N. In one embodiment, the bracket 140 can be configured so that the distance D1 from the intersection point P to the surface 210a on the normal line N is smaller than the distance D2 between the projection point C of the end point Q projected on the normal line N and the intersection point P on the normal line N. In this way, the light valve module 210 can be closer to the lens 180a and the prism 220 shown in FIG. 3A, for example, to achieve the effect of reducing the overall volume and shortening the back focus of the lens. In one embodiment, as shown in FIG. 3A , the optical element 180 may be a lens 180a, and the shortest distance between the surface of the lens 180a and the prism 220 may be less than 3 mm, and the distance between the surface of the optical element 180 (lens 180a) and the surface 210a of the light valve module 210 may be less than 1 mm. It should be noted that in the above embodiment, the U-shaped shape of the bracket 140 is only an example and not a limitation. The bracket 140 only needs to have a space for a portion of the light valve module 210 (or other components that may interfere with the optical path adjustment mechanism in space) to extend into, and its appearance is completely unlimited. In another embodiment, as shown in FIG. 3C , the bracket 140 may extend at one end of the low beam valve module 210 to form a lug structure 140c, and the low beam valve module 210 may be placed into the opening 140d surrounded by the lug structure 140c, that is, the bracket 140 only needs to form a notch or an extension portion at one end of the low beam valve module 210 corresponding to the low beam valve module 210, and the notch or the extension portion may define a space for accommodating at least a portion of the low beam valve module 210, so as to obtain the effect of allowing the optical path adjustment mechanism 200 to be closer to the prism 220 after assembly.

再者,上述實施例的致動器的構件(例如磁鐵與線圈)分佈方式僅為例示而不限定。舉例而言,請參考圖4,若要使光學元件180以第一對可撓件152為軸(X軸方向)擺動,致動器的一部分160a(磁鐵或線圈)需設在光學元件180或承載座內框112(例如位置X1),另一部分160b(線圈或磁鐵)則可設在承載座外框114、基座120或支架140(例如位置X2或位置X3均可)。再者,若要使光學元件180以第二對可撓件154為軸(Y軸方向)擺動,致動器的一部分170a(磁鐵或線圈)需設在或承載座外框114(例如位置Y1),另一部分170b(線圈或磁鐵)則可設在光學元件180、承載座內框112、基座120或支架140(例如位置Y2或位置Y3均可)。Furthermore, the distribution of the components (e.g., magnets and coils) of the actuator of the above-mentioned embodiment is for illustration only and is not intended to be limiting. For example, referring to FIG. 4 , if the optical element 180 is to be swung about the first pair of flexible members 152 (in the X-axis direction), a portion 160a (magnet or coil) of the actuator needs to be disposed on the optical element 180 or the inner frame 112 of the support base (e.g., position X1), and another portion 160b (coil or magnet) can be disposed on the outer frame 114 of the support base, the base 120, or the bracket 140 (e.g., position X2 or position X3). Furthermore, if the optical element 180 is to be swung about the second pair of flexible parts 154 (in the Y-axis direction), a portion 170a of the actuator (a magnet or a coil) needs to be disposed on or in the outer frame 114 of the support base (e.g., position Y1), and the other portion 170b (a coil or a magnet) can be disposed on the optical element 180, the inner frame 112 of the support base, the base 120, or the bracket 140 (e.g., position Y2 or position Y3).

於一實施例中,承載座110、基座120、磁鐵座130、支架140、第一對可撓件152、第二對可撓件154可利用相同材質一體成型、或者其中兩個或超過兩個的組件可先一體成形再與其餘元件組合均可。舉例而言,承載座110、基座120、支架140、第一對可撓件152及第二對可撓件154可利用相同材質一體成型再連接磁鐵座130。再者,於一實施例中,亦可在支架140上直接形成容置磁鐵的結構而可省略磁鐵座130。In one embodiment, the support base 110, the base 120, the magnet base 130, the bracket 140, the first pair of flexible parts 152, and the second pair of flexible parts 154 can be integrally formed using the same material, or two or more of the components can be integrally formed first and then assembled with the remaining components. For example, the support base 110, the base 120, the bracket 140, the first pair of flexible parts 152, and the second pair of flexible parts 154 can be integrally formed using the same material and then connected to the magnet base 130. Furthermore, in one embodiment, a structure for accommodating magnets can be directly formed on the bracket 140 and the magnet base 130 can be omitted.

依上述各個實施例的設計,可提供一種光路調整機構製造方法,例如首先提供一支架與一光閥模組,再於支架設置一承載座以承載一光學元件。光閥模組具有一表面,表面的一法線與支架有一最靠近表面的交點,支架具有投影在法線上最遠離交點的一端點,且交點至表面在法線的距離,小於端點投影在法線上的投影點與交點的距離。再者,可設置一第一對可撓件連接承載座的內框及外框,且設置一第二對可撓件連接承載座與支架,再於第一軸的兩側中的僅其中一側設置一致動器,且於第二軸的兩側中的僅其中一側設置另一致動器。According to the designs of the above-mentioned embodiments, a method for manufacturing an optical path adjustment mechanism can be provided, for example, a bracket and a light valve module are first provided, and then a support seat is set on the bracket to support an optical element. The light valve module has a surface, a normal line of the surface and the bracket have an intersection point closest to the surface, the bracket has an end point projected on the normal line that is farthest from the intersection point, and the distance from the intersection point to the surface on the normal line is less than the distance between the projection point of the end point projected on the normal line and the intersection point. Furthermore, a first pair of flexible parts can be set to connect the inner frame and the outer frame of the support seat, and a second pair of flexible parts can be set to connect the support seat and the bracket, and then an actuator is set on only one of the two sides of the first axis, and another actuator is set on only one of the two sides of the second axis.

圖5為本發明一實施例的致動器所使用的驅動訊號的示意圖。如圖5所示,本實施例的驅動訊號S可為週期性的階梯式方波,且於每一周期時間例如可包含一最低電位區間P1、一脈衝上升時間P2、一最高電位區間P3及一脈衝下降時間P4,於最低電位區間P1中光學元件維持在一擺動位置,於最高電位區間P3中光學元件維持在另一擺動位置,且藉由脈衝上升時間P2及脈衝下降時間P4使光學元件180在二個不同擺動位置之間變換。於本實施例中,最低電位區間P1具有驅動訊號S的最低電位SV,最高電位區間P3具有驅動訊號S的最高電位SP,脈衝上升時間P2隨時間變化由最低電位SV上昇至最高電位SP,且脈衝下降時間P4隨時間變化由最高電位SP位置下降至最低電位SV。依本實施例的設計,每一周期時間內的脈衝上升時間P2的電壓值漸增且其中具有實質上不隨時間變化的平坦區段F,因此產生一上升的階梯狀波型且不具有增加後再減少的電壓值變化。每一周期時間內脈衝下降時間P4的電壓值漸減且其中具有不隨時間變化的平坦區段F,因此產生一下降的階梯狀波型且不具有減少後再增加的電壓值變化。於本實施例中,各個平坦區段F的電壓值均位於最高電位SP與最低電位SV之間,且各個平坦區段定義為電壓值變化量(即平坦區段中的最高電壓值與最低電壓值的差值)小於最高電位SP及最低電位SV的差值的0.1%。再者,於一實施例中,平坦區段F的斜率的絕對值小於1 V/ms。FIG5 is a schematic diagram of a driving signal used by an actuator of an embodiment of the present invention. As shown in FIG5, the driving signal S of the present embodiment may be a periodic step-type square wave, and each cycle time may include, for example, a minimum potential interval P1, a pulse rise time P2, a maximum potential interval P3, and a pulse fall time P4. In the minimum potential interval P1, the optical element is maintained at one swing position, and in the maximum potential interval P3, the optical element is maintained at another swing position, and the optical element 180 is switched between two different swing positions by the pulse rise time P2 and the pulse fall time P4. In this embodiment, the lowest potential interval P1 has the lowest potential SV of the driving signal S, the highest potential interval P3 has the highest potential SP of the driving signal S, the pulse rise time P2 rises from the lowest potential SV to the highest potential SP with time, and the pulse fall time P4 falls from the highest potential SP position to the lowest potential SV with time. According to the design of this embodiment, the voltage value of the pulse rise time P2 in each cycle time increases gradually and has a flat section F that does not substantially change with time, thereby generating an ascending step-shaped waveform without a voltage value change that increases and then decreases. The voltage value of the pulse falling time P4 decreases gradually within each cycle time and has a flat section F that does not change with time, thereby generating a descending step-shaped waveform without a voltage value change that decreases and then increases. In this embodiment, the voltage value of each flat section F is between the highest potential SP and the lowest potential SV, and each flat section is defined as a voltage value change (i.e., the difference between the highest voltage value and the lowest voltage value in the flat section) that is less than 0.1% of the difference between the highest potential SP and the lowest potential SV. Furthermore, in one embodiment, the absolute value of the slope of the flat section F is less than 1 V/ms.

圖6為利用圖5的驅動訊號驅動光學元件所產生的不同擺動位置的示意圖。舉例而言,當致動器160接收驅動訊號S的最低電位區間P1時,致動器160致動光學元件180使其變換至位置M,當致動器160接收驅動訊號S的最高電位區間P3時,致動器160致動光學元件180使其變換至位置L。藉由脈衝上升時間P2及脈衝下降時間P4可使光學元件180於位置M與位置L之間變換。光學元件180在位置M及位置L之間偏擺一角度θ,且最低電位區間P1及最高電位區間P3的振幅可決定角度θ的大小。FIG6 is a schematic diagram of different swing positions generated by driving the optical element using the driving signal of FIG5. For example, when the actuator 160 receives the lowest potential interval P1 of the driving signal S, the actuator 160 actuates the optical element 180 to change it to position M, and when the actuator 160 receives the highest potential interval P3 of the driving signal S, the actuator 160 actuates the optical element 180 to change it to position L. The optical element 180 can be switched between position M and position L by the pulse rise time P2 and the pulse fall time P4. The optical element 180 deflects an angle θ between position M and position L, and the amplitude of the lowest potential interval P1 and the highest potential interval P3 can determine the size of the angle θ.

圖7顯示利用圖5之驅動訊號(變化段為階梯狀波形)所產生的擺動的傅立葉級數頻率分量分佈圖,圖8顯示利用圖9之驅動訊號(變化段為正弦波波形)所產生的擺動的傅立葉級數頻率分量分佈圖。比較圖7及圖8的虛線方框部分可清楚看出,利用圖7變化段為階梯狀波形的驅動訊號可降低中高頻段(例如300-780Hz)的頻率響應,以減少光學元件作動的噪音並使擺動角度的控制更為穩定及精確。於一實施例中,當一周期時間的脈衝上升時間P2與脈衝下降時間P4的時間長度分別介於0.8-1.0ms之間時,頻率響應的降低效果較佳。FIG7 shows the Fourier series frequency component distribution diagram of the swing generated by the driving signal of FIG5 (the variation section is a step-shaped waveform), and FIG8 shows the Fourier series frequency component distribution diagram of the swing generated by the driving signal of FIG9 (the variation section is a sine wave waveform). Comparing the dotted box parts of FIG7 and FIG8, it can be clearly seen that the use of the driving signal with a step-shaped waveform in FIG7 can reduce the frequency response of the mid-high frequency band (e.g., 300-780Hz), thereby reducing the noise of the optical element movement and making the control of the swing angle more stable and accurate. In one embodiment, when the duration of the pulse rise time P2 and the pulse fall time P4 of a cycle time are respectively between 0.8-1.0 ms, the frequency response reduction effect is better.

依上述各個實施例的設計,可提供一種光路調整機構製造方法,例如首先於一承載座設置一第一軸及一第二軸,再於承載座設置一光學元件。再者,可於第一軸的一側設置一致動器,並於第二軸的一側設置另一致動器。各個致動器可依據一驅動訊號使光學元件於至少一第一擺動位置及一第二擺動位置之間變換,驅動訊號的一周期時間的脈衝上升時間內具有電壓值實質上不隨時間變化的一第一平坦區段,於驅動訊號的周期時間的脈衝下降時間內具有電壓值實質上不隨時間變化的一第二平坦區段,第一平坦區段及第二平坦區段的電壓值均位於第一驅動訊號的周期時間的最高電位及最低電位之間,且各個平坦區段的電壓值變化量小於最高電位及最低電位的差值的0.1%。According to the designs of the above embodiments, a method for manufacturing an optical path adjustment mechanism can be provided, for example, firstly a first axis and a second axis are arranged on a support, and then an optical element is arranged on the support. Furthermore, an actuator can be arranged on one side of the first axis, and another actuator can be arranged on one side of the second axis. Each actuator can make the optical element switch between at least one first swing position and a second swing position according to a driving signal, and has a first flat section in which the voltage value does not substantially change with time during the pulse rise time of a cycle time of the driving signal, and has a second flat section in which the voltage value does not substantially change with time during the pulse fall time of the cycle time of the driving signal, and the voltage values of the first flat section and the second flat section are both between the highest potential and the lowest potential of the cycle time of the first driving signal, and the voltage value variation of each flat section is less than 0.1% of the difference between the highest potential and the lowest potential.

圖10為本發明另一實施例的致動器的所使用的驅動訊號的示意圖。於本實施例中,第一對可撓件152 (X軸方向)的兩側可設置兩個致動器160,兩個致動器160可輸入兩個不同訊號協同控制光學元件180以X軸為軸心的擺動,第二對可撓件154 (Y軸方向)的兩側可設置兩個致動器170,兩個致動器170可輸入兩個不同訊號協同控制光學元件180以Y軸方向為軸心的擺動。圖10顯示針對每一軸(例如X軸方向或Y軸方向)的兩個不同訊號S1、S2的波形,依本實施例的設計,振幅較小的訊號為S1且具有振幅A1,振幅較大的訊號為S2且具有振幅A2,則訊號S1、S2的振幅比值A2/A1符合 1<(A2/A1)≦(7/6) 時,可降低基頻外不同頻段的響應,且特別是偶數倍頻的頻段其降低響應的效果更佳。圖11顯示訊號S1、S2的振幅比值A2/A1= 7/6 時所產生的擺動的傅立葉級數頻率分量分佈圖,由圖11可清楚看出於該比值下基頻外的不同頻段的響應明顯下降,特別是偶數倍頻的頻段其降低響應的效果更佳,因此可減少光學元件作動的噪音並使擺動角度的控制更為穩定及精確。Fig. 10 is a schematic diagram of the driving signals used by the actuator of another embodiment of the present invention. In this embodiment, two actuators 160 can be arranged on both sides of the first pair of flexible members 152 (X-axis direction), and the two actuators 160 can input two different signals to coordinately control the swing of the optical element 180 with the X-axis as the axis, and two actuators 170 can be arranged on both sides of the second pair of flexible members 154 (Y-axis direction), and the two actuators 170 can input two different signals to coordinately control the swing of the optical element 180 with the Y-axis as the axis. FIG10 shows the waveforms of two different signals S1 and S2 for each axis (e.g., the X-axis direction or the Y-axis direction). According to the design of this embodiment, the signal with a smaller amplitude is S1 and has an amplitude A1, and the signal with a larger amplitude is S2 and has an amplitude A2. When the amplitude ratio A2/A1 of the signals S1 and S2 satisfies 1<(A2/A1)≦(7/6), the response of different frequency bands outside the baseband can be reduced, and the effect of reducing the response of the frequency bands with even multiples is particularly better. FIG11 shows the Fourier series frequency component distribution diagram of the swing generated when the amplitude ratio of the signals S1 and S2 is A2/A1=7/6. It can be clearly seen from FIG11 that the response of different frequency bands outside the baseband is significantly reduced under this ratio, especially the frequency bands with even multiples have a better effect of reducing the response, thereby reducing the noise of the optical component movement and making the control of the swing angle more stable and precise.

上述各個實施例的致動器的結構及作動方式完全不限定,僅需能提供使光學元件傾斜並擺動的作用力即可。於另一實施例中,承載座110例如可由磁性材料構成,且致動器可為一空心線圈或一電磁鐵,當線圈或電磁鐵通電時可產生吸力吸引承載座,使光學元件180一端下壓產生擺動運動。於另一實施例中,如圖12所示,亦可利用設置於承載座110的一壓電元件250,透過在壓電元件250上施加電場可使壓電元件250產生壓縮或拉伸變形,意即可將電能轉為機械能以使光學元件180往復擺動達到調整光路效果。The structure and actuation mode of the actuators in the above-mentioned embodiments are not limited at all, and they only need to provide a force that causes the optical element to tilt and swing. In another embodiment, the support seat 110 can be made of a magnetic material, for example, and the actuator can be a hollow coil or an electromagnet. When the coil or the electromagnet is energized, it can generate a suction force to attract the support seat, so that one end of the optical element 180 is pressed down to generate a swinging motion. In another embodiment, as shown in FIG. 12 , a piezoelectric element 250 disposed on the support seat 110 can also be used. By applying an electric field to the piezoelectric element 250, the piezoelectric element 250 can be compressed or stretched, which means that electrical energy can be converted into mechanical energy to cause the optical element 180 to swing back and forth to achieve the effect of adjusting the optical path.

圖13為本發明一實施例的光路調整機構應用於一光學系統的示意圖。請參照圖11,光學裝置400包括照明系統310、光閥模組320、投影鏡頭260以及光路調整機構100。其中,照明系統310具有光源312,其適於提供光束314,且光閥模組320配置光束314的傳遞路徑上。此光閥模組320適於將光束314轉換為多數個子影像314a。此外,投影鏡頭260配置於這些子影像314a的傳遞路徑上,且光閥模組320係位於照明系統310與投影鏡頭260之間。另外,光路調整機構100可配置於光閥模組320與投影鏡頭260之間或投影鏡頭260內,例如可以在光閥模組320和全內反射稜鏡319之間或是可以在全內反射稜鏡319和投影鏡頭260之間,且位於這些子影像314a的傳遞路徑上。上述之光學裝置400中,光源312例如可包括紅光發光二極體312R、綠光發光二極體312G、及藍光發光二極體312B,各個發光二極體發出的色光經由一合光裝置316合光後形成光束314,光束314會依序經過蠅眼透鏡陣列(fly-eye lens array) 317、光學元件組318及全內反射稜鏡(TIR Prism) 319。之後,全內反射稜鏡319會將光束314反射至光閥模組320。此時,光閥模組320會將光束314轉換成多數個子影像314a,而這些子影像314a會依序通過全內反射稜鏡319及光路調整機構100,並經由投影鏡頭260將這些子影像314a投影於螢幕350上。於本實施例中,當這些子影像314a經過光路調整機構100時,光路調整機構100會改變部分這些子影像314a的傳遞路徑。也就是說,通過此光路調整機構100的這些子影像314a會投影在螢幕350上的第一位置(未繪示),另一部份時間內通過此光路調整機構100的這些子影像314a則會投影在螢幕350上的第二位置(未繪示),其中第一位置與第二位置係在水平方向或/且垂直方向上相差一固定距離。於本實施例中,由於光路調整機構100能使這些子影像314a之成像位置在水平方向或/且垂直方向上移動一固定距離,因此能提高影像之水平解析度或/且垂直解析度。當然,上述實施例僅為例示,本發明實施例的光路調整機構可運用於不同光學系統以獲得不同效果,且光路調整機構於光學系統中的設置位置及配置方式完全不限定。例如圖14所示,亦可將光路調整機構100設在光學裝置410的投影鏡頭260內。FIG13 is a schematic diagram of an optical path adjustment mechanism of an embodiment of the present invention applied to an optical system. Referring to FIG11 , the optical device 400 includes an illumination system 310, a light valve module 320, a projection lens 260, and an optical path adjustment mechanism 100. The illumination system 310 has a light source 312, which is suitable for providing a light beam 314, and the light valve module 320 is configured on the transmission path of the light beam 314. The light valve module 320 is suitable for converting the light beam 314 into a plurality of sub-images 314a. In addition, the projection lens 260 is configured on the transmission path of these sub-images 314a, and the light valve module 320 is located between the illumination system 310 and the projection lens 260. In addition, the optical path adjustment mechanism 100 can be configured between the light valve module 320 and the projection lens 260 or inside the projection lens 260, for example, between the light valve module 320 and the total internal reflection prism 319 or between the total internal reflection prism 319 and the projection lens 260, and is located on the transmission path of these sub-images 314a. In the optical device 400, the light source 312 may include, for example, a red LED 312R, a green LED 312G, and a blue LED 312B. The colored light emitted by each LED is combined by a light combining device 316 to form a light beam 314. The light beam 314 passes through a fly-eye lens array 317, an optical element assembly 318, and a total internal reflection prism 319 in sequence. Afterwards, the total internal reflection prism 319 reflects the light beam 314 to the light valve module 320. At this time, the light valve module 320 converts the light beam 314 into a plurality of sub-images 314a, and these sub-images 314a pass through the total internal reflection prism 319 and the optical path adjustment mechanism 100 in sequence, and are projected onto the screen 350 via the projection lens 260. In this embodiment, when these sub-images 314a pass through the optical path adjustment mechanism 100, the optical path adjustment mechanism 100 changes the transmission paths of some of these sub-images 314a. That is to say, these sub-images 314a passing through the optical path adjustment mechanism 100 will be projected at a first position (not shown) on the screen 350, and these sub-images 314a passing through the optical path adjustment mechanism 100 during another part of the time will be projected at a second position (not shown) on the screen 350, wherein the first position and the second position are different by a fixed distance in the horizontal direction or/and the vertical direction. In this embodiment, since the optical path adjustment mechanism 100 can move the imaging position of these sub-images 314a in the horizontal direction or/and the vertical direction by a fixed distance, the horizontal resolution or/and the vertical resolution of the image can be improved. Of course, the above-mentioned embodiments are only examples, and the optical path adjustment mechanism of the embodiments of the present invention can be applied to different optical systems to obtain different effects, and the setting position and configuration method of the optical path adjustment mechanism in the optical system are not limited at all. For example, as shown in FIG. 14 , the optical path adjustment mechanism 100 may be disposed in the projection lens 260 of the optical device 410 .

光閥模組(Light valve) 一詞已為投影產界廣泛使用,在此產業中大多可用來指一種空間光調變器(Spatial Light Modulator, SLM)中的一些獨立光學單元。所謂空間光調變器,含有許多獨立單元(獨立光學單元),這些獨立單元在空間上排列成一維或二維陣列。每個單元都可獨立地接受光 學訊號或電學訊號的控制,利用各種物理效應(泡克爾斯效應、克爾效應、聲光效應、磁光效應、半導體的自電光效應或光折變效應等)改變自身的光學特性,從而對照明在該複數個獨立單元的照明光束進行調製,並輸出影像光束。獨立單元可為微型反射鏡或液晶單元等光學元件。亦即,光閥模組可以是數位微鏡元件(Digital Micro-mirror Device, DMD)、矽基液晶面板(liquid-crystal-on-silicon panel, LCOS Panel)或是穿透式液晶面板等。 [0039]       投影機是利用光學投影方式將影像投射至螢幕上的裝置,在 投影機產業中,一般依內部所使用的光閥模組的不同,將投影機分為陰極射線管(Cathode Ray Tube) 式投影機、液晶顯示器(Liquid Crystal Display, LCD)式投影機、數位光投影機(Digital Light Projector, DLP)以及液晶覆矽(Liquid Crystal on Silicon, LCOS)投影機 因投影機運作時光線會透過LCD面板作為光閥模組,所以屬於穿透式投影機,而使用 LCOS、DLP 等光閥模組的投影機,則是靠光線反射的原理顯像,所以稱為反射式投影機。 雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。另外,本發明的任一實施例或申請專利範圍不須達成本發明所揭露之全部目的或優點或特點。此外,摘要部分和標題僅用來輔助專利文件搜尋之用,並非用來限制本發明之權利範圍。 The term "light valve" has been widely used in the projection industry. In this industry, it can mostly be used to refer to some independent optical units in a spatial light modulator (SLM). The so-called spatial light modulator contains many independent units (independent optical units), which are arranged in a one-dimensional or two-dimensional array in space. Each unit can be independently controlled by optical or electrical signals, and use various physical effects (Pockels effect, Kerr effect, acousto-optic effect, magneto-optic effect, semiconductor self-electro-optic effect or photorefractive effect, etc.) to change its own optical properties, thereby modulating the illumination beams illuminating the multiple independent units and outputting image beams. Independent units can be optical elements such as micro-reflectors or liquid crystal units. That is, the light valve module can be a digital micro-mirror device (DMD), a liquid-crystal-on-silicon panel (LCOS Panel), or a transmissive liquid crystal panel, etc. [0039]       A projector is a device that uses optical projection to project images onto a screen. In the projector industry, projectors are generally divided into cathode ray tube (Cathode Ray Tube) projectors, liquid crystal display (LCD) projectors, digital light projectors (DLP) and liquid crystal on silicon (LCOS) projectors according to the different light valve modules used inside. When the projector is operating, light will pass through the LCD panel as a light valve module, so it is a penetrating projector. Projectors using light valve modules such as LCOS and DLP rely on the principle of light reflection to display images, so they are called reflective projectors. Although the present invention has been disclosed as above with the preferred embodiment, it is not intended to limit the present invention. Anyone skilled in the art can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention shall be subject to the scope of the patent application attached hereto. In addition, any embodiment or patent application of the present invention does not need to achieve all the purposes, advantages or features disclosed by the present invention. In addition, the abstract and title are only used to assist in searching for patent documents and are not used to limit the scope of rights of the present invention.

100      光路調整機構 110            承載座 112            內框 114            外框 120            基座 130            磁鐵座 140            支架 140a          缺口 140c      凸耳結構 140d      開口 142            第一側 144            第二側 146            第三側 152            第一對可撓件 154            第二對可撓件 160 、170 致動器 160a、160b、170a、170b    致動器部分 162、172  線圈 164、174  磁鐵 176            線圈座 180            光學元件 180a          鏡片 190            固定件 192            鏡片座 200            光學系統 210            光閥模組 210a      表面 212       玻璃保護蓋 220            稜鏡 310           照明系統 312             光源 312R、312G、312B   發光二極體 314                    光束 314a                  子影像 316                    合光裝置 317                    蠅眼透鏡陣列 318                    光學元件組 319                    全內反射稜鏡 320                    光閥模組 350                  螢幕 400、410      光學裝置 A1、A2    振幅 C         投影點 D1、D2    距離 F         平坦區段 L、M     位置 N         法線 P         焦點 Q         端點 S、S1、S2        驅動訊號 P1        最低電位區間 P2        脈衝上升時間 P3        最高電位區間 P4        脈衝下降時間 SV        最低電位 SP        最高電位 X1、X2、X3    位置 Y1、Y2、 Y3  位置 θ        角度 100          Optical path adjustment mechanism 110            Carrying seat 112            Inner frame 114            Outer frame 120            Base 130            Magnet seat 140            Bracket 140a          Notch 140c      Lug structure 140d      Opening 142            First side 144            Second side 146            Third side 152            First pair of flexible parts 154            Second pair of flexible parts 160, 170 Actuator 160a, 160b, 170a, 170b    Actuator part 162, 172  Coil 164, 174 Magnet 176            Coil holder 180            Optical element 180a          Lens 190            Fixture 192            Lens holder 200            Optical system 210                Light valve module 210a      Surface 212       Glass protective cover 220            Prism 310           Illumination system 312             Light source 312R, 312G, 312B   LED 314                        Light beam 314a                      Sub-image 316                        Light combining device 317                      Fly-eye lens array 318                    Optical element assembly 319                    Total internal reflection prism 320                    Light valve module 350                  Screen 400, 410      Optical device A1, A2    Amplitude C         Projection point D1, D2    Distance F         Flat section L, M     Position N         Normal P         Focus Q         Endpoint S, S1, S2        Drive signal P1        Minimum potential interval P2        Pulse rise time P3        Maximum potential interval P4       Pulse fall time SV        Minimum potential SP        Highest potential X1, X2, X3   Position Y1, Y2, Y3  Position θ        Angle

圖1為本發明一實施例之光路調整機構的構件分解圖,圖2為圖1的光路調整機構於組裝後的平面示意圖。 圖3A為依本發明一實施例,顯示於一光學系統中光路調整機構搭配其他光學元件的構件示意圖,且圖3B為圖3A的光閥模組相對光路調整機構的配置關係例的示意簡圖。圖3C為依本發明另一實施例,顯示於一光學系統中光路調整機構搭配其他光學元件的構件示意圖。 圖4為說明致動器的不同配置位置實例的示意圖。 圖5為本發明一實施例的致動器所使用的驅動訊號的示意圖。 圖6為利用圖5的驅動訊號驅動光學元件所產生的不同擺動位置的示意圖。 圖7顯示利用圖5之驅動訊號所產生的擺動的傅立葉級數頻率分量分佈圖。 圖8顯示利用具有正弦波變化段的驅動訊號所產生的擺動的傅立葉級數頻率分量分佈圖。 圖9顯示具有正弦波變化段的驅動訊號的示意圖。 圖10為本發明另一實施例的致動器的所使用的驅動訊號的示意圖。 圖11顯示利用圖10之驅動訊號所產生的擺動的傅立葉級數頻率分量分佈圖。 圖12為本發明另一實施例的致動器的示意圖。 圖13為本發明一實施例的光路調整機構應用於一光學系統的示意圖。 圖14為本發明另一實施例的光路調整機構應用於一光學系統的示意圖。 FIG. 1 is a component exploded view of an optical path adjustment mechanism of an embodiment of the present invention, and FIG. 2 is a plan view of the optical path adjustment mechanism of FIG. 1 after assembly. FIG. 3A is a component schematic diagram showing an optical path adjustment mechanism in an optical system with other optical elements according to an embodiment of the present invention, and FIG. 3B is a schematic diagram showing an example of the configuration relationship of the optical valve module of FIG. 3A relative to the optical path adjustment mechanism. FIG. 3C is a component schematic diagram showing an optical path adjustment mechanism in an optical system with other optical elements according to another embodiment of the present invention. FIG. 4 is a schematic diagram illustrating examples of different configuration positions of an actuator. FIG. 5 is a schematic diagram of a drive signal used by an actuator of an embodiment of the present invention. FIG. 6 is a schematic diagram showing different swing positions generated by driving an optical element using the drive signal of FIG. 5. FIG. 7 shows a Fourier series frequency component distribution diagram of the swing generated by the driving signal of FIG. 5. FIG. 8 shows a Fourier series frequency component distribution diagram of the swing generated by the driving signal with a sine wave variation segment. FIG. 9 shows a schematic diagram of a driving signal with a sine wave variation segment. FIG. 10 is a schematic diagram of a driving signal used by an actuator of another embodiment of the present invention. FIG. 11 shows a Fourier series frequency component distribution diagram of the swing generated by the driving signal of FIG. 10. FIG. 12 is a schematic diagram of an actuator of another embodiment of the present invention. FIG. 13 is a schematic diagram of an optical path adjustment mechanism of an embodiment of the present invention applied to an optical system. FIG14 is a schematic diagram of an optical path adjustment mechanism of another embodiment of the present invention applied to an optical system.

F         平坦區段 S               驅動訊號 P1        最低電位區間 P2        脈衝上升時間 P3        最高電位區間 P4        脈衝下降時間 SV        最低電位 SP        最高電位 F         Flat section S               Drive signal P1        Lowest potential interval P2        Pulse rise time P3        Highest potential interval P4        Pulse fall time SV        Lowest potential SP        Highest potential

Claims (10)

一種光路調整機構,包含:一承載座;一光學元件,設在該承載座;以及一第一致動器,用以使該光學元件以一第一軸為軸心作動,該第一致動器可接收一第一驅動訊號;且該第一驅動訊號符合以下特性:該第一驅動訊號在一周期中,僅包含一脈衝上升段及一脈衝下降段;該第一驅動訊號在該脈衝上升段的時間內,電壓值增加後不再減少,且在該脈衝下降段的時間內,電壓值減少後不再增加。 An optical path adjustment mechanism includes: a carrier; an optical element disposed on the carrier; and a first actuator for actuating the optical element with a first axis as the axis, the first actuator can receive a first drive signal; and the first drive signal meets the following characteristics: the first drive signal only includes a pulse rising segment and a pulse falling segment in one cycle; during the time of the pulse rising segment, the voltage value of the first drive signal increases and then does not decrease, and during the time of the pulse falling segment, the voltage value decreases and then does not increase. 一種光路調整機構,包含:一承載座;一光學元件,設在該承載座;以及一第一致動器,用以使該光學元件以一第一軸為軸心作動,該第一致動器可接收一第一驅動訊號,該第一驅動訊號在一周期中,僅包含一脈衝上升段及一脈衝下降段;且該第一驅動訊號在該脈衝上升段的時間內,該第一驅動訊號的電壓值與時間的相對曲線變化,僅具有斜率實質大於等於零的區段,該第一驅動訊號在該脈衝下降段的時間內,該第一驅動訊號的電壓值與時間的相對曲線變化,僅具有斜率實質小於等於零的區段。 An optical path adjustment mechanism includes: a carrier; an optical element disposed on the carrier; and a first actuator for actuating the optical element with a first axis as the axis. The first actuator can receive a first drive signal. The first drive signal only includes a pulse rising segment and a pulse falling segment in a cycle. During the time of the pulse rising segment, the relative curve change of the voltage value of the first drive signal and time has only a section with a slope substantially greater than or equal to zero. During the time of the pulse falling segment, the relative curve change of the voltage value of the first drive signal and time has only a section with a slope substantially less than or equal to zero. 如請求項1或2所述之光路調整機構,其中該周期的該脈衝上升段的時間長度介於0.8-1.0ms之間。 The optical path adjustment mechanism as described in claim 1 or 2, wherein the duration of the pulse rise segment of the cycle is between 0.8-1.0ms. 如請求項1或2所述之光路調整機構,其中該周期的該脈衝下降段的時間長度介於0.8-1.0ms之間。 The optical path adjustment mechanism as described in claim 1 or 2, wherein the duration of the pulse falling segment of the cycle is between 0.8-1.0ms. 如請求項1或2所述之光路調整機構,其中該第一致動器使該光學元件可於一第一擺動位置與一第二擺動位置之間變換。 An optical path adjustment mechanism as described in claim 1 or 2, wherein the first actuator enables the optical element to switch between a first swing position and a second swing position. 如請求項1或2所述之光路調整機構,更包含: 一第二致動器,用以使該光學元件以一第二軸為軸心作動,且該第二致動器可接收一第二驅動訊號。 The optical path adjustment mechanism as described in claim 1 or 2 further comprises: A second actuator for causing the optical element to move about a second axis, and the second actuator can receive a second driving signal. 如請求項6所述之光路調整機構,其中該第二驅動訊號在一周期中,僅包含一脈衝上升段及一脈衝下降段,該第二驅動訊號在該脈衝上升段的時間內,電壓值增加後不再減少,且該第二驅動訊號在該脈衝下降段的時間內,電壓值減少後不再增加。 The optical path adjustment mechanism as described in claim 6, wherein the second drive signal only includes a pulse rising segment and a pulse falling segment in one cycle, and the voltage value of the second drive signal during the pulse rising segment increases and then no longer decreases, and the voltage value of the second drive signal during the pulse falling segment decreases and then no longer increases. 如請求項6所述之光路調整機構,其中該第二驅動訊號在一周期中,僅包含一脈衝上升段及一脈衝下降段,該第二驅動訊號在該脈衝上升段的時間內,該第二驅動訊號的電壓值與時間的相對曲線變化,僅具有斜率實質大於等於零的區段,該第二驅動訊號在該脈衝下降段的時間內,該第二驅動訊號的電壓值與時間的相對曲線變化,僅具有斜率實質小於等於零的區段。 The optical path adjustment mechanism as described in claim 6, wherein the second drive signal only includes a pulse rising segment and a pulse falling segment in one cycle, and during the time of the pulse rising segment, the relative curve change of the voltage value of the second drive signal and time only has a segment with a slope substantially greater than or equal to zero, and during the time of the pulse falling segment, the relative curve change of the voltage value of the second drive signal and time only has a segment with a slope substantially less than or equal to zero. 如申請專利範圍第6項所述之光路調整機構,更包含:一第一對可撓件,設在該承載座上且構成該第一軸;以及一第二對可撓件,設在該承載座與一支架之間且構成該第二軸。 The optical path adjustment mechanism as described in Item 6 of the patent application scope further includes: a first pair of flexible parts, which are arranged on the supporting base and constitute the first axis; and a second pair of flexible parts, which are arranged between the supporting base and a bracket and constitute the second axis. 如申請專利範圍第6項所述之光路調整機構,其中該第一驅動訊號具有一第一振幅,該第二驅動訊號具有一第二振幅,該第二振幅大於該第一振幅,且該第二振幅相對該第一振幅的比值等於或小於7/6。 As described in item 6 of the patent application scope, the optical path adjustment mechanism, wherein the first drive signal has a first amplitude, the second drive signal has a second amplitude, the second amplitude is greater than the first amplitude, and the ratio of the second amplitude to the first amplitude is equal to or less than 7/6.
TW112131250A 2019-03-20 Light path adjustment mechanism TWI838307B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW112131250A TWI838307B (en) 2019-03-20 Light path adjustment mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW112131250A TWI838307B (en) 2019-03-20 Light path adjustment mechanism

Publications (2)

Publication Number Publication Date
TW202349101A TW202349101A (en) 2023-12-16
TWI838307B true TWI838307B (en) 2024-04-01

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120081685A1 (en) 2006-07-14 2012-04-05 Carl Zeiss Smt Gmbh Microlithographic projection exposure apparatus illumination optics

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120081685A1 (en) 2006-07-14 2012-04-05 Carl Zeiss Smt Gmbh Microlithographic projection exposure apparatus illumination optics

Similar Documents

Publication Publication Date Title
TWI798391B (en) Light path adjustment mechanism and fabrication method thereof
CN111273434B (en) Optical path shift device and image display apparatus
TWI698696B (en) Light path adjustment mechanism and fabrication method thereof
TWI691778B (en) Light path adjustment mechanism and fabrication method thereof
US11774745B2 (en) Light path adjustment mechanism
US20030043468A1 (en) Projection apparatus
JP2010271443A (en) Projector and picture-displaying method
CN110542976B (en) Optical path adjusting mechanism and manufacturing method thereof
KR101235807B1 (en) Projection display
TWI838307B (en) Light path adjustment mechanism
TWI806993B (en) Light path adjustment mechanism and fabrication method thereof
CN111766674B (en) Optical path adjusting mechanism and manufacturing method thereof
US10838288B2 (en) Projection apparatus and imaging module thereof
TW202349101A (en) Light path adjustment mechanism
CN111766673A (en) Optical path adjusting mechanism and manufacturing method thereof
TWI838675B (en) Light path adjustment mechanism
TWI765235B (en) Light path adjustment mechanism and fabrication method thereof
CN111338044B (en) Optical path adjusting mechanism and manufacturing method thereof
CN113495335B (en) Optical path adjusting mechanism and manufacturing method thereof
TWI754955B (en) Light path adjustment mechanism and fabrication method thereof
CN219916155U (en) Pixel expansion device and projection equipment
CN113835183A (en) Optical path adjusting mechanism and manufacturing method thereof
TW202215141A (en) Light path adjustment mechanism and fabrication method thereof
KR100601497B1 (en) Image phase controller in the display system using spatial optical modulator
TW202204960A (en) Light path adjustment mechanism and fabrication method thereof