TWI834145B - Optical stack structure - Google Patents

Optical stack structure Download PDF

Info

Publication number
TWI834145B
TWI834145B TW111113292A TW111113292A TWI834145B TW I834145 B TWI834145 B TW I834145B TW 111113292 A TW111113292 A TW 111113292A TW 111113292 A TW111113292 A TW 111113292A TW I834145 B TWI834145 B TW I834145B
Authority
TW
Taiwan
Prior art keywords
organic polymer
polymer layer
layer
equal
content
Prior art date
Application number
TW111113292A
Other languages
Chinese (zh)
Other versions
TW202339952A (en
Inventor
陳煌
黃清茂
陳偉生
Original Assignee
大陸商宸美(廈門)光電有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商宸美(廈門)光電有限公司 filed Critical 大陸商宸美(廈門)光電有限公司
Priority to TW111113292A priority Critical patent/TWI834145B/en
Publication of TW202339952A publication Critical patent/TW202339952A/en
Application granted granted Critical
Publication of TWI834145B publication Critical patent/TWI834145B/en

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

An optical stack structure includes a metal nanowire layer and an organic polymer layer, in which a crosslinking degree of the organic polymer layer is greater than or equal to 80% and less than or equal to 100%, and a content of volatile organic compounds in the organic polymer layer is less than or equal to 1%. The content of volatile organic compounds in the organic polymer layer is defined as a difference between a thermal weight loss of the organic polymer layer measured at a measuring temperature and a water content of the organic polymer layer measured at the measuring temperature.

Description

光學層疊體optical laminate

本揭露是有關於一種光學層疊體。The present disclosure relates to an optical laminate.

隨著觸控技術的發展,由於透明導體可同時讓光穿過並提供適當的導電性,因此常應用於許多觸控相關的裝置中。一般而言,透明導體可以是各種金屬氧化物,例如氧化銦錫、氧化銦鋅、氧化鎘錫或摻鋁氧化鋅。然而,這些金屬氧化物所製成的薄膜並無法滿足觸控裝置的可撓性需求。因此,現今發展出多種可撓性的透明導體,例如使用金屬奈米線等材料所製作的透明導體。With the development of touch technology, transparent conductors are often used in many touch-related devices because they can simultaneously allow light to pass through and provide appropriate conductivity. Generally speaking, the transparent conductor can be various metal oxides, such as indium tin oxide, indium zinc oxide, cadmium tin oxide or aluminum-doped zinc oxide. However, films made of these metal oxides cannot meet the flexibility requirements of touch devices. Therefore, a variety of flexible transparent conductors have been developed, such as transparent conductors made of metal nanowires and other materials.

然而,以金屬奈米線製成的觸控裝置尚有許多需要解決的問題。舉例而言,當使用金屬奈米線製作觸控裝置中的觸控電極或周邊線路時,設置於觸控裝置中的光學膠(optical clear adhesive,OCA)基於其中所含有之聚合物的特性往往無法與金屬奈米線具有良好的相容性,導致光學膠層會攻擊(腐蝕)金屬奈米線,使得金屬奈米線容易發生電致遷移(migration),進而造成金屬奈米線的可靠性不足而導致觸控裝置的短路或斷路,無法滿足產品信賴性測試的規格要求。However, touch devices made of metal nanowires still have many problems that need to be solved. For example, when metal nanowires are used to make touch electrodes or peripheral circuits in a touch device, the optical clear adhesive (OCA) disposed in the touch device is often based on the properties of the polymer contained therein. It cannot have good compatibility with metal nanowires, causing the optical adhesive layer to attack (corrode) the metal nanowires, making the metal nanowires prone to electromigration, thereby affecting the reliability of the metal nanowires. Insufficient results in short circuit or open circuit of the touch device, making it unable to meet the specifications of product reliability testing.

根據本揭露一些實施方式,一種光學層疊體包括金屬奈米線層以及有機聚合物層,其中有機聚合物層的交聯度大於或等於80%且小於或等於100%,且有機聚合物層中的揮發性有機物含量小於或等於1%。有機聚合物層中的揮發性有機物含量係定義為:有機聚合物層在一量測溫度下所測得的熱失重減去有機聚合物層在該量測溫度下所測得的含水量的差值。According to some embodiments of the present disclosure, an optical laminate includes a metal nanowire layer and an organic polymer layer, wherein the cross-linking degree of the organic polymer layer is greater than or equal to 80% and less than or equal to 100%, and the organic polymer layer The volatile organic compound content is less than or equal to 1%. The volatile organic compound content in the organic polymer layer is defined as: the thermal weight loss of the organic polymer layer measured at a measurement temperature minus the moisture content of the organic polymer layer measured at the measurement temperature. value.

在本揭露一些實施方式中,金屬奈米線層包括複數個金屬奈米線,且有機聚合物層直接接觸並包覆金屬奈米線。In some embodiments of the present disclosure, the metal nanowire layer includes a plurality of metal nanowires, and the organic polymer layer directly contacts and covers the metal nanowires.

在本揭露一些實施方式中,金屬奈米線層包括基質及摻雜於基質中的複數個金屬奈米線,且有機聚合物層設置於金屬奈米線層上。In some embodiments of the present disclosure, the metal nanowire layer includes a matrix and a plurality of metal nanowires doped in the matrix, and the organic polymer layer is disposed on the metal nanowire layer.

在本揭露一些實施方式中,基質的交聯度大於或等於80%且小於或等於100%,基質中的揮發性有機物含量小於或等於1%,且基質中的揮發性有機物含量係定義為:基質在該量測溫度下所測得的熱失重減去基質在該量測溫度下所測得的含水量的差值。In some embodiments of the present disclosure, the cross-linking degree of the matrix is greater than or equal to 80% and less than or equal to 100%, the volatile organic compound content in the matrix is less than or equal to 1%, and the volatile organic compound content in the matrix is defined as: The difference between the measured thermogravimetric loss of the matrix at the measured temperature and the measured moisture content of the matrix at the measured temperature.

在本揭露一些實施方式中,部分的金屬奈米線嵌入至有機聚合物層中。In some embodiments of the present disclosure, part of the metal nanowires are embedded in the organic polymer layer.

在本揭露一些實施方式中,光學層疊體更包括鈍化層,設置於金屬奈米線層與有機聚合物層間,其中部分的金屬奈米線嵌入至鈍化層中。In some embodiments of the present disclosure, the optical laminate further includes a passivation layer disposed between the metal nanowire layer and the organic polymer layer, with part of the metal nanowires embedded in the passivation layer.

在本揭露一些實施方式中,鈍化層的交聯度大於或等於80%且小於或等於100%,鈍化層中的揮發性有機物含量小於或等於1%,且鈍化層中的揮發性有機物含量係定義為:鈍化層在該量測溫度下所測得的熱失重減去鈍化層在該量測溫度下所測得的含水量的差值。In some embodiments of the present disclosure, the cross-linking degree of the passivation layer is greater than or equal to 80% and less than or equal to 100%, the volatile organic compound content in the passivation layer is less than or equal to 1%, and the volatile organic compound content in the passivation layer is It is defined as: the difference between the measured thermal weight loss of the passivation layer at the measurement temperature minus the measured moisture content of the passivation layer at the measurement temperature.

在本揭露一些實施方式中,光學層疊體更包括鈍化層,其中金屬奈米線層包括複數個金屬奈米線,鈍化層設置於金屬奈米線與有機聚合物層間,且鈍化層直接接觸並包覆金屬奈米線。In some embodiments of the present disclosure, the optical stack further includes a passivation layer, wherein the metal nanowire layer includes a plurality of metal nanowires, the passivation layer is disposed between the metal nanowires and the organic polymer layer, and the passivation layer is in direct contact with and Coated metal nanowires.

在本揭露一些實施方式中,光學層疊體更包括蓋板,設置於有機聚合物層上,其中蓋板的材料在能量散射X射線(Energy-Dispersive X-ray,EDX)分析下所測得的鉀元素及鈣元素各自的含量小於或等於1%。In some embodiments of the present disclosure, the optical laminate further includes a cover plate disposed on the organic polymer layer, wherein the material of the cover plate is measured under energy-dispersive X-ray (EDX) analysis. The respective contents of potassium and calcium are less than or equal to 1%.

在本揭露一些實施方式中,光學層疊體更包括蓋板,設置於有機聚合物層上,其中蓋板的材料在能量散射X射線(EDX)分析下所測得的鈉元素及鉀元素各自的含量小於或等於1%。In some embodiments of the present disclosure, the optical laminate further includes a cover plate disposed on the organic polymer layer, wherein the material of the cover plate has sodium and potassium elements respectively measured under energy dispersive X-ray (EDX) analysis. Content less than or equal to 1%.

根據本揭露上述實施方式,本揭露的光學層疊體包括金屬奈米線層以及有機聚合物層。由於有機聚合物層具有本揭露所限定的交聯度及揮發性有機物含量,因此可確保有機聚合物層不會攻擊(腐蝕)金屬奈米線層中的金屬奈米線,進而使本揭露的光學層疊體達到產品信賴性測試的規格要求,並確保含有光學層疊體的觸控產品具有高的觸控靈敏度。According to the above embodiments of the present disclosure, the optical laminate of the present disclosure includes a metal nanowire layer and an organic polymer layer. Since the organic polymer layer has the cross-linking degree and volatile organic content defined by the disclosure, it can be ensured that the organic polymer layer will not attack (corrode) the metal nanowires in the metal nanowire layer, thereby making the disclosure The optical laminate meets the specification requirements of product reliability testing and ensures that touch products containing the optical laminate have high touch sensitivity.

以下將以圖式揭露本揭露之複數個實施方式,為明確地說明起見,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解到,這些實務上的細節不應用以限制本揭露。也就是說,在本揭露部分實施方式中,這些實務上的細節是非必要的,因此不應用以限制本揭露。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示之。另外,為了便於讀者觀看,圖式中各元件的尺寸並非依實際比例繪示。A plurality of implementation manners of the present disclosure will be disclosed below in figures. For the purpose of clear explanation, many practical details will be explained together in the following description. However, it should be understood that these practical details should not be used to limit the disclosure. That is to say, in some implementations of the disclosure, these practical details are not necessary and therefore should not be used to limit the disclosure. In addition, for the sake of simplifying the drawings, some commonly used structures and components will be illustrated in a simple schematic manner in the drawings. In addition, for the convenience of readers, the dimensions of each element in the drawings are not drawn according to actual proportions.

此外,如「下」或「底部」和「上」或「頂部」的相對術語可在本文中用於描述一個元件與另一個元件的關係,如圖所示。應當理解,相對術語旨在包括除了圖中所示的方位之外的裝置的不同方位。例如,若一個附圖中的裝置翻轉,則被描述為在其他組件的「下」側的組件將被定向在其他組件的「上」側。因此,示例性術語「下」可包括「下」和「上」的取向,取決於附圖的特定取向。類似地,若一個附圖中的裝置翻轉,被描述為在其它元件「下方」的元件將被定向為在其它元件「上方」。因此,示例性術語「下面」可以包括上方和下方的取向。In addition, relative terms, such as "lower" or "bottom" and "upper" or "top," may be used herein to describe one element's relationship to another element as illustrated in the Figures. It will be understood that relative terms are intended to encompass different orientations of the device in addition to the orientation illustrated in the figures. For example, if the device in the figures is turned over, components described as "below" other components would then be oriented "above" the other components. Thus, the exemplary term "lower" may include both "lower" and "upper" orientations, depending on the particular orientation of the drawing. Similarly, if the device in the figures is turned over, elements described as "below" other elements would then be oriented "above" the other elements. Thus, the exemplary term "below" may include both upper and lower orientations.

第1圖繪示根據本揭露一些實施方式之光學層疊體100的疊構示意圖。光學層疊體100包括金屬奈米線層120及有機聚合物層130。在一些實施方式中,光學層疊體100可例如是觸控裝置(觸控感應器、觸控面板)的一部分,且光學層疊體100可位於觸控裝置的可視區及/或周邊區中,以實現觸控功能及/或將訊號傳遞至例如是外部處理器的電子元件。在一些實施方式中,光學層疊體100可進一步包括配置以承載金屬奈米線層120及有機聚合物層130的基板110,且基板110可例如是硬式透明基板或可撓式透明基板。在一些實施方式中,基板110的材料可包括但不限於玻璃、壓克力、聚氯乙烯、聚苯乙烯、聚碳酸酯、聚丙烯、環烯烴聚合物、環烯烴共聚物、聚對苯二甲酸乙二醇酯、聚萘二甲酸乙二醇酯、無色聚醯亞胺等透明材料或其組合。在一些實施方式中,光學層疊體100可進一步包括設置於有機聚合物層130上的蓋板140。整體而言,基板110與蓋板140可共同將金屬奈米線層120及有機聚合物層130夾置於其間。FIG. 1 illustrates a schematic diagram of the stack structure of an optical laminate 100 according to some embodiments of the present disclosure. The optical stack 100 includes a metal nanowire layer 120 and an organic polymer layer 130 . In some embodiments, the optical stack 100 may be, for example, part of a touch device (touch sensor, touch panel), and the optical stack 100 may be located in the visible area and/or peripheral area of the touch device to Implement touch functions and/or transmit signals to electronic components such as an external processor. In some embodiments, the optical stack 100 may further include a substrate 110 configured to carry the metal nanowire layer 120 and the organic polymer layer 130, and the substrate 110 may be, for example, a rigid transparent substrate or a flexible transparent substrate. In some embodiments, the material of the substrate 110 may include, but is not limited to, glass, acrylic, polyvinyl chloride, polystyrene, polycarbonate, polypropylene, cyclic olefin polymers, cyclic olefin copolymers, polyterephthalene Transparent materials such as ethylene formate, polyethylene naphthalate, colorless polyimide or combinations thereof. In some embodiments, the optical stack 100 may further include a cover 140 disposed on the organic polymer layer 130 . Overall, the substrate 110 and the cover 140 can sandwich the metal nanowire layer 120 and the organic polymer layer 130 therebetween.

在一些實施方式中,金屬奈米線層120可包括基質OC及分佈於基質OC中的多個金屬奈米線MNW。在一些實施方式中,基質OC可包括特定的聚合物或其混合物,以賦予金屬奈米線層120特定的化學、機械及光學特性。舉例而言,基質OC可提供金屬奈米線層120與其他層別之間良好的黏著性。又舉例而言,基質OC可提供金屬奈米線層120良好的機械強度。再舉例而言,基質OC可使金屬奈米線層120具有額外的抗刮擦及抗磨損的表面保護,以提升金屬奈米線層120的表面強度。上述特定的聚合物可例如是聚矽氧、聚矽烷、聚丙烯酸酯、聚胺基甲酸酯、聚(矽-丙烯酸)、環氧樹脂或其組合。在一些實施方式中,金屬奈米線MNW可包括但不限於奈米銀線、奈米金線、奈米銅線、奈米鎳線或其組合。本文中的「金屬奈米線」是一集合名詞,其是指包括多個金屬元素、金屬合金或金屬化合物(包括金屬氧化物)的金屬線的集合,且金屬奈米線層120中所包括的金屬奈米線MNW的數量並不用以限制本揭露。在一些實施方式中,金屬奈米線層120的厚度H2可例如是大於或等於40奈米且小於或等於50奈米,以使金屬奈米線層120較佳地兼顧其電性及光學特性,降低因厚度H2過大而導致金屬奈米線層120產生不必要之可視性的可能性,並降低因厚度H2過小而導致金屬奈米線層120之面阻過大的可能性。另外,請先參閱第1B圖,其繪示第1A圖之光學層疊體100的區域R的局部放大示意圖。當以微觀的尺度來觀察,金屬奈米線MNW是無方向性地隨機分佈於基板110的表面111以及基質OC中,而部分的金屬奈米線MNW會分佈於基質OC的上表面T OC附近,使得基質OC的上表面T OC呈現凹凸不平具起伏狀的態樣。 In some embodiments, the metal nanowire layer 120 may include a matrix OC and a plurality of metal nanowires MNW distributed in the matrix OC. In some embodiments, the matrix OC may include specific polymers or mixtures thereof to impart specific chemical, mechanical, and optical properties to the metal nanowire layer 120 . For example, the matrix OC can provide good adhesion between the metal nanowire layer 120 and other layers. For another example, the matrix OC can provide the metal nanowire layer 120 with good mechanical strength. For another example, the matrix OC can provide the metal nanowire layer 120 with additional anti-scratch and anti-wear surface protection to enhance the surface strength of the metal nanowire layer 120 . The above-mentioned specific polymers may be, for example, polysiloxane, polysilane, polyacrylate, polyurethane, poly(silicone-acrylic acid), epoxy resin, or combinations thereof. In some embodiments, the metal nanowires MNW may include, but are not limited to, silver nanowires, gold nanowires, copper nanowires, nickel nanowires, or combinations thereof. “Metal nanowires” in this article is a collective noun, which refers to a collection of metal wires including multiple metal elements, metal alloys or metal compounds (including metal oxides), and the metal nanowire layer 120 includes The number of metal nanowires MNW is not limited to this disclosure. In some embodiments, the thickness H2 of the metal nanowire layer 120 may be, for example, greater than or equal to 40 nanometers and less than or equal to 50 nanometers, so that the metal nanowire layer 120 can better balance its electrical and optical properties. , reduce the possibility that the metal nanowire layer 120 will have unnecessary visibility due to the thickness H2 being too large, and reduce the possibility that the surface resistance of the metal nanowire layer 120 will be too large due to the thickness H2 being too small. In addition, please first refer to FIG. 1B , which is a partially enlarged schematic diagram of the region R of the optical laminate 100 in FIG. 1A . When viewed at a microscopic scale, the metal nanowires MNW are randomly distributed on the surface 111 of the substrate 110 and the matrix OC, and some of the metal nanowires MNW are distributed near the upper surface T OC of the matrix OC. , making the upper surface T OC of the matrix OC appear uneven and undulating.

請同時參閱第1A圖及第1B圖。在一些實施方式中,有機聚合物層130可疊設於金屬奈米線層120上,且鄰近於基質OC之上表面T OC的每一根金屬奈米線MNW還可部分地嵌入至有機聚合物層130中。更詳細而言,鄰近於基質OC之上表面T OC的每一根金屬奈米線MNW可具有第一部分M1及第二部分M2,其中第一部分M1嵌入至有機聚合物層130中並且與有機聚合物層130之間間隔有基質OC(即,基質OC的上表面T OC共形於金屬奈米線MNW之第一部分M1的輪廓,且基質OC的上表面T OC位於有機聚合物層130與金屬奈米線MNW的第一部分M1之間),而第二部分M2位於基質OC中且完全未嵌入至有機聚合物層130中。整體而言,基質OC的上表面T OC不僅接觸有機聚合物層130,更部分地嵌入至有機聚合物層130中。在一些實施方式中,有機聚合物層130可例如是光學透明膠(optically clear adhesive,OCA),其可具有高透光率,以使光學層疊體100具有良好的光學特性。有機聚合物層130配置以保護金屬奈米線層120,以降低金屬奈米線層120中的金屬奈米線MNW受到由外界環境入侵之水氣攻擊的可能性。本揭露透過使有機聚合物層130的交聯度落在合適的範圍中,並且透過使有機聚合物層130中的揮發性有機物含量落在合適的範圍中,來提升有機聚合物層130與金屬奈米線層120中之金屬奈米線MNW的兼容性(相容性),以確保有機聚合物層130本身不會攻擊(或腐蝕)金屬奈米線層120中的金屬奈米線MNW,進而達到產品信賴性測試的規格要求,並且確保含有光學層疊體100的觸控產品具有高的觸控靈敏度。在以下的敘述中,將更具體地針對「有機聚合物層130的交聯度」及「有機聚合物層130中的揮發性有機物含量」進行說明。 Please also refer to Figure 1A and Figure 1B. In some embodiments, the organic polymer layer 130 can be stacked on the metal nanowire layer 120, and each metal nanowire MNW adjacent to the surface T OC above the matrix OC can also be partially embedded in the organic polymer layer 130. in object layer 130. In more detail, each metal nanowire MNW adjacent to the surface T OC above the matrix OC may have a first part M1 and a second part M2, where the first part M1 is embedded in the organic polymer layer 130 and polymerized with the organic There is a matrix OC spaced between the material layers 130 (that is, the upper surface T OC of the matrix OC conforms to the outline of the first part M1 of the metal nanowire MNW, and the upper surface T OC of the matrix OC is located between the organic polymer layer 130 and the metal between the first portion M1 of the nanowire MNW), while the second portion M2 is located in the matrix OC and is not embedded in the organic polymer layer 130 at all. Overall, the upper surface T OC of the matrix OC not only contacts the organic polymer layer 130 but is also partially embedded in the organic polymer layer 130 . In some embodiments, the organic polymer layer 130 may be, for example, an optically clear adhesive (OCA), which may have high light transmittance, so that the optical laminate 100 has good optical properties. The organic polymer layer 130 is configured to protect the metal nanowire layer 120 to reduce the possibility that the metal nanowires MNW in the metal nanowire layer 120 are attacked by water vapor invaded by the external environment. The present disclosure improves the relationship between the organic polymer layer 130 and the metal by making the cross-linking degree of the organic polymer layer 130 fall within an appropriate range, and by making the volatile organic content in the organic polymer layer 130 fall within an appropriate range. Compatibility (compatibility) of the metal nanowires MNW in the nanowire layer 120 to ensure that the organic polymer layer 130 itself will not attack (or corrode) the metal nanowires MNW in the metal nanowire layer 120, Thus, the specification requirements of product reliability testing are met, and the touch product containing the optical laminate 100 is ensured to have high touch sensitivity. In the following description, "the degree of cross-linking of the organic polymer layer 130" and "the content of volatile organic matter in the organic polymer layer 130" will be described more specifically.

首先,針對「有機聚合物層130的交聯度」,本揭露的有機聚合物層130的材料是聚合物,而相信本領域技術具有通常知識者應可以瞭解到,聚合物可以是由單體在光起始劑(photo initiator)的存在下經紫外光照射而發生聚合反應而得,而本文中「有機聚合物層130的交聯度」是指用以製備有機聚合物層130的單體在進行聚合反應後,實際經交聯而形成聚合物之單體的比例(以百分率表示,單位為%)。當交聯度過低,可能代表光起始劑未能充分反應,導致最終殘留在有機聚合物層130中之光起始劑的殘留量過多,如此一來,殘留的光起始劑可能會進一步分解已成型(固化)之有機聚合物層130中的聚合物,導致聚合物降解而形成例如是寡聚物或單體等的低分子量的揮發性有機物(volatile organic compound,VOC),進而腐蝕金屬奈米線層120中的金屬奈米線MNW。另一方面,由於光起始劑本身亦屬於揮發性有機物的一種,因此殘留的光起始劑亦會腐蝕金屬奈米線層120中的金屬奈米線MNW。基於上述,本揭露透過將有機聚合物層130的交聯度控制在大於或等於80%且小於或等於100%的範圍中,以確保有機聚合物層130不會攻擊(腐蝕)金屬奈米線層120中的金屬奈米線MNW,進而達到產品信賴性測試的規格要求,並確保含有光學層疊體100的觸控產品具有高的觸控靈敏度。First of all, regarding the "cross-linking degree of the organic polymer layer 130", the material of the organic polymer layer 130 disclosed in this disclosure is a polymer. It is believed that those with ordinary skill in the art should understand that the polymer can be made of monomers. It is obtained by polymerization reaction under ultraviolet light irradiation in the presence of a photo initiator, and the "crosslinking degree of the organic polymer layer 130" herein refers to the monomer used to prepare the organic polymer layer 130 After the polymerization reaction, the proportion of monomers that are actually cross-linked to form the polymer (expressed as a percentage, unit is %). When the cross-linking is too low, it may mean that the photoinitiator fails to react sufficiently, resulting in too much residual photoinitiator remaining in the organic polymer layer 130. As a result, the residual photoinitiator may The polymer in the formed (cured) organic polymer layer 130 is further decomposed, causing the polymer to degrade and form low molecular weight volatile organic compounds (VOC) such as oligomers or monomers, thereby causing corrosion. Metal nanowires MNW in the metal nanowire layer 120 . On the other hand, since the photoinitiator itself is also a type of volatile organic compound, the remaining photoinitiator will also corrode the metal nanowires MNW in the metal nanowire layer 120 . Based on the above, the present disclosure ensures that the organic polymer layer 130 will not attack (corrode) the metal nanowires by controlling the cross-linking degree of the organic polymer layer 130 in a range of greater than or equal to 80% and less than or equal to 100%. The metal nanowires MNW in the layer 120 can thus meet the specification requirements of product reliability testing and ensure that the touch product containing the optical stack 100 has high touch sensitivity.

在一些實施方式中,光起始劑可選用但不限於裂解型(Norrish type I)光起始劑或奪氫型(Norrish type II)光起始劑。具體而言,裂解型光起始劑可例如是1-羥基環己基苯基酮、2-羥基-4'-(2-羥乙氧基)-2-甲基苯乙酮、2,2-二乙氧基苯乙酮、2-羥基-2-甲基-1-苯基-丙烷-1-酮、1,1'-(亞甲基二-4,1-亞苯基)雙[2-羥基-2-甲基-1-丙酮]、1-(4-(2-羥基乙氧基)苯基)-2-羥基-2-甲基-1-丙烷-1-酮、2-羥基-1-[4-{4-(2-羥基-2-甲基-丙醯基)苄基}苯基]-2-甲基-丙烷-1-酮、低聚(2-羥基-2-甲基-1-(4-(1-甲基乙烯基)苯基)丙酮)、2,2-二甲氧基-1,2-二苯基乙烷-1-酮、苯基乙醛酸甲酯、2-苄基-2-二甲基氨基-1-(4-嗎啉代苯基)丁烷-1-酮、2-甲基-1-[4-(甲基硫代)苯基]-2-嗎啉代丙烷-1-酮、2-(二甲基氨基)-2-[(4-甲基苯基)甲基)-1-[4-(4-嗎啉基)苯基]-1-丁酮、雙(2,4,6-三甲基苯甲醯基)-苯基氧化膦、2,4,6-三甲基苯甲醯基二苯基氧化膦、(2,4,6-三甲基苯甲醯基)乙氧基苯基氧化膦、2,4,6-三甲基苯甲醯基膦酸乙脂、雙(2,6-二甲氧基苯甲醯基)2,4,4-三甲基戊基氧化膦、上述任意化合物的衍生物、上述任意化合物或衍生物的組合;奪氫型光起始劑可例如是二苯甲酮、4-苯基二苯甲酮、4-氯二苯甲酮、4-甲基二苯甲酮、4,4'-雙(二甲氨基)二苯酮、4,4'-雙(二乙氨基)二苯酮、2,4,6-三甲基二苯甲酮、3,3'-二甲基-4-甲氧基二苯甲酮、四甲基米蚩酮、4-(甲基)丙烯醯氧基二苯甲酮、甲乙基米蚩酮、4-(二甲氨基)苯甲酸-2-乙基己酯、4-二甲氨基苯甲酸乙酯、苯甲酸二甲基氨基乙酯、雙(2-苯基-2-氧代乙酸)氧基雙亞乙酯、苯基乙醛酸甲酯、鄰苯甲醯基苯甲酸甲酯、氧基-苯基-乙酸2-[2-氧代-2-苯基-乙醯氧基-乙氧基]乙酯與氧基-苯基-乙酸2-[2-羥基-乙氧基]乙酯的混合物、噻噸酮、2-氯噻噸酮、3-甲基噻噸酮、2,4-二甲基噻噸酮、4-異丁基苯基-4'-甲基苯基碘六氟磷酸鹽、2-異丙基硫代蒽酮、2,4-二乙基硫代蒽-9-酮、4-丙基硫代蒽酮、2-氯硫代蒽酮、1-氯-4-丙氧基硫代蒽酮、蒽醌、2-甲基蒽醌、2-乙基蒽醌、2-叔丁基蒽醌、2-氨基蒽醌、樟腦醌、上述任意化合物的衍生物、上述任意化合物、混合物或衍生物的組合。基於裂解型光起始劑經一次激發後便不復具有光起始劑的功能,因此在較佳的實施方式中,可選用裂解型光起始劑來作為製備有機聚合物層130的光起始劑,以降低具有活性之裂解型光起始劑殘留的可能性。在一些實施方式中,可透過控制光起始劑的添加量以降低未反應之光起始劑殘留的可能性。具體而言,可參照上述所列舉之裂解型光起始劑或奪氫型光起始劑的試劑使用指引方針(guideline)並根據有機聚合物層130所需的硬度、厚度及模量等實際需求來相應調整光起始劑的添加量。In some embodiments, the photoinitiator may be, but is not limited to, a cleavage type (Norrish type I) photoinitiator or a hydrogen abstraction type (Norrish type II) photoinitiator. Specifically, the cleavage type photoinitiator can be, for example, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-4'-(2-hydroxyethoxy)-2-methylacetophenone, 2,2- Diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 1,1'-(methylenebis-4,1-phenylene)bis[2 -Hydroxy-2-methyl-1-propanone], 1-(4-(2-hydroxyethoxy)phenyl)-2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy -1-[4-{4-(2-hydroxy-2-methyl-propanyl)benzyl}phenyl]-2-methyl-propan-1-one, oligo(2-hydroxy-2- Methyl-1-(4-(1-methylvinyl)phenyl)propanone), 2,2-dimethoxy-1,2-diphenylethan-1-one, phenylglyoxylic acid Methyl ester, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)butan-1-one, 2-methyl-1-[4-(methylthio)benzene base]-2-morpholinopropan-1-one, 2-(dimethylamino)-2-[(4-methylphenyl)methyl)-1-[4-(4-morpholinyl) Phenyl]-1-butanone, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, (2,4,6-Trimethylbenzoyl)ethoxyphenylphosphine oxide, ethyl 2,4,6-trimethylbenzoylphosphonate, bis(2,6-dimethoxy benzyl) 2,4,4-trimethylpentylphosphine oxide, derivatives of any of the above compounds, or combinations of any of the above compounds or derivatives; the hydrogen abstraction photoinitiator can be, for example, benzophenone , 4-phenylbenzophenone, 4-chlorobenzophenone, 4-methylbenzophenone, 4,4'-bis(dimethylamino)benzophenone, 4,4'-bis(dimethylbenzophenone) Ethylamino) benzophenone, 2,4,6-trimethylbenzophenone, 3,3'-dimethyl-4-methoxybenzophenone, tetramethylmycinone, 4-( Methyl acryloxybenzophenone, methylethylmicchone, 2-ethylhexyl 4-(dimethylamino)benzoate, ethyl 4-dimethylaminobenzoate, dimethyl benzoate Aminoethyl ester, bis(2-phenyl-2-oxoacetic acid)oxybisethylene, methyl phenylglyoxylate, methyl o-phenylbenzoate, oxy-phenyl-acetic acid 2 -A mixture of [2-oxo-2-phenyl-acetyloxy-ethoxy]ethyl ester and 2-[2-hydroxy-ethoxy]ethyl oxy-phenyl-acetate, thioxanthone , 2-chlorothioxanthone, 3-methylthioxanthone, 2,4-dimethylthioxanthone, 4-isobutylphenyl-4'-methylphenyl iodide hexafluorophosphate, 2- Isopropylthioanthrone, 2,4-diethylthioanthrone-9-one, 4-propylthioanthrone, 2-chlorothioanthrone, 1-chloro-4-propoxysulfan Anthrone, anthraquinone, 2-methylanthraquinone, 2-ethylanthraquinone, 2-tert-butylanthraquinone, 2-aminoanthraquinone, camphorquinone, derivatives of any of the above compounds, any of the above compounds, and mixtures or a combination of derivatives. Since the cleavage-type photoinitiator no longer has the function of a photoinitiator after being excited once, in a preferred embodiment, a cleavage-type photoinitiator can be used as the photoinitiator for preparing the organic polymer layer 130 . initiator to reduce the possibility of active cleaved photoinitiator remaining. In some embodiments, the possibility of unreacted photoinitiator remaining can be reduced by controlling the amount of photoinitiator added. Specifically, you may refer to the above-mentioned guidelines for the use of cleavage-type photoinitiators or hydrogen-abstraction-type photoinitiators, and based on the actual hardness, thickness, modulus, etc. required for the organic polymer layer 130 Adjust the amount of photoinitiator added accordingly.

在一些實施方式中,可透過控制紫外光劑量以促使聚合反應更加完全,進而提升交聯度,如此可減少因反應不完全而導致寡聚物或單體等的低分子量的揮發性有機物殘留。具體而言,請先參閱第2圖,其繪示根據本揭露一些實施方式之交聯度與紫外光劑量之間的關係圖,其中在第2圖所代表的聚合反應中,所使用的光起始劑為二苯甲酮。由第2圖可以看出,當紫外光劑量介於0mJ/cm 2至3000mJ/cm 2時,容易因能量不足而導致交聯度低,造成聚合反應不完全,而當聚合反應不完全時,又容易進一步產生對聚合反應有害的揮發性有機物(例如,過氧化物、自由基、反應後的極性殘留物等),導致交聯度難以提升,如此惡性循環的結果將不利於聚合反應進行;而當紫外光劑量達到6000mJ/cm 2時,交聯度可達到85.8%,即達到本揭露所期望的數值(大或於等於80%),且當紫外光劑量達到12000mJ/cm 2以上時,交聯度還可穩定地維持在89.1%至89.2%。由此可見,透過一次性地提供足量的紫外光(即,一次性地將紫外光劑量提升至特定值,在第2圖的實施方式中該特定值例如落在12000至15000間),不僅可提升有機聚合物層130的交聯度,還可以避免產生揮發性有機物,進而確保有機聚合物層130不會攻擊(或腐蝕)金屬奈米線層120中的金屬奈米線MNW。希望說明的是,雖然第2圖僅為本揭露一實施方式中交聯度與紫外光劑量的關係圖,但經發明人嘗試以其他的光起始劑進行聚合反應之後,皆可得到類似於第2圖的曲線關係,由此可知,透過一次性地提供足量的紫外光,確實有助於提升交聯度。 In some embodiments, the ultraviolet light dose can be controlled to promote a more complete polymerization reaction and thereby increase the degree of cross-linking. This can reduce low-molecular-weight volatile organic compounds such as oligomers or monomers remaining due to incomplete reactions. Specifically, please refer to Figure 2, which illustrates the relationship between the degree of cross-linking and the dose of ultraviolet light according to some embodiments of the present disclosure. In the polymerization reaction represented by Figure 2, the light used The starting agent is benzophenone. As can be seen from Figure 2, when the UV dose is between 0mJ/ cm2 and 3000mJ/ cm2 , it is easy to cause a low degree of cross-linking due to insufficient energy, resulting in incomplete polymerization. When the polymerization reaction is incomplete, It is easy to further produce volatile organic compounds that are harmful to the polymerization reaction (for example, peroxides, free radicals, polar residues after the reaction, etc.), making it difficult to increase the cross-linking degree. The result of this vicious cycle will be detrimental to the progress of the polymerization reaction; When the ultraviolet light dose reaches 6000mJ/cm 2 , the cross-linking degree can reach 85.8%, which reaches the value expected in this disclosure (greater than or equal to 80%). And when the ultraviolet light dose reaches more than 12000mJ/cm 2 , The cross-linking degree can also be stably maintained at 89.1% to 89.2%. It can be seen that by providing a sufficient amount of ultraviolet light at one time (that is, increasing the ultraviolet light dose to a specific value at one time, in the embodiment of FIG. 2, the specific value falls, for example, between 12,000 and 15,000), not only The cross-linking degree of the organic polymer layer 130 can be increased, and the generation of volatile organic compounds can be avoided, thereby ensuring that the organic polymer layer 130 will not attack (or corrode) the metal nanowires MNW in the metal nanowire layer 120 . It should be noted that although Figure 2 is only a graph showing the relationship between cross-linking degree and UV dose in one embodiment of the present disclosure, after the inventors tried to use other photoinitiators to perform polymerization reactions, similar results can be obtained. From the curve relationship in Figure 2, it can be seen that providing a sufficient amount of UV light at one time can indeed help increase the degree of cross-linking.

進一步補充有關於有機聚合物層130的交聯度的量測方法。在本揭露中,可透過量測該有機聚合物層130在溶劑中浸泡前、後的重量變化,來得到該有機聚合物層130的交聯度。具體而言,有機聚合物層130的交聯度的量測方法包括以下步驟。步驟S1:使用加熱暨線切割法或冷凍法將一產品中的有機聚合物層130(簡稱聚合物)取下約0.1克,其中加熱暨線切割法包括將產品(例如,觸控模組、顯示模組)放置於溫度80℃的加熱板上加熱30秒,並使用線徑為0.1毫米的鉬絲切割聚合物,使聚合物與產品分離,再接著使用聚對苯二甲酸乙二酯(polyethylene terephthalate,PET)薄膜黏取聚合物;而冷凍法包括將產品放置於溫度為-80℃的環境中冷凍0.5小時,並在取出產品後立刻使用硬膜***至聚合物所在的層別與其他層別之間,使得聚合物與產品分離,再接著以角度180度撕除聚合物或者採用PET薄膜黏取聚合物。步驟S2:將網目為60 目/英寸的不鏽鋼金屬網裁切為具有4公分×6公分的面積,並將裁切後的不鏽鋼金屬網秤重並紀錄(重量W1)。步驟S3:將由步驟S1取下的聚合物盡可能地攤平並放置於不鏽鋼金屬網上。步驟S4:將不鏽鋼金屬網折出兩個平行於不鏽鋼金屬網之短邊的折痕,使不鏽鋼金屬網被均分為三等分,在彎折過程中,勿使不鏽鋼金屬網上的聚合物相互觸碰而沾黏。步驟S5:在不鏽鋼金屬網的每一條折痕的兩末端各剪一刀,並沿折痕將不鏽鋼金屬網外側的兩個等分朝中間彎折,進而使聚合物完全受不鏽鋼金屬網包圍,以形成樣品,並將樣品秤重並紀錄(重量W2)。步驟S6:將樣品放入50mL的圓柱玻璃杯中,並將30 mL的溶劑(溶劑包括90體積份的乙酸乙酯及10體積份的異丙醇)倒入盛有樣品的圓柱玻璃杯中,並確認溶劑完全覆蓋樣品,且樣品未漂浮於圓柱玻璃杯中(亦即,確認樣品是沉於圓柱玻璃杯的底部)。步驟S7:將圓柱玻璃杯以蓋子密封,並靜置在常溫常壓的通風櫥中48小時。步驟S8:將浸泡48小時的樣品從圓柱玻璃杯中取出,並放置於已事先秤重紀錄(重量W3)的鋁盤上,再將鋁盤連同樣品一併放進溫度為100℃並且具有排風功能的烘箱烘烤1小時。步驟S9:將烘烤後的鋁盤連同樣品取出並待其回到室溫後,將鋁盤連同樣品秤重並紀錄(W4)。步驟S10:依照以下式(1)計算出聚合物(有機聚合物層130)在溶劑中浸泡前後的重量變化,以得到該有機聚合物層130的交聯度(以Gel(%)代表,單位為%)。在經上述步驟S1至步驟S10後,便可得到本揭露之有機聚合物層130的交聯度。 Gel(%)=100%×(W4-W3-W1)/(W2-W1)─式(1)。 A method for measuring the cross-linking degree of the organic polymer layer 130 is further supplemented. In the present disclosure, the cross-linking degree of the organic polymer layer 130 can be obtained by measuring the weight change of the organic polymer layer 130 before and after being soaked in a solvent. Specifically, the method for measuring the cross-linking degree of the organic polymer layer 130 includes the following steps. Step S1: Use heating and wire cutting method or freezing method to remove about 0.1 gram of the organic polymer layer 130 (polymer for short) in a product. The heating and wire cutting method includes removing the product (for example, touch module, Display module) is placed on a hot plate with a temperature of 80°C and heated for 30 seconds, and a molybdenum wire with a wire diameter of 0.1 mm is used to cut the polymer to separate the polymer from the product, and then use polyethylene terephthalate ( Polyethylene terephthalate (PET) film adheres to the polymer; the freezing method involves placing the product in an environment with a temperature of -80°C for 0.5 hours, and immediately after removing the product, use a hard membrane to insert it into the layer where the polymer is located and other layers. Between layers, the polymer is separated from the product, and then the polymer is peeled off at an angle of 180 degrees or a PET film is used to adhere the polymer. Step S2: Cut the stainless steel metal mesh with a mesh size of 60 mesh/inch into an area of 4 cm x 6 cm, and weigh the cut stainless steel metal mesh and record it (weight W1). Step S3: Spread the polymer removed in step S1 as flat as possible and place it on a stainless steel mesh. Step S4: Fold the stainless steel metal mesh into two creases parallel to the short side of the stainless steel metal mesh, so that the stainless steel metal mesh is evenly divided into three equal parts. During the bending process, do not allow the polymer on the stainless steel metal mesh to Touch each other and stick. Step S5: Cut a knife at both ends of each fold of the stainless steel metal mesh, and bend the two equal parts on the outside of the stainless steel metal mesh toward the middle along the fold, so that the polymer is completely surrounded by the stainless steel metal mesh. A sample is formed, weighed and recorded (weight W2). Step S6: Place the sample into a 50 mL cylindrical glass, and pour 30 mL of solvent (the solvent includes 90 parts by volume of ethyl acetate and 10 parts by volume of isopropyl alcohol) into the cylindrical glass containing the sample. And confirm that the solvent completely covers the sample, and the sample does not float in the cylindrical glass (that is, confirm that the sample sinks to the bottom of the cylindrical glass). Step S7: Seal the cylindrical glass with a lid and place it in a fume hood at room temperature and pressure for 48 hours. Step S8: Take out the sample that has been soaked for 48 hours from the cylindrical glass and place it on an aluminum plate that has been weighed and recorded in advance (weight W3). Then put the aluminum plate together with the sample into a container with a temperature of 100°C and a discharge Bake in the oven with wind function for 1 hour. Step S9: Take out the baked aluminum pan and sample and wait until they return to room temperature. Then weigh the aluminum pan and sample and record (W4). Step S10: Calculate the weight change of the polymer (organic polymer layer 130) before and after being soaked in the solvent according to the following formula (1) to obtain the cross-linking degree of the organic polymer layer 130 (represented by Gel (%), unit for%). After the above steps S1 to S10, the cross-linking degree of the organic polymer layer 130 of the present disclosure can be obtained. Gel(%)=100%×(W4-W3-W1)/(W2-W1)─Equation (1).

接著,針對「有機聚合物層130中的揮發性有機物含量」,如前文所述,當殘留在有機聚合物層130中的揮發性有機物過多時,容易導致有機聚合物層130腐蝕金屬奈米線層120中的金屬奈米線MNW,進而使含有光學層疊體100的產品無法通過信賴性測試。在一些實施方式中,可透過控制在聚合反應中所添加之交聯劑、附著促進劑與助劑及在聚合反應期間產生之寡聚物的含量,來調整有機聚合物層130中的揮發性有機物含量。具體而言,交聯劑可促使單體進行交聯反應,且可例如是具有多個官能基的單體或寡聚物;附著促進劑可例如具有高極性的官能基;助劑可例如是提供抗腐蝕效果的抗腐蝕劑、提供紫外線吸收效果的紫外線吸收劑或用以調整產物(聚合物)之分子量的分子量調節劑,且可例如具有高極性的官能基或具備腐蝕性的硫醇類化合物;而寡聚物可能是在聚合反應過程中因未反應完全而產生的短鏈高分子,其可具有位於鏈段末端的活性雙鍵。若交聯劑、附著促進劑或助劑的含量過多,或者交聯劑、附著促進劑或助劑中的官能基反應不完全,又或者聚合反應結束後殘留於有機聚合物層130中的寡聚物過多,皆可能導致有機聚合物層130中剩餘的丙烯酸酯雙鍵氧化,進而形成對金屬奈米線MNW有害的高極性物質或酸性物質(即,揮發性有機物)。詳細而言,可參照本技術領域中常用之交聯劑、附著促進劑與助劑的試劑使用指引方針(guideline)並根據有機聚合物層130所需的硬度、厚度及模量等實際需求來相應調整交聯劑、附著促進劑與助劑的添加量,進而控制寡聚物的生成量。基於上述,本揭露將有機聚合物層130中的揮發性有機物含量控制在小於或等於1%的範圍中,確保有機聚合物層130不會攻擊金屬奈米線層120中的金屬奈米線MNW,進而達到產品信賴性測試的規格要求,並且確保含有光學層疊體100的觸控產品具有高的觸控靈敏度。應瞭解到,排除掉儀器偵測極限以及儀器誤差的因素,在較佳的實施方式中,有機聚合物層130中的揮發性有機物含量可實質上等於0%,也就是有機聚合物層130中完全不含有任何揮發性有機物。Next, regarding the "volatile organic compound content in the organic polymer layer 130", as mentioned above, when there are too many volatile organic compounds remaining in the organic polymer layer 130, it is easy to cause the organic polymer layer 130 to corrode the metal nanowires. The metal nanowires MNW in the layer 120 cause the product containing the optical stack 100 to fail the reliability test. In some embodiments, the volatility in the organic polymer layer 130 can be adjusted by controlling the content of cross-linking agents, adhesion promoters and auxiliaries added during the polymerization reaction and oligomers generated during the polymerization reaction. Organic matter content. Specifically, the cross-linking agent can promote the monomer to undergo a cross-linking reaction, and can be, for example, a monomer or oligomer with multiple functional groups; the adhesion promoter can, for example, have a highly polar functional group; the auxiliary agent can, for example, be Anti-corrosion agents that provide anti-corrosion effects, ultraviolet absorbers that provide ultraviolet absorption effects, or molecular weight regulators used to adjust the molecular weight of the product (polymer), and may, for example, have highly polar functional groups or corrosive thiol compounds ; The oligomer may be a short-chain polymer produced due to incomplete reaction during the polymerization reaction, and it may have an active double bond located at the end of the chain segment. If the content of the cross-linking agent, adhesion accelerator or auxiliary agent is too much, or the functional groups in the cross-linking agent, adhesion accelerator or auxiliary agent are not completely reacted, or the oligosaccharide residues remaining in the organic polymer layer 130 after the polymerization reaction are completed, Too much polymer may cause the remaining acrylate double bonds in the organic polymer layer 130 to oxidize, thereby forming highly polar substances or acidic substances (ie, volatile organic compounds) that are harmful to the metal nanowires MNW. In detail, you can refer to the guidelines for the use of cross-linking agents, adhesion promoters and auxiliaries commonly used in this technical field and according to the actual requirements such as hardness, thickness and modulus required for the organic polymer layer 130. Adjust the amount of cross-linking agent, adhesion accelerator and auxiliary agent accordingly to control the amount of oligomers produced. Based on the above, the present disclosure controls the volatile organic content in the organic polymer layer 130 to be less than or equal to 1%, ensuring that the organic polymer layer 130 will not attack the metal nanowires MNW in the metal nanowire layer 120 , thereby meeting the specification requirements of product reliability testing, and ensuring that the touch product containing the optical laminate 100 has high touch sensitivity. It should be understood that, excluding the factors of instrument detection limit and instrument error, in a preferred embodiment, the volatile organic content in the organic polymer layer 130 can be substantially equal to 0%, that is, in the organic polymer layer 130 Contains absolutely no volatile organic compounds.

在本揭露中,有機聚合物層130中的揮發性有機物含量係定義為:有機聚合物層130在一量測溫度下所測得的熱失重減去有機聚合物層130在該量測溫度下所測得的含水量的差值。更詳細而言,由於揮發性有機物在高溫下會揮發,而水在高溫下亦會揮發,因此當將有機聚合物層130在一特定溫度下的重量損失(即,熱失重,也就是揮發性有機物與水氣的總揮發量)減去有機聚合物層130在該特定溫度下水氣的揮發量(即,含水量)的差值,便可得到有機聚合物層130中的揮發性有機物含量。以下依序補充有關於「有機聚合物層130的熱失重的量測方法」以及「有機聚合物層130的含水量的量測方法」。In the present disclosure, the volatile organic compound content in the organic polymer layer 130 is defined as: the thermal weight loss of the organic polymer layer 130 measured at a measured temperature minus the measured temperature of the organic polymer layer 130 at the measured temperature. The difference in measured moisture content. In more detail, since volatile organic compounds will volatilize at high temperatures, and water will also volatilize at high temperatures, when the weight loss of the organic polymer layer 130 at a specific temperature (i.e., thermal weight loss, that is, the volatility The volatile organic matter content in the organic polymer layer 130 can be obtained by subtracting the difference between the total volatilization amount of organic matter and water vapor) and the volatilization amount of water vapor (ie, moisture content) of the organic polymer layer 130 at the specific temperature. The "Measurement Method of Thermal Gravimetric Loss of the Organic Polymer Layer 130" and the "Measurement Method of the Moisture Content of the Organic Polymer Layer 130" are added in order below.

首先,針對「有機聚合物層130的熱失重的量測方法」,在本揭露中,可透過對有機聚合物層130進行熱重量分析(thermalgravimatric analysis,TGA)來得到有機聚合物層130的熱失重。更具體而言, 有機聚合物層130的熱失重的量測方法包括以下步驟。步驟S1':使用加熱暨線切割法或冷凍法將一產品中的有機聚合物層130(簡稱聚合物)取下約20毫克,有關於加熱暨線切割法或冷凍法的具體細節請參前文的說明,於此不再贅述。步驟S2':在溫度為25±3℃且濕度RH為50±5%的無塵環境下將取下的聚合物靜置24小時。步驟S3':將熱重分析儀(型號:TA TGA-500)的樣品架(sample holder)放置於熱重分析儀的秤盤上並歸零(去皮)。步驟S4':將靜置後的聚合物放置在去皮後的樣品架中。步驟S5':以10℃/分鐘的速率升溫至30℃,並將溫度維持在30℃直到熱重分析儀所顯示之重量的波動小於1微克/分鐘,記錄此時聚合物的重量WI。步驟S6':以10℃/分鐘的速率升溫至120℃,並將溫度維持在120℃持續1小時後,記錄此時聚合物的重量WF。步驟S7':透過熱重分析儀計算重量WF減去重量WI的差值。在經上述步驟S1'至步驟S7'之後,便可得到聚合物(有機聚合物層130)的熱重損失(熱失重)。First, regarding the "measurement method of thermal gravimetric loss of the organic polymer layer 130", in this disclosure, the thermal gravimetric analysis (TGA) of the organic polymer layer 130 can be obtained. weightlessness. More specifically, the method for measuring the thermal weight loss of the organic polymer layer 130 includes the following steps. Step S1': Use heating and wire cutting method or freezing method to remove about 20 mg of the organic polymer layer 130 (referred to as polymer) in a product. Please refer to the previous article for specific details about the heating and wire cutting method or freezing method. The explanation will not be repeated here. Step S2': Let the removed polymer stand for 24 hours in a dust-free environment with a temperature of 25±3°C and a humidity of 50±5%. Step S3': Place the sample holder of the thermogravimetric analyzer (model: TA TGA-500) on the weighing pan of the thermogravimetric analyzer and reset to zero (tare). Step S4': Place the rested polymer in the peeled sample holder. Step S5': Raise the temperature to 30°C at a rate of 10°C/min, and maintain the temperature at 30°C until the weight fluctuation displayed by the thermogravimetric analyzer is less than 1 μg/min. Record the weight WI of the polymer at this time. Step S6': Raise the temperature to 120°C at a rate of 10°C/min, and maintain the temperature at 120°C for 1 hour. Record the weight WF of the polymer at this time. Step S7': Calculate the difference of the weight WF minus the weight WI through a thermogravimetric analyzer. After the above steps S1' to S7', the thermogravimetric loss (thermal weight loss) of the polymer (organic polymer layer 130) can be obtained.

接著,針對「有機聚合物層130的含水量的量測方法」,在本揭露中,可透過對有機聚合物層130進行卡爾-費雪滴定(Karl-Fisher Titration)來得到有機聚合物層130的含水量。具體而言,有機聚合物層130的含水量的量測方法包括以下步驟。步驟S1":使用加熱暨線切割法或冷凍法將一產品中的有機聚合物層130(簡稱聚合物)取下約50毫克,有關於加熱暨線切割法或冷凍法的具體細節請參前文的說明,於此不再贅述。步驟S2":在溫度為25±3℃且濕度RH為50±5%的無塵環境下將取下的聚合物靜置24小時。步驟S3":對取下的聚合物秤重(重量精確度至0.0001g),並將聚合物的重量輸入至卡爾-費雪滴定儀(型號:Metrohm KF Titrando 851)中。步驟S4":將聚合物置於該卡爾-費雪滴定儀中,並設定溫度為120℃、幫浦(pump)流量為40毫升/分鐘、拔出時間(extraction time)為1500秒。步驟S5":待滴定結束後,將卡爾-費雪滴定儀所量測到之聚合物的含水量數據輸出。在經上述步驟S1"至步驟S5"後,便可得到聚合物(有機聚合物層130)的含水量。Next, regarding the "method for measuring the moisture content of the organic polymer layer 130", in this disclosure, the organic polymer layer 130 can be obtained by performing Karl-Fisher Titration on the organic polymer layer 130 of moisture content. Specifically, the method for measuring the moisture content of the organic polymer layer 130 includes the following steps. Step S1": Use heating and wire cutting method or freezing method to remove about 50 mg of the organic polymer layer 130 (referred to as polymer) in a product. Please refer to the previous article for specific details about the heating and wire cutting method or freezing method. The description will not be repeated here. Step S2": Let the removed polymer stand for 24 hours in a dust-free environment with a temperature of 25±3°C and a humidity of 50±5%. Step S3": Weigh the removed polymer (weight accuracy to 0.0001g), and input the weight of the polymer into the Karl-Fisher titrator (Model: Metrohm KF Titrando 851). Step S4": Put The polymer was placed in the Karl-Fisher titrator and set to a temperature of 120°C, a pump flow of 40 ml/min, and an extraction time of 1500 seconds. Step S5": After the titration is completed, output the water content data of the polymer measured by the Karl-Fisher titrator. After the above steps S1" to step S5", the polymer (organic polymer) can be obtained layer 130).

在經前述步驟S1'至步驟S7'以得到有機聚合物層130在量測溫度為120℃時所測得的熱失重,並經步驟S1"至步驟S5"以得到有機聚合物層130在量測溫度為120℃時所測得的含水量後,便可將該熱失重減去該含水量,以得到有機聚合物層130的熱失重與含水量之間的差值,進而得到本揭露之有機聚合物層130中的揮發性有機物含量。值得說明的是,在前述步驟S1'至步驟S7'使用的聚合物與在前述步驟S1"至步驟S5"所使的聚合物可為同一產品中由不同位置取下的聚合物樣品。在另一些實施方式中,亦可先對一聚合物進行熱失重的量測,並將已進行熱失重量測的同一個聚合物靜置於溫度為25±3℃且濕度RH為50±5%的無塵環境下24小時後,再對該聚合物進行含水量的量測,然而此實施方式便是取50毫克的聚合物作為聚合物樣品。After going through the aforementioned steps S1' to step S7' to obtain the thermal weight loss measured when the measuring temperature of the organic polymer layer 130 is 120°C, and going through steps S1" to step S5" to obtain the measured weight of the organic polymer layer 130. After measuring the moisture content measured when the temperature is 120°C, the moisture content can be subtracted from the thermal weight loss to obtain the difference between the thermal weight loss and the moisture content of the organic polymer layer 130, and then obtain the method of the present disclosure. Volatile organic content in the organic polymer layer 130 . It is worth noting that the polymer used in the aforementioned steps S1' to step S7' and the polymer used in the aforementioned steps S1" to step S5" can be polymer samples taken from different locations in the same product. In other embodiments, the thermal weight loss of a polymer can also be measured first, and the same polymer that has been measured for thermal weight loss can be allowed to stand at a temperature of 25±3°C and a humidity RH of 50±5 After 24 hours in a dust-free environment of %, the moisture content of the polymer is measured again. However, in this embodiment, 50 mg of the polymer is taken as a polymer sample.

本揭露透過使有機聚合物層130的交聯度落在合適的範圍中,並且透過使有機聚合物層130中的揮發性有機物含量落在合適的範圍中,來提升有機聚合物層130與金屬奈米線層120中之金屬奈米線MNW的兼容性,以確保有機聚合物層130本身不會攻擊(腐蝕)金屬奈米線層120中的金屬奈米線MNW,進而達到產品信賴性測試的規格要求。具體而言,本揭露中所稱「達到產品信賴性測試的規格要求」是指本揭露的光學層疊體100在經歷504小時的高溫高濕HS8585測試(即,溫度85℃、相對濕度85%、通入5伏特的直流電壓)後,光學層疊體100的阻值變化率(ΔR)小於或等於10%且大於或等於-10%。The present disclosure improves the relationship between the organic polymer layer 130 and the metal by making the cross-linking degree of the organic polymer layer 130 fall within an appropriate range, and by making the volatile organic content in the organic polymer layer 130 fall within an appropriate range. The compatibility of the metal nanowires MNW in the nanowire layer 120 ensures that the organic polymer layer 130 itself will not attack (corrode) the metal nanowires MNW in the metal nanowire layer 120 to achieve product reliability testing. specification requirements. Specifically, the term "meeting the specification requirements of product reliability testing" in this disclosure means that the optical laminate 100 of this disclosure has experienced 504 hours of high temperature and high humidity HS8585 test (i.e., temperature of 85°C, relative humidity of 85%, After applying a DC voltage of 5 volts), the resistance change rate (ΔR) of the optical laminate 100 is less than or equal to 10% and greater than or equal to -10%.

進一步補充有關於光學層疊體100的阻值(方阻值)變化率的量測方法。在此量測方法中,量測設備是採用非接觸式方阻測試儀(型號:Napson EC-80P-PN),並是在常溫下進行量測。具體的量測方法包括以下步驟。步驟S11:將該非接觸式方阻測試儀通電並開機,並暖機20分鐘。步驟S12:在M-H模式下,按壓該非接觸式方阻測試儀的設置鍵,選擇「sheet測試」。步驟S13:將尚未經歷高溫高濕測試的光學層疊體100(包括基板110、金屬奈米線層120以及有機聚合物層130)平放於一絕緣檯面上。步驟S14:將探針的針尖垂直地接觸於金屬奈米線層120之表面的任一位置。步驟S15:等待直至該非接觸式方阻測試儀顯示之方阻值的後方顯示「complete」,並記錄該方阻值。步驟S16:將探針提起,以準備進行下一次測試(在正常情況下,待探針提起後,「complete」會消失,此時無需重新設置便可進行下一次測試;然而,若「complete」未消失,則需連續按壓兩次設置鍵方可進行下一次測試)。步驟S17:重複進行多次(例如,10次)步驟S14至步驟S15,並以多次量測所得到的多個方阻值的平均值作為尚未經歷高溫高濕測試之光學層疊體100的方阻值R I。步驟S18:重複進行步驟S11至步驟S13,其中在步驟S13中,是將已經歷504小時之高溫高濕HS8585測試的同一個光學層疊體100平放於一絕緣檯面上。步驟S19:重複進行多次(例如,10次)步驟S14至步驟S15,並以多次量測所得到的多個方阻值的平均值作為在經歷504小時之高溫高濕HS8585測試後的光學層疊體100的方阻值R F。步驟S20:依照以下式(2)計算出光學層疊體100的阻值變化率(ΔR)。在經上述步驟S11至步驟S20後,便可得到本揭露之光學層疊體100的阻值變化率(ΔR)。 ΔR(%)=100%×(R F-R I)/R I—式(2)。 Further added is a method for measuring the change rate of the resistance value (square resistance value) of the optical laminate 100 . In this measurement method, the measurement equipment is a non-contact square resistance tester (model: Napson EC-80P-PN), and the measurement is performed at room temperature. The specific measurement method includes the following steps. Step S11: Power on and turn on the non-contact square resistance tester, and let it warm up for 20 minutes. Step S12: In MH mode, press the setting button of the non-contact square resistance tester and select "sheet test". Step S13: Place the optical laminate 100 (including the substrate 110, the metal nanowire layer 120 and the organic polymer layer 130) that has not undergone high temperature and high humidity testing flatly on an insulating table. Step S14: Vertically contact the tip of the probe to any position on the surface of the metal nanowire layer 120. Step S15: Wait until "complete" is displayed behind the square resistance value displayed by the non-contact square resistance tester, and record the square resistance value. Step S16: Lift the probe to prepare for the next test (under normal circumstances, after the probe is lifted, "complete" will disappear. At this time, the next test can be performed without resetting; however, if "complete" If it does not disappear, you need to press the setting button twice consecutively to perform the next test). Step S17: Repeat steps S14 to step S15 multiple times (for example, 10 times), and use the average value of the multiple square resistance values obtained by multiple measurements as the square meter of the optical laminate 100 that has not undergone the high temperature and high humidity test. Resistance R I . Step S18: Repeat steps S11 to step S13. In step S13, the same optical laminate 100 that has undergone the high temperature and high humidity HS8585 test for 504 hours is placed flat on an insulating table. Step S19: Repeat steps S14 to step S15 multiple times (for example, 10 times), and use the average value of multiple square resistance values obtained by multiple measurements as the optical value after 504 hours of high temperature and high humidity HS8585 test. Square resistance R F of the laminated body 100 . Step S20: Calculate the resistance change rate (ΔR) of the optical laminate 100 according to the following formula (2). After the above steps S11 to S20, the resistance change rate (ΔR) of the optical laminate 100 of the present disclosure can be obtained. ΔR(%)=100%×(R F -R I )/R I —Equation (2).

在一些實施方式中,有機聚合物層130的厚度H3可大於或等於25微米且小於或等於125微米,有機聚合物層130的厚度H3與金屬奈米線層120的厚度H2的單位屬於不同的數量級,如此有助於有機聚合物層130更進一步保護金屬奈米線層120,降低水氣侵入至金屬奈米線層120中的機率,進而降低金屬奈米線MNW發生電致遷移機率或減緩金屬奈米線MNW發生電致遷移的時間,進而較佳地達到產品信賴性測試的規格要求,並較佳地確保含有光學層疊體100的觸控產品具有高的觸控靈敏度。In some embodiments, the thickness H3 of the organic polymer layer 130 may be greater than or equal to 25 microns and less than or equal to 125 microns. The thickness H3 of the organic polymer layer 130 and the thickness H2 of the metal nanowire layer 120 belong to different units. order of magnitude, which helps the organic polymer layer 130 further protect the metal nanowire layer 120 and reduce the probability of water vapor intruding into the metal nanowire layer 120, thereby reducing the probability or slowing down the electromigration of the metal nanowire MNW. The time during which the metal nanowire MNW undergoes electromigration can better meet the specification requirements of product reliability testing and better ensure that the touch product containing the optical laminate 100 has high touch sensitivity.

另一方面,由於金屬奈米線層120的基質OC會直接接觸金屬奈米線MNW,因此在一些實施方式中,可進一步使金屬奈米線層120之基質OC的交聯度落在合適的範圍中,並進一步使金屬奈米線層120之基質OC中的揮發性有機物含量落在合適的範圍中,來較佳地保護金屬奈米線MNW,以進一步降低金屬奈米線MNW受到腐蝕的機率,有助於達到產品信賴性測試的規格要求。具體而言,在一些實施方式中,基質OC的交聯度可控制在大於或等於80%且小於或等於100%的範圍中,且基質OC中的揮發性有機物含量可控制在小於或等於1%的範圍中,其中基質OC中的揮發性有機物含量係定義為:基質OC在一量測溫度(即,120℃)下所測得的熱失重減去基質OC在該量測溫度(即,120℃)下所測得的含水量的差值,有關於基質OC之交聯度與揮發性有機物含量各自的定義及量測方法與可參照前文有關於有機聚合物層130之交聯度與揮發性有機物含量各自的定義及量測方法,於此不再贅述。排除掉儀器偵測極限及儀器誤差的因素,在較佳的實施方式中,基質OC中的揮發性有機物含量可實質上等於0%,也就是基質OC中完全不含有任何揮發性有機物。On the other hand, since the matrix OC of the metal nanowire layer 120 will directly contact the metal nanowire MNW, in some embodiments, the cross-linking degree of the matrix OC of the metal nanowire layer 120 can be further adjusted to an appropriate level. within the range, and further ensure that the volatile organic compound content in the matrix OC of the metal nanowire layer 120 falls within an appropriate range to better protect the metal nanowire MNW and further reduce the risk of corrosion of the metal nanowire MNW. probability, helping to meet the specifications for product reliability testing. Specifically, in some embodiments, the cross-linking degree of the matrix OC can be controlled in a range of greater than or equal to 80% and less than or equal to 100%, and the volatile organic content in the matrix OC can be controlled to be less than or equal to 1 In the range of %, the volatile organic compound content in the matrix OC is defined as: the thermal weight loss of the matrix OC measured at a measurement temperature (i.e., 120°C) minus the thermal weight loss of the matrix OC at the measurement temperature (i.e., 120°C), for the respective definitions and measurement methods of the cross-linking degree and volatile organic content of the matrix OC, please refer to the previous article about the cross-linking degree and the content of the organic polymer layer 130 The respective definitions and measurement methods of volatile organic compound content will not be described again here. Excluding the factors of instrument detection limit and instrument error, in a preferred embodiment, the volatile organic compound content in the matrix OC can be substantially equal to 0%, that is, the matrix OC does not contain any volatile organic compounds at all.

請參閱表一,其透過各比較例及各實施例具體驗證本揭露的有機聚合物層130之交聯度以及揮發性有機物含量對於光學層疊體100是否能通過信賴性測試所造成的影響。需要說明的是,在表一中,各實施例及比較例之光學層疊體100的疊構與第3圖的疊構相同,其是將金屬奈米線層120及鈍化層150視為一整體,來進一步量測光學層疊體100中有機聚合物層130的特性。應瞭解到,表一的重點在於有機聚合物層130的特性對於光學層疊體100是否能通過信賴性測試所造成的影響,不應以表一中各實施例的疊構來限制本揭露。 表一   有機聚合物層的特性 光學層疊體在經歷54小時的高溫高濕HS8585測試後的阻值變化率ΔR(%) 交聯度(%) 揮發性有機物含量(%) (熱失重(%)-含水量(%)) 比較例1 75.9 0.74 79.4 比較例2 68.5 1.42 阻值變化率過大,無法測得 比較例3 82.5 1.27 50.3 比較例4 92.6 1.39 阻值變化率過大,無法測得 比較例5 91.6 1.42 阻值變化率過大,無法測得 比較例6 91.7 1.61 阻值變化率過大,無法測得 比較例7 93.4 1.59 阻值變化率過大,無法測得 比較例8 73.7 0.76 34.7 實施例1 86.3 0.56 -1.5 實施例2 88.9 0.62 -3.3 實施例3 91.1 0.32 9.6 Please refer to Table 1, which specifically verifies through each comparative example and each embodiment the impact of the cross-linking degree and volatile organic content of the organic polymer layer 130 of the present disclosure on whether the optical laminate 100 can pass the reliability test. It should be noted that in Table 1, the stacking structure of the optical laminate 100 of each embodiment and the comparative example is the same as the stacking structure of Figure 3, which considers the metal nanowire layer 120 and the passivation layer 150 as a whole. , to further measure the characteristics of the organic polymer layer 130 in the optical laminate 100. It should be understood that the focus of Table 1 is on the impact of the characteristics of the organic polymer layer 130 on whether the optical laminate 100 can pass the reliability test, and the present disclosure should not be limited by the stack structure of each embodiment in Table 1. Table I Properties of the organic polymer layer Resistance change rate ΔR (%) of the optical laminate after 54 hours of high temperature and high humidity HS8585 test Cross-linking degree (%) Volatile organic compound content (%) (thermal weight loss (%)-moisture content (%)) Comparative example 1 75.9 0.74 79.4 Comparative example 2 68.5 1.42 The resistance change rate is too large and cannot be measured Comparative example 3 82.5 1.27 50.3 Comparative example 4 92.6 1.39 The resistance change rate is too large and cannot be measured Comparative example 5 91.6 1.42 The resistance change rate is too large and cannot be measured Comparative example 6 91.7 1.61 The resistance change rate is too large and cannot be measured Comparative example 7 93.4 1.59 The resistance change rate is too large and cannot be measured Comparative example 8 73.7 0.76 34.7 Example 1 86.3 0.56 -1.5 Example 2 88.9 0.62 -3.3 Example 3 91.1 0.32 9.6

首先,需說明的是,實施例1所使用之已固化的有機聚合物層130(模片、片材)是購自航日化學(香港)有限公司,其商品型號為AVIC FP301;實施例2所使用之已固化的有機聚合物層130(模片、片材)是購自新綸科技股份有限公司,其商品型號為Selen SLC-6305;而實施例3所使用之已固化的有機聚合物層130(模片、片材)是購自富印集團,其商品型號為22A-7;且上述各商品皆是依照本揭露中對於有機聚合物層130之交聯度及揮發性有機物含量的需求所開發出來的。由表一的比較例1~8可知,當有機聚合物層130交聯度及揮發性有機物含量的任一者並未落在本揭露所限定的範圍內時,光學層疊體100便無法通過相關的信賴性測試;而由表一的實施例1~3可知,當有機聚合物層130交聯度及揮發性有機物含量皆落在本揭露所限定的範圍內時,光學層疊體100可通過相關的信賴性測試(電阻變化率小於或等於10%且大於或等於-10%)。First, it should be noted that the cured organic polymer layer 130 (mold, sheet) used in Example 1 was purchased from Hangri Chemical (Hong Kong) Co., Ltd., and its product model is AVIC FP301; Example 2 The cured organic polymer layer 130 (mold, sheet) used was purchased from Selen Technology Co., Ltd., and its product model is Selen SLC-6305; and the cured organic polymer used in Example 3 The layer 130 (mold, sheet) is purchased from Fuyin Group, and its product model is 22A-7; and each of the above products is based on the cross-linking degree and volatile organic content of the organic polymer layer 130 in this disclosure. Developed based on demand. It can be seen from Comparative Examples 1 to 8 in Table 1 that when any of the cross-linking degree and volatile organic content of the organic polymer layer 130 does not fall within the range limited by the present disclosure, the optical laminate 100 cannot pass the relevant regulations. Reliability test; and from Examples 1 to 3 in Table 1, it can be seen that when the cross-linking degree and volatile organic content of the organic polymer layer 130 fall within the range limited by the present disclosure, the optical laminate 100 can pass the relevant Reliability test (resistance change rate is less than or equal to 10% and greater than or equal to -10%).

在一些實施方式中,可進一步透過調整蓋板140的材料,以降低金屬奈米線層120中的金屬奈米線MNW受到腐蝕的機率。詳細而言,可透過控制蓋板140中高活性之元素(例如,鉀、鈉及鈣元素)的含量,以降低由高活性之元素所產生的離子(例如鉀離子、鈉離子及鈣離子)因擴散而誘發金屬奈米線MNW發生電致遷移(migration)的機率,進而較佳地達到產品信賴性測試的規格要求,並較佳地確保含有光學層疊體100的觸控產品具有高的觸控靈敏度。具體而言,在一些實施方式中,蓋板140的材料在能量散射X射線(Energy-Dispersive X-ray,EDX)分析下所測得的鉀元素及鈣元素各自的含量可控制在小於或等於1%的範圍中;而在另一些實施方式中,蓋板140的材料在能量散射X射線分析下所測得的鈉元素及鉀元素各自的含量可控制在小於或等於1%的範圍中。當蓋板140的材料中高活性之元素的含量被控制在上述範圍中時,可較佳地降低金屬奈米線MNW發生電致遷移的機率。詳細而言,當上述高活性之元素的含量大於1%時,由高活性之元素所產生的離子將有較大的機會擴散至金屬奈米線層120中,進而使金屬奈米線MNW較容易電化學解離並發生電致遷移。排除掉儀器偵測極限及儀器誤差的因素,在較佳的實施方式中,一蓋板140中之鉀元素及鈣元素各自的含量或者蓋板140中之鈉元素及鉀元素各自的含量可實質上等於0%,也就是一蓋板140中完全不含有任何鉀元素及鈣元素或者鈉元素及鉀元素。In some embodiments, the material of the cover plate 140 can be further adjusted to reduce the probability that the metal nanowires MNW in the metal nanowire layer 120 are corroded. Specifically, the content of highly active elements (such as potassium, sodium and calcium) in the cover plate 140 can be controlled to reduce the ions (such as potassium ions, sodium ions and calcium ions) generated by the highly active elements. Diffusion induces the probability of electromigration of metal nanowires MNW, thereby better meeting the specification requirements of product reliability testing, and better ensuring that touch products containing the optical laminate 100 have high touch control sensitivity. Specifically, in some embodiments, the respective contents of potassium and calcium measured under energy-dispersive X-ray (EDX) analysis of the material of the cover 140 can be controlled to be less than or equal to In other embodiments, the contents of sodium and potassium in the material of the cover plate 140 measured under energy scattering X-ray analysis can be controlled to be less than or equal to 1%. When the content of the highly active element in the material of the cover plate 140 is controlled within the above range, the probability of electromigration of the metal nanowire MNW can be preferably reduced. Specifically, when the content of the above-mentioned highly active elements is greater than 1%, ions generated by the highly active elements will have a greater chance of diffusing into the metal nanowire layer 120, thereby making the metal nanowires MNW larger. Easily electrochemically dissociated and electromigrated. Excluding the factors of instrument detection limit and instrument error, in a preferred embodiment, the respective contents of potassium element and calcium element in a cover plate 140 or the respective contents of sodium element and potassium element in the cover plate 140 can be substantially is equal to 0%, that is, the cover plate 140 does not contain any potassium and calcium elements or sodium and potassium elements at all.

請參閱表二,其透過各比較例及各實施例具體驗證蓋板140的材料對於光學層疊體100是否能通過信賴性測試所造成的影響。需說明的是,在表二中,各實施例及比較例之光學層疊體100的疊構與第1A圖的疊構相同。此外,各元素的含量是經能量散射X射線分析所測得,其中所使用的能量散射X射線分析儀的偵測極限為1%。 表二   蓋板的材料中高活性之元素的含量 (%) 有機聚合物層的商品型號 光學層疊體在經歷54小時的高溫高濕HS8585測試後的阻值變化率ΔR(%) 鉀元素 鈣元素 鈉元素 比較例1 14.52 7.12 5.12 Selen SLC-6305 -2.8 實施例1 小於偵測極限 小於偵測極限 23.02 Selen SLC-6305 -3.2 實施例2 小於偵測極限 9.12 小於偵測極限 Selen SLC-6305 -3.5 對照例1 14.52 7.12 8.15 富印28A 67.2 對照例2 小於偵測極限 小於偵測極限 23.02 富印28A 30.0 對照例3 小於偵測極限 9.12 小於偵測極限 富印28A 25.8 Please refer to Table 2, which specifically verifies the impact of the material of the cover plate 140 on whether the optical stack 100 can pass the reliability test through each comparative example and each embodiment. It should be noted that in Table 2, the stacking structure of the optical laminate 100 of each embodiment and comparative example is the same as that of Figure 1A. In addition, the content of each element was measured by energy scattering X-ray analysis, in which the detection limit of the energy scattering X-ray analyzer used was 1%. Table II Content of highly active elements in the cover material (%) Product model number of organic polymer layer Resistance change rate ΔR (%) of the optical laminate after 54 hours of high temperature and high humidity HS8585 test Potassium Calcium Sodium Comparative example 1 14.52 7.12 5.12 Selen SLC-6305 -2.8 Example 1 Less than detection limit Less than detection limit 23.02 Selen SLC-6305 -3.2 Example 2 Less than detection limit 9.12 Less than detection limit Selen SLC-6305 -3.5 Comparative example 1 14.52 7.12 8.15 Fuyin 28A 67.2 Comparative example 2 Less than detection limit Less than detection limit 23.02 Fuyin 28A 30.0 Comparative example 3 Less than detection limit 9.12 Less than detection limit Fuyin 28A 25.8

由表二的比較例1及實施例1~2可知,當採用符合本揭露所限定之規格(交聯度及揮發性有機物含量)的聚合物作為有機聚合物層130時,若將蓋板140的材料中所含有之鉀元素及鈣元素各自的含量控制在小於或等於1%的範圍中,或將蓋板140的材料中所含有之鉀元素及鈉元素各自的含量控制在小於或等於1%的範圍中,皆有助於光學層疊體100的阻值變化率降低。另一方面,本揭露另外提供對照例1~3,其是採用不符合本揭露所限定之規格(交聯度及揮發性有機物含量)的聚合物(購自富印集團,商品型號為28A)作為有機聚合物層130,而當在對照例1~3中,若將蓋板140的材料中所含有之鉀元素及鈣元素各自的含量控制在小於或等於1%的範圍中,或將蓋板140的材料中所含有之鉀元素及鈉元素各自的含量控制在小於或等於1%的範圍中,皆可有助於光學層疊體100的阻值變化率降低。由此可見,透過控制蓋板140中鉀、鈉以及鈣元素的含量,可降低金屬奈米線MNW發生電致遷移的機率,進而較佳地達到產品信賴性測試的規格要求,並較佳地確保含有光學層疊體100的觸控產品具有高的觸控靈敏度。It can be seen from Comparative Example 1 and Embodiments 1 to 2 in Table 2 that when a polymer that meets the specifications (cross-linking degree and volatile organic content) defined in the present disclosure is used as the organic polymer layer 130, if the cover plate 140 is The respective contents of potassium element and calcium element contained in the material of the cover plate 140 are controlled to be less than or equal to 1%, or the respective contents of potassium element and sodium element contained in the material of the cover plate 140 are controlled to be less than or equal to 1%. In the range of %, it helps to reduce the resistance change rate of the optical laminate 100. On the other hand, this disclosure also provides comparative examples 1 to 3, which use polymers (purchased from Fuyin Group, product model 28A) that do not meet the specifications (cross-linking degree and volatile organic content) limited by this disclosure. As the organic polymer layer 130, in Comparative Examples 1 to 3, if the contents of potassium element and calcium element contained in the material of the cover plate 140 are controlled to be less than or equal to 1%, or the cover plate 140 will be Controlling the respective contents of potassium and sodium contained in the material of the plate 140 to less than or equal to 1% can help reduce the resistance change rate of the optical laminate 100 . It can be seen that by controlling the contents of potassium, sodium and calcium elements in the cover plate 140, the probability of electromigration of the metal nanowire MNW can be reduced, thereby better meeting the specifications of product reliability testing, and better achieving It is ensured that the touch product containing the optical laminate 100 has high touch sensitivity.

請參閱第3圖,其繪示根據本揭露另一些實施方式之光學層疊體100a的疊構示意圖。第3圖的光學層疊體100a與第1A圖的光學層疊體100的至少一個差異在於:光學層疊體100a更包括設置於金屬奈米線層120與有機聚合物層130之間的鈍化層150。換句話說,金屬奈米線層120、鈍化層150、有機聚合物層130以及蓋板140依序堆疊於基板110上。在本實施方式中,金屬奈米線層120中之部分的金屬奈米線MNW進一步嵌入至鈍化層150中,詳細結構特徵請參見前述第1B圖的說明,於此便不再贅述。在一些實施方式中,鈍化層150可具有良好的防刮性能,因此可在光學層疊體100a的製備過程中進一步保護金屬奈米線層120免於受到傷害。在一些實施方式中,鈍化層150的厚度H5可例如是大於或等於5微米且小於或等於10微米,進而較佳地保護金屬奈米線層120,降低因厚度H5過大而導致鈍化層150產生不必要之可視性的可能性,並降低因厚度H5過小而導致金屬奈米線層120在製程期間因刮傷或擦傷而造成磨損的可能性。Please refer to FIG. 3 , which illustrates a schematic diagram of the stack structure of an optical laminate 100 a according to other embodiments of the present disclosure. At least one difference between the optical stack 100a in FIG. 3 and the optical stack 100 in FIG. 1A is that the optical stack 100a further includes a passivation layer 150 disposed between the metal nanowire layer 120 and the organic polymer layer 130. In other words, the metal nanowire layer 120, the passivation layer 150, the organic polymer layer 130 and the cover plate 140 are sequentially stacked on the substrate 110. In this embodiment, part of the metal nanowires MNW in the metal nanowire layer 120 is further embedded in the passivation layer 150. Please refer to the description of Figure 1B for detailed structural features, which will not be described again here. In some embodiments, the passivation layer 150 may have good anti-scratch properties, thereby further protecting the metal nanowire layer 120 from damage during the preparation process of the optical stack 100a. In some embodiments, the thickness H5 of the passivation layer 150 may be, for example, greater than or equal to 5 microns and less than or equal to 10 microns, thereby better protecting the metal nanowire layer 120 and reducing the risk of the passivation layer 150 being formed due to excessive thickness H5 The possibility of unnecessary visibility is reduced, and the possibility of wear of the metal nanowire layer 120 due to scratches or abrasions during the process due to the thickness H5 being too small is reduced.

另一方面,由於在本實施方式中,鈍化層150相較於有機聚合物層130更為接近金屬奈米線MNW,因此在一些實施方式中,可進一步使鈍化層150的交聯度落在合適的範圍中,並進一步使鈍化層150中的揮發性有機物含量落在合適的範圍中,如此可更進一步保護金屬奈米線MNW,更加降低金屬奈米線MNW受到腐蝕的機率,有助於進一步達到產品信賴性測試的規格要求。具體而言,在一些實施方式中,鈍化層150的交聯度可控制在大於或等於80%且小於或等於100%的範圍中,且鈍化層150中的揮發性有機物含量可控制在小於或等於1%的範圍中,其中鈍化層150中的揮發性有機物含量係定義為:鈍化層150在一量測溫度(120℃)下所測得的熱失重減去鈍化層150在該量測溫度(120℃)下所測得的含水量的差值,有關於鈍化層150之交聯度及揮發性有機物含量各自的定義及量測方法與可參照前文有關於有機聚合物層130之交聯度及揮發性有機物含量各自的定義以及量測方法,於此不再贅述。排除掉儀器偵測極限及儀器誤差的因素,在較佳的實施方式中,鈍化層150中的揮發性有機物含量可實質上等於0%,也就是鈍化層150中完全不含有任何揮發性有機物。On the other hand, since in this embodiment, the passivation layer 150 is closer to the metal nanowire MNW than the organic polymer layer 130, so in some embodiments, the cross-linking degree of the passivation layer 150 can be further adjusted to fall within Within the appropriate range, and further ensuring that the volatile organic compound content in the passivation layer 150 falls within the appropriate range, this can further protect the metal nanowire MNW, further reduce the probability of the metal nanowire MNW being corroded, and help Further meet the specifications for product reliability testing. Specifically, in some embodiments, the cross-linking degree of the passivation layer 150 can be controlled in a range of greater than or equal to 80% and less than or equal to 100%, and the volatile organic content in the passivation layer 150 can be controlled to be less than or equal to 100%. In the range equal to 1%, the volatile organic compound content in the passivation layer 150 is defined as: the thermal weight loss of the passivation layer 150 measured at a measurement temperature (120°C) minus the thermal weight loss of the passivation layer 150 at the measurement temperature. The difference in moisture content measured at (120°C), for the respective definitions and measurement methods of the cross-linking degree and volatile organic content of the passivation layer 150, please refer to the previous article about the cross-linking of the organic polymer layer 130 The respective definitions and measurement methods of concentration and volatile organic compound content will not be described again here. Excluding the factors of instrument detection limit and instrument error, in a preferred embodiment, the volatile organic compound content in the passivation layer 150 can be substantially equal to 0%, that is, the passivation layer 150 does not contain any volatile organic compounds at all.

請參閱第4圖,其繪示根據本揭露另一些實施方式之光學層疊體100b的疊構示意圖。第4圖的光學層疊體100b與第3圖的光學層疊體100a的至少一個差異在於:光學層疊體100b的金屬奈米線層120並不包括基質OC(即,金屬奈米線層120是由金屬奈米線MNW所構成的),且鈍化層150直接接觸基板110並直接接觸且包覆金屬奈米線MNW,也就是說,鈍化層150設置於每一根金屬奈米線MNW與有機聚合物層130間。在本實施方式中,鈍化層150可完全包覆所有的金屬奈米線MNW,因此所有的金屬奈米線MNW會完全分佈在鈍化層150中而不會部分地嵌入至有機聚合物層130中。透過省略金屬奈米線層120中基質OC的設置,可減少製程步驟,並降低製程成本,且還可有利於光學層疊體100b薄型化。另一方面,由於鈍化層150可具有大於或等於80%且小於或等於100%的交聯度以及小於或等於1%的揮發性有機物含量,因此即便鈍化層150直接接觸金屬奈米線MNW,亦不會攻擊(腐蝕)金屬奈米線MNW,如此一來,第4圖的光學層疊體100b仍可達到產品信賴性測試的規格要求。Please refer to FIG. 4 , which illustrates a schematic diagram of the stack structure of the optical laminate 100 b according to other embodiments of the present disclosure. At least one difference between the optical stack 100b in FIG. 4 and the optical stack 100a in FIG. 3 is that the metal nanowire layer 120 of the optical stack 100b does not include a matrix OC (ie, the metal nanowire layer 120 is made of composed of metal nanowires MNW), and the passivation layer 150 directly contacts the substrate 110 and directly contacts and covers the metal nanowires MNW. That is to say, the passivation layer 150 is provided on each metal nanowire MNW and organic polymerization There are 130 rooms on the property floor. In this embodiment, the passivation layer 150 can completely cover all the metal nanowires MNW, so all the metal nanowires MNW will be completely distributed in the passivation layer 150 without being partially embedded in the organic polymer layer 130 . By omitting the arrangement of the matrix OC in the metal nanowire layer 120, the process steps can be reduced, the process cost can be reduced, and the optical stack 100b can also be made thinner. On the other hand, since the passivation layer 150 may have a cross-linking degree greater than or equal to 80% and less than or equal to 100% and a volatile organic content less than or equal to 1%, even if the passivation layer 150 directly contacts the metal nanowire MNW, It will not attack (corrode) the metal nanowire MNW. Therefore, the optical stack 100b in Figure 4 can still meet the specifications of product reliability testing.

請參閱第5圖,其繪示根據本揭露另一些實施方式之光學層疊體100c的疊構示意圖。第5圖的光學層疊體100c與第4圖的光學層疊體100b的至少一個差異在於:光學層疊體100c並不包括鈍化層150,且有機聚合物層130接觸基板110並直接接觸且包覆金屬奈米線MNW也就是說,有機聚合物層130設置於每一根金屬奈米線MNW與蓋板140間。在本實施方式中,有機聚合物層130可完全包覆所有的金屬奈米線MNW,因此所有的金屬奈米線MNW會完全分佈在有機聚合物層130中。相較於第4圖的光學層疊體100b,由於第5圖的光學層疊體100c進一步省略鈍化層150的設置,因此可減少製程步驟,並降低製程成本,且還可有利於光學層疊體100c薄型化。Please refer to FIG. 5 , which illustrates a schematic diagram of the stack structure of an optical laminate 100c according to other embodiments of the present disclosure. At least one difference between the optical stack 100c in Figure 5 and the optical stack 100b in Figure 4 is that the optical stack 100c does not include the passivation layer 150, and the organic polymer layer 130 contacts the substrate 110 and directly contacts and coats the metal. Nanowire MNW means that the organic polymer layer 130 is disposed between each metal nanowire MNW and the cover plate 140 . In this embodiment, the organic polymer layer 130 can completely cover all the metal nanowires MNW, so all the metal nanowires MNW will be completely distributed in the organic polymer layer 130 . Compared with the optical laminate 100b in Figure 4, the optical laminate 100c in Figure 5 further omits the passivation layer 150, so the process steps can be reduced and the process cost can be reduced, and it can also be beneficial to the thinness of the optical laminate 100c. change.

根據本揭露上述實施方式,本揭露的光學層疊體包括金屬奈米線層以及有機聚合物層。由於有機聚合物層具有本揭露所限定的交聯度及揮發性有機物含量,因此可確保有機聚合物層不會攻擊(腐蝕)金屬奈米線層中的金屬奈米線,進而使本揭露的光學層疊體達到產品信賴性測試的規格要求,並確保含有光學層疊體的觸控產品具有高的觸控靈敏度。此外,透過進一步使光學層疊體中的其他層別(例如,金屬奈米線層中的基質、鈍化層)具有本揭露所限定的交聯度及揮發性有機物含量,可進一步提升金屬奈米線的穩定性,進而延長光學層疊體的使用壽命。另外,透過透過控制蓋板中高活性之元素的含量,可進一步降低金屬奈米線發生電致遷移的機率,以較佳地達到產品信賴性測試的規格要求。另一方面,本揭露的光學層疊體可具有多樣化的疊構設計,進而在確保光學層疊體可達到產品信賴性測試的規格要求之前提下,因應各種不同的產品需求。According to the above embodiments of the present disclosure, the optical laminate of the present disclosure includes a metal nanowire layer and an organic polymer layer. Since the organic polymer layer has the cross-linking degree and volatile organic content defined by the disclosure, it can be ensured that the organic polymer layer will not attack (corrode) the metal nanowires in the metal nanowire layer, thereby making the disclosure The optical laminate meets the specification requirements of product reliability testing and ensures that touch products containing the optical laminate have high touch sensitivity. In addition, by further allowing other layers in the optical stack (for example, the matrix and the passivation layer in the metal nanowire layer) to have the cross-linking degree and volatile organic content defined in the present disclosure, the metal nanowires can be further improved. stability, thereby extending the service life of the optical laminate. In addition, by controlling the content of highly active elements in the cover plate, the probability of electromigration of metal nanowires can be further reduced to better meet the specifications of product reliability testing. On the other hand, the optical laminate of the present disclosure can have diversified stack designs to meet various product requirements while ensuring that the optical laminate can meet the specifications of product reliability testing.

雖然本揭露已以實施方式揭露如上,然其並非用以限定本揭露,任何熟習此技藝者,在不脫離本揭露之精神和範圍內,當可作各種之更動與潤飾,因此本揭露之保護範圍當視後附之申請專利範圍所界定者為準。Although the disclosure has been disclosed in the above embodiments, it is not intended to limit the disclosure. Anyone skilled in the art can make various changes and modifications without departing from the spirit and scope of the disclosure. Therefore, the protection of the disclosure The scope shall be determined by the appended patent application scope.

100,100a,100b,100c:光學層疊體 110:基板 111:表面 120:金屬奈米線層 130:有機聚合物層 140:蓋板 150:鈍化層 OC:基質 MNW:金屬奈米線 M1:第一部分 M2:第二部分 T OC:上表面 H2~H3,H5:厚度 R:區域 100, 100a, 100b, 100c: Optical stack 110: Substrate 111: Surface 120: Metal nanowire layer 130: Organic polymer layer 140: Cover plate 150: Passivation layer OC: Matrix MNW: Metal nanowire M1: Part 1 M2: second part T OC : upper surface H2~H3, H5: thickness R: area

為讓本揭露之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下: 第1A圖繪示根據本揭露一些實施方式之光學層疊體的疊構示意圖; 第1B圖繪示第1A圖之光學層疊體的區域R的局部放大示意圖; 第2圖繪示根據本揭露一些實施方式之交聯度與紫外線劑量之間的關係圖; 第3圖繪示根據本揭露另一些實施方式之光學層疊體的疊構示意圖; 第4圖繪示根據本揭露另一些實施方式之光學層疊體的疊構示意圖;以及 第5圖繪示根據本揭露另一些實施方式之光學層疊體的疊構示意圖。 In order to make the above and other objects, features, advantages and embodiments of the present disclosure more obvious and understandable, the accompanying drawings are described as follows: Figure 1A shows a schematic diagram of the stacking structure of an optical laminate according to some embodiments of the present disclosure; Figure 1B shows a partially enlarged schematic view of the region R of the optical laminate in Figure 1A; Figure 2 is a graph illustrating the relationship between cross-linking degree and UV dose according to some embodiments of the present disclosure; Figure 3 shows a schematic diagram of the stacking structure of optical laminates according to other embodiments of the present disclosure; Figure 4 illustrates a schematic diagram of the stacking of optical laminates according to other embodiments of the present disclosure; and FIG. 5 illustrates a schematic diagram of the stacking structure of an optical laminate according to other embodiments of the present disclosure.

100:光學層疊體 100: Optical laminate

110:基板 110:Substrate

120:金屬奈米線層 120: Metal nanowire layer

130:有機聚合物層 130: Organic polymer layer

140:蓋板 140:Cover

OC:基質 OC: matrix

MNW:金屬奈米線 MNW: metal nanowire

TOC:上表面 T OC : upper surface

H2~H3:厚度 H2~H3: Thickness

R:區域 R:Region

Claims (10)

一種光學層疊體,包括:一金屬奈米線層;以及一有機聚合物層,其中該有機聚合物層的交聯度大於或等於80%且小於或等於100%,該有機聚合物層中的揮發性有機物含量小於或等於1%,且該有機聚合物層中的揮發性有機物含量係定義為:該有機聚合物層在一量測溫度下所測得的熱失重減去該有機聚合物層在該量測溫度下所測得的含水量的差值。 An optical laminate, including: a metal nanowire layer; and an organic polymer layer, wherein the cross-linking degree of the organic polymer layer is greater than or equal to 80% and less than or equal to 100%, and the cross-linking degree of the organic polymer layer is The volatile organic compound content is less than or equal to 1%, and the volatile organic compound content in the organic polymer layer is defined as: the thermal weight loss of the organic polymer layer measured at a measurement temperature minus the organic polymer layer The difference in moisture content measured at this measurement temperature. 如請求項1所述的光學層疊體,其中該金屬奈米線層包括複數個金屬奈米線,且該有機聚合物層直接接觸並包覆該些金屬奈米線,其中該有機聚合物層中的揮發性有機物是聚合反應不完全所殘留。 The optical laminate of claim 1, wherein the metal nanowire layer includes a plurality of metal nanowires, and the organic polymer layer directly contacts and covers the metal nanowires, wherein the organic polymer layer The volatile organic compounds in the polymer are leftover from incomplete polymerization. 如請求項1所述的光學層疊體,其中該金屬奈米線層包括一基質及摻雜於該基質中的複數個金屬奈米線,且該有機聚合物層設置於該金屬奈米線層上。 The optical laminate of claim 1, wherein the metal nanowire layer includes a matrix and a plurality of metal nanowires doped in the matrix, and the organic polymer layer is disposed on the metal nanowire layer superior. 如請求項3所述的光學層疊體,其中該基質的交聯度大於或等於80%且小於或等於100%,該基質中的揮發性有機物含量小於或等於1%,且該基質中的揮發性有機物含量係定義為:該基質在該量測溫度下所測得的熱失重減去該基質在該量測溫度下所測得的含水量的差 值,其中該基質中的揮發性有機物是聚合反應不完全所殘留。 The optical laminate according to claim 3, wherein the cross-linking degree of the matrix is greater than or equal to 80% and less than or equal to 100%, the volatile organic content in the matrix is less than or equal to 1%, and the volatile organic content in the matrix is less than or equal to 1%. The organic matter content is defined as the difference between the thermogravimetric loss of the matrix measured at the measurement temperature minus the moisture content of the matrix measured at the measurement temperature. value, where the volatile organic compounds in the matrix are residual from incomplete polymerization. 如請求項3所述的光學層疊體,其中部分的該些金屬奈米線嵌入至該有機聚合物層中。 The optical laminate of claim 3, wherein part of the metal nanowires is embedded in the organic polymer layer. 如請求項3所述的光學層疊體,更包括一鈍化層,設置於該金屬奈米線層與該有機聚合物層間,其中部分的該些金屬奈米線嵌入至該鈍化層中。 The optical laminate according to claim 3, further comprising a passivation layer disposed between the metal nanowire layer and the organic polymer layer, wherein part of the metal nanowires are embedded in the passivation layer. 如請求項6所述的光學層疊體,其中該鈍化層的交聯度大於或等於80%且小於或等於100%,該鈍化層中的揮發性有機物含量小於或等於1%,且該鈍化層中的揮發性有機物含量係定義為:該鈍化層在該量測溫度下所測得的熱失重減去該鈍化層在該量測溫度下所測得的含水量的差值,其中該有鈍化層中的揮發性有機物是聚合反應不完全所殘留。 The optical laminate according to claim 6, wherein the cross-linking degree of the passivation layer is greater than or equal to 80% and less than or equal to 100%, the volatile organic content in the passivation layer is less than or equal to 1%, and the passivation layer The volatile organic compound content in is defined as: the difference between the thermal weight loss of the passivation layer measured at the measurement temperature minus the moisture content of the passivation layer measured at the measurement temperature, where the passivation The volatile organic compounds in the layer are residues from incomplete polymerization. 如請求項1所述的光學層疊體,其中該有機聚合物層的交聯度大於或等於86.3%且小於或等於91.1%,且該有機聚合物層中的揮發性有機物含量大於或等於0.32%且小於或等於0.62%。 The optical laminate according to claim 1, wherein the cross-linking degree of the organic polymer layer is greater than or equal to 86.3% and less than or equal to 91.1%, and the volatile organic content in the organic polymer layer is greater than or equal to 0.32% And less than or equal to 0.62%. 如請求項1所述的光學層疊體,更包括一 蓋板,設置於該有機聚合物層上,其中該蓋板的材料在能量散射X射線分析下所測得的鉀元素及鈣元素各自的含量小於或等於1%。 The optical laminate according to claim 1, further comprising a A cover plate is disposed on the organic polymer layer, wherein the potassium element and calcium element content of the cover plate material measured under energy scattering X-ray analysis is less than or equal to 1%. 如請求項1所述的光學層疊體,更包括一蓋板,設置於該有機聚合物層上,其中該蓋板的材料在能量散射X射線分析下所的得的鈉元素及鉀元素各自的含量小於或等於1%。The optical laminate according to claim 1, further comprising a cover plate disposed on the organic polymer layer, wherein the material of the cover plate has sodium and potassium elements respectively obtained by energy scattering X-ray analysis. Content less than or equal to 1%.
TW111113292A 2022-04-07 2022-04-07 Optical stack structure TWI834145B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111113292A TWI834145B (en) 2022-04-07 2022-04-07 Optical stack structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111113292A TWI834145B (en) 2022-04-07 2022-04-07 Optical stack structure

Publications (2)

Publication Number Publication Date
TW202339952A TW202339952A (en) 2023-10-16
TWI834145B true TWI834145B (en) 2024-03-01

Family

ID=89855973

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111113292A TWI834145B (en) 2022-04-07 2022-04-07 Optical stack structure

Country Status (1)

Country Link
TW (1) TWI834145B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103155174A (en) * 2010-08-07 2013-06-12 伊诺瓦动力有限公司 Device components with surface-embedded additives and related manufacturing methods
TWI426531B (en) * 2006-10-12 2014-02-11 Cambrios Technologies Corp Nanowire-based transparent conductors and applications thereof
TW201443196A (en) * 2013-03-11 2014-11-16 Carestream Health Inc Stabilization agents for silver nanowire based transparent conductive films
TWI525033B (en) * 2010-02-24 2016-03-11 坎畢歐科技公司 Nanowire-based transparent conductors and methods of patterning same
TWI647516B (en) * 2012-03-29 2019-01-11 英屬維京群島商天才創新材料科技股份有限公司 Layer structure electrical contact

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI426531B (en) * 2006-10-12 2014-02-11 Cambrios Technologies Corp Nanowire-based transparent conductors and applications thereof
TWI525033B (en) * 2010-02-24 2016-03-11 坎畢歐科技公司 Nanowire-based transparent conductors and methods of patterning same
CN103155174A (en) * 2010-08-07 2013-06-12 伊诺瓦动力有限公司 Device components with surface-embedded additives and related manufacturing methods
TWI647516B (en) * 2012-03-29 2019-01-11 英屬維京群島商天才創新材料科技股份有限公司 Layer structure electrical contact
TW201443196A (en) * 2013-03-11 2014-11-16 Carestream Health Inc Stabilization agents for silver nanowire based transparent conductive films

Also Published As

Publication number Publication date
TW202339952A (en) 2023-10-16

Similar Documents

Publication Publication Date Title
KR20090110914A (en) Transparent conductive multilayer body and touch panel made of the same
JP6566983B2 (en) TRANSFER FILM, ELECTRODE PROTECTIVE FILM, LAMINATE, CAPACITOR TYPE INPUT DEVICE, CAPACITOR TYPE INPUT DEVICE MANUFACTURING METHOD, AND TRANSFER FILM MANUFACTURING METHOD
KR20150002457A (en) adhesion sheet and laminate
US9639227B2 (en) Electroconductive laminate and touch panel using thereof
TW201920565A (en) Photocurable pressure-sensitive adhesive sheet, photocurable pressure-sensitive adhesive sheet laminate, production method for photocurable pressure-sensitive adhesive sheet laminate, and production method for image display panel laminate
US10088961B2 (en) Electroconductive laminate and touch panel using thereof
US20200392379A1 (en) Transfer film, method for manufacturing laminate, laminate, capacitive input device, and image display device
JP6551277B2 (en) Method for producing cured substrate with touch panel, photosensitive resin composition used therefor, photosensitive element and touch panel
KR20220136058A (en) Display
KR20100027075A (en) Anti-static antiglare coating composition, anti-static antiglare film and method for manufacturing the same
TWI834145B (en) Optical stack structure
US20060222859A1 (en) Transparent conductor
WO2016002026A1 (en) Photosensitive refractive index-adjusting transfer film
CN116324688A (en) Method for manufacturing conductive member for touch panel, and conductive member for touch panel
CN110896640B (en) Low dielectric adhesive film for touch panel
US12032119B2 (en) Optical stack structure
JP2015105286A (en) Adhesive layer for transparent conductive film, transparent conductive film with adhesive layer, and touch panel
JP2017201352A (en) Transfer type photosensitive refractive index adjusting film, method for forming refractive index adjusting pattern, and electronic component
CN116931130A (en) Optical laminate
WO2017155003A1 (en) Transfer film, electrode protective film, laminate, capacitive input device, method for manufacturing capacitive input device, and method for manufacturing transfer film
US10717893B2 (en) Photosensitive film, photosensitive element, cured product and touch panel
JP2016065122A (en) Hard coating composition and hard coat film using the same
JP2019152750A (en) Photosensitive film, and manufacturing method of cured article
JP2013209482A (en) Hard coating composition
JP2019066630A (en) Transfer type photosensitive film, method for forming protective film, and force sensor