TWI819408B - 電力轉換裝置 - Google Patents

電力轉換裝置 Download PDF

Info

Publication number
TWI819408B
TWI819408B TW110142073A TW110142073A TWI819408B TW I819408 B TWI819408 B TW I819408B TW 110142073 A TW110142073 A TW 110142073A TW 110142073 A TW110142073 A TW 110142073A TW I819408 B TWI819408 B TW I819408B
Authority
TW
Taiwan
Prior art keywords
capacitor
voltage
circuit
current
current supply
Prior art date
Application number
TW110142073A
Other languages
English (en)
Other versions
TW202226743A (zh
Inventor
山本将央
仲石雅樹
Original Assignee
日商大金工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商大金工業股份有限公司 filed Critical 日商大金工業股份有限公司
Publication of TW202226743A publication Critical patent/TW202226743A/zh
Application granted granted Critical
Publication of TWI819408B publication Critical patent/TWI819408B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/09Structural association with bearings with magnetic bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/05Capacitor coupled rectifiers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/025Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being a power interruption
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/028Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the motor continuing operation despite the fault condition, e.g. eliminating, compensating for or remedying the fault
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/60Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling combinations of dc and ac dynamo-electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/182Circuit arrangements for detecting position without separate position detecting elements using back-emf in windings

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)
  • Rectifiers (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Amplifiers (AREA)
  • Polarising Elements (AREA)

Abstract

本公開旨在提供一種電力轉換裝置,能抑制電流供給電路的輸入電壓的變動,並穩定對支承用線圈的控制。在電力轉換裝置20中設置有:連接在逆變器電路22的第一及第二直流側節點22c、22d之間的第一電容器24;具有第二電容器25c及與第二電容器25c串聯的限制二極體25b的突波電壓抑制電路25;以及第一電流供給電路32、第二電流供給電路33及第三電流供給電路34,其利用蓄積在第二電容器25c中的能量,向徑向磁軸承用線圈154、推力磁軸承用線圈161a及電動機側支承用線圈136a~136c供給電流,以便非接觸地支承驅動軸131的載荷。

Description

電力轉換裝置
本公開關係一種電力轉換裝置,該電力轉換裝置驅動電動機的驅動軸旋轉,並且向藉由電磁力非接觸地支承前述驅動軸的支承用線圈供給電力。
專利文獻1公開了一種電力轉換裝置,該電力轉換裝置驅動電動機的驅動軸旋轉,並且向藉由電磁力非接觸地支承前述驅動軸的支承用線圈供給電力。該電力轉換裝置包括:轉換器電路,其將來自交流電源的第一交流轉換為直流;逆變器電路,其將前述轉換器電路的輸出轉換為第二交流以驅動前述驅動軸旋轉,並將前述第二交流供給至前述電動機的驅動用線圈;電流供給電路,其將前述轉換器電路的輸出轉換為第三交流並將前述第三交流供給至前述支承用線圈;以及電容器,其連接在前述逆變器電路的直流側節點之間。於停電時,對逆變器電路進行再生控制,以便使電動機的發電電力再生到電容器。
專利文獻1:日本特開2010-200524號公報
在前述專利文獻1中,若電容器的電容小,則電容器的電壓變動變大,由此電流供給電路的輸入電壓變動,有可能造成對支承用線圈的控制變得不穩定。
本公開旨在抑制電流供給電路的輸入電壓的變動,並穩定對支承用線圈的控制。
本公開的第一方面為一種電力轉換裝置,其驅動電動機13的驅動軸131旋轉,並且對藉由電磁力非接觸地支承前述驅動軸131的支承用線圈136a~136c、154、161a供給電力,包括轉換器電路21、逆變器電路22、第一電容器24、緩衝電路25、35以及電流供給電路32、33、34,前述轉換器電路21將來自交流電源2的第一交流轉換為直流後輸出給佈線對L1、L2,前述逆變器電路22包括開關元件22a,藉由前述開關元件22a的開關操作將從前述轉換器電路21向前述佈線對L1、L2輸出的前述直流轉換為第二交流以驅動前述驅動軸131旋轉,並將前述第二交流供給至前述電動機13的驅動用線圈135a~135c,前述第一電容器24連接在前述佈線對L1、L2之間,前述緩衝電路25、35連接在前述佈線對L1、L2之間,具有第二電容器25c、35b和與該第二電容器25c、35b串聯的限制部25b、35a,前述電流供給電路32、33、34利用蓄積在前述第二電容器25c中的能量向前述支承用線圈136a~136c、154、161a供給電流,以便非接觸地支承前述驅動軸131的載荷,前述第一電容器24容許前述轉換器電路21的輸出電壓的脈動,並且吸收由前述開關操作引起的佈線對L1、L2之間的電壓變動,前述限制部25b限制電流從前述第二電容器25c流向前述第一電容器24,以便做到:在前述第二電容器25c的電壓比前述第一電容器24的電壓高出一個規定電壓差的狀態下,與前述第一電容器24的電壓比前述第二電容器25c的電壓高出一個前述電壓差的狀態相比,從前述第一電容器24和前述第二電容器25c中的高電壓側 電容器流向低電壓側電容器的電流變小。
在第一方面中,即使在第一電容器24的電壓變動大的情況下,也能夠通過限制部25b抑制電流從第二電容器25c流入第一電容器24,抑制向電流供給電路32、33、34供給能量的第二電容器25c的電壓變動,因此能夠穩定對支承用線圈136a~136c、154、161a的控制。
本公開的第二方面為,在第一方面的基礎上,在已停止由前述逆變器電路22向前述驅動用線圈135a~135c供給前述第二交流之情形下,前述第二電容器25c能夠通過在驅動用線圈135a~135c中產生的反電動勢從前述驅動用線圈135a~135c吸收的電能大於前述第一電容器24能夠通過前述反電動勢從前述驅動用線圈135a~135c吸收的電能。
在第二方面中,在已停止由逆變器電路22向驅動用線圈135a~135c供給前述第二交流之情形下,能夠使第二電容器25c比第一電容器24吸收更多的驅動用線圈135a~135c的電能。
本公開的第三方面為,在第一或第二方面的基礎上,包括電抗器23,其設置在前述轉換器電路21與前述第一電容器24之間的前述佈線對L1、L2中的至少一佈線L1上,前述緩衝電路25、35連接在前述電抗器23與前述逆變器電路22之間。
在第三方面中,與將緩衝電路25、35設置得比電抗器23更靠近轉換器電路21側的情況相比,第二電容器25c更容易吸收蓄積在驅動用線圈135a~135c中的磁能。
本公開的第四方面為,在第一至第三方面中的任一方面的基礎上,前述緩衝電路25、35不具有電壓可變單元,該電壓可變單元由電感元件和開關構成,主動地使前述第二電容器 25c、35b的電壓升高或降低。
在第四方面中,能夠簡化電力轉換裝置20的構成。
本公開的第五方面為,在第一至第三方面中的任一方面的基礎上,在前述第二電容器25c、35b與前述電流供給電路32、33、34之間,沒有設置主動地使前述電流供給電路32、33、34的輸入電壓升高或降低的電壓可變單元。
在第五方面中,能夠簡化電力轉換裝置20的構成。
本公開的第六方面為,在第一至第三方面中的任一方面的基礎上,在前述緩衝電路25、35和前述佈線對L1、L2之間,沒有設置主動地使前述第二電容器25c、35b的電壓升高或降低的電壓可變單元。
在第六方面中,能夠簡化電力轉換裝置20的構成。
本公開的第七方面為,在第一至第六方面中的任一方面的基礎上,在將前述第一電容器24的電容設為C1、將前述第一電容器24的耐受電壓設為Vc11、將向前述驅動用線圈135a~135c供給中的前述第一電容器24的峰值電壓設為Vc12、將前述第二電容器25c的電容設為C2、將前述第二電容器25c的耐受電壓設為Vc21、將向前述驅動用線圈135a~135c供給中的前述第二電容器25c的峰值電壓設為Vc22的情況下,下式(1)成立。
C1(Vc112-Vc122)<C2(Vc212-Vc222)......式(1)
在第七方面中,在已停止由逆變器電路22向驅動用線圈135a~135c供給前述第二交流之情形下,能夠使第二電容器25c比第一電容器24吸收更多的驅動用線圈135a~135c的電能。
本公開的第八方面為,在第一至第七方面中的任一方面的 基礎上,在將前述第一電容器24的電容設為C1、將前述第一電容器24的耐受電壓設為Vc11、將向前述驅動用線圈135a~135c供給中的前述第一電容器24的峰值電壓設為Vc12、將蓄積在前述驅動用線圈135a~135c中的最大磁能設為E的情況下,下式(2)成立。
C1(Vc112-Vc122)/2<E......式(2)
在第八方面中,可以不將第一電容器24的靜電電容設定為大到第一電容器24能夠吸收蓄積在驅動用線圈135a~135c中的最大磁能的程度,或不將耐受電壓設定得較高,因此能夠使第一電容器24小型化。
本公開的第九方面為,在第一至第八方面中的任一方面的基礎上,前述第二電容器25c的靜電電容大於前述第一電容器24的靜電電容。
在第九方面中,由於容易穩定第二電容器25c的電壓,所以容易使向支承用線圈136a~136c、154、161a的電流供給穩定。
本公開的第十方面為,在第一至第九方面中的任一方面的基礎上,前述緩衝電路25還具有與前述第二電容器25c串聯的電阻25a。
在第十方面中,能夠減少從交流電源2開始供電時流入第二電容器25c的湧浪電流。因此,不需要另外設置抑制湧浪電流的電路,便能夠削減部件成本。
本公開的第十一方面為,在第一至第十方面中的任一方面的基礎上,由前述電流供給電路34供給前述電流的前述支承用線圈136a~136c設置於前述電動機13,且非接觸地支承前述驅動軸131的徑向載荷。
在第十一方面中,由於將支承用線圈136a~136c設置於電動機13,因此能夠使包括電動機13及軸承機構的裝置小型化。
13:電動機
20:電力轉換裝置
21:轉換器電路
22:逆變器電路
22a:開關元件
22c:第一直流側節點
22d:第二直流側節點
23:電抗器
24:第一電容器
25:突波電壓抑制電路(緩衝電路)
25a:電阻
25b:限制二極體(限制部)
25c:第二電容器
32:第一電流供給電路
33:第二電流供給電路
34:第三電流供給電路
35:緩衝電路
35a:緩衝電路用二極體(限制部)
35b:緩衝電路用電容器(第二電容器)
131:驅動軸
135a:U相驅動用線圈
135b:V相驅動用線圈
135c:W相驅動用線圈
136a:U相電動機側支承用線圈
136b:V相電動機側支承用線圈
136c:W相電動機側支承用線圈
154:徑向磁軸承用線圈
161a:推力磁軸承用線圈
L1:第一佈線
L2:第二佈線
圖1為表示包括本公開的第一實施方式所關係的電力轉換裝置的渦輪壓縮機的結構的簡圖;
圖2為電動機的剖視簡圖;
圖3為電動機的剖視簡圖,表示磁鐵磁通和驅動用磁通;
圖4為電動機的剖視簡圖,表示磁鐵磁通和支承用磁通;
圖5為徑向磁軸承的剖視簡圖;
圖6為表示電力轉換裝置的結構的電路圖;
圖7(a)表示在電力轉換裝置中未設置突波電壓抑制電路的情況下的第一電流供給電路、第二電流供給電路以及第三電流供給電路的輸入電壓和電動機的轉速;圖7(b)為相當於第一實施方式中的圖7(a)的曲線圖;圖7(c)為使電動機進行再生動作時的相當於圖7(a)的曲線圖;
圖8為第二實施方式的相當於圖1的圖;
圖9為第二實施方式的相當於圖6的圖;
圖10為第三實施方式的相當於圖6的圖;
圖11為第四實施方式的相當於圖10的圖。
以下,參照圖式對本公開的實施方式進行說明。需要說明的是,以下實施方式為說明本發明本質的優選示例,並沒有限制本發明、本發明之適用對象、或其用途的應用範圍之意圖。
(第一實施方式)
圖1表示渦輪壓縮機1。該渦輪壓縮機1設置在進行冷凍循環的冷媒回路(未圖示)中,對冷媒進行壓縮。渦輪壓縮機1 包括殼體11、葉輪12、電動機13、一對觸地軸承14、一個徑向磁軸承15、推力磁軸承16、電力轉換裝置20以及控制部40。
殼體11形成為略圓筒狀,以圓筒軸線為水平方向的方式佈置。殼體11內的空間由壁部111沿軸向劃分為用於收納葉輪12的葉輪室S1和用於收納電動機13的電動機室S2。葉輪室S1上連接有吸入管17和排出管18。
葉輪12由多個葉片形成,其外形呈略圓錐狀。葉輪12收納在葉輪室S1中。
電動機13為無軸承電動機。電動機13具有驅動軸131、定子132及轉子133。驅動軸131的一端固定在葉輪12的較寬側的面的中心。圓盤部131a伸出著形成在驅動軸131的另一端。轉子133固定在驅動軸131上,定子132固定在殼體11上。轉子133和定子132收納在電動機室S2中。
電動機13的定子132由磁性材料(例如積層鋼板)製成。圖2是電動機13的剖視簡圖。定子132具有後磁軛部134、省略圖示的多個齒部、卷繞在齒部上的驅動用線圈135a~135c以及電動機側支承用線圈136a~136c。
定子132的後磁軛部134形成為圓筒狀。驅動用線圈135a~135c和電動機側支承用線圈136a~136c以分佈繞線形式或集中繞線形式卷繞在各齒部上。電動機側支承用線圈136a~136c構成為:藉由使電流流過該電動機側支承用線圈136a~136c時產生的電磁力非接觸地支承驅動軸131的徑向載荷。
驅動用線圈135a~135c為卷繞在齒部的內周側的線圈。驅動用線圈135a~135c由在圖2中用粗體實線包圍表示的U相驅動用線圈135a、用粗體虛線包圍表示的V相驅動用線圈135b以及用細體實線包圍表示的W相驅動用線圈135c構成。
電動機側支承用線圈136a~136c為卷繞在齒部的外周側的線圈。電動機側支承用線圈136a~136c由在圖2中用粗體實線包圍表示的U相電動機側支承用線圈136a、用粗體虛線包圍表示的V相電動機側支承用線圈136b以及用細體實線包圍表示的W相電動機側支承用線圈136c構成。
電動機13的轉子133具有芯部137和埋設在該芯部137中的多個永久磁鐵(在本例中為四個)138。
轉子133的芯部137形成為圓筒狀。在芯部137的中央部形成有用於供驅動軸131***的軸孔(未圖示)。芯部137由磁性材料(例如積層鋼板)製成。
多個永久磁鐵138相互隔開相等的間距被埋設在轉子133的周向上。該等多個永久磁鐵138彼此形狀相同。各永久磁鐵138的外周面側為N極,各永久磁鐵138之間的芯部137的外周面為S極。
圖3表示在電動機13中由各永久磁鐵138產生的磁鐵磁通φ和為了驅動驅動軸131旋轉而產生的驅動用磁通BM。電動機13構成為:通過該等磁鐵磁通φ和驅動用磁通BM的相互作用產生該圖所示的驅動用扭矩T。需要說明的是,在該圖中示出了與流過驅動用線圈135a~135c的電流等效的電流IM。
圖4表示在電動機13中由各永久磁鐵138產生的磁鐵磁通φ和為了非接觸地支承驅動軸131的徑向載荷而產生的支承用磁通BS1。電動機13構成為:通過該等磁鐵磁通φ和支承用磁通BS1的相互作用產生該圖所示的支承力F。需要說明的是,在該圖中示出了與流過電動機側支承用線圈136a~136c的電流等效的電流IS。
一對觸地軸承14中的一個觸地軸承14設置在驅動軸131的 葉輪12附近,另一個觸地軸承14設置在驅動軸131的圓盤部131a附近。該等觸地軸承14構成為:當電動機13不通電時(即當驅動軸131不浮動時)支承驅動軸131。
徑向磁軸承15固定在電動機13的轉子133和定子132與葉輪12之間殼體11的內周壁上。
圖5是表示徑向磁軸承15的構成例的橫剖視圖。如該圖所示,徑向磁軸承15構成為異極型徑向磁軸承。徑向磁軸承15具有定子151和徑向磁軸承用線圈154,該定子151具有後磁軛部152和多個齒部153,前述徑向磁軸承用線圈154捲繞在齒部153上,作為四個支承用線圈。徑向磁軸承用線圈154藉由使電流流過該徑向磁軸承用線圈154時產生的電磁力非接觸地支承驅動軸131的徑向載荷。需要說明的是,在各徑向磁軸承用線圈154中流動的電流的方向被設定為:要在圖5所示的方向上產生支承用磁通BS2。
推力磁軸承16包括一對推力磁軸承用電磁鐵161。該一對推力磁軸承用電磁鐵161配設在圓盤部131a的軸向兩側。各推力磁軸承用電磁鐵161具有作為支承用線圈的推力磁軸承用線圈161a。推力磁軸承用線圈161a藉由使電流流過該推力磁軸承用線圈161a時產生的電磁力非接觸地支承驅動軸131的圓盤部131a。通過控制流向推力磁軸承用線圈161a的電流,能夠控制驅動軸131的圓盤部131a的軸向位置。
電力轉換裝置20驅動電動機13旋轉,並且向藉由電磁力非接觸地支承驅動軸131的支承用線圈136a~136c、154、161a供給電力。如圖6所示,電力轉換裝置20包括轉換器電路21、逆變器電路22、電抗器23、第一電容器24、作為緩衝電路的突波電壓抑制電路25、第一~第四分壓用電阻26a~26d、零交 叉點檢測電路27、u相電流檢測器28、w相電流檢測器29、過電流保護部30、驅動電路31、四個第一電流供給電路32、兩個第二電流供給電路33以及一個第三電流供給電路34。
轉換器電路21將來自三相交流電源2的三相的第一交流轉換為直流,從第一、第二輸出節點21a、21b輸出到佈線對L1、L2。詳細而言,轉換器電路21為全波整流電路。轉換器電路21具有連接成橋式的六個二極體。於此,由轉換器電路21輸出的直流是即使大小隨時間變化正負也不隨時間變化的電力。
逆變器電路22將轉換器電路21的輸出轉換為第二交流以驅動驅動軸131旋轉,並將前述第二交流供給至電動機13的驅動用線圈135a~135c。詳細而言,逆變器電路22具有六個開關元件22a與六個回流二極體22b。六個開關元件22a被橋接。更具體地,逆變器電路22包括連接在其第一直流側節點22c和第二直流側節點22d之間的三個開關支路(Switching Leg)。開關支路由兩個開關元件22a彼此串聯而成。
在三個開關支路中的各個開關支路中,上臂的開關元件22a和下臂的開關元件22a的中點分別與電動機13的各相的驅動用線圈135a~135c連接。各開關元件22a上逆並聯有一個回流二極體22b。六個開關元件22a通過開關操作將從轉換器電路21輸出到佈線對L1、L2的前述直流轉換為前述第二交流。
電抗器23的一端與轉換器電路21的第一輸出節點21a連接,電抗器23的另一端與逆變器電路22的第一直流側節點22c連接。
第一佈線L1連接第一輸出節點21a和第一直流側節點22c,第二佈線L2連接第二輸出節點21b和第二直流側節點22d,該第一佈線L1和第二佈線L2構成佈線對L1、L2。電抗器 23設置在佈線L1上。
第一電容器24連接在逆變器電路22的第一直流側節點22c和第二直流側節點22d之間。亦即,第一電容器24連接在佈線對L1、L2之間。
第一電容器24的電容值被設定為:雖然幾乎不能使轉換器電路21的輸出電壓平滑化,但能夠抑制逆變器電路22的開關操作所引起的漣波電壓。亦即,第一電容器24容許轉換器電路21的輸出電壓的脈動,吸收開關元件22a的開關操作所引起的佈線對L1、L2間的電壓變動。漣波電壓是指開關元件22a的與開關頻率對應的電壓變動。因此,第一電容器24的電壓即DC鏈路電壓中包含與三相交流電源2的交流電壓的頻率對應的脈動成分。由於三相交流電源2為三相電源,所以與三相交流電源2的頻率對應的脈動成分為三相交流電源2的頻率的六倍。
詳細而言,第一電容器24的電容被設定為:將開關周期下的第一電容器24的電壓變動抑制在第一電容器24的電壓平均值的1/10以下。
突波電壓抑制電路25連接在逆變器電路22的第一直流側節點22c和第二直流側節點22d之間。亦即,突波電壓抑制電路25在佈線對L1、L2之間與第一電容器24並聯。突波電壓抑制電路25連接在電抗器23和逆變器電路22之間。突波電壓抑制電路25具有電阻25a、作為限制部的限制二極體25b以及第二電容器25c。電阻25a、限制二極體25b以及第二電容器25c從第一直流側節點22c側起依序彼此串聯。亦即,電阻25a和限制二極體25b與第二電容器25c串聯。限制二極體25b的陽極與電阻25a連接,限制二極體25b的陰極與第二電容器25c連接。因此,限制二極體25b限制電流從第二電容器25c流向第一電容器 24,以便做到:在第二電容器25c的電壓比第一電容器24的電壓高出一個規定電壓差的狀態下,與第一電容器24的電壓比第二電容器25c的電壓高出一個前述電壓差的狀態相比,從第一電容器24和第二電容器25c中的高電壓側電容器流向低電壓側電容器的電流變小。前述規定電壓差為限制二極體25b的正向電壓以上的電壓。第二電容器25c的靜電電容大於前述第一電容器24的靜電電容。
第一分壓用電阻26a和第二分壓用電阻26b在轉換器電路21的第一輸出節點21a和第二輸出節點21b之間從第一輸出節點21a側起依序串聯。
第三分壓用電阻26c和第四分壓用電阻26d在逆變器電路22的第一直流側節點22c和第二直流側節點22d之間從第一直流側節點22c側起依序串聯。
零交叉點檢測電路27輸出零交叉信號,其表示來自三相交流電源2的第一交流的三相電壓中的兩相電壓的相間電壓的零交叉點。
u相電流檢測器28檢測由逆變器電路22輸出的u相電流。
w相電流檢測器29檢測由逆變器電路22輸出的w相電流。
過電流保護部30輸出u相電流檢測器28所檢測出的u相電流和w相電流檢測器29所檢測出的w相電流,並且輸出由後述的控制部40輸出的PWM控制信號。過電流保護部30在根據u相電流檢測器28所檢測出的u相電流和w相電流檢測器29所檢測出的w相電流判斷出有過電流流動的情況下,不輸出PWM控制信號。是以,在過電流流動時能夠使逆變器電路22停止。
驅動電路31將過電流保護部30所輸出的PWM控制信號轉換為適當的電壓位準後輸出。
第一電流供給電路32利用蓄積在第二電容器25c中的能量,向前述徑向磁軸承用線圈154供給電流,以便非接觸地支承前述驅動軸131的載荷。第一電流供給電路32分別具有構成兩個開關支路的四個開關元件32a和四個回流二極體32b。各開關支路由彼此串聯的兩個開關元件32a構成,該各開關支路與第二電容器25c並聯。一個開關支路中的上臂的開關元件32a和下臂的開關元件32a的中點與徑向磁軸承15中的一個徑向磁軸承用線圈154的一端連接,另一個開關支路中的上臂的開關元件32a和下臂的開關元件32a的中點與該徑向磁軸承用線圈154的另一端連接。與四個徑向磁軸承用線圈154對應地設置有四個第一電流供給電路32。
第二電流供給電路33利用蓄積在第二電容器25c中的能量,向前述推力磁軸承用線圈161a供給電流,以便非接觸地支承前述驅動軸131的載荷。第二電流供給電路33分別具有構成兩個開關支路的四個開關元件33a和四個回流二極體33b。各開關支路由彼此串聯的兩個開關元件33a構成,該各開關支路與第二電容器25c並聯。一個開關支路中的上臂的開關元件33a和下臂的開關元件33a的中點與推力磁軸承16中的一個推力磁軸承用線圈161a的一端連接,另一個開關支路中的上臂的開關元件33a和下臂的開關元件33a的中點與該推力磁軸承用線圈161a的另一端連接。與兩個推力磁軸承用線圈161a對應地設置有兩個第二電流供給電路33。
第三電流供給電路34利用蓄積在第二電容器25c中的能量,向前述電動機側支承用線圈136a~136c供給電流,以便非接觸地支承前述驅動軸131的載荷。第三電流供給電路34具有構成三個開關支路的六個開關元件34a和六個回流二極體 34b。六個開關元件34a被橋接。各開關支路由彼此串聯的兩個開關元件34a構成,該各開關支路與第二電容器25c並聯。
在三個開關支路中的各個開關支路中,上臂的開關元件34a和下臂的開關元件34a的中點分別與電動機13的各相的電動機側支承用線圈136a~136c(U相支承用線圈、V相支承用線圈、W相支承用線圈)連接。各開關元件34a上逆並聯有一個回流二極體34b。
第一電流供給電路32的開關元件32a、第二電流供給電路33的開關元件33a以及第三電流供給電路34的開關元件34a的開關利用控制部40輸出的控制信號進行控制。
控制部40根據零交叉點檢測電路27所輸出的零交叉信號、第一和第二分壓用電阻26a、26b的連接點的電壓、第三和第四分壓用電阻26c、26d的連接點的電壓、u相電流檢測器28所檢測出的u相電流以及w相電流檢測器29所檢測出的w相電流,來生成並輸出用於對逆變器電路22的開關元件22a的開關進行PWM控制的PWM控制信號。
控制部40根據能夠檢測定子132與轉子133之間的間隙的間隙傳感器(未圖示)的檢測值、以及能夠檢測圓盤部131a與推力磁軸承16之間的間隙的間隙感測器(未圖示)的檢測值,來生成並輸出控制第一電流供給電路32的開關元件32a的開關的控制信號、控制第二電流供給電路33的開關元件33a的開關的控制信號以及控制第三電流供給電路34的開關元件34a的開關的控制信號,以便使電動機13的驅動軸131的位置成為所需要的位置。
電力轉換裝置20構成為:在已停止由逆變器電路22向驅動用線圈135a~135c供給前述第二交流時,第二電容器25c能夠 通過在驅動用線圈135a~135c中產生的反電動勢從驅動用線圈135a~135c吸收的電能大於第一電容器24能夠通過前述反電動勢從驅動用線圈135a~135c吸收的電能。
渦輪壓縮機1構成為:在將第一電容器24的電容設為C1、將第一電容器24的耐受電壓設為Vc11、將向驅動用線圈135a~135c供給中的第一電容器24的峰值電壓設為Vc12、將第二電容器25c的電容設為C2、將第二電容器25c的耐受電壓設為Vc21、將向驅動用線圈135a~135c供給中的第二電容器25c的峰值電壓設為Vc22、將蓄積在驅動用線圈135a~135c中的最大磁能設為E的情況下,下式(1)和下式(2)成立。
C1(Vc112-Vc122)<C2(Vc212-Vc222)......式(1)
C1(Vc112-Vc122)/2<E......式(2)
在按以上所述構成的渦輪壓縮機1中,限制部25b構成為:在已通過來自三相交流電源2的電力供給使逆變器電路22、第一電流供給電路32、第二電流供給電路33以及第三電流供給電路34工作的狀態下第一電容器24的電壓變動大的情況下,限制電流從第二電容器25c流向第一電容器24,以便做到:在第二電容器25c的電壓比第一電容器24的電壓高出一個規定電壓差的狀態下,與第一電容器24的電壓比前述第二電容器25c的電壓高出一個前述電壓差的狀態相比,從第一電容器24和第二電容器25c中的高電壓側電容器流向低電壓側電容器的電流變小;由此,能夠抑制第一電容器24的電壓變動對第二電容器25c的電壓變動的影響。
因此,即使減小第一電容器24的靜電電容,也能夠抑制向第一電流供給電路32、第二電流供給電路33以及第三電流供給電路34的輸入電壓即第二電容器25c的電壓變動,因此即使沒 有設置DC/DC轉換器來穩定輸入電壓,也能夠穩定對非接觸地支承驅動軸131的徑向及推力載荷的控制。
在按以上所述構成的渦輪壓縮機1中,在已通過來自三相交流電源2的電力供給使逆變器電路22、第一電流供給電路32、第二電流供給電路33以及第三電流供給電路34工作的狀態下,若發生停電,逆變器電路22則停止開關操作,停止向驅動用線圈135a~135c供給前述第二交流。於是,在驅動用線圈135a~135c中產生反電動勢,電流從驅動用線圈135a~135c流向第一電容器24和第二電容器25c。是以,蓄積在驅動用線圈135a~135c中的磁能(電能)被第一電容器24和第二電容器25c二者吸收,並作為靜電能量蓄積起來。因此,與沒有設置第二電容器25c的情況相比,即使在減小了第一電容器24的電容的情況下,第一電容器24也不易因驅動用線圈135a~135c的反電動勢而損壞。此時,因為突波電壓抑制電路25連接在電抗器23和逆變器電路22之間,所以第二電容器25c容易吸收蓄積在驅動用線圈135a~135c中的磁能。
停電發生後,第一電流供給電路32、第二電流供給電路33以及第三電流供給電路34分別利用蓄積在第二電容器25c中的能量向徑向磁軸承用線圈154、推力磁軸承用線圈161a以及電動機側支承用線圈136a~136c供給電流。因此,徑向磁軸承用線圈154、推力磁軸承用線圈161a以及電動機側支承用線圈136a~136c能夠暫時繼續支承驅動軸131。即使第一電容器24的靜電能量因某種負載例如控制電源、放電電阻、逆變器電路22的再生控制等而被消耗,第一電容器24的電壓降低,限制二極體25b也能夠抑制靜電能量從第二電容器25c流向第一電容器24,因此能夠將蓄積在第二電容器25c中的幾乎所有能量都 用於支承驅動軸131。
圖7(a)表示在電力轉換裝置20中未設置突波電壓抑制電路25而向第一電流供給電路32、第二電流供給電路33以及第三電流供給電路34輸入第一電容器24的電壓的情況下第一電流供給電路32、第二電流供給電路33以及第三電流供給電路34的輸入電壓和電動機13的轉速。
圖7(b)表示本第一實施方式中的第一電流供給電路32、第二電流供給電路33以及第三電流供給電路34的輸入電壓和電動機13的轉速。
在圖7(a)和圖7(b)中,於時刻t1,逆變器電路22由於停電而停止向驅動用線圈135a~135c供給第二交流。於期間T1,逆變器電路22、第一電流供給電路32、第二電流供給電路33以及第三電流供給電路34通過來自三相交流電源2的電力供給工作。另一方面,於期間T2,逆變器電路22停止開關操作。
在圖7(b)中,於時刻t1,由於反電動勢,電流從驅動用線圈135a~135c流向第一電容器24和第二電容器25c二者,因此與圖7(a)相比,在停電後暫時施加在第一電流供給電路32、第二電流供給電路33以及第三電流供給電路34的輸入上的突波電壓的峰值變低。因此,即使不設置DC/DC轉換器來穩定第一電流供給電路32、第二電流供給電路33以及第三電流供給電路34的輸入電壓,或者不進行如專利文獻1那樣的再生控制來穩定第一電流供給電路32、第二電流供給電路33以及第三電流供給電路34的輸入電壓,也能夠使向徑向磁軸承用線圈154、推力磁軸承用線圈161a以及電動機側支承用線圈136a~136c的電流供給更加穩定。由於通過限制二極體25b能夠抑制靜電能量從第二電容器25c流入第一電容器24,因此即使第一 電容器24的靜電能量被某種負荷消耗而第一電容器24的電壓降低,也能夠將蓄積在第二電容器25c中的幾乎所有能量都用於支承驅動軸131,因此能夠暫時繼續支承驅動軸131。
因此,根據本第一實施方式,由於第一電流供給電路32、第二電流供給電路33以及第三電流供給電路34在向徑向磁軸承用線圈154、推力磁軸承用線圈161a以及電動機側支承用線圈136a~136c的電流供給中不使用蓄積在第一電容器24中的能量,而使用蓄積在第二電容器25c中的能量,因此第一電容器24的電壓即逆變器電路22的第一直流側節點22c和第二直流側節點22d之間的電壓的變動不易影響向各線圈154、161a、136a~136c供給的電流。因此,即使不設置DC/DC轉換器來穩定第一電流供給電路32、第二電流供給電路33以及第三電流供給電路34的輸入電壓,或者不進行如專利文獻1那樣的再生控制來穩定第一電流供給電路32、第二電流供給電路33以及第三電流供給電路34的輸入電壓,也能夠使向各線圈154、161a、136a~136c的電流供給更加穩定。
由於第一電容器24容許轉換器電路21的輸出電壓的脈動,所以與能夠吸收該脈動的情況相比,能夠減小第一電容器24的電容。因此,能夠使第一電容器24小型化。
由於前述式(1)成立,所以在已停止由逆變器電路22向驅動用線圈135a~135c供給前述第二交流之情形下,能夠使第二電容器25c比第一電容器24吸收更多的驅動用線圈135a~135c的電能。
由於前述式(2)成立,可以不將第一電容器24的靜電電容設定為大到第一電容器24能夠吸收蓄積在驅動用線圈135a~135c中的最大磁能的程度,或不將耐受電壓設定得較高,因 此能夠使第一電容器24小型化。
由於第二電容器25c的靜電電容大於第一電容器24的靜電電容,所以容易使第二電容器25c的電壓穩定。因此,容易使向徑向磁軸承用線圈154、推力磁軸承用線圈161a以及電動機側支承用線圈136a~136c的電流供給穩定化。
因為在第二電容器25c上串聯有電阻25a,所以能夠減少三相交流電源2開始供電時流入第二電容器25c的湧浪電流。因此,不需要另外設置抑制湧浪電流的電路,便能夠削減部件成本。需要說明的是,在將抑制湧浪電流的電路設置在突波電壓抑制電路25以外的情況等、突波電壓抑制電路25可以不具有防止湧浪電流的功能的情況下,都可以不設置電阻25a。
由於將包括電動機側支承用線圈136a~136c的軸承電動機作為電動機13使用,因此能夠使渦輪壓縮機1小型化。
因為突波電壓抑制電路25不具有由電感元件和開關構成、主動地使第二電容器25c的電壓升高或降低的DC/DC轉換器等電壓可變單元,所以能夠簡化電力轉換裝置20的構成。
由於在第二電容器25c與第一電流供給電路32之間、第二電容器25c與第二電流供給電路33之間、以及第二電容器25c與第三電流供給電路34c之間,並沒有設置主動地使電流供給電路32、第二電流供給電路33以及第三電流供給電路34的輸入電壓升高或降低的DC/DC轉換器等電壓可變單元,所以能夠簡化電力轉換裝置20的構成。
由於在突波電壓抑制電路25與佈線對L1、L2之間沒有設置主動地使第二電容器25c的電壓升高或降低的電壓可變單元,因此能夠簡化電力轉換裝置20的構成。
(第二實施方式)
圖8表示第二實施方式所關係的渦輪壓縮機1。在本第二實施方式中,電動機13不是無軸承電動機,而是不具有電動機側支承用線圈136a~136c的永磁同步電動機等。
徑向磁軸承15設置有兩個,佈置在電動機13的定子132和轉子133的軸向兩側。
因此,如圖9所示,在電力轉換裝置20中,與八個徑向磁軸承用線圈154對應地設置有八個第一電流供給電路32。在電力轉換裝置20中並沒有設置第三電流供給電路34。
由於其他結構與第一實施方式相同,因此對相同的結構標註相同的符號並省略其詳細說明。
(第三實施方式)
圖10為第三實施方式的相當於圖6的圖。在本第三實施方式中,除了在佈線對L1、L2之間設置有突波電壓抑制電路25之外,在電抗器23的轉換器電路21一側且佈線對L1、L2之間也設置有緩衝電路35。該緩衝電路35具有作為限制部的緩衝電路用二極體35a和作為第二電容器的緩衝電路用電容器35b。緩衝電路用二極體35a和緩衝電路用電容器35b從第一輸出節點21a(第一佈線L1)側起依序串聯。並且,第一電流供給電路32、第二電流供給電路33以及第三電流供給電路34使用蓄積在緩衝電路用電容器35b中的能量來代替蓄積在第二電容器25c中的能量。
由於其他結構與第一實施方式相同,因此對相同的結構標註相同的符號並省略其詳細說明。
(第四實施方式)
圖11為第四實施方式的相當於圖10的圖。在本第四實施方式中,緩衝電路35設置在位於電抗器23和第一電容器24之間的 佈線對L1、L2之間。
由於其他結構與第三實施方式相同,因此對相同的結構標註相同的符號並省略其詳細說明。
(其它變形例)
需要說明的是,在前述第一實施方式、前述第二實施方式中,在停電時使逆變器電路22停止開關操作,但也可以由控制部40進行控制以便使逆變器電路22繼續開關操作。例如,停電之後,可以逆變器電路22使電動機13比正常運轉時減速,並且使電動機進行將驅動軸131的動能轉換為電能的再生動作,以便使第一電容器24的電壓比正常運轉時高。在這種情況下,第一電流供給電路32、第二電流供給電路33以及第三電流供給電路34的輸入電壓和電動機13的轉速如圖7(c)所示。
在圖7(c)的例子中,也是於時刻t1,逆變器電路22由於停電而停止向驅動用線圈135a~135c供給第二交流之後,即使第一電容器24的靜電能量由於再生控制而被消耗,第一電容器24的電壓降低,也能夠通過限制二極體25b抑制靜電能量從第二電容器25c流向第一電容24。因此,蓄積在第二電容器25c中的幾乎所有能量都能夠用於支承驅動軸131,因此能夠暫時繼續支承驅動軸131。
在前述第一實施方式至前述第四實施方式中,將突波電壓抑制電路25的電阻25a連接在限制二極體25b的第一直流側節點22c一側,但也可以將突波電壓抑制電路25的電阻25a連接在第二直流側節點22d一側(第二電容器25c一側)。亦即,可以將限制二極體25b的陽極連接在第一直流側節點22c上,將限制二極體25b的陰極連接在電阻25a上。
還可以在突波電壓抑制電路25中設置與限制二極體25b並 聯的大電阻值電阻,由限制二極體25b和該電阻構成限制部。
也可以設置雙向開關來替代限制二極體25b,控制該雙向開關,以便做到:在第二電容器25c的電壓比第一電容器24的電壓高出一個規定電壓差的狀態下,與第一電容器24的電壓比前述第二電容器25c的電壓高出一個前述電壓差的狀態相比,從第一電容器24和第二電容器25c中的高電壓側電容器流向低電壓側電容器的電流變小。也可以設置IGBT(Insulated Gate Bipolar Transistor:絕緣閘雙極電晶體)等單向開關來替代限制二極體25b,通過該單向開關的開關控制來控制電流,該IGBT使電流只從第一電容器24流向第二電容器25c。
在第三實施方式、第四實施方式中,也可以設置MOSFET(metal-oxide-semiconductor field-effect transistor:金屬氧化物半導體場效應電晶體)來替代緩衝電路用二極體35a,MOSFET的寄生二極體限制電流從緩衝電路用電容器35b流向第一電容器24,以便做到:在緩衝電路用電容器35b的電壓比第一電容器24的電壓高出一個規定電壓差的狀態下,與第一電容器24的電壓比緩衝電路用電容器35b的電壓高出一個前述電壓差的狀態相比,從第一電容器24及緩衝電路用電容器35b中的高電壓側電容器流向低電壓側電容器的電流變小。亦即,MOSFET的寄生二極體可以構成限制部。
-產業上之可利用性-
如上所述,本公開對於電力轉換裝置是有用的,該電力轉換裝置驅動電動機的驅動軸旋轉,並且向藉由電磁力非接觸地支承前述驅動軸的支承用線圈供給電力。
2:交流電源
13:電動機
20:電力轉換裝置
21:轉換器電路
21a:第一輸出節點
21b:第二輸出節點
22:逆變器電路
22a:開關元件
22b:回流二極體
22c:第一直流側節點
22d:第二直流側節點
23:電抗器
24:第一電容器
25:突波電壓抑制電路(緩衝電路)
25a:電阻
25b:限制二極體(限制部)
25c:第二電容器
26a:第一分壓用電阻
26b:第二分壓用電阻
26c:第三分壓用電阻
26d:第四分壓用電阻
27:零交叉點檢測電路
28:u相電流檢測器
29:w相電流檢測器
30:過電流保護部
31:驅動電路
32:第一電流供給電路
32a:開關元件
32b:回流二極體
33:第二電流供給電路
33a:開關元件
33b:回流二極體
34:第三電流供給電路
34a:開關元件
34b:回流二極體
40:控制部
135a:U相驅動用線圈
135b:V相驅動用線圈
135c:W相驅動用線圈
136a:U相電動機側支承用線圈
136b:V相電動機側支承用線圈
136c:W相電動機側支承用線圈
154:徑向磁軸承用線圈
161a:推力磁軸承用線圈
L1:第一佈線
L2:第二佈線

Claims (10)

  1. 一種電力轉換裝置,其驅動電動機(13)的驅動軸(131)旋轉,並且對藉由電磁力非接觸地支承前述驅動軸(131)的支承用線圈(136a~136c、154、161a)供給電力,包括轉換器電路(21)、逆變器電路(22)、第一電容器(24)、緩衝電路(25、35)以及電流供給電路(32、33、34),前述轉換器電路(21)將來自交流電源(2)的第一交流轉換為直流後輸出給佈線對(L1、L2),前述逆變器電路(22)包括開關元件(22a),藉由前述開關元件(22a)的開關操作將從前述轉換器電路(21)向前述佈線對(L1、L2)輸出的前述直流轉換為第二交流以驅動前述驅動軸(131)旋轉,並將前述第二交流供給至前述電動機(13)的驅動用線圈(135a~135c),前述第一電容器(24)連接在前述佈線對(L1、L2)之間,前述緩衝電路(25、35)連接在前述佈線對(L1、L2)之間,具有第二電容器(25c、35b)和與該第二電容器(25c、35b)串聯的限制部(25b、35a),前述電流供給電路(32、33、34)利用蓄積在前述第二電容器(25c)中的能量向前述支承用線圈(136a~136c、154、161a)供給電流,以便非接觸地支承前述驅動軸(131)的載荷,前述第一電容器(24)的電容被設定為:將開關周期下的前述第一電容器(24)的電壓變動抑制在前述第一電容器(24)的電壓平均值的1/10以下, 前述限制部(25b)限制電流從前述第二電容器(25c)流向前述第一電容器(24),以便做到:在前述第二電容器(25c)的電壓比前述第一電容器(24)的電壓高出一個規定電壓差的狀態下,與前述第一電容器(24)的電壓比前述第二電容器(25c)的電壓高出一個前述電壓差的狀態相比,從前述第一電容器(24)和前述第二電容器(25c)中的高電壓側的電容器流向低電壓側的電容器的電流變小,其中,在將前述第一電容器(24)的電容設為C1、將前述第一電容器(24)的耐受電壓設為Vc11、將向前述驅動用線圈(135a~135c)供給中的前述第一電容器(24)的峰值電壓設為Vc12、將蓄積在前述驅動用線圈(135a~135c)中的最大磁能設為E的情況下,下式(1)成立,C1(Vc112-Vc122)/2<E‧‧‧‧‧‧式(1)。
  2. 如請求項1所記載之電力轉換裝置,其中,在已停止由前述逆變器電路(22)向前述驅動用線圈(135a~135c)供給前述第二交流時,前述第二電容器(25c)能夠通過在驅動用線圈(135a~135c)中產生的反電動勢從前述驅動用線圈(135a~135c)吸收的電能大於前述第一電容器(24)能夠通過前述反電動勢從前述驅動用線圈(135a~135c)吸收的電能。
  3. 如請求項1或者2所記載之電力轉換裝置,其中,包括電抗器(23),其設置在前述轉換器電路(21)與前述第一電容器(24)之間的前述佈線對(L1、L2)的至少一佈線(L1)上, 前述緩衝電路(25、35)連接在前述電抗器(23)與前述逆變器電路(22)之間。
  4. 如請求項1或者2所記載之電力轉換裝置,其中,前述緩衝電路(25、35)不具有電壓可變單元,該電壓可變單元由電感元件和開關構成,主動地使前述第二電容器(25c、35b)的電壓升高或降低。
  5. 如請求項1或者2所記載之電力轉換裝置,其中,在前述第二電容器(25c、35b)與前述電流供給電路(32、33、34)之間,沒有設置主動地使前述電流供給電路(32、33、34)的輸入電壓升高或降低的電壓可變單元。
  6. 如請求項1或者2所記載之電力轉換裝置,其中,在前述緩衝電路(25、35)和前述佈線對(L1、L2)之間,沒有設置主動地使前述第二電容器(25c、35b)的電壓升高或降低的電壓可變單元。
  7. 如請求項1或者2所記載之電力轉換裝置,其中,在將前述第一電容器(24)的電容設為C1、將前述第一電容器(24)的耐受電壓設為Vc11、將向前述驅動用線圈(135a~135c)供給中的前述第一電容器(24)的峰值電壓設為Vc12、將前述第二電容器(25c)的電容設為C2、將前述第二電容器(25c)的耐受電壓設為Vc21、將向前述驅動用線圈(135a~135c)供給中的前述第二電容器(25c)的峰值電壓設為Vc22的情況下,下式(2)成立, C1(Vc112-Vc122)<C2(Vc212-Vc222)‧‧‧‧‧‧式(2)。
  8. 如請求項1或者2所記載之電力轉換裝置,其中,前述第二電容器(25c)的靜電電容大於前述第一電容器(24)的靜電電容。
  9. 如請求項1或者2所記載之電力轉換裝置,其中,前述緩衝電路(25)還具有與前述第二電容器(25c)串聯的電阻(25a)。
  10. 如請求項1或者2所記載之電力轉換裝置,其中,由前述電流供給電路(34)供給前述電流的前述支承用線圈(136a~136c)設置於前述電動機(13),且非接觸地支承前述驅動軸(131)的徑向載荷。
TW110142073A 2020-11-11 2021-11-11 電力轉換裝置 TWI819408B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020188082 2020-11-11
JP2020-188082 2020-11-11

Publications (2)

Publication Number Publication Date
TW202226743A TW202226743A (zh) 2022-07-01
TWI819408B true TWI819408B (zh) 2023-10-21

Family

ID=81602301

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110142073A TWI819408B (zh) 2020-11-11 2021-11-11 電力轉換裝置

Country Status (6)

Country Link
US (1) US20230275533A1 (zh)
EP (1) EP4239877A1 (zh)
JP (1) JP7193757B2 (zh)
CN (1) CN116420306A (zh)
TW (1) TWI819408B (zh)
WO (1) WO2022102725A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001037239A (ja) * 1999-07-14 2001-02-09 Mitsubishi Electric Corp インバータ装置及びインバータシステム
JP2010200524A (ja) * 2009-02-26 2010-09-09 Meidensha Corp モータ制御装置
TW201233043A (en) * 2010-09-07 2012-08-01 Hitachi Ind Equipment Sys Ac motor rotation direction detecting method and electric power conversion device for ac motor using same
CN106301144A (zh) * 2015-06-29 2017-01-04 发那科株式会社 电动机驱动装置
TW202011683A (zh) * 2018-08-31 2020-03-16 日商日立產機系統股份有限公司 電力轉換系統及馬達控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001037239A (ja) * 1999-07-14 2001-02-09 Mitsubishi Electric Corp インバータ装置及びインバータシステム
JP2010200524A (ja) * 2009-02-26 2010-09-09 Meidensha Corp モータ制御装置
TW201233043A (en) * 2010-09-07 2012-08-01 Hitachi Ind Equipment Sys Ac motor rotation direction detecting method and electric power conversion device for ac motor using same
CN106301144A (zh) * 2015-06-29 2017-01-04 发那科株式会社 电动机驱动装置
TW202011683A (zh) * 2018-08-31 2020-03-16 日商日立產機系統股份有限公司 電力轉換系統及馬達控制方法

Also Published As

Publication number Publication date
CN116420306A (zh) 2023-07-11
US20230275533A1 (en) 2023-08-31
TW202226743A (zh) 2022-07-01
WO2022102725A1 (ja) 2022-05-19
JP7193757B2 (ja) 2022-12-21
JP2022077528A (ja) 2022-05-23
EP4239877A1 (en) 2023-09-06

Similar Documents

Publication Publication Date Title
US6819012B1 (en) Flywheel energy storage system
US8754605B2 (en) Power factor correction circuits for switched reluctance machines
Anand et al. Modified dual output cuk converter-fed switched reluctance motor drive with power factor correction
US6486627B1 (en) Flywheel uninterruptible power source
JP2005528078A (ja) Srm又はpmbdcmドライブシステムのドライブ制御、電力変換及び始動制御のための方法、装置及びシステム
JP2009185816A (ja) ガスパイプラインおよび貯蔵圧縮用途向けの多極モータ付き高周波電動装置
Liu et al. A novel power failure compensation control method for active magnetic bearings used in high-speed permanent magnet motor
KR20070071407A (ko) 압축기
JP2015033150A (ja) 界磁巻線型同期電動機
JP2010207010A (ja) 三相交流電動機駆動システムの巻線切替装置
TWI819408B (zh) 電力轉換裝置
KR101482441B1 (ko) 모터 가속 장치 및 그 방법
JP2015065754A (ja) モータシステム
JP2000228898A (ja) 同期モータの群運転制御方法及びシステム
US8427090B2 (en) Magnetic-drive-pulsation motor
KR102299110B1 (ko) 전력 변환 회로
JP3938331B2 (ja) 磁気軸受兼用発電電動機
KR101846967B1 (ko) 모터 제어 장치
JP6762175B2 (ja) モータ制御装置および空気調和機
US20230291276A1 (en) Power supply circuit and bearing device provided with same
KR102579780B1 (ko) 전력 변환 장치 및 이를 포함하는 공기 조화기
US20240128904A1 (en) Switching for Six-Step Motor Drives
KR20170001916A (ko) 스위치드 릴럭턴스 전동기 구동 시스템
KR20160008085A (ko) 모터 구동장치 및 그 제어방법
WO2019234786A1 (ja) 電力変換装置