TWI797636B - 半導體裝置與半導體記憶裝置 - Google Patents

半導體裝置與半導體記憶裝置 Download PDF

Info

Publication number
TWI797636B
TWI797636B TW110120640A TW110120640A TWI797636B TW I797636 B TWI797636 B TW I797636B TW 110120640 A TW110120640 A TW 110120640A TW 110120640 A TW110120640 A TW 110120640A TW I797636 B TWI797636 B TW I797636B
Authority
TW
Taiwan
Prior art keywords
mentioned
electrode
layer
oxide semiconductor
conductive layer
Prior art date
Application number
TW110120640A
Other languages
English (en)
Other versions
TW202238855A (zh
Inventor
佐藤祐太
上田知正
斉藤信美
池田圭司
Original Assignee
日商鎧俠股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商鎧俠股份有限公司 filed Critical 日商鎧俠股份有限公司
Publication of TW202238855A publication Critical patent/TW202238855A/zh
Application granted granted Critical
Publication of TWI797636B publication Critical patent/TWI797636B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78642Vertical transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/05Making the transistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/33DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor extending under the transistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)
  • Thin Film Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

實施形態之半導體裝置具備:氧化物半導體層,其包含第1區域、第2區域、及第1區域與第2區域之間之第3區域;閘極電極;閘極絕緣層,其設置於第3區域與閘極電極之間;第1電極,其電性連接於第1區域;第2電極,其電性連接於第2區域;第1導電層,其設置於第1區域與第1電極之間、及第2區域與第2電極之間之至少一者之位置,且包含氧(O)及氮(N)中至少任一者之元素、及第1金屬元素;及第2導電層,其設置於氧化物半導體層與第1導電層之間,包含氧(O)、及選自由銦(In)、鋅(Zn)、錫(Sn)、及鎘(Cd)所組成之群中至少一者之元素,且厚度較第1導電層之厚度更厚。

Description

半導體裝置與半導體記憶裝置
本發明之實施形態關於一種半導體裝置與半導體記憶裝置。
於氧化物半導體層形成通道之氧化物半導體電晶體具備斷開動作時之通道洩漏電流極小之優異特性。因此,例如,研究將氧化物半導體電晶體應用於動態隨機存取記憶體(DRAM:Dynamic Random Access Memory)之記憶胞之開關電晶體。
例如,於將氧化物半導體電晶體應用於記憶胞之開關電晶體之情形,氧化物半導體電晶體經過伴隨記憶胞或配線之形成之熱處理。因此,期待實現即便經過熱處理,特性變動仍較少之耐熱性較高之氧化物半導體電晶體。
本發明所欲解決之問題在於提供一種耐熱性較高之半導體裝置。
實施形態之半導體裝置具備:氧化物半導體層,其包含第1區域、第2區域、及上述第1區域與上述第2區域之間之第3區域;閘極電極;閘極絕緣層,其設置於上述第3區域與上述閘極電極之間;第1電極,其電性連接於上述第1區域;第2電極,其電性連接於上述第2區域;第1導電層,其設置於上述第1區域與上述第1電極之間、及上述第2區域與上述第2電極之間之至少一者之位置,且包含氧(O)及氮(N)中至少任一者之元素、及第1金屬元素;及第2導電層,其設置於上述氧化物半導體層與上述第1導電層之間,包含選自由銦(In)、鋅(Zn)、錫(Sn)、及鎘(Cd)所組成之群中至少一者之元素、及氧(O),且厚度較上述第1導電層之厚度更厚。
根據上述之構成,可提供一種耐熱性較高之半導體裝置。
以下,參照圖式且說明本發明之實施形態。另,於以下說明中,對同一或類似構件等附註同一符號,且對於已說明一次之構件等適當省略其說明。
又,本說明書中,有為求方便而使用「上」、或「下」之用語之情形。「上」、或「下」僅為表示圖式內相對位置關係之用語,並非定義與重力相對之位置關係之用語。
構成本說明書中之半導體裝置與半導體記憶裝置之構件之化學組成之定性分析及定量分析可例如藉由二次離子質量分析法(Secondary Ion Mass Spectrometry:SIMS)、能量分散型X射線分光法(Energy Dispersive X-ray Spectroscopy:EDX)、拉塞福背向散射分析法(Rutherford Back-Scattering Spectroscopy:RBS)而進行。又,於構成半導體裝置之構件之厚度、構件間之距離、結晶粒徑等之測定時,可使用例如透過型電子顯微鏡(Transmission Electron Microscope:TEM)。
(第1實施形態)第1實施形態之半導體裝置具備:氧化物半導體層,其包含第1區域、第2區域、及第1區域與第2區域之間之第3區域;閘極電極;閘極絕緣層,其設置於第3區域與閘極電極之間;第1電極,其電性連接於第1區域;第2電極,其電性連接於第2區域;第1導電層,其設置於第1區域與第1電極之間及第2區域與第2電極之間之至少一者之位置,且包含氧(O)及氮(N)中至少任一者之元素、及第1金屬元素;第2導電層,其設置於氧化物半導體層與第1導電層之間,且包含選自由銦(In)、鋅(Zn)、錫(Sn)、及鎘(Cd)所組成之群中至少一者之元素,且厚度較第1導電層之厚度更厚;及氧(O)。
圖1係第1實施形態之半導體裝置之模式剖視圖。
第1實施形態之半導體裝置為電晶體100。電晶體100係於氧化物半導體層形成通道之氧化物半導體電晶體。電晶體100係於形成通道之氧化物半導體層之下側設置有閘極電極,於上側設置有源極電極及汲極電極之所謂底閘極型電晶體。電晶體100為以電子為載子之n通道型電晶體。
電晶體100具備氧化物半導體層10、閘極電極12、閘極絕緣層14、源極電極16、汲極電極18、障壁層20、接觸層22、第1絕緣層24、及第2絕緣層26。
源極電極16為第1電極之一例。汲極電極18為第2電極之一例。障壁層20為第1導電層之一例。接觸層22為第2導電層之一例。
於氧化物半導體層10,形成有於電晶體100之導通動作時成為電流路徑之通道。將通道中電子流動之方向稱為通道長度方向。於圖1中以雙箭頭表示通道長度方向。
氧化物半導體層10係氧化物半導體。氧化物半導體層10係金屬氧化物。氧化物半導體層10係例如非晶質。
氧化物半導體層10包含例如鎵(Ga)及鋁(Al)中至少任一者之元素、銦(In)、及鋅(Zn)。銦、鎵、鋁、及鋅之原子濃度之總和,相對於氧化物半導體層10中所含之金屬元素之原子濃度之總和之比為例如90%以上。又,銦、鎵、鋁、及鋅之原子濃度之總和,相對於氧化物半導體層10中所含之氧以外之元素之原子濃度之總和之比為例如90%以上。例如,於氧化物半導體層10中,於氧以外之元素中,不存在所具有之原子濃度較銦、鎵、鋁、及鋅中任一者更大之元素。
氧化物半導體層10所含之鋅(Zn)之原子濃度例如在5原子%以上20原子%以下。
氧化物半導體層10具有第1區域10a、第2區域10b、及第3區域10c。第3區域10c為第1區域10a與第2區域10b之間之區域。
氧化物半導體層10包含例如氧缺陷之情況。氧化物半導體層10中之氧缺陷作為施體發揮功能。
氧化物半導體層10之厚度為例如10 nm以上且100 nm以下。
氧化物半導體層10例如藉由原子層堆積法(Atomic Layer Deposition法:ALD法)形成。
閘極電極12設置於氧化物半導體層10之下側。閘極電極12為例如金屬、金屬化合物、或半導體。閘極電極12為例如氮化鈦(TiN)或鎢(W)。閘極電極12之閘極長度為例如20 nm以上100 nm以下。閘極電極12之閘極長度為閘極電極12之通道長度方向之長度。
閘極絕緣層14設置於氧化物半導體層10與閘極電極12之間。閘極絕緣層14設置於第3區域10c與閘極電極12之間。
閘極絕緣層14為例如氧化物或氮氧化物。閘極絕緣層14為例如氧化矽或氧化鋁。閘極絕緣層14之厚度為例如2 nm以上10 nm以下。
另,於氧化物半導體層10與閘極絕緣層14之間,亦可設置與閘極絕緣層14不同材料之未圖示之氧化物層。
源極電極16設置於氧化物半導體層10之上側。氧化物半導體層10夾於閘極電極12與源極電極16之間。
源極電極16設置於第1區域10a之上側。源極電極16電性連接於第1區域10a。
源極電極16為例如金屬或金屬化合物。源極電極16為例如具有與障壁層20不同之化學組成之金屬。
源極電極16例如包含第2金屬元素。例如,於源極電極16所含之金屬元素之原子濃度中,第2金屬元素之原子濃度最高。
第2金屬元素為例如選自由鈦(Ti)、鎢(W)、銅(Cu)、鋁(Al)、鉭(Ta)、及鉬(Mo)所組成之群中至少一者之元素。
源極電極16為例如鈦、氮化鈦、鎢、氮化鎢、銅、鋁、鉭、氮化鉭、鉬或氮化鉬。
源極電極16所含之第2金屬元素例如與障壁層20所含之第1金屬元素相同。又,源極電極16所含之第2金屬元素例如與障壁層20所含之第1金屬元素不同。
源極電極16之厚度例如較接觸層22之厚度更厚。源極電極16之厚度及接觸層22之厚度為自氧化物半導體層10朝向源極電極16之方向之厚度。
汲極電極18設置於氧化物半導體層10之上側。氧化物半導體層10夾於閘極電極12與汲極電極18之間。
汲極電極18設置於第2區域10b之上側。汲極電極18電性連接於第2區域10b。
汲極電極18例如包含第2金屬元素。例如,於汲極電極18所含之金屬元素之原子濃度中,第2金屬元素之原子濃度最高。
第2金屬元素為例如選自由鈦(Ti)、鎢(W)、銅(Cu)、鋁(Al)、鉭(Ta)、及鉬(Mo)所組成之群中至少一者之金屬元素。
汲極電極18為例如鈦、氮化鈦、鎢、氮化鎢、銅、鋁、鉭、氮化鉭、鉬或氮化鉬。
汲極電極18所含之第2金屬元素例如與障壁層20所含之第1金屬元素相同。又,汲極電極18所含之第2金屬元素例如與障壁層20所含之第1金屬元素不同。
汲極電極18之厚度例如較接觸層22之厚度更厚。汲極電極18之厚度及接觸層22之厚度為自氧化物半導體層10朝向汲極電極18之方向之厚度。
障壁層20設置於氧化物半導體層10與源極電極16之間。障壁層20設置於第1區域10a與源極電極16之間。障壁層20例如與源極電極16相接。障壁層20作為自氧化物半導體層10向源極電極16側擴散之氧之擴散障壁而發揮功能。
障壁層20設置於氧化物半導體層10與汲極電極18之間。障壁層20設置於第2區域10b與汲極電極18之間。障壁層20例如與汲極電極18相接。障壁層20作為自氧化物半導體層10向汲極電極18側擴散之氧之擴散障壁而發揮功能。
障壁層20包含第1金屬元素、及氧(O)及氮(N)中至少任一者之元素。例如,於障壁層20所含之氧(O)及氮(N)以外之元素之原子濃度中,第1金屬元素之原子濃度最高。
第1金屬元素為例如選自由鈦(Ti)、鎢(W)、銅(Cu)、鋁(Al)、鉭(Ta)、及鉬(Mo)所組成之群中至少一者之元素。
障壁層20為例如氧化物、氮化物、或氮氧化物。
障壁層20例如包含鈦(Ti)作為第1金屬元素。障壁層20包含例如氧(O)及氮(N)。障壁層20為例如氧化鈦或氮氧化鈦。
障壁層20之厚度例如較接觸層22之厚度更薄。障壁層20之厚度及接觸層22之厚度為自氧化物半導體層10朝向源極電極16之方向之厚度。
障壁層20之厚度為例如接觸層22之厚度之2分之1以下。障壁層20之厚度為例如1 nm以上10 nm以下。
障壁層20為例如結晶質。障壁層20之結晶粒徑例如小於接觸層22之結晶粒徑。障壁層20及接觸層22之結晶粒徑例如以結晶粒之長徑之中央值代表。
障壁層20為例如非晶質。
障壁層20例如藉由濺鍍法或ALD法形成。障壁層20例如藉由將源極電極16或汲極電極18之一部分氧化、氮化、或氮氧化而形成。
接觸層22設置於氧化物半導體層10與障壁層20之間。接觸層22設置於第1區域10a與源極電極16之間。又,接觸層22設置於第2區域10b與汲極電極18之間。
接觸層22例如與障壁層20相接。接觸層22例如與氧化物半導體層10相接。接觸層22例如與第1區域10a相接。接觸層22例如與第2區域10b相接。
接觸層22具備減少第1區域10a與源極電極16之間之電阻之功能。接觸層22具備減少第2區域10b與汲極電極18之間之電阻之功能。
接觸層22包含選自由銦(In)、鋅(Zn)、錫(Sn)、及鎘(Cd)所組成之群中至少一者之元素、及氧(O)。接觸層22為氧化物。
接觸層22包含例如銦(In)及錫(Sn)。接觸層22為包含例如銦(In)及錫(Sn)之氧化物。
接觸層22之厚度例如較障壁層20之厚度更厚。接觸層22之厚度及障壁層20之厚度係自氧化物半導體層10朝向源極電極16之方向之厚度。
接觸層22之厚度例如為障壁層20之厚度之2倍以上。接觸層22之厚度為例如5 nm以上30 nm以下。
接觸層22為例如結晶質。
接觸層22例如藉由濺鍍法或ALD法形成。
第1絕緣層24設置於氧化物半導體層10之下側。第1絕緣層24為例如氧化物、氮化物、或氮氧化物。第1絕緣層24為例如氧化矽、氮化矽、或氮氧化矽。
第2絕緣層26設置於氧化物半導體層10之上側。第2絕緣層26設置於源極電極16與汲極電極18之間。
第2絕緣層26將源極電極16與汲極電極18電性分離。第2絕緣層26為例如氧化物、氮化物、或氮氧化物。第2絕緣層26為例如氧化矽、氮化矽、或氮氧化矽。
以下,對第1實施形態之半導體裝置之作用及效果進行說明。
例如,於將氧化物半導體電晶體應用於記憶胞之開關電晶體之情形時,氧化物半導體電晶體會經過伴隨記憶胞或配線形成之熱處理,而有因經過熱處理而導致氧化物半導體電晶體之閾值電壓產生變動之情形。
氧化物半導體電晶體之閾值電壓之變動係因形成通道之氧化物半導體層中之氧漏出至源極電極或汲極電極之側而產生。因氧化物半導體層中之氧漏出,而於氧化物半導體層之中產生氧缺陷。
氧缺陷於氧化物半導體層之中作為施體而發揮功能。因此,例如於氧化物半導體電晶體為n通道型電晶體之情形時,若產生氧缺陷,則氧化物半導體電晶體之閾值電壓降低。
第1實施形態之電晶體100於氧化物半導體層10與源極電極16之間、及氧化物半導體層10與汲極電極18之間,具備抑制氧擴散之障壁層20。藉由具備障壁層20,而抑制氧化物半導體層10中之氧漏出至源極電極16或汲極電極18側。因此,抑制電晶體100之閾值電壓之變動。
基於抑制氧之擴散,減少障壁層20之電阻率之觀點,障壁層20較佳包含選自由鈦(Ti)、鎢(W)、銅(Cu)、鋁(Al)、鉭(Ta)、及鉬(Mo)所組成之群中至少一者之第1金屬元素、及氧(O)和氮(N)中至少任一者之元素。在障壁層20所含之氧(O)及氮(N)以外之元素之原子濃度中,第1金屬元素之原子濃度最高。
基於抑制氧之擴散,減少障壁層20之電阻率之觀點,障壁層20較佳為氮氧化鈦。障壁層20較佳包含鈦(Ti)、氧(O)、及氮(N)。第1金屬元素較佳為鈦(Ti)。
基於抑制氧之擴散之觀點,障壁層20之結晶粒徑較佳較小。根據抑制氧之擴散之觀點,障壁層20之結晶粒徑較佳小於接觸層22之結晶粒徑。又,根據抑制氧之擴散之觀點,障壁層20較佳為非晶質。
障壁層20之厚度較佳為1 nm以上10 nm以下,更佳為2 nm以上8 nm以下。藉由超過上述下限值,而提高氧之擴散抑制效果。藉由低於上述上限值,而減少障壁層20之電阻,且可減少源極電極16與氧化物半導體層10之間之電阻。又,可減少汲極電極18與氧化物半導體層10之間之電阻。
第1實施形態之電晶體100於氧化物半導體層10與障壁層20之間具備接觸層22。藉由具備接觸層22,與例如未設置接觸層22而將障壁層20直接與氧化物半導體層10相接之情形比較,接觸電阻減少。
電晶體100之接觸層22為包含選自由銦(In)、鋅(Zn)、錫(Sn)、及鎘(Cd)所組成之群中至少一者之元素、及氧(O)之氧化物。藉由接觸層22為包含選自由銦(In)、鋅(Zn)、錫(Sn)、及鎘(Cd)所組成之群中至少一者之元素、及氧(O)之氧化物,可抑制因熱處理而於氧化物半導體層10與接觸層22之間形成高電阻之反應產生物。藉此,可減少氧化物半導體層10與接觸層22之間之接觸電阻。
根據減少氧化物半導體層10與接觸層22之間之接觸電阻之觀點,接觸層22較佳為包含銦(In)及錫(Sn)之氧化物。
障壁層20之厚度較佳較接觸層22之厚度更薄。障壁層20之厚度較佳為接觸層22之厚度之2分之1以下,更佳為3分之1以下。
接觸層22之厚度較佳較障壁層20之厚度更厚。接觸層22之厚度較佳為障壁層20之厚度之2倍以上,更佳為3倍以上。
障壁層20之電阻率較接觸層22之電阻率更高。將障壁層20之厚度設得較接觸層22之厚度更薄,換言之,將接觸層22之厚度設得較障壁層20之厚度更厚,藉此例如可減少源極電極16與氧化物半導體層10之間之電阻。又,可減少汲極電極18與氧化物半導體層10之間之電阻。
源極電極16之厚度較佳較接觸層22之厚度更厚。又,汲極電極18之厚度較佳較接觸層22之厚度更厚。源極電極16及汲極電極18之電阻率較接觸層22之電阻率更低。
藉由將源極電極16之厚度設得較接觸層22之厚度更厚,可減少將源極電極16作為配線使用時之配線電阻。藉由將汲極電極18之厚度設得較接觸層22之厚度更厚,可減少將汲極電極18作為配線使用時之配線電阻。
根據耐熱性、電阻、及製造上之觀點,源極電極16或汲極電極18較佳包含選自由鈦(Ti)、鎢(W)、銅(Cu)、鋁(Al)、鉭(Ta)、及鉬(Mo)所組成之群中至少一者之第2金屬元素。於源極電極16或汲極電極18所含之金屬元素之原子濃度中,第2金屬元素之原子濃度最高。
根據耐熱性、電阻及製造上之觀點,源極電極16或汲極電極18更佳包含鈦(Ti)或鎢(W)。第2金屬元素更佳為鈦(Ti)或鎢(W)。源極電極16或汲極電極18更佳為氮化鈦或鎢。
源極電極16或汲極電極18所含之第2金屬元素較佳與障壁層20所含之第1金屬元素相同。藉由將源極電極16或汲極電極18所含之第2金屬元素設為與障壁層20所含之第1金屬元素相同,可藉由將源極電極16或汲極電極18氧化、氮化或氮氧化而形成障壁層20。
較佳為源極電極16或汲極電極18為氮化鈦,障壁層20為氮氧化鈦。此時,第1金屬元素及第2金屬元素為鈦(Ti)。此時,藉由將源極電極16或汲極電極18氧化,可形成障壁層20。
源極電極16或汲極電極18所含之第2金屬元素較佳與障壁層20所含之第1金屬元素不同。藉由將源極電極16或汲極電極18所含之第2金屬元素設為與障壁層20所含之第1金屬元素不同之金屬元素,可獨立形成源極電極16或汲極電極18與障壁層20。
較佳為源極電極16或汲極電極18為鎢,障壁層20為氮氧化鈦。此時,第1金屬元素為鈦(Ti),第2金屬元素為鎢(W)。
以上,根據第1實施形態,實現抑制熱處理後之閾值電壓之變動且具備高耐熱性之氧化物半導體電晶體。
(第2實施形態)第2實施形態之半導體裝置於閘極電極包圍氧化物半導體層之點上,與第1實施形態之半導體裝置不同。以下,有對與第1實施形態重複之內容,省略一部分記述之情形。
圖2、圖3係第2實施形態之半導體裝置之模式剖視圖。圖3係圖2之AA’剖視圖。於圖2中,將水平方向稱為第1方向,深度方向稱為第2方向,上下方向稱為第3方向。
第2實施形態之半導體裝置為電晶體200。電晶體200係於氧化物半導體形成通道之氧化物半導體電晶體。電晶體200為使閘極電極包圍形成通道之氧化物半導體層而設置之所謂之圍繞閘極電晶體(SGT:Surrounding Gate Transistor)。電晶體200為所謂之縱型電晶體。
電晶體200具備氧化物半導體層10、閘極電極12、閘極絕緣層14、源極電極16、汲極電極18、障壁層20、接觸層22、及層間絕緣層32。源極電極16為第1電極之一例。汲極電極18為第2電極之一例。障壁層20為第1導電層之一例。接觸層22為第2導電層之一例。
氧化物半導體層10設置於源極電極16與汲極電極18之間。於氧化物半導體層10,形成有於電晶體200之導通動作時成為電流路徑之通道。氧化物半導體層10沿第3方向延伸。氧化物半導體層10為沿第3方向延伸之柱狀。氧化物半導體層10為例如圓柱狀。
將通道中電子流動之方向稱為通道長度方向。第3方向為電晶體200之通道長度方向。
氧化物半導體層10係氧化物半導體。氧化物半導體層10係金屬氧化物。氧化物半導體層10係例如非晶質。
氧化物半導體層10包含例如鎵(Ga)及鋁(Al)中至少任一者之元素、銦(In)、及鋅(Zn)。銦、鎵、鋁、及鋅之原子濃度之總和,相對於氧化物半導體層10中所含之金屬元素之原子濃度之總和之比為例如90%以上。又,銦、鎵、鋁、及鋅之原子濃度之總和,相對於氧化物半導體層10中所含之氧以外之元素之原子濃度之總和之比為例如90%以上。例如,於氧化物半導體層10中,於氧以外之元素中,不存在所具有之原子濃度較銦、鎵、鋁、及鋅中任一者更大之元素。
氧化物半導體層10所含之鋅(Zn)之原子濃度例如在5原子%以上20原子%以下。
氧化物半導體層10具有第1區域10a、第2區域10b、及第3區域10c。第3區域10c為第1區域10a與第2區域10b之間之區域。
氧化物半導體層10包含例如氧缺陷之情況。氧化物半導體層10中之氧缺陷作為施體發揮功能。
氧化物半導體層10之第1方向之寬度為例如20 nm以上100 nm以下。氧化物半導體層10之第3方向之長度為例如80 nm以上200 nm以下。
氧化物半導體層10例如藉由ALD法而形成。
閘極電極12包圍氧化物半導體層10而設置。閘極電極12設置於氧化物半導體層10之周圍。
閘極電極12為例如金屬、金屬化合物、或半導體。閘極電極12為例如氮化鈦(TiN)或鎢(W)。閘極電極12之閘極長度為例如20 nm以上100 nm以下。閘極電極12之閘極長度為閘極電極12之第3方向之長度。
閘極絕緣層14設置於氧化物半導體層10與閘極電極12之間。閘極絕緣層14包圍氧化物半導體層10而設置。閘極絕緣層14設置於第3區域10c與閘極電極12之間。
閘極絕緣層14為例如氧化物或氮氧化物。閘極絕緣層14為例如氧化矽或氧化鋁。閘極絕緣層14之厚度為例如2 nm以上10 nm以下。
另,於氧化物半導體層10與閘極絕緣層14之間,亦可設置與閘極絕緣層14不同材料之未圖示之氧化物層。
源極電極16設置於氧化物半導體層10之下側。源極電極16設置於第1區域10a之下側。源極電極16電性連接於第1區域10a。
源極電極16為例如金屬或金屬化合物。源極電極16為例如具有與障壁層20不同之化學組成之金屬。
源極電極16例如包含第2金屬元素。例如,於源極電極16所含之金屬元素之原子濃度中,第2金屬元素之原子濃度最高。
第2金屬元素為例如選自由鈦(Ti)、鎢(W)、銅(Cu)、鋁(Al)、鉭(Ta)、及鉬(Mo)所組成之群中至少一者之元素。
源極電極16為例如鈦、氮化鈦、鎢、氮化鎢、銅、鋁、鉭、氮化鉭、鉬或氮化鉬。
源極電極16所含之第2金屬元素例如與障壁層20所含之第1金屬元素相同。又,源極電極16所含之第2金屬元素例如與障壁層20所含之第1金屬元素不同。
源極電極16之厚度例如較接觸層22之厚度更厚。源極電極16之厚度及接觸層22之厚度為自氧化物半導體層10朝向源極電極16之方向之厚度。
汲極電極18設置於氧化物半導體層10之上側。汲極電極18設置於第2區域10b之上側。汲極電極18電性連接於第2區域10b。
汲極電極18例如包含第2金屬元素。例如,於汲極電極18所含之金屬元素之原子濃度中,第2金屬元素之原子濃度最高。
第2金屬元素為例如選自由鈦(Ti)、鎢(W)、銅(Cu)、鋁(Al)、鉭(Ta)、及鉬(Mo)所組成之群中至少一者之金屬元素。
汲極電極18為例如鈦、氮化鈦、鎢、氮化鎢、銅、鋁、鉭、氮化鉭、鉬或氮化鉬。
汲極電極18所含之第2金屬元素例如與障壁層20所含之第1金屬元素相同。又,汲極電極18所含之第2金屬元素例如與障壁層20所含之第1金屬元素不同。
汲極電極18之厚度例如較接觸層22之厚度更厚。汲極電極18之厚度及接觸層22之厚度為自氧化物半導體層10朝向汲極電極18之方向之厚度。
障壁層20設置於氧化物半導體層10與源極電極16之間。障壁層20設置於第1區域10a與源極電極16之間。障壁層20例如與源極電極16相接。障壁層20作為自氧化物半導體層10向源極電極16側擴散之氧之擴散障壁而發揮功能。
障壁層20設置於氧化物半導體層10與汲極電極18之間。障壁層20設置於第2區域10b與汲極電極18之間。障壁層20例如與汲極電極18相接。障壁層20作為自氧化物半導體層10向汲極電極18側擴散之氧之擴散障壁而發揮功能。
障壁層20包含第1金屬元素、及氧(O)及氮(N)中至少任一者之元素。例如,於障壁層20所含之氧(O)及氮(N)以外之元素之原子濃度中,第1金屬元素之原子濃度最高。
第1金屬元素為例如選自由鈦(Ti)、鎢(W)、銅(Cu)、鋁(Al)、鉭(Ta)、及鉬(Mo)所組成之群中至少一者之元素。
障壁層20為例如氧化物、氮化物、或氮氧化物。
障壁層20例如包含鈦(Ti)作為第1金屬元素。障壁層20包含例如氧(O)及氮(N)。障壁層20為例如氧化鈦或氮氧化鈦。
障壁層20之厚度例如較接觸層22之厚度更薄。障壁層20之厚度及接觸層22之厚度為自氧化物半導體層10朝向源極電極16之方向之厚度。
障壁層20之厚度為例如接觸層22之厚度之2分之1以下。障壁層20之厚度為例如1 nm以上10 nm以下。
障壁層20為例如結晶質。障壁層20之結晶粒徑例如小於接觸層22之結晶粒徑。障壁層20及接觸層22之結晶粒徑例如以結晶粒之長徑之中央值代表。
障壁層20為例如非晶質。
接觸層22設置於氧化物半導體層10與障壁層20之間。接觸層22設置於第1區域10a與源極電極16之間。又,接觸層22設置於第2區域10b與汲極電極18之間。
接觸層22例如與障壁層20相接。接觸層22例如與氧化物半導體層10相接。接觸層22例如與第1區域10a相接。接觸層22例如與第2區域10b相接。
接觸層22具備減少第1區域10a與源極電極16之間之電阻之功能。接觸層22具備減少第2區域10b與汲極電極18之間之電阻之功能。
接觸層22包含選自由銦(In)、鋅(Zn)、錫(Sn)、及鎘(Cd)所組成之群中至少一者之元素、及氧(O)。接觸層22為氧化物。
接觸層22包含例如銦(In)及錫(Sn)。接觸層22為包含例如銦(In)及錫(Sn)之氧化物。
接觸層22之厚度例如較障壁層20之厚度更厚。接觸層22之厚度及障壁層20之厚度係自氧化物半導體層10朝向源極電極16之方向之厚度。
接觸層22之厚度例如為障壁層20之厚度之2倍以上。接觸層22之厚度為例如5 nm以上30 nm以下。
接觸層22為例如結晶質。
接觸層22例如藉由濺鍍法或ALD法而形成。
層間絕緣層32設置於閘極電極12、源極電極16及汲極電極18之周圍。層間絕緣層32為例如氧化物、氮化物、或氮氧化物。層間絕緣層32為例如氧化矽、氮化矽、或氮氧化矽。
以上,根據第2實施形態,與第1實施形態同樣,實現抑制熱處理後之閾值電壓之變動且具備高耐熱性之氧化物半導體電晶體。又,根據第2實施形態,藉由SGT,能夠以每單位面積較高之密度配置電晶體。
(第3實施形態)具備沿第1方向延伸之第1配線、沿與第1方向交叉之第2方向延伸之第2配線、及記憶胞,記憶胞具備:氧化物半導體層,其包含第1區域、第2區域、及第1區域與第2區域之間之第3區域,且第1區域電性連接於第1配線,第3區域由第2配線之一部分包圍;閘極絕緣層,其設置於第3區域與第2配線之一部分之間;電容器,其包含電性連接於第2區域之第1電極、第2電極、及第1電極與第2電極之間之絕緣層;第1導電層,其設置於第1區域與第1配線之間、及第2區域與第1電極之間之至少一者之位置,且包含氧(O)及氮(N)中至少任一者之元素、及第1金屬元素;及第2導電層,其設置於氧化物半導體層與第1導電層之間,且包含選自由銦(In)、鋅(Zn)、錫(Sn)、及鎘(Cd)所組成之群中至少一者之元素、及氧(O)。以下,對於與第1或第2實施形態重複之內容,有時省略一部分之記述。
第3實施形態之半導體記憶裝置為半導體記憶體300。第3實施形態之半導體記憶裝置為動態隨機存取記憶體(DRAM:Dynamic Random Access Memory)。半導體記憶體300將第2實施形態之電晶體200作為DRAM之記憶胞之開關電晶體使用。
圖4係第3實施形態之半導體記憶裝置之方塊圖。
如圖4所示,半導體記憶體300具備記憶胞陣列210、字元線驅動電路212、列解碼器電路214、感測放大器電路215、行解碼器電路217、及控制電路221。
圖5、圖6係第3實施形態之半導體記憶裝置之記憶胞陣列之模式剖視圖。圖5係包含第1方向與第3方向之面之剖視圖,圖6係包含第2方向與第3方向之面之剖視圖。第1方向與第2方向交叉。第1方向與第2方向例如垂直。第3方向係相對於第1方向及第2方向垂直之方向。第3方向係例如相對於基板垂直之方向。
第3實施形態之記憶胞陣列210具備記憶胞立體配置之三維構造。圖5、圖6中以虛線包圍之區域分別表示1個記憶胞。
記憶胞陣列210具備矽基板250。
記憶胞陣列210於矽基板250上,例如具備複數條位元線BL、及複數條字元線WL。位元線BL沿第1方向伸長。字元線WL沿第2方向伸長。
位元線BL與字元線WL例如垂直交叉。於位元線BL與字元線WL之交叉區域,配置記憶胞。於記憶胞包含第1記憶胞MC1及第2記憶胞MC2。第1記憶胞MC1及第2記憶胞MC2為記憶胞之一例。
連接於第1記憶胞MC1及第2記憶胞MC2之位元線BL為位元線BLx。位元線BLx為第1配線之一例。連接於第1記憶胞MC1之字元線WL為字元線WLx。字元線WLx為第2配線之一例。
連接於第2記憶胞MC2之字元線WL為字元線WLy。字元線WLx設置於位元線BLx之一側。字元線WLy設置於位元線BLx之另一側。
記憶胞陣列210具有複數條平板電極線PL。平板電極線PL連接於各記憶胞之平板電極72。
記憶胞陣列210為使各配線及各電極電性分離而具備層間絕緣層260。
複數條字元線WL電性連接於列解碼器電路214。複數條位元線BL電性連接於感測放大器電路215。
列解碼器電路214具備根據輸入之列位址信號選擇字元線WL之功能。字元線驅動電路212具備將特定電壓施加至由列解碼器電路214選擇之字元線WL的功能。
行解碼器電路217具備根據輸入之行位址信號選擇位元線BL之功能。感測放大器電路215具備將特定電壓施加至由行解碼器電路217選擇之位元線BL的功能。又,具備檢測位元線BL之電位並放大之功能。
控制電路221具備控制字元線驅動電路212、列解碼器電路214、感測放大器電路215、行解碼器電路217、及未圖示之其他電路之功能。
字元線驅動電路212、列解碼器電路214、感測放大器電路215、行解碼器電路217、及控制電路221等電路例如藉由未圖示之電晶體或配線層而構成。電晶體例如使用矽基板250而形成。
位元線BL及字元線WL為例如金屬。位元線BL及字元線WL為例如氮化鈦、鎢、或氮化鈦與鎢之積層構造。
圖7係第3實施形態之半導體記憶裝置之第1記憶胞之模式剖視圖。圖8係第3實施形態之半導體記憶裝置之第2記憶胞之模式剖視圖。
第1記憶胞MC1設置於矽基板250與位元線BLx之間。於矽基板250與第2記憶胞MC2之間設置位元線BLx。
第1記憶胞MC1設置於位元線BLx之下側。第2記憶胞MC2設置於位元線BLx之上側。
第1記憶胞MC1設置於位元線BLx之一側。第2記憶胞MC2設置於位元線BLx之另一側。
第2記憶胞MC2具有使第1記憶胞MC1上下反轉之構造。第1記憶胞MC1及第2記憶胞MC2分別具備電晶體200及電容器201。
電晶體200具備氧化物半導體層10、閘極電極12、閘極絕緣層14、源極電極16、汲極電極18、障壁層20、及接觸層22。障壁層20為第1導電層之一例。接觸層22為第2導電層之一例。電晶體200具備與第2實施形態之電晶體200同樣之構成。
氧化物半導體層10具有第1區域10a、第2區域10b、及第3區域10c。第3區域10c為第1區域10a與第2區域10b之間之區域。
電容器201具備胞電極71、平板電極72、及電容器絕緣膜73。胞電極71及平板電極72為例如氮化鈦。又,電容器絕緣膜73具有例如氧化鋯、氧化鋁、氧化鋯之積層構造。
胞電極71為第1電極之一例。平板電極72為第2電極之一例。電容器絕緣膜73為絕緣層之一例。
電容器201電性連接於第1記憶胞MC1及第2記憶胞MC2之氧化物半導體層10之一端。電容器201之胞電極71連接於汲極電極18。平板電極72連接於平板電極線PL。汲極電極18可視為胞電極71之一部分。
源極電極16連接於位元線BL。閘極電極12連接於字元線WL。源極電極16可視為位元線BL之一部分。
另,於圖5、圖6、圖7、圖8中,例示有位元線BL與源極電極16、及字元線WL與閘極電極12以同一材料同時形成之情形。位元線BL與源極電極16、及字元線WL與閘極電極12亦可為以各不相同之材料分別形成者。
位元線BLx包含例如第2金屬元素。例如,於位元線BLx所含之金屬元素之原子濃度中,第2金屬元素之原子濃度最高。
第2金屬元素為例如選自由鈦(Ti)、鎢(W)、銅(Cu)、鋁(Al)、鉭(Ta)、及鉬(Mo)所組成之群中至少一者之元素。
位元線BLx為例如鈦、氮化鈦、鎢、氮化鎢、銅、鋁、鉭、氮化鉭、鉬或氮化鉬。
位元線BLx所含之第2金屬元素例如與障壁層20所含之第1金屬元素相同。又,位元線BLx所含之第2金屬元素例如與障壁層20所含之第1金屬元素不同。
胞電極71例如包含第2金屬元素。例如,於胞電極71所含之金屬元素之原子濃度中,第2金屬元素之原子濃度最高。
第2金屬元素為例如選自由鈦(Ti)、鎢(W)、銅(Cu)、鋁(Al)、鉭(Ta)、及鉬(Mo)所組成之群中至少一者之金屬元素。
胞電極71為例如鈦、氮化鈦、鎢、氮化鎢、銅、鋁、鉭、氮化鉭、鉬或氮化鉬。
胞電極71所含之第2金屬元素例如與障壁層20所含之第1金屬元素相同。又,汲極電極18所含之第2金屬元素例如與障壁層20所含之第1金屬元素不同。
於第1記憶胞MC1之氧化物半導體層10之連接電容器201之端部之相反側之端部(另一端),電性連接位元線BLx。於第2記憶胞MC2之氧化物半導體層10之連接電容器201之端部之相反側之端部(另一端),電性連接位元線BLx。
於第1記憶胞MC1之閘極電極12,電性連接字元線WLx。又,於第2記憶胞MC2之閘極電極12,電性連接字元線WLy。
電晶體200於氧化物半導體層10與源極電極16及汲極電極18之間具備障壁層20。又,於氧化物半導體層10與障壁層20之間,具備接觸層22。
於將氧化物半導體電晶體作為DRAM之記憶胞之開關電晶體使用之情形,於形成電晶體後施加高溫且長時間之熱處理。熱處理係例如用以形成電容器之熱處理。藉由高溫且長時間之熱處理,易產生氧化物半導體電晶體之閾值電壓之變動。
電晶體200於氧化物半導體層10與源極電極16及汲極電極18之間具備障壁層20。因此,即便於形成電晶體後施加高溫且長時間之熱處理,亦抑制閾值電壓之變動。
又,電晶體200於氧化物半導體層10與障壁層20之間具備接觸層22。因此,減少接觸電阻。藉此,增加電晶體200之導通電流。
位元線BLx之厚度較佳較接觸層22之厚度更厚。位元線BLx之厚度及接觸層22之厚度為第3方向之厚度。
位元線BLx之電阻率較接觸層22之電阻率更低。藉由將位元線BLx之厚度設得較接觸層22之厚度更厚,可減少位元線BLx之配線電阻。
胞電極71之厚度較佳較接觸層22之厚度更厚。胞電極71之厚度及接觸層22之厚度為第3方向之厚度。
根據第3實施形態,藉由使用第2實施形態之電晶體200作為DRAM之開關電晶體,而實現抑制熱處理後之閾值電壓之變動且具備高耐熱性之半導體記憶體。
(第4實施形態)第4實施形態之半導體裝置具備:氧化物半導體層;電極;第1導電層,其設置於氧化物半導體層與電極之間,包含第1金屬元素;氧(O)及氮(N)之至少任一者之元素;及第2導電層,其設置於氧化物半導體層與第1導電層之間,且包含選自由銦(In)、鋅(Zn)、錫(Sn)、及鎘(Cd)所組成之群之至少一者之元素、及氧(O)。以下,有對與第1實施形態重複之內容,省略一部分記述之情形。
圖9係第4實施形態之半導體裝置之模式剖視圖。
第4實施形態之半導體裝置包含接觸構造400。接觸構造400具備氧化物半導體層10、障壁層20、接觸層22、配線層40、接觸插塞42、及層間絕緣層44。障壁層20為第1導電層之一例。接觸層22為第2導電層之一例。接觸插塞42為電極之一例。
氧化物半導體層10係氧化物半導體。氧化物半導體層10係金屬氧化物。氧化物半導體層10係例如非晶質。
氧化物半導體層10包含例如鎵(Ga)及鋁(Al)中至少任一者之元素、銦(In)、及鋅(Zn)。銦、鎵、鋁、及鋅之原子濃度之總和,相對於氧化物半導體層10中所含之金屬元素之原子濃度之總和之比為例如90%以上。又,銦、鎵、鋁、及鋅之原子濃度之總和,相對於氧化物半導體層10中所含之氧以外之元素之原子濃度之總和之比為例如90%以上。例如,於氧化物半導體層10中,於氧以外之元素中,不存在所具有之原子濃度較銦、鎵、鋁、及鋅中任一者更大之元素。
配線層40為例如金屬或金屬化合物。
接觸插塞42設置於氧化物半導體層10與配線層40之間。
接觸插塞42為例如金屬或金屬化合物。接觸插塞42為例如具有與障壁層20不同之化學組成之金屬。
接觸插塞42例如包含第2金屬元素。例如,於接觸插塞42所含之金屬元素之原子濃度中,第2金屬元素之原子濃度最高。
第2金屬元素為例如選自由鈦(Ti)、鎢(W)、銅(Cu)、鋁(Al)、鉭(Ta)、及鉬(Mo)所組成之群中至少一者之元素。
接觸插塞42為例如鈦、氮化鈦、鎢、氮化鎢、銅、鋁、鉭、氮化鉭、鉬或氮化鉬。
接觸插塞42所含之第2金屬元素例如與障壁層20所含之第1金屬元素相同。又,接觸插塞42所含之第2金屬元素例如與障壁層20所含之第1金屬元素不同。
接觸插塞42之厚度例如較接觸插塞42之厚度更厚。接觸插塞42之厚度及接觸層22之厚度係自氧化物半導體層10朝向接觸插塞42之方向之厚度。
障壁層20設置於氧化物半導體層10與接觸插塞42之間。障壁層20例如與接觸插塞42相接。障壁層20作為自氧化物半導體層10向接觸插塞42側擴散之氧之擴散障壁而發揮功能。
障壁層20包含第1金屬元素、及氧(O)及氮(N)中至少任一者之元素。例如,於障壁層20所含之氧(O)及氮(N)以外之元素之原子濃度中,第1金屬元素之原子濃度最高。
第1金屬元素為例如選自由鈦(Ti)、鎢(W)、銅(Cu)、鋁(Al)、鉭(Ta)、及鉬(Mo)所組成之群中至少一者之金屬元素。
障壁層20為例如氧化物、氮化物、或氮氧化物。
障壁層20例如包含鈦(Ti)作為第1金屬元素。障壁層20包含例如氧(O)及氮(N)。障壁層20為氧化鈦或氮氧化鈦。
障壁層20之厚度例如較接觸層22之厚度更薄。障壁層20之厚度及接觸層22之厚度為自氧化物半導體層10朝向接觸插塞42之方向之厚度。
障壁層20之厚度為例如接觸層22之厚度之2分之1以下。障壁層20之厚度為例如1 nm以上10 nm以下。
障壁層20為例如結晶質。障壁層20之結晶粒徑例如小於接觸層22之結晶粒徑。障壁層20及接觸層22之結晶粒徑例如以結晶粒之長徑之中央值代表。
障壁層20為例如非晶質。
障壁層20例如藉由濺鍍法或ALD法形成。障壁層20例如藉由將接觸插塞42之一部分氧化、氮化或氮氧化而形成。
接觸層22設置於氧化物半導體層10與障壁層20之間。接觸層22例如與障壁層20相接。接觸層22例如與氧化物半導體層10相接。
接觸層22具備減少氧化物半導體層10與接觸插塞42之間之電阻之功能。
接觸層22包含選自由銦(In)、鋅(Zn)、錫(Sn)、及鎘(Cd)所組成之群中至少一者之元素、及氧(O)。接觸層22為氧化物。
接觸層22包含例如銦(In)及錫(Sn)。接觸層22為包含例如銦(In)及錫(Sn)之氧化物。
接觸層22之厚度例如較障壁層20之厚度更厚。接觸層22之厚度及障壁層20之厚度係自氧化物半導體層10朝向接觸插塞42之方向之厚度。
接觸層22之厚度例如為障壁層20之厚度之2倍以上。接觸層22之厚度為例如5 nm以上30 nm以下。
接觸層22為例如結晶質。
接觸層22例如藉由濺鍍法或ALD法而形成。
層間絕緣層44設置於氧化物半導體層10與配線層40之間。層間絕緣層44為例如氧化矽、氮化矽、或氮氧化矽。
接觸構造400不具備障壁層20之情形,因於形成接觸構造400後施加之熱處理,氧化物半導體層中之氧漏出至接觸插塞42之側。因氧化物半導體層中之氧漏出,而於氧化物半導體層中產生氧缺陷。氧缺陷於氧化物半導體層中作為施體而發揮功能。
若接觸插塞42下之氧化物半導體層10中之施體濃度變化,則氧化物半導體層10與接觸插塞42之間之接觸電阻變動。氧化物半導體層10與接觸插塞42之間之接觸電阻變得不穩定。
接觸構造400於氧化物半導體層10與接觸插塞42之間具備障壁層20。藉由具備障壁層20,而抑制氧化物半導體層10中之施體濃度之變化。因此,氧化物半導體層10與接觸插塞42之間之接觸電阻穩定。
又,接觸構造400於氧化物半導體層10與障壁層20之間具備接觸層22。因此,氧化物半導體層10與接觸插塞42之間之接觸電阻減少。
以上,根據第4實施形態,實現抑制熱處理後之接觸電阻之變動且具備高耐熱性之半導體裝置。
於第1至第4實施形態中,以於第1區域10a與源極電極16之間、及第2區域10b與汲極電極18之間之兩者之位置,設置障壁層20及接觸層22之電晶體為例進行說明。然而,亦可設為障壁層20及接觸層22僅於第1區域10a與源極電極16之間、及第2區域10b與汲極電極18之間之任一者之位置設置之電晶體。
於第1至第4實施形態中,以氧化物半導體層10為包含鎵(Ga)及鋁(Al)中至少任一者之元素、銦(In)、及鋅(Zn)之金屬氧化物之情形為例進行說明,但亦可將其他金屬氧化物應用於氧化物半導體層10。
以上,雖已說明本發明之若干實施形態,但該等實施形態係作為實例而提出者,並非意欲限定發明之範圍。該等新穎實施形態可以其他各種形態實施,可於不脫離發明主旨之範圍內進行各種省略、置換、及變更。例如,亦可將一實施形態之構成要件置換或變更為其他實施形態之構成要件。該等實施形態及其變化包含於發明之範圍及主旨,且包含於申請專利範圍所記載之發明與其等效之範圍內。 [相關申請案之引用]
本申請案基於2021年03月22日申請之先行之日本專利申請案第2021-047614號之優先權之利益,且主張該利益,將該案之全部內容以引用之方式併入本文中。
10:氧化物半導體層 10a:第1區域 10b:第2區域 10c:第3區域 12:閘極電極 14:閘極絕緣層 16:源極電極 18:汲極電極 20:障壁層 22:接觸層 24:第1絕緣層 26:第2絕緣層 32:層間絕緣層 40:配線層 42:接觸插塞 44:層間絕緣層 71:胞電極 72:平板電極 73:電容器絕緣膜 100:電晶體 200:電晶體 201:電容器 210:記憶胞陣列 212:字元線驅動電路 214:列解碼器電路 215:感測放大器電路 217:行解碼器電路 221:控制電路 250:矽基板 260:層間絕緣層 300:半導體記憶體 400:接觸構造 BL:位元線 BLx:位元線 MC1:第1記憶胞 MC2:第2記憶胞 PL:平板電極線 WL:字元線 WLx:字元線 WLy:字元線
圖1係第1實施形態之半導體裝置之模式剖視圖。 圖2係第2實施形態之半導體裝置之模式剖視圖。 圖3係第2實施形態之半導體裝置之模式剖視圖。 圖4係第3實施形態之半導體記憶裝置之方塊圖。 圖5係第3實施形態之半導體記憶裝置之記憶胞陣列之模式剖視圖。 圖6係第3實施形態之半導體記憶裝置之記憶胞陣列之模式剖視圖。 圖7係第3實施形態之半導體記憶裝置之第1記憶胞之模式剖視圖。 圖8係第3實施形態之半導體記憶裝置之第2記憶胞之模式剖視圖。 圖9係第4實施形態之半導體裝置之模式剖視圖。
10:氧化物半導體層
10a:第1區域
10b:第2區域
10c:第3區域
12:閘極電極
14:閘極絕緣層
16:源極電極
18:汲極電極
20:障壁層
22:接觸層
24:第1絕緣層
26:第2絕緣層
100:電晶體

Claims (23)

  1. 一種半導體裝置,其具備:氧化物半導體層,其包含第1區域、第2區域、及上述第1區域與上述第2區域之間之第3區域;閘極電極;閘極絕緣層,其設置於上述第3區域與上述閘極電極之間;第1電極,其電性連接於上述第1區域;第2電極,其電性連接於上述第2區域;第1導電層,其設置於上述第1區域與上述第1電極之間、及上述第2區域與上述第2電極之間之至少一者之位置,且包含氧(O)及氮(N)中至少任一者之元素、及第1金屬元素;及第2導電層,其設置於上述氧化物半導體層與上述第1導電層之間,包含選自由銦(In)、鋅(Zn)、錫(Sn)、及鎘(Cd)所組成之群中至少一者之元素、及氧(O),且厚度較上述第1導電層之厚度更厚。
  2. 如請求項1之半導體裝置,其中於與上述氧化物半導體層之間設置有上述第1導電層之上述第1電極之厚度、或於與上述氧化物半導體層之間設置有上述第1導電層之上述第2電極之厚度,較上述第2導電層更厚。
  3. 如請求項1或2之半導體裝置,其中上述第1導電層之厚度為1 nm以上10 nm以下。
  4. 如請求項1之半導體裝置,其中上述第1金屬元素為選自由鈦(Ti)、鎢(W)、銅(Cu)、鋁(Al)、鉭(Ta)、及鉬(Mo)所組成之群中至少一者之元素。
  5. 如請求項4之半導體裝置,其中在上述第1導電層中所含之氧(O)及氮(N)以外之元素之原子濃度中,上述第1金屬元素之原子濃度最高。
  6. 如請求項1之半導體裝置,其中於與上述氧化物半導體層之間設置有上述第1導電層之上述第1電極、或於與上述氧化物半導體層之間設置有上述第1導電層之上述第2電極中至少任一者之電極包含第2金屬元素;在上述至少任一者之電極所含之金屬元素之原子濃度中,上述第2金屬元素之原子濃度最高;上述第2金屬元素與上述第1金屬元素相同。
  7. 如請求項1之半導體裝置,其中於與上述氧化物半導體層之間設置有上述第1導電層之上述第1電極、或於與上述氧化物半導體層之間設置有上述第1導電層之上述第2電極之至少任一者之電極包含第2金屬元素;在上述至少任一者之電極所含之金屬元素之原子濃度中,上述第2金屬元素之原子濃度最高;上述第2金屬元素與上述第1金屬元素不同。
  8. 一種半導體裝置,其具備:氧化物半導體層,其包含第1區域、第2區域、及上述第1區域與上述第2區域之間之第3區域;閘極電極;閘極絕緣層,其設置於上述第3區域與上述閘極電極之間;第1電極,其電性連接於上述第1區域;第2電極,其電性連接於上述第2區域;第1導電層,其設置於上述第1區域與上述第1電極之間、及上述第2區域與上述第2電極之間之至少一者之位置,且包含選自由鈦(Ti)、鎢(W)、銅(Cu)、鋁(Al)、鉭(Ta)、及鉬(Mo)所組成之群中至少一者之第1金屬元素、以及氧(O)和氮(N)中至少任一者之元素,且在上述第1導電層中所含之氧(O)及氮(N)以外之元素之原子濃度中,上述第1金屬元素之原子濃度最高;及第2導電層,其設置於上述氧化物半導體層與上述第1導電層之間,且包含選自由銦(In)、鋅(Zn)、錫(Sn)、及鎘(Cd)所組成之群中至少一者之元素、及氧(O)。
  9. 一種半導體裝置,其具備:氧化物半導體層,其包含第1區域、第2區域、及上述第1區域與上述第2區域之間之第3區域;閘極電極;閘極絕緣層,其設置於上述第3區域與上述閘極電極之間;第1電極,其電性連接於上述第1區域;第2電極,其電性連接於上述第2區域;第1導電層,其設置於上述第1區域與上述第1電極之間、及上述第2區域與上述第2電極之間之至少一者之位置,且包含氧(O)及氮(N)中至少任一者之元素、及第1金屬元素;及第2導電層,其設置於上述氧化物半導體層與上述第1導電層之間,且包含選自由銦(In)、鋅(Zn)、錫(Sn)、及鎘(Cd)所組成之群中至少一者之元素、及氧(O);且於與上述氧化物半導體層之間設置有上述第1導電層之上述第1電極、或於與上述氧化物半導體層之間設置有上述第1導電層之上述第2電極中至少任一者之電極包含第2金屬元素;在上述至少任一者之電極所含之金屬元素之原子濃度中,上述第2金屬元素之原子濃度最高;上述第2金屬元素與上述第1金屬元素相同。
  10. 如請求項1、8、9中任一項之半導體裝置,其中上述第1導電層包含氧(O)及氮(N),且上述第1金屬元素為鈦(Ti)。
  11. 如請求項1、8、9中任一項之半導體裝置,其中上述氧化物半導體層包含鎵(Ga)及鋁(Al)中至少任一者之元素、銦(In)、及鋅(Zn)。
  12. 如請求項1、8、9中任一項之半導體裝置,其中上述閘極電極包圍上述氧化物半導體層。
  13. 一種半導體記憶裝置,其具備沿第1方向延伸之第1配線、沿與上述第1方向交叉之第2方向延伸之第2配線、及記憶胞,且上述記憶胞具備:氧化物半導體層,其包含第1區域、第2區域、及上述第1區域與上述第2區域之間之第3區域,且上述第1區域電性連接於上述第1配線,上述第3區域由上述第2配線之一部分包圍;閘極絕緣層,其設置於上述第3區域與上述第2配線之一部分之間;電容器,其包含電性連接於上述第2區域之第1電極、第2電極、及上述第1電極與上述第2電極之間之絕緣層;第1導電層,其設置於上述第1區域與上述第1配線之間、及上述第2區域與上述第1電極之間之至少一者之位置,且包含氧(O)及氮(N)中至少任一者之元素、及第1金屬元素;及第2導電層,其設置於上述氧化物半導體層與上述第1導電層之間,且包含選自由銦(In)、鋅(Zn)、錫(Sn)、及鎘(Cd)所組成之群中至少一者之元素、及氧(O),且厚度較上述第1導電層之厚度更厚。
  14. 如請求項13之半導體記憶裝置,其中於與上述氧化物半導體層之間設置有上述第1導電層之上述第1配線之厚度、或於與上述氧化物半導體層之間設置有上述第1導電層之上述第1電極之厚度,較上述第2導電層更厚。
  15. 如請求項13或14之半導體記憶裝置,其中上述第1導電層之厚度為1 nm以上10 nm以下。
  16. 如請求項13之半導體記憶裝置,其中上述第1金屬元素為選自由鈦(Ti)、鎢(W)、銅(Cu)、鋁(Al)、鉭(Ta)、及鉬(Mo)所組成之群中至少一者之元素。
  17. 如請求項16之半導體記憶裝置,其中在上述第1導電層中所含之氧(O)及氮(N)以外之元素之原子濃度中,上述第1金屬元素之原子濃度最高。
  18. 如請求項13之半導體記憶裝置,其中於與上述氧化物半導體層之間設置有上述第1導電層之上述第1配線、或於與上述氧化物半導體層之間設置有上述第1導電層之上述第1電極之至少任一者包含第2金屬元素,且在上述至少任一者所含之金屬元素之原子濃度中,上述第2金屬元素之原子濃度最高;上述第2金屬元素與上述第1金屬元素相同。
  19. 如請求項13之半導體記憶裝置,其中於與上述氧化物半導體層之間設置有上述第1導電層之上述第1配線、或於與上述氧化物半導體層之間設置有上述第1導電層之上述第1電極之至少任一者包含第2金屬元素;在上述至少任一者所含之金屬元素之原子濃度中,上述第2金屬元素之原子濃度最高;上述第2金屬元素與上述第1金屬元素不同。
  20. 一種半導體記憶裝置,其具備沿第1方向延伸之第1配線、沿與上述第1方向交叉之第2方向延伸之第2配線、及記憶胞,且上述記憶胞具備:氧化物半導體層,其包含第1區域、第2區域、及上述第1區域與上述第2區域之間之第3區域,且上述第1區域電性連接於上述第1配線,上述第3區域由上述第2配線之一部分包圍;閘極絕緣層,其設置於上述第3區域與上述第2配線之一部分之間;電容器,其電性連接於上述第2區域;第1導電層,其設置於上述第1區域與上述第1配線之間及上述第2區域與上述電容器之間之至少一者之位置,且包含選自由鈦(Ti)、鎢(W)、銅(Cu)、鋁(Al)、鉭(Ta)、及鉬(Mo)所組成之群中至少一者之第1金屬元素、以及氧(O)和氮(N)中至少任一者之元素,且在上述第1導電層中所含之氧(O)及氮(N)以外之元素之原子濃度中,上述第1金屬元素之原子濃度最高;及第2導電層,其設置於上述氧化物半導體層與上述第1導電層之間,且包含選自由銦(In)、鋅(Zn)、錫(Sn)、及鎘(Cd)所組成之群中至少一者之元素、及氧(O)。
  21. 一種半導體記憶裝置,其具備沿第1方向延伸之第1配線、沿與上述第1方向交叉之第2方向延伸之第2配線、及記憶胞,且上述記憶胞具備:氧化物半導體層,其包含第1區域、第2區域、及上述第1區域與上述第2區域之間之第3區域,且上述第1區域電性連接於上述第1配線,上述第3區域由上述第2配線之一部分包圍;閘極絕緣層,其設置於上述第3區域與上述第2配線之一部分之間;電容器,其包含電性連接於上述第2區域之第1電極、第2電極、及上述第1電極與上述第2電極之間之絕緣層;第1導電層,其設置於上述第1區域與上述第1配線之間、及上述第2區域與上述第1電極之間之至少一者之位置,且包含氧(O)及氮(N)中至少任一者之元素、及第1金屬元素;及第2導電層,其設置於上述氧化物半導體層與上述第1導電層之間,且包含選自由銦(In)、鋅(Zn)、錫(Sn)、及鎘(Cd)所組成之群中至少一者之元素、及氧(O);且於與上述氧化物半導體層之間設置有上述第1導電層之上述第1配線、或於與上述氧化物半導體層之間設置有上述第1導電層之上述第1電極中至少任一者包含第2金屬元素;在上述至少任一者所含之金屬元素之原子濃度中,上述第2金屬元素之原子濃度最高;上述第2金屬元素與上述第1金屬元素相同。
  22. 如請求項13、20、21中任一項之半導體記憶裝置,其中上述第1導電層包含氧(O)及氮(N),且上述第1金屬元素為鈦(Ti)。
  23. 如請求項13、20、21中任一項之半導體記憶裝置,其中上述氧化物半導體層包含鎵(Ga)及鋁(Al)中至少任一者之元素、銦(In)、及鋅(Zn)。
TW110120640A 2021-03-22 2021-06-07 半導體裝置與半導體記憶裝置 TWI797636B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-047614 2021-03-22
JP2021047614A JP2022146576A (ja) 2021-03-22 2021-03-22 半導体装置及び半導体記憶装置

Publications (2)

Publication Number Publication Date
TW202238855A TW202238855A (zh) 2022-10-01
TWI797636B true TWI797636B (zh) 2023-04-01

Family

ID=83284238

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110120640A TWI797636B (zh) 2021-03-22 2021-06-07 半導體裝置與半導體記憶裝置

Country Status (4)

Country Link
US (1) US20220302120A1 (zh)
JP (1) JP2022146576A (zh)
CN (1) CN115117062A (zh)
TW (1) TWI797636B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230043603A (ko) * 2021-09-24 2023-03-31 한국전자통신연구원 산화물 반도체를 포함하는 sram 소자

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140117348A1 (en) * 2012-10-25 2014-05-01 Shenzhen China Star Optoelectronics Technology Co. Ltd. Active-matrix Panel Display Device, TFT and Method for Forming the Same
TW201533910A (zh) * 2014-02-20 2015-09-01 Au Optronics Corp 薄膜電晶體及畫素結構
US9177875B2 (en) * 2013-11-15 2015-11-03 Taiwan Seminconductor Manufacturing Co., Ltd. Advanced process control method for controlling width of spacer and dummy sidewall in semiconductor device
TWI541941B (zh) * 2010-12-28 2016-07-11 半導體能源研究所股份有限公司 半導體裝置及其製造方法
TW201828473A (zh) * 2016-09-30 2018-08-01 美商英特爾股份有限公司 在薄膜電晶體的金屬接觸通孔中實施高遷移率低接觸電阻半導體氧化物的系統、方法及設備
WO2019005090A1 (en) * 2017-06-30 2019-01-03 Intel Corporation SOURCE AND DRAIN CONTACTS OF SEMICONDUCTOR OXIDE DEVICE COMPRISING GRADUATED INDIUM LAYERS
US20200006570A1 (en) * 2018-06-29 2020-01-02 Intel Corporation Contact structures for thin film transistor devices

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100861236B1 (ko) * 2007-04-10 2008-10-02 경북대학교 산학협력단 낮은 누설전류를 갖는 기둥형 전계효과트랜지스터
KR101925012B1 (ko) * 2012-07-17 2018-12-05 에스케이하이닉스 주식회사 반도체 장치 및 그의 제조 방법
US9859439B2 (en) * 2013-09-18 2018-01-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP6538598B2 (ja) * 2016-03-16 2019-07-03 株式会社東芝 トランジスタ及び半導体記憶装置
WO2018044456A1 (en) * 2016-08-31 2018-03-08 Micron Technology, Inc. Memory cells and memory arrays
WO2018118097A1 (en) * 2016-12-24 2018-06-28 Intel Corporation Vertical transistor devices and techniques
CN110024133A (zh) * 2016-12-24 2019-07-16 英特尔公司 垂直晶体管器件和技术
KR102402945B1 (ko) * 2017-08-31 2022-05-30 마이크론 테크놀로지, 인크 금속 산화물 반도체 디바이스의 접촉을 위한 반도체 디바이스, 트랜지스터, 및 관련된 방법
JP2021108331A (ja) * 2019-12-27 2021-07-29 キオクシア株式会社 半導体記憶装置
US11488981B2 (en) * 2020-07-21 2022-11-01 Micron Technology, Inc. Array of vertical transistors and method used in forming an array of vertical transistors
JP2022049605A (ja) * 2020-09-16 2022-03-29 キオクシア株式会社 半導体装置及び半導体記憶装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI541941B (zh) * 2010-12-28 2016-07-11 半導體能源研究所股份有限公司 半導體裝置及其製造方法
US20140117348A1 (en) * 2012-10-25 2014-05-01 Shenzhen China Star Optoelectronics Technology Co. Ltd. Active-matrix Panel Display Device, TFT and Method for Forming the Same
US9177875B2 (en) * 2013-11-15 2015-11-03 Taiwan Seminconductor Manufacturing Co., Ltd. Advanced process control method for controlling width of spacer and dummy sidewall in semiconductor device
TW201533910A (zh) * 2014-02-20 2015-09-01 Au Optronics Corp 薄膜電晶體及畫素結構
TW201828473A (zh) * 2016-09-30 2018-08-01 美商英特爾股份有限公司 在薄膜電晶體的金屬接觸通孔中實施高遷移率低接觸電阻半導體氧化物的系統、方法及設備
WO2019005090A1 (en) * 2017-06-30 2019-01-03 Intel Corporation SOURCE AND DRAIN CONTACTS OF SEMICONDUCTOR OXIDE DEVICE COMPRISING GRADUATED INDIUM LAYERS
US20200006570A1 (en) * 2018-06-29 2020-01-02 Intel Corporation Contact structures for thin film transistor devices

Also Published As

Publication number Publication date
US20220302120A1 (en) 2022-09-22
JP2022146576A (ja) 2022-10-05
TW202238855A (zh) 2022-10-01
CN115117062A (zh) 2022-09-27

Similar Documents

Publication Publication Date Title
TWI786507B (zh) 半導體裝置及半導體記憶裝置
CN113451405B (zh) 半导体装置及半导体存储装置
US20200381557A1 (en) Semiconductor device and semiconductor memory device
TWI789716B (zh) 半導體裝置及半導體記憶裝置
US11374130B2 (en) Semiconductor device and semiconductor memory device
TWI797636B (zh) 半導體裝置與半導體記憶裝置
US20230030121A1 (en) Semiconductor device and semiconductor memory device
TWI782571B (zh) 半導體裝置及半導體記憶裝置
TWI847211B (zh) 半導體裝置
US20230200050A1 (en) Semiconductor device and semiconductor memory device
CN115863427A (zh) 半导体装置、半导体存储装置及半导体装置的制造方法