TWI797222B - Sealing composition and semiconductor device - Google Patents

Sealing composition and semiconductor device Download PDF

Info

Publication number
TWI797222B
TWI797222B TW107147230A TW107147230A TWI797222B TW I797222 B TWI797222 B TW I797222B TW 107147230 A TW107147230 A TW 107147230A TW 107147230 A TW107147230 A TW 107147230A TW I797222 B TWI797222 B TW I797222B
Authority
TW
Taiwan
Prior art keywords
inorganic filler
particle size
sealing composition
mass
alumina
Prior art date
Application number
TW107147230A
Other languages
Chinese (zh)
Other versions
TW201934650A (en
Inventor
石橋健太
山浦格
児玉拓也
田中実佳
堀慧地
姜東哲
Original Assignee
日商日立化成股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日立化成股份有限公司 filed Critical 日商日立化成股份有限公司
Publication of TW201934650A publication Critical patent/TW201934650A/en
Application granted granted Critical
Publication of TWI797222B publication Critical patent/TWI797222B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A sealing composition contains an epoxy resin, a curing agent, and an inorganic filler, the particle size distribution of the inorganic filler has at least three peaks, and the inorganic filler includes alumina having a particle size of 1 μm or less.

Description

密封組成物及半導體裝置Sealing composition and semiconductor device

本發明是有關於一種密封組成物及半導體裝置。The invention relates to a sealing composition and a semiconductor device.

近年來,伴隨小型化及高積體化,擔心半導體封裝體內部的發熱。存在因發熱而產生具有半導體封裝體的電氣零件或電子零件的性能下降之虞,因此對半導體封裝體中所使用的構件要求高導熱性。因此,要求對半導體封裝體的密封材進行高導熱化。 作為對密封材進行高導熱化的方法之一,可列舉於密封材中所含的無機填充材中使用作為高導熱性填料的氧化鋁的方法(例如,參照專利文獻1)。 [現有技術文獻] [專利文獻]In recent years, along with miniaturization and higher integration, there is concern about heat generation inside the semiconductor package. Since there is a possibility that the performance of electrical or electronic components having a semiconductor package may be degraded by heat generation, high thermal conductivity is required for members used in the semiconductor package. Therefore, high thermal conductivity is required for the sealing material of the semiconductor package. As one of the methods of increasing the thermal conductivity of the sealing material, there is a method of using alumina as a highly thermally conductive filler in the inorganic filler contained in the sealing material (for example, refer to Patent Document 1). [Prior art literature] [Patent Document]

[專利文獻1]日本專利特開2006-273920號公報[Patent Document 1] Japanese Patent Laid-Open No. 2006-273920

[發明所欲解決之課題] 但是,於專利文獻1中記載的方法中,有時密封材的流動性惡化。例如,採用將半導體元件與基板經由線而連接的被稱作打線接合結構的方法的半導體封裝體是藉由利用樹脂組成物將半導體元件、基板、以及將該些電性連接的線密封來形成。此時,藉由密封材的流動而對線施加壓力,產生線的位置偏移(線偏移),有時半導體元件未得到充分保護。 如此,存在難以兼顧密封材的流動性與高導熱性的情況。[Problem to be Solved by the Invention] However, in the method described in Patent Document 1, the fluidity of the sealing material may deteriorate. For example, a semiconductor package using a method called a wire bonding structure that connects a semiconductor element and a substrate via wires is formed by sealing the semiconductor element, the substrate, and the wires that electrically connect them with a resin composition. . At this time, pressure is applied to the wires by the flow of the sealing material, and positional displacement of the wires (wire misalignment) occurs, and the semiconductor element may not be sufficiently protected. In this way, it may be difficult to achieve both fluidity and high thermal conductivity of the sealing material.

本發明的一形態是鑒於所述先前的情況而成者,其目的在於提供一種流動性優異且具有高導熱性的密封組成物及使用其的半導體裝置。 [解決課題之手段]One aspect of the present invention is made in view of the foregoing circumstances, and an object of the present invention is to provide a sealing composition having excellent fluidity and high thermal conductivity, and a semiconductor device using the same. [Means to solve the problem]

用以達成所述課題的具體的手段如以下般。 <1> 一種密封組成物,其含有環氧樹脂、硬化劑、以及無機填充材, 所述無機填充材的粒度分佈具有至少三個峰值, 所述無機填充材包含粒徑為1 μm以下的氧化鋁。 <2> 如<1>所述的密封組成物,其中所述無機填充材的粒度分佈於0.3 μm~0.7 μm的範圍、7 μm~20 μm的範圍及30 μm~70 μm的範圍具有峰值。 <3> 如<1>或<2>所述的密封組成物,其中所述無機填充材中所含的於粒徑為1 μm以下的無機粒子中佔據的氧化鋁的比例為1體積%~40體積%。 <4> 如<1>至<3>中任一項所述的密封組成物,其中所述無機填充材的平均圓度為0.80以上。 <5> 一種半導體裝置,其包含半導體元件、以及將所述半導體元件密封而成的如<1>至<4>中任一項所述的密封組成物的硬化物。 [發明的效果]Specific means for achieving the above-mentioned problems are as follows. <1> A sealing composition containing an epoxy resin, a hardener, and an inorganic filler, The particle size distribution of the inorganic filler has at least three peaks, The inorganic filler includes alumina having a particle diameter of 1 μm or less. <2> The sealing composition according to <1>, wherein the particle size distribution of the inorganic filler has peaks in a range of 0.3 μm to 0.7 μm, a range of 7 μm to 20 μm, and a range of 30 μm to 70 μm. <3> The sealing composition according to <1> or <2>, wherein the ratio of alumina contained in the inorganic filler to the inorganic particles having a particle size of 1 μm or less is 1% by volume to 40% by volume. <4> The sealing composition according to any one of <1> to <3>, wherein the average circularity of the inorganic filler is 0.80 or more. <5> A semiconductor device including a semiconductor element and a cured product of the sealing composition according to any one of <1> to <4>, which seals the semiconductor element. [Effect of the invention]

根據本發明的一形態,可提供一種流動性優異且具有高導熱性的密封組成物及使用其的半導體裝置。According to one aspect of the present invention, a sealing composition having excellent fluidity and high thermal conductivity and a semiconductor device using the same can be provided.

以下,對用以實施本發明的密封組成物及半導體裝置的形態進行詳細說明。其中,本發明並不限定於以下的實施形態。於以下的實施形態中,其構成要素(亦包括要素步驟等)除特別明示的情況以外,並非必需。關於數值及其範圍亦同樣,並不限制本發明。 於本揭示中,使用「~」所表示的數值範圍中包含「~」的前後所記載的數值分別作為最小值及最大值。 於本揭示中階段性記載的數值範圍中,一個數值範圍所記載的上限值或下限值亦可置換為其他階段性記載的數值範圍的上限值或下限值。另外,於本揭示中所記載的數值範圍中,該數值範圍的上限值或下限值亦可置換為實施例中所示的值。 於本揭示中,各成分亦可包含多種相符的物質。於在組成物中存在多種與各成分相符的物質的情況下,只要無特別說明,則各成分的含有率或含量是指組成物中所存在的該多種物質的合計含有率或含量。 於本揭示中,亦可包含多種與各成分相符的粒子。於在組成物中存在多種與各成分相符的粒子的情況下,只要無特別說明,則各成分的粒徑是指關於組成物中所存在的該多種粒子的混合物的值。Hereinafter, the form of the sealing composition and semiconductor device for implementing this invention is demonstrated in detail. However, the present invention is not limited to the following embodiments. In the following embodiments, the constituent elements (including element steps, etc.) are not essential unless otherwise specified. The same applies to numerical values and their ranges, and do not limit the present invention. In this disclosure, the numerical values described before and after including "-" in the numerical range represented by "-" are used as the minimum value and the maximum value, respectively. In the numerical ranges described step by step in this disclosure, the upper limit or lower limit described in one numerical range may also be replaced by the upper limit or lower limit of other numerical ranges described stepwise. In addition, in the numerical range described in this indication, the upper limit or the lower limit of the numerical range may be replaced with the value shown in an Example. In the present disclosure, each component may also contain a plurality of corresponding substances. When there are multiple substances corresponding to each component in the composition, unless otherwise specified, the content or content of each component refers to the total content or content of the multiple substances present in the composition. In the present disclosure, a plurality of particles corresponding to each component may also be included. When there are multiple types of particles corresponding to each component in the composition, unless otherwise specified, the particle size of each component refers to a value for a mixture of the multiple types of particles present in the composition.

<密封組成物> 本揭示的密封組成物含有環氧樹脂、硬化劑、以及無機填充材,所述無機填充材的粒度分佈具有至少三個峰值,所述無機填充材包含粒徑為1 μm以下的氧化鋁。 本揭示的密封組成物的流動性優異且具有高導熱性。其理由雖不明確,但如以下般推測。 密封組成物中所含的無機填充材顯示出具有至少三個峰值的粒度分佈。即,無機填充材至少包含大粒徑的無機粒子與中粒徑的無機粒子以及小粒徑的無機粒子而構成。認為由於無機填充材包含大粒徑的無機粒子與中粒徑的無機粒子以及小粒徑的無機粒子,故本揭示的密封組成物的流動性優異。 另外,無機填充材包含粒徑為1 μm以下的氧化鋁,氧化鋁如所述般,顯示出高導熱性。另外,粒徑為1 μm以下的氧化鋁作為密封組成物中所含的無機填充材而相當於小粒徑的無機粒子。藉由包含氧化鋁作為小粒徑的無機粒子,作為小粒徑的無機粒子的氧化鋁容易介隔存在於大粒徑的無機粒子及中粒徑的無機粒子之間。藉由顯示出高導熱性的氧化鋁介隔存在於大粒徑的無機粒子及中粒徑的無機粒子之間,可促進大粒徑的無機粒子及中粒徑的無機粒子之間的導熱。結果,推測本揭示的密封組成物具有高導熱性。<Seal composition> The sealing composition of the present disclosure contains an epoxy resin, a curing agent, and an inorganic filler whose particle size distribution has at least three peaks, and the inorganic filler includes alumina with a particle size of 1 μm or less. The sealing composition disclosed herein has excellent fluidity and high thermal conductivity. Although the reason is not clear, it is presumed as follows. The inorganic filler contained in the sealing composition exhibits a particle size distribution having at least three peaks. That is, the inorganic filler includes at least large-diameter inorganic particles, medium-diameter inorganic particles, and small-diameter inorganic particles. It is considered that since the inorganic filler includes large-diameter inorganic particles, medium-diameter inorganic particles, and small-diameter inorganic particles, the sealing composition disclosed herein has excellent fluidity. In addition, the inorganic filler contains alumina having a particle diameter of 1 μm or less, and alumina exhibits high thermal conductivity as described above. In addition, alumina having a particle diameter of 1 μm or less corresponds to small-diameter inorganic particles as an inorganic filler contained in the sealing composition. By including alumina as the small-diameter inorganic particles, alumina, which is the small-diameter inorganic particles, is easily interposed between the large-diameter inorganic particles and the medium-diameter inorganic particles. Since alumina exhibiting high thermal conductivity intervenes between the large-diameter inorganic particles and the medium-diameter inorganic particles, heat conduction between the large-diameter inorganic particles and the medium-diameter inorganic particles can be promoted. As a result, it is presumed that the sealing composition of the present disclosure has high thermal conductivity.

以下,對構成密封組成物的各成分進行說明。本揭示的密封組成物含有環氧樹脂、硬化劑、以及無機填充材,視需要亦可含有其他成分。Hereinafter, each component constituting the sealing composition will be described. The sealing composition of the present disclosure contains an epoxy resin, a curing agent, and an inorganic filler, and may contain other components as necessary.

-環氧樹脂- 密封組成物含有環氧樹脂。環氧樹脂的種類並無特別限定,可使用公知的環氧樹脂。 具體而言,例如可列舉:將使選自由酚化合物(例如,苯酚、甲酚、二甲酚、間苯二酚、兒茶酚、雙酚A及雙酚F)以及萘酚化合物(例如,α-萘酚、β-萘酚及二羥基萘)所組成的群組中的至少一種、與醛化合物(例如,甲醛、乙醛、丙醛、苯甲醛及水楊醛)於酸性觸媒下縮合或共縮合而獲得的酚醛清漆樹脂環氧化而得者(例如,苯酚酚醛清漆型環氧樹脂及鄰甲酚酚醛清漆型環氧樹脂);選自由雙酚(例如,雙酚A、雙酚AD、雙酚F及雙酚S)及聯苯酚(例如,經烷基取代及未經取代的聯苯酚)所組成的群組中的至少一種二縮水甘油醚;苯酚·芳烷基樹脂的環氧化物;酚化合物與選自由二環戊二烯及萜烯化合物所組成的群組中的至少一種的加成物或聚合加成物的環氧化物;藉由多元酸(例如,鄰苯二甲酸及二聚物酸)與表氯醇的反應而獲得的縮水甘油酯型環氧樹脂;藉由多胺(例如,二胺基二苯基甲烷及異三聚氰酸)與表氯醇的反應而獲得的縮水甘油胺型環氧樹脂;利用過氧酸(例如,過乙酸)對烯烴鍵進行氧化而獲得的線狀脂肪族環氧樹脂;以及脂環族環氧樹脂。環氧樹脂可單獨使用一種,亦可併用兩種以上。-Epoxy resin- The sealing composition contains epoxy resin. The type of epoxy resin is not particularly limited, and known epoxy resins can be used. Specifically, for example, phenolic compounds (for example, phenol, cresol, xylenol, resorcinol, catechol, bisphenol A, and bisphenol F) and naphthol compounds (for example, At least one of the group consisting of α-naphthol, β-naphthol, and dihydroxynaphthalene), and aldehyde compounds (such as formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde, and salicylaldehyde) under the acidic catalyst Novolac resins obtained by condensation or co-condensation (for example, phenol novolac epoxy resins and o-cresol novolac epoxy resins); selected from bisphenols (for example, bisphenol A, bisphenol AD, bisphenol F and bisphenol S) and biphenols (for example, alkyl substituted and unsubstituted biphenols); at least one diglycidyl ether in the group consisting of; phenol · aralkyl resin ring oxides; epoxides of adducts or polyadducts of phenolic compounds and at least one selected from the group consisting of dicyclopentadiene and terpene compounds; Glycidyl ester type epoxy resin obtained by the reaction of formic acid and dimer acid) with epichlorohydrin; Glycidylamine-type epoxy resins obtained by reaction; linear aliphatic epoxy resins obtained by oxidizing olefin bonds with peroxyacids (for example, peracetic acid); and alicyclic epoxy resins. One type of epoxy resin may be used alone, or two or more types may be used in combination.

就防止積體電路(Integrated Circuit,IC)等的元件上的鋁配線或銅配線的腐蝕的觀點而言,環氧樹脂的純度較佳為高,水解性氯量較佳為少。就提高密封組成物的耐濕性的觀點而言,水解性氯量較佳為以質量基準計為500 ppm以下。From the viewpoint of preventing corrosion of aluminum wiring or copper wiring on components such as integrated circuits (Integrated Circuit, IC), the purity of the epoxy resin is preferably high, and the amount of hydrolyzable chlorine is preferably small. From the viewpoint of improving the moisture resistance of the sealing composition, the amount of hydrolyzable chlorine is preferably 500 ppm or less on a mass basis.

此處,水解性氯量是將試樣的環氧樹脂1 g溶解於二噁烷30 mL中,添加1 N-KOH甲醇溶液5 mL並回流30分鐘後,利用電位差滴定而求出的值。Here, the amount of hydrolyzable chlorine is a value obtained by potentiometric titration after dissolving 1 g of epoxy resin as a sample in 30 mL of dioxane, adding 5 mL of 1 N-KOH methanol solution and refluxing for 30 minutes.

於密封組成物中佔據的環氧樹脂的含有率較佳為1.5質量%~20質量%,更佳為2.0質量%~15質量%,進而佳為3.0質量%~10質量%。 於除無機填充材外的密封組成物中佔據的環氧樹脂的含有率較佳為30質量%~65質量%,更佳為35質量%~60質量%,進而佳為40質量%~55質量%。The content of the epoxy resin in the sealing composition is preferably from 1.5% by mass to 20% by mass, more preferably from 2.0% by mass to 15% by mass, and still more preferably from 3.0% by mass to 10% by mass. The content of the epoxy resin in the sealing composition other than the inorganic filler is preferably from 30% by mass to 65% by mass, more preferably from 35% by mass to 60% by mass, still more preferably from 40% by mass to 55% by mass %.

-硬化劑- 密封組成物含有硬化劑。硬化劑的種類並無特別限定,可使用公知的硬化劑。 具體而言,例如可列舉:使選自由酚化合物(例如,苯酚、甲酚、間苯二酚、兒茶酚、雙酚A及雙酚F)以及萘酚化合物(例如,α-萘酚、β-萘酚及二羥基萘)所組成的群組中的至少一種、與醛化合物(例如,甲醛、乙醛、丙醛、苯甲醛及水楊醛)於酸性觸媒下縮合或共縮合而獲得的酚醛清漆樹脂;苯酚·芳烷基樹脂;聯苯·芳烷基樹脂;以及萘酚·芳烷基樹脂。其中,就耐回焊性提高的觀點而言,硬化劑較佳為苯酚·芳烷基樹脂。硬化劑可單獨使用一種,亦可併用兩種以上。-hardener- The sealing composition contains a hardening agent. The type of curing agent is not particularly limited, and known curing agents can be used. Specifically, for example, phenolic compounds (for example, phenol, cresol, resorcinol, catechol, bisphenol A, and bisphenol F) and naphthol compounds (for example, α-naphthol, At least one of the group consisting of β-naphthol and dihydroxynaphthalene) is condensed or co-condensed with aldehyde compounds (such as formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde and salicylaldehyde) under an acidic catalyst The obtained novolak resins; phenol·aralkyl resins; biphenyl·aralkyl resins; and naphthol·aralkyl resins. Among these, the curing agent is preferably a phenol/aralkyl resin from the viewpoint of improvement in reflow resistance. A hardening agent may be used individually by 1 type, and may use 2 or more types together.

較佳為以相對於環氧樹脂的環氧基1當量,硬化劑的官能基(例如,於酚醛清漆樹脂的情況下為酚性羥基)的當量成為0.5當量~1.5當量的方式調配硬化劑,特佳為以成為0.7當量~1.2當量的方式調配硬化劑。Preferably, the curing agent is formulated so that the equivalent of the functional group of the curing agent (for example, phenolic hydroxyl group in the case of novolac resin) becomes 0.5 to 1.5 equivalents with respect to 1 equivalent of epoxy groups in the epoxy resin. It is particularly preferable to prepare the curing agent so as to have an equivalent of 0.7 to 1.2.

-無機填充材- 密封組成物包含無機填充材。藉由包含無機填充材,存在密封組成物的吸濕性降低,硬化狀態下的強度提高的傾向。-Inorganic filler- The sealing composition contains an inorganic filler. Inclusion of the inorganic filler tends to lower the hygroscopicity of the sealing composition and improve the strength in the cured state.

無機填充材可單獨使用一種,亦可併用兩種以上。 作為併用兩種以上的無機填充材的情況,例如可列舉使用兩種以上的成分、平均粒徑、形狀等不同的無機填充材的情況。 無機填充材的形狀並無特別限制,例如可列舉:粉狀、球狀、纖維狀等。就密封組成物的成形時的流動性及模具磨損性的方面而言,較佳為球狀。An inorganic filler may be used alone or in combination of two or more. When two or more inorganic fillers are used in combination, for example, the case of using two or more inorganic fillers different in components, average particle diameter, shape, etc. is mentioned. The shape of the inorganic filler is not particularly limited, and examples thereof include powdery, spherical, and fibrous shapes. The sealing composition is preferably spherical in terms of fluidity during molding and die wearability.

無機填充材的平均圓度較佳為0.80以上,更佳為0.85以上,進而佳為0.90以上,特佳為0.93以上。另外,無機填充材的平均圓度亦可為1.0以下。 所謂無機填充材的圓度,是根據具有與無機填充材的投影面積相同的面積的圓的直徑即圓相當直徑算出的作為圓的周圍長除以根據無機填充材的投影圖像所測定的周圍長(輪廓線的長度)而得的數值,利用下述式來求出。再者,圓度於正圓中成為1.00。 圓度=(相當於圓的周圍長)/(粒子剖面圖像的周圍長) 具體而言,平均圓度是利用掃描式電子顯微鏡觀察放大為倍率1000倍的圖像,任意地選擇10個無機填充材,利用所述方法測定各個無機填充材的圓度,並作為其算術平均值而算出的值。再者,圓度、相當於圓的周圍長及粒子的投影圖像的周圍長可藉由市售的圖像解析軟體而求出。 於作為無機填充材而併用兩種以上的情況下,無機填充材的平均圓度是指作為兩種以上的無機填充材的混合物的值。The average circularity of the inorganic filler is preferably at least 0.80, more preferably at least 0.85, still more preferably at least 0.90, particularly preferably at least 0.93. In addition, the average circularity of the inorganic filler may be 1.0 or less. The circularity of the inorganic filler is calculated from the diameter of a circle having the same area as the projected area of the inorganic filler, that is, the circle-equivalent diameter, which is the circumference of the circle divided by the circumference measured from the projected image of the inorganic filler. The numerical value obtained by length (the length of the contour line) is obtained by the following formula. In addition, the roundness becomes 1.00 in a perfect circle. Circularity = (equivalent to the circumference of the circle) / (the circumference of the particle profile image) Specifically, the average circularity is to use a scanning electron microscope to observe an image magnified to 1000 times, randomly select 10 inorganic fillers, use the above method to measure the circularity of each inorganic filler, and use it as the arithmetic mean The value calculated from the value. In addition, circularity, the circumference equivalent to a circle, and the circumference length of the projection image of a particle can be calculated|required with the image analysis software which is commercially available. When using two or more types together as an inorganic filler, the average circularity of an inorganic filler means the value which is a mixture of two or more types of inorganic fillers.

作為無機填充材,只要為粒度分佈具有至少三個峰值且包含粒徑為1 μm以下的氧化鋁者,則材質、粒徑等並無特別限定。 作為無機填充材,可列舉:球狀二氧化矽、結晶二氧化矽等二氧化矽、氧化鋁、鋯石、氧化鎂、矽酸鈣、碳酸鈣、鈦酸鉀、碳化矽、氮化矽、氮化硼、氮化鋁、氧化鈹、氧化鋯等。進而,作為具有阻燃效果的無機填充材,可列舉氫氧化鋁、硼酸鋅等。於該些中,就高導熱性的觀點而言,較佳為氧化鋁。 於無機填充材中佔據的氧化鋁的比例較佳為60質量%~95質量%,更佳為60質量%~92質量%,進而佳為60質量%~90質量%。 作為無機填充材,亦可併用氧化鋁與二氧化矽。於併用氧化鋁與二氧化矽作為無機填充材的情況下,較佳為於無機填充材中佔據的氧化鋁的比例為80質量%~95質量%,二氧化矽的比例為5質量%~20質量%,更佳為氧化鋁的比例為82質量%~92質量%,二氧化矽的比例為8質量%~18質量%,進而佳為氧化鋁的比例為85質量%~90質量%,二氧化矽的比例為10質量%~15質量%。The material, particle size, and the like are not particularly limited as long as the inorganic filler has at least three peaks in the particle size distribution and includes alumina with a particle size of 1 μm or less. Examples of inorganic fillers include spherical silica, silica such as crystalline silica, alumina, zircon, magnesium oxide, calcium silicate, calcium carbonate, potassium titanate, silicon carbide, silicon nitride, Boron nitride, aluminum nitride, beryllium oxide, zirconia, etc. Furthermore, aluminum hydroxide, zinc borate, etc. are mentioned as an inorganic filler which has a flame-retardant effect. Among these, alumina is preferred from the viewpoint of high thermal conductivity. The proportion of alumina occupied in the inorganic filler is preferably from 60% by mass to 95% by mass, more preferably from 60% by mass to 92% by mass, and still more preferably from 60% by mass to 90% by mass. As an inorganic filler, alumina and silica can also be used together. When alumina and silica are used together as the inorganic filler, it is preferable that the proportion of alumina in the inorganic filler is 80 mass % to 95 mass %, and the proportion of silica is 5 mass % to 20 mass %. mass %, more preferably 82 mass % to 92 mass % of alumina, 8 mass % to 18 mass % of silicon dioxide, more preferably 85 mass % to 90 mass % of alumina, two The proportion of silicon oxide is 10% by mass to 15% by mass.

無機填充材的粒度分佈具有至少三個峰值,較佳為具有三個峰值。無機填充材的粒度分佈中的峰值的位置並無特別限定,例如較佳為於0.3 μm~0.7 μm的範圍、7 μm~20 μm的範圍及30 μm~70 μm的範圍具有峰值,更佳為於0.3 μm~0.6 μm的範圍、7 μm~15 μm的範圍及40 μm~70 μm的範圍具有峰值。The particle size distribution of the inorganic filler has at least three peaks, preferably three peaks. The position of the peak in the particle size distribution of the inorganic filler is not particularly limited, for example, it is preferable to have a peak in the range of 0.3 μm to 0.7 μm, the range of 7 μm to 20 μm, and the range of 30 μm to 70 μm, more preferably There are peaks in the range of 0.3 μm to 0.6 μm, the range of 7 μm to 15 μm, and the range of 40 μm to 70 μm.

無機填充材的粒度分佈可藉由下述方法來求出。 向溶媒(純水)中於0.02質量%~0.08質量%的範圍內添加作為測定對象的無機填充材,利用110 W的浴式超音波清洗機振動1分鐘~10分鐘,從而將無機填充材分散。將分散液的約40 mL左右注入至測定槽中並於25℃下進行測定。測定裝置是利用雷射繞射/散射式粒徑分佈測定裝置(例如,堀場製作所股份有限公司,LA920(商品名))來測定體積基準的粒度分佈。再者,折射率是使用氧化鋁的折射率。於無機填充材為氧化鋁與氧化鋁以外的無機填充材的混合物的情況下,折射率亦設為使用氧化鋁的折射率。The particle size distribution of the inorganic filler can be obtained by the following method. Add the inorganic filler to be measured in the range of 0.02 mass % to 0.08 mass % to the solvent (pure water), and vibrate for 1 minute to 10 minutes with a 110 W bath-type ultrasonic cleaner to disperse the inorganic filler . About 40 mL of the dispersion liquid was poured into the measurement tank, and the measurement was performed at 25°C. The measuring device is a laser diffraction/scattering type particle size distribution measuring device (for example, Horiba Manufacturing Co., Ltd., LA920 (trade name)) to measure the volume-based particle size distribution. In addition, the refractive index uses the refractive index of aluminum oxide. When the inorganic filler is a mixture of alumina and inorganic fillers other than alumina, the refractive index is also the refractive index of alumina used.

無機填充材中所含的於粒徑為1 μm以下的無機粒子中佔據的氧化鋁的比例較佳為1體積%~40體積%,更佳為10體積%~35體積%,進而佳為15體積%~30體積%。 無機填充材中所含的於粒徑為1 μm以下的無機粒子中佔據的氧化鋁的比例可藉由以下方法來測定。 針對利用掃描式電子顯微鏡而確認到粒徑為1 μm以下的各無機粒子,藉由能量分散型X射線分析(Energy dispersive X-ray spectrometry)來鑒定構成元素,確定無機粒子的材質。藉由求出在50個1 μm以下的無機粒子中佔據的氧化鋁的體積基準的比例,可求出無機填充材中所含的於粒徑為1 μm以下的無機粒子中佔據的氧化鋁的比例。各無機粒子的粒徑設為作為具有與投影面積相同的面積的圓的直徑的圓相當直徑。The ratio of alumina contained in the inorganic filler to the inorganic particles having a particle size of 1 μm or less is preferably 1% by volume to 40% by volume, more preferably 10% by volume to 35% by volume, and still more preferably 15% by volume. Volume %~30 volume %. The proportion of alumina contained in the inorganic filler contained in the inorganic particles having a particle size of 1 μm or less can be measured by the following method. For each inorganic particle whose particle size was confirmed to be 1 μm or less with a scanning electron microscope, the constituent elements were identified by energy dispersive X-ray spectrometry, and the material of the inorganic particle was determined. By obtaining the volume-based ratio of alumina occupied by 50 inorganic particles of 1 μm or less, the ratio of alumina occupied by inorganic particles with a particle size of 1 μm or less contained in the inorganic filler can be obtained. Proportion. The particle diameter of each inorganic particle was made into the circle-equivalent diameter which is the diameter of the circle which has the same area as a projected area.

無機填充材中所含的於粒徑為10 μm以上的無機粒子中佔據的氧化鋁的比例較佳為20體積%~60體積%,更佳為25體積%~55體積%,進而佳為30體積%~50體積%。 無機填充材中所含的於粒徑為10 μm以上的無機粒子中佔據的氧化鋁的比例可與無機填充材中所含的於粒徑為1 μm以下的無機粒子中佔據的氧化鋁的比例同樣地求出。The ratio of the alumina contained in the inorganic filler to the inorganic particles having a particle diameter of 10 μm or more is preferably 20% by volume to 60% by volume, more preferably 25% by volume to 55% by volume, still more preferably 30% by volume. Volume %~50 volume %. The ratio of the alumina contained in the inorganic filler to occupy the inorganic particles with a particle diameter of 10 μm or more may be the same as the ratio of the alumina contained in the inorganic filler to occupy the inorganic particles with a particle diameter of 1 μm or less Find it in the same way.

就吸濕性、線膨脹係數的減少、強度提高及焊料耐熱性的觀點而言,相對於密封組成物整體,無機填充材的調配量較佳為75質量%~97質量%的範圍內,更佳為80質量%~95質量%的範圍內。From the viewpoint of hygroscopicity, reduction in linear expansion coefficient, improvement in strength, and solder heat resistance, the blending amount of the inorganic filler is preferably within the range of 75% by mass to 97% by mass relative to the entire sealing composition. Preferably, it exists in the range of 80 mass % - 95 mass %.

為了使無機填充材顯示出具有至少三個峰值的粒度分佈,例如可列舉調配平均粒徑不同的三種無機填充材的方法,但並不限定於此。例如,亦可併用平均粒徑為0.3 μm~0.7 μm的無機填充材、平均粒徑為7 μm~20 μm的無機填充材、及平均粒徑為30 μm~70 μm的無機填充材。 作為無機填充材整體的平均粒徑較佳為4 μm~30 μm,更佳為5 μm~25 μm,進而佳為6 μm~20 μm。 無機填充材的平均粒徑是於使用與無機填充材的粒度分佈的測定的情況同樣地製備的無機填充材的分散液,並利用雷射繞射/散射式粒徑分佈測定裝置(例如,堀場製作所股份有限公司,LA920(商品名))而測定的體積基準的粒度分佈中,作為自小徑側的累積成為50%時的粒徑(D50%)來求出。In order for the inorganic filler to exhibit a particle size distribution having at least three peaks, for example, a method of preparing three types of inorganic fillers having different average particle diameters may be mentioned, but the method is not limited thereto. For example, an inorganic filler with an average particle diameter of 0.3 μm to 0.7 μm, an inorganic filler with an average particle diameter of 7 μm to 20 μm, and an inorganic filler with an average particle diameter of 30 μm to 70 μm may be used together. The average particle diameter of the inorganic filler as a whole is preferably from 4 μm to 30 μm, more preferably from 5 μm to 25 μm, and still more preferably from 6 μm to 20 μm. The average particle diameter of the inorganic filler is obtained by using a dispersion liquid of the inorganic filler prepared in the same manner as in the case of measuring the particle size distribution of the inorganic filler, and using a laser diffraction/scattering type particle size distribution measuring device (for example, Horiba Seisakusho Co., Ltd., LA920 (trade name)), in the volume-based particle size distribution measured by LA920 (trade name), it was determined as the particle size (D50%) when the accumulation from the small diameter side becomes 50%.

(硬化促進劑) 密封組成物亦可進而含有硬化促進劑。硬化促進劑的種類並無特別限制,可使用公知的硬化促進劑。 具體而言,可列舉:1,8-二氮雜-雙環[5.4.0]十一烯-7、1,5-二氮雜-雙環[4.3.0]壬烯、5,6-二丁基胺基-1,8-二氮雜-雙環[5.4.0]十一烯-7等環脒化合物;對環脒化合物加成馬來酸酐、1,4-苯醌、2,5-甲苯醌、1,4-萘醌、2,3-二甲基苯醌、2,6-二甲基苯醌、2,3-二甲氧基-5-甲基-1,4-苯醌、2,3-二甲氧基-1,4-苯醌、苯基-1,4-苯醌等醌化合物、重氮苯基甲烷、苯酚樹脂等具有π鍵的化合物而成的具有分子內極化的化合物;苄基二甲基胺、三乙醇胺、二甲基胺基乙醇、三(二甲基胺基甲基)苯酚等三級胺化合物、三級胺化合物的衍生物;2-甲基咪唑、2-苯基咪唑、2-苯基-4-甲基咪唑等咪唑化合物、咪唑化合物的衍生物;三丁基膦、甲基二苯基膦、三苯基膦、三(4-甲基苯基)膦、二苯基膦、苯基膦等有機膦化合物;對有機膦化合物加成馬來酸酐、所述醌化合物、重氮苯基甲烷、苯酚樹脂等具有π鍵的化合物而成的具有分子內極化的磷化合物;四苯基鏻四苯基硼酸鹽、三苯基膦四苯基硼酸鹽、2-乙基-4-甲基咪唑四苯基硼酸鹽、N-甲基嗎啉四苯基硼酸鹽等四苯基硼鹽、四苯基硼鹽的衍生物;三苯基鏻-三苯基硼烷、N-甲基嗎啉四苯基鏻-四苯基硼酸鹽等膦化合物與四苯基硼鹽的加成物等。硬化促進劑可單獨使用一種,亦可併用兩種以上。(hardening accelerator) The sealing composition may further contain a curing accelerator. The type of hardening accelerator is not particularly limited, and known hardening accelerators can be used. Specifically, 1,8-diaza-bicyclo[5.4.0]undecene-7, 1,5-diaza-bicyclo[4.3.0]nonene, 5,6-dibutyl Amino-1,8-diaza-bicyclo[5.4.0]undecene-7 and other cyclic amidine compounds; addition of maleic anhydride, 1,4-benzoquinone, 2,5-toluene to cyclic amidine compounds quinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl-1,4-benzoquinone, quinone compounds such as 2,3-dimethoxy-1,4-benzoquinone, phenyl-1,4-benzoquinone, diazophenylmethane, phenol resin and other compounds with π bonds have intramolecular poles Compounds; tertiary amine compounds such as benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris(dimethylaminomethyl)phenol, derivatives of tertiary amine compounds; 2-methyl Imidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole and other imidazole compounds, derivatives of imidazole compounds; tributylphosphine, methyldiphenylphosphine, triphenylphosphine, tri(4-methyl phenylphosphine, diphenylphosphine, phenylphosphine and other organic phosphine compounds; organic phosphine compounds are formed by adding maleic anhydride, the quinone compound, diazophenylmethane, phenol resin and other compounds with π bonds Phosphorus compounds with intramolecular polarization; tetraphenylphosphonium tetraphenyl borate, triphenylphosphine tetraphenyl borate, 2-ethyl-4-methylimidazolium tetraphenyl borate, N-methyl Tetraphenylboron salts such as morpholine tetraphenyl borate, derivatives of tetraphenyl boron salts; triphenylphosphonium-triphenylborane, N-methylmorpholine tetraphenylphosphonium-tetraphenylborate The adducts of phosphine compounds and tetraphenyl boron salts, etc. A hardening accelerator may be used individually by 1 type, and may use 2 or more types together.

相對於環氧樹脂與硬化劑的合計量,硬化促進劑的含有率較佳為0.1質量%~8質量%。The content of the curing accelerator is preferably 0.1% by mass to 8% by mass relative to the total amount of the epoxy resin and the curing agent.

(離子捕捉劑) 密封組成物亦可進而含有離子捕捉劑。 本揭示中可使用的離子捕捉劑只要為於用於半導體裝置的製造用途中的密封材中一般所使用的離子捕捉劑,則並無特別限制,可列舉水滑石等。作為離子捕捉劑,可使用下述通式(II-1)或下述通式(II-2)所表示的化合物。(Ion Scavenger) The sealing composition may further contain an ion-scavenging agent. The ion scavenger usable in the present disclosure is not particularly limited as long as it is an ion scavenger generally used in sealing materials used in the manufacture of semiconductor devices, and examples thereof include hydrotalcite and the like. As the ion trapping agent, a compound represented by the following general formula (II-1) or the following general formula (II-2) can be used.

Mg1-a Ala (OH)2 (CO3 )a/2 ・uH2 O (II-1) (通式(II-1)中,a為0<a≦0.5,u為正數) BiOb (OH)c (NO3 )d (II-2) (通式(II-2)中,b為0.9≦b≦1.1,c為0.6≦c≦0.8,d為0.2≦d≦0.4)Mg 1-a Al a (OH) 2 (CO 3 ) a/2 ・uH 2 O (II-1) (In general formula (II-1), a is 0<a≦0.5, u is a positive number) BiO b (OH) c (NO 3 ) d (II-2) (In general formula (II-2), b is 0.9≦b≦1.1, c is 0.6≦c≦0.8, and d is 0.2≦d≦0.4)

離子捕捉劑可作為市售品而獲取。作為通式(II-1)所表示的化合物,例如可作為市售品而獲取「DHT-4A」(協和化學工業股份有限公司,商品名)。另外,作為通式(II-2)所表示的化合物,例如可作為市售品而獲取「IXE500」(東亞合成股份有限公司,商品名)。The ion trap is available as a commercial item. As a compound represented by general formula (II-1), "DHT-4A" (Kyowa Chemical Industry Co., Ltd., brand name) is available as a commercial item, for example. Moreover, as a compound represented by General formula (II-2), "IXE500" (Toagosei Co., Ltd., brand name) is available as a commercial item, for example.

另外,作為所述以外的離子捕捉劑,可列舉選自鎂、鋁、鈦、鋯、銻等中的元素的含水氧化物等。 離子捕捉劑可單獨使用一種,亦可併用兩種以上。Moreover, as an ion-scavenging agent other than the above, the hydrous oxide etc. of the element selected from magnesium, aluminum, titanium, zirconium, antimony, etc. are mentioned. One kind of ion trapping agent may be used alone, or two or more kinds may be used in combination.

於密封組成物含有離子捕捉劑的情況下,就實現充分的耐濕可靠性的觀點而言,相對於密封組成物中的環氧樹脂100質量份,離子捕捉劑的含量較佳為1質量份以上。就充分發揮其他成分的效果的觀點而言,相對於密封組成物中的環氧樹脂100質量份,離子捕捉劑的含量較佳為15質量份以下。When the sealing composition contains an ion scavenger, the content of the ion scavenger is preferably 1 part by mass relative to 100 parts by mass of the epoxy resin in the sealing composition from the viewpoint of realizing sufficient moisture resistance reliability. above. From the viewpoint of sufficiently exerting the effects of other components, the content of the ion-scavenging agent is preferably 15 parts by mass or less with respect to 100 parts by mass of the epoxy resin in the sealing composition.

另外,離子捕捉劑的平均粒徑較佳為0.1 μm~3.0 μm,最大粒徑較佳為10 μm以下。離子捕捉劑的平均粒徑可與無機填充材的情況同樣地進行測定。In addition, the average particle diameter of the ion trapping agent is preferably 0.1 μm to 3.0 μm, and the maximum particle diameter is preferably 10 μm or less. The average particle diameter of the ion scavenger can be measured similarly to the case of an inorganic filler.

(偶合劑) 密封組成物亦可進而含有偶合劑。偶合劑的種類並無特別限制,可使用公知的偶合劑。作為偶合劑,例如可列舉矽烷偶合劑及鈦偶合劑。偶合劑可單獨使用一種,亦可併用兩種以上。(coupling agent) The sealing composition may further contain a coupling agent. The type of coupling agent is not particularly limited, and known coupling agents can be used. As a coupling agent, a silane coupling agent and a titanium coupling agent are mentioned, for example. One type of coupling agent may be used alone, or two or more types may be used in combination.

作為矽烷偶合劑,例如可列舉:乙烯基三氯矽烷、乙烯基三乙氧基矽烷、乙烯基三(β-甲氧基乙氧基)矽烷、γ-甲基丙烯醯氧基丙基三甲氧基矽烷、β-(3,4-環氧基環己基)乙基三甲氧基矽烷、γ-縮水甘油氧基丙基三甲氧基矽烷、乙烯基三乙醯氧基矽烷、γ-巰基丙基三甲氧基矽烷、γ-胺基丙基三乙氧基矽烷、γ-[雙(β-羥基乙基)]胺基丙基三乙氧基矽烷、N-β-(胺基乙基)-γ-胺基丙基三甲氧基矽烷、γ-(β-胺基乙基)胺基丙基二甲氧基甲基矽烷、N-(三甲氧基矽烷基丙基)乙二胺、N-(二甲氧基甲基矽烷基異丙基)乙二胺、甲基三甲氧基矽烷、甲基三乙氧基矽烷、N-β-(N-乙烯基苄基胺基乙基)-γ-胺基丙基三甲氧基矽烷、γ-氯丙基三甲氧基矽烷、六甲基二矽烷、γ-苯胺基丙基三甲氧基矽烷、乙烯基三甲氧基矽烷及γ-巰基丙基甲基二甲氧基矽烷。Examples of silane coupling agents include: vinyltrichlorosilane, vinyltriethoxysilane, vinyltris(β-methoxyethoxy)silane, γ-methacryloxypropyltrimethoxy β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, vinyltriacetyloxysilane, γ-mercaptopropyl Trimethoxysilane, γ-aminopropyltriethoxysilane, γ-[bis(β-hydroxyethyl)]aminopropyltriethoxysilane, N-β-(aminoethyl)- γ-aminopropyltrimethoxysilane, γ-(β-aminoethyl)aminopropyldimethoxymethylsilane, N-(trimethoxysilylpropyl)ethylenediamine, N- (Dimethoxymethylsilylisopropyl)ethylenediamine, methyltrimethoxysilane, methyltriethoxysilane, N-β-(N-vinylbenzylaminoethyl)-γ -Aminopropyltrimethoxysilane, γ-chloropropyltrimethoxysilane, hexamethyldisilane, γ-anilinopropyltrimethoxysilane, vinyltrimethoxysilane and γ-mercaptopropylmethylsilane Dimethoxysilane.

作為鈦偶合劑,例如可列舉:鈦酸異丙基三異硬脂醯酯、鈦酸異丙基三(二辛基焦磷酸酯)酯、鈦酸異丙基三(N-胺基乙基-胺基乙基)酯、鈦酸四辛基雙(二-十三烷基亞磷酸酯)酯、鈦酸四(2,2-二烯丙氧基甲基-1-丁基)雙(二-十三烷基亞磷酸酯)酯、鈦酸雙(二辛基焦磷酸酯)氧乙酸酯、鈦酸雙(二辛基焦磷酸酯)伸乙酯、鈦酸異丙基三辛醯酯、鈦酸異丙基二甲基丙烯醯基異硬脂醯酯、鈦酸異丙基三-十二烷基苯磺醯酯、鈦酸異丙基異硬脂醯基二丙烯醯酯、鈦酸異丙基三(二辛基磷酸酯)酯、鈦酸異丙基三枯基苯酯及鈦酸四異丙基雙(二辛基亞磷酸酯)酯。Examples of titanium coupling agents include: isopropyl triisostearyl titanate, isopropyl tris(dioctyl pyrophosphate) titanate, isopropyl tris(N-aminoethyl titanate) -aminoethyl) ester, tetraoctylbis(di-tridecylphosphite) titanate, tetrakis(2,2-diallyloxymethyl-1-butyl)bis( Di-tridecyl phosphite) ester, bis (dioctyl pyrophosphate) oxyacetate titanate, bis (dioctyl pyrophosphate) ethyl titanate, isopropyl trioctyl titanate Isopropyl dimethacryl isostearyl titanate, isopropyl dimethacryl isostearyl titanate, isopropyl tridodecylbenzenesulfonyl titanate, isopropyl isostearyl diacryl titanate , isopropyl tri(dioctyl phosphate) titanate, isopropyl tricumylphenyl titanate and tetraisopropyl bis(dioctyl phosphite) titanate.

於密封組成物含有偶合劑的情況下,相對於密封組成物的整體,偶合劑的含有率較佳為3質量%以下,就發揮其效果的觀點而言,較佳為0.1質量%以上。When the sealing composition contains a coupling agent, the content of the coupling agent is preferably 3% by mass or less with respect to the entire sealing composition, and is preferably 0.1% by mass or more from the viewpoint of exerting its effect.

(脫模劑) 密封組成物亦可進而含有脫模劑。脫模劑的種類並無特別限制,可使用公知的脫模劑。具體而言,例如可列舉:高級脂肪酸、高級脂肪酸酯、棕櫚蠟及聚乙烯系蠟。脫模劑可單獨使用一種,亦可併用兩種以上。 於密封組成物含有脫模劑的情況下,相對於環氧樹脂與硬化劑的合計量,脫模劑的含有率較佳為10質量%以下,就發揮其效果的觀點而言,較佳為0.5質量%以上。(release agent) The sealing composition may further contain a release agent. The type of release agent is not particularly limited, and known release agents can be used. Specifically, for example, higher fatty acid, higher fatty acid ester, palm wax, and polyethylene-based wax are mentioned. One type of release agent may be used alone, or two or more types may be used in combination. When the sealing composition contains a mold release agent, the content of the mold release agent is preferably 10% by mass or less with respect to the total amount of the epoxy resin and the hardener, and from the viewpoint of exerting its effect, it is preferably 0.5% by mass or more.

(著色劑及改質劑) 密封組成物亦可含有著色劑(例如,碳黑)。另外,密封組成物亦可含有改質劑(例如,矽酮及矽酮橡膠)。著色劑及改質劑可分別單獨使用一種,亦可併用兩種以上。(colorant and modifier) The sealing composition may also contain a colorant (for example, carbon black). In addition, the sealing composition may also contain modifiers (eg, silicone and silicone rubber). A coloring agent and a modifier may be used individually by 1 type, and may use 2 or more types together.

於使用碳黑等導電性粒子作為著色劑的情況下,導電性粒子較佳為粒徑10 μm以上的粒子的含有率為1質量%以下。 於密封組成物含有導電性粒子的情況下,相對於環氧樹脂與硬化劑的合計量,導電性粒子的含有率較佳為4質量%以下。When using electroconductive particles, such as carbon black, as a coloring agent, it is preferable that the content rate of the electroconductive particle of particle diameter 10 micrometers or more is 1 mass % or less. When the sealing composition contains conductive particles, the content of the conductive particles is preferably 4% by mass or less relative to the total amount of the epoxy resin and the curing agent.

<密封組成物的製作方法> 密封組成物的製作方法並無特別限制,可藉由公知的方法進行。例如,可藉由利用混合機等將規定調配量的原材料的混合物充分混合後,利用熱輥、擠出機等加以混煉,並經過冷卻、粉碎等處理而製作。密封組成物的狀態並無特別限制,亦可為粉末狀、固體狀、液體狀等。<How to make the sealing composition> The method for producing the sealing composition is not particularly limited, and can be performed by known methods. For example, it can be produced by thoroughly mixing a mixture of raw materials in a predetermined amount with a mixer, kneading with a hot roll, an extruder, etc., cooling, pulverizing, and the like. The state of the sealing composition is not particularly limited, and may be powdery, solid, liquid, or the like.

<半導體裝置> 本揭示的半導體裝置包含半導體元件、以及將所述半導體元件密封而成的本揭示的密封組成物的硬化物。<Semiconductor Devices> A semiconductor device of the present disclosure includes a semiconductor element and a cured product of the sealing composition of the present disclosure sealing the semiconductor element.

使用密封組成物而密封半導體元件的方法並無特別限定,可應用公知的方法。例如,一般為轉移模塑法,但亦可使用壓縮模塑法、噴射成形法等。The method of sealing a semiconductor element using the sealing composition is not particularly limited, and a known method can be applied. For example, transfer molding is generally used, but compression molding, injection molding, and the like can also be used.

本揭示的半導體裝置作為IC、大規模積體電路(Large-Scale Integration,LSI)等而較佳。 [實施例]The semiconductor device of the present disclosure is preferable as an IC, a large-scale integration circuit (Large-Scale Integration, LSI), and the like. [Example]

以下,對本發明的實施例進行說明,但本發明並不限定於此。另外,只要無特別說明,則表中的數值是指「質量份」。Hereinafter, examples of the present invention will be described, but the present invention is not limited thereto. In addition, unless otherwise specified, the numerical value in a table|surface means a "mass part."

(實施例1~實施例11以及比較例1及比較例2) 將表1~表3所示的調配的材料預混合(乾式摻合)後,利用雙軸輥(輥表面溫度:約80℃)混煉約15分鐘,進行冷卻粉碎而製造粉末狀的密封組成物。(Example 1 to Example 11 and Comparative Example 1 and Comparative Example 2) After pre-mixing (dry blending) the prepared materials shown in Table 1 to Table 3, kneading for about 15 minutes with a twin-axis roller (roller surface temperature: about 80°C), cooling and pulverizing to produce a powder-like sealing composition things.

[表1]

Figure 107147230-A0304-0001
[Table 1]
Figure 107147230-A0304-0001

[表2]

Figure 107147230-A0304-0002
[Table 2]
Figure 107147230-A0304-0002

[表3]

Figure 107147230-A0304-0003
[table 3]
Figure 107147230-A0304-0003

表中的材料的詳情分別如以下般。另外,表中的「-」表示不含有相符合的成分。The details of the materials in the table are as follows. In addition, "-" in the table indicates that the corresponding component is not contained.

(環氧樹脂) ·環氧樹脂1:聯苯型環氧樹脂,環氧當量:186 g/eq ·環氧樹脂2:多官能環氧樹脂,環氧當量:167 g/eq ·環氧樹脂3:雙酚型結晶性環氧樹脂,環氧當量:192 g/eq ·環氧樹脂4:雙酚F型環氧樹脂,環氧當量:159 g/eq(epoxy resin) Epoxy resin 1: biphenyl type epoxy resin, epoxy equivalent: 186 g/eq Epoxy resin 2: multifunctional epoxy resin, epoxy equivalent: 167 g/eq Epoxy resin 3: bisphenol-type crystalline epoxy resin, epoxy equivalent: 192 g/eq Epoxy resin 4: bisphenol F type epoxy resin, epoxy equivalent: 159 g/eq

(硬化劑) ·硬化劑1:多官能苯酚樹脂,羥基當量為102 g/eq的三苯基甲烷型苯酚樹脂 ·硬化劑2:多官能苯酚樹脂,羥基當量為205 g/eq的聯苯·芳烷基樹脂 ·硬化劑3:苯酚·芳烷基樹脂,羥基當量:170 g/eq(hardener) ・Hardener 1: Multifunctional phenol resin, triphenylmethane type phenol resin with a hydroxyl equivalent of 102 g/eq ・Hardener 2: Multifunctional phenol resin, biphenyl ・aralkyl resin with a hydroxyl equivalent of 205 g/eq ・Hardener 3: Phenol ・Aralkyl resin, hydroxyl equivalent: 170 g/eq

·硬化促進劑:磷系硬化促進劑 ·偶合劑:環氧基矽烷(γ-縮水甘油氧基丙基三甲氧基矽烷) ·脫模劑:二十八酸酯 ·著色劑:碳黑 ·離子捕捉劑:水滑石 ·改質劑:矽酮Hardening accelerator: Phosphorus-based hardening accelerator Coupling agent: epoxy silane (γ-glycidyloxypropyl trimethoxysilane) Release agent: behenic acid ester Coloring agent: carbon black Ion scavenger: hydrotalcite Modifier: Silicone

(無機填充材) ·無機填充材1:氧化鋁與二氧化矽的混合物(平均粒徑:8.6 μm) ·無機填充材2:二氧化矽(平均粒徑:9.5 μm) ·無機填充材3:氧化鋁(平均粒徑:0.4 μm) ·無機填充材4:二氧化矽(平均粒徑:0.8 μm) ·無機填充材5:二氧化矽(平均粒徑:0.1 μm) ·無機填充材6:二氧化矽(平均粒徑:13.0 μm) ·無機填充材7:二氧化矽(平均粒徑:2.2 μm) ·無機填充材8:二氧化矽(平均粒徑:0.8 μm) ·無機填充材9:氧化鋁與二氧化矽的混合物(平均粒徑:7.4 μm) ·無機填充材10:二氧化矽(平均粒徑:1.5 μm) ·無機填充材11:二氧化矽(平均粒徑:22.0 μm) ·無機填充材12:氧化鋁(平均粒徑:14.9 μm) ·無機填充材13:氧化鋁(平均粒徑:10.4 μm) ·無機填充材14:氧化鋁(平均粒徑:2.0 μm) ·無機填充材15:氧化鋁與二氧化矽的混合物(平均粒徑:43.9 μm)(inorganic filler) ・Inorganic filler 1: A mixture of alumina and silica (average particle size: 8.6 μm) ・Inorganic filler 2: silica (average particle size: 9.5 μm) ・Inorganic filler 3: alumina (average particle size: 0.4 μm) ・Inorganic filler 4: Silicon dioxide (average particle size: 0.8 μm) ・Inorganic filler 5: silicon dioxide (average particle size: 0.1 μm) ・Inorganic filler 6: Silicon dioxide (average particle size: 13.0 μm) ・Inorganic filler 7: Silicon dioxide (average particle size: 2.2 μm) ・Inorganic filler 8: silicon dioxide (average particle size: 0.8 μm) ・Inorganic filler 9: A mixture of alumina and silica (average particle size: 7.4 μm) ・Inorganic filler 10: silicon dioxide (average particle size: 1.5 μm) ・Inorganic filler 11: silicon dioxide (average particle size: 22.0 μm) ・Inorganic filler 12: alumina (average particle size: 14.9 μm) ・Inorganic filler 13: alumina (average particle size: 10.4 μm) ・Inorganic filler 14: alumina (average particle size: 2.0 μm) ・Inorganic filler 15: A mixture of alumina and silica (average particle size: 43.9 μm)

實施例1~實施例11的無機填充材的粒度分佈中的峰值的位置如以下般,具有三個峰值。另外,實施例1~實施例11的密封組成物均包含粒徑為1 μm以下的氧化鋁。一併將無機填充材整體的平均粒徑示於以下。 實施例1:0.45 μm、10 μm及40 μm(平均粒徑:8.1 μm) 實施例2:0.5 μm、10 μm及50 μm(平均粒徑:8.7 μm) 實施例3:0.5 μm、10 μm及50 μm(平均粒徑:7.6 μm) 實施例4:0.5 μm、10 μm及50 μm(平均粒徑:7.7 μm) 實施例5:0.5 μm、10 μm及50 μm(平均粒徑:6.6 μm) 實施例6:0.5 μm、10 μm及51 μm(平均粒徑:6.2 μm) 實施例7:0.5 μm、10 μm及51 μm(平均粒徑:7.7 μm) 實施例8:0.5 μm、10 μm及51 μm(平均粒徑:6.6 μm) 實施例9:0.5 μm、10 μm及51 μm(平均粒徑:10.8 μm) 實施例10:0.45 μm、10 μm及51 μm(平均粒徑:6.4 μm) 實施例11:0.4 μm、9 μm及45 μm(平均粒徑:7.8 μm) 另一方面,比較例1的無機填充材的粒度分佈中的峰值的位置如以下般,具有兩個峰值。另外,比較例1的密封組成物包含粒徑為1 μm以下的氧化鋁。一併將無機填充材整體的平均粒徑示於以下。 比較例1:1.5 μm及10 μm(平均粒徑:11.3 μm) 另外,比較例2的無機填充材的粒度分佈中的峰值的位置如以下般,具有三個峰值。另外,比較例2的密封組成物不包含粒徑為1 μm以下的氧化鋁。一併將無機填充材整體的平均粒徑示於以下。 比較例2:0.5 μm、10 μm及50 μm(平均粒徑:6.5 μm)The positions of the peaks in the particle size distribution of the inorganic fillers of Examples 1 to 11 have three peaks as follows. In addition, the sealing compositions of Examples 1 to 11 all contained alumina having a particle size of 1 μm or less. Also, the average particle diameter of the whole inorganic filler is shown below. Example 1: 0.45 μm, 10 μm and 40 μm (average particle size: 8.1 μm) Example 2: 0.5 μm, 10 μm and 50 μm (average particle size: 8.7 μm) Example 3: 0.5 μm, 10 μm and 50 μm (average particle size: 7.6 μm) Example 4: 0.5 μm, 10 μm and 50 μm (average particle size: 7.7 μm) Example 5: 0.5 μm, 10 μm and 50 μm (average particle size: 6.6 μm) Example 6: 0.5 μm, 10 μm and 51 μm (average particle size: 6.2 μm) Example 7: 0.5 μm, 10 μm and 51 μm (average particle size: 7.7 μm) Example 8: 0.5 μm, 10 μm and 51 μm (average particle size: 6.6 μm) Example 9: 0.5 μm, 10 μm and 51 μm (average particle size: 10.8 μm) Example 10: 0.45 μm, 10 μm and 51 μm (average particle size: 6.4 μm) Example 11: 0.4 μm, 9 μm and 45 μm (average particle size: 7.8 μm) On the other hand, the position of the peak in the particle size distribution of the inorganic filler of Comparative Example 1 had two peaks as follows. In addition, the sealing composition of Comparative Example 1 contained alumina having a particle diameter of 1 μm or less. Also, the average particle diameter of the whole inorganic filler is shown below. Comparative example 1: 1.5 μm and 10 μm (average particle size: 11.3 μm) In addition, the positions of the peaks in the particle size distribution of the inorganic filler of Comparative Example 2 had three peaks as follows. In addition, the sealing composition of Comparative Example 2 did not contain alumina having a particle size of 1 μm or less. Also, the average particle diameter of the whole inorganic filler is shown below. Comparative example 2: 0.5 μm, 10 μm and 50 μm (average particle size: 6.5 μm)

<流動性的評價> 密封組成物的流動性的評價是藉由螺旋流試驗來進行。 具體而言,使用依據EMMI-1-66的螺旋流測定用模具來將密封組成物成形,並測定密封組成物的成形物的流動距離(cm)。密封組成物的成形是使用轉移成形機,於模具溫度180℃、成形壓力6.9 MPa、硬化時間120秒的條件下進行。 另外,流動性是將160 cm以上設為A,將150 cm以上且未滿160 cm設為B,將未滿150 cm設為C。<Evaluation of fluidity> The fluidity of the sealing composition was evaluated by a spiral flow test. Specifically, the sealing composition was molded using a mold for measuring spiral flow according to EMMI-1-66, and the flow distance (cm) of the molded product of the sealing composition was measured. The sealing composition was molded using a transfer molding machine under the conditions of a mold temperature of 180° C., a molding pressure of 6.9 MPa, and a curing time of 120 seconds. In addition, the flowability was defined as A for 160 cm or more, B for 150 cm or more and less than 160 cm, and C for less than 150 cm.

<導熱率的評價> 密封組成物的導熱率的評價是藉由下述方法來進行。 具體而言,使用所製備的密封組成物,於模具溫度180℃、成形壓力7 MPa、硬化時間300秒鐘的條件下進行轉移成形,獲得模具形狀的硬化物。利用阿基米德法測定所獲得的硬化物而得的密度為2.8 g/cm3 ~3.0 g/cm3 。另外,使用熱擴散率測定裝置(耐馳(NETZSCH)公司,LFA467)並利用雷射閃光法測定硬化物的熱擴散率。根據所述測定的熱擴散率、利用阿基米德法測定而得的密度及利用DSC(示差熱量計)測定而得的比熱的積來算出導熱率(W/(m·K))。 另外,導熱率是將2.5 W/(m·K)以上設為A,將未滿2.5 W/(m·K)設為B。<Evaluation of thermal conductivity> The thermal conductivity of the sealing composition was evaluated by the following method. Specifically, transfer molding was performed using the prepared sealing composition under the conditions of a mold temperature of 180° C., a molding pressure of 7 MPa, and a curing time of 300 seconds to obtain a mold-shaped hardened product. The density of the obtained cured product measured by the Archimedes method was 2.8 g/cm 3 to 3.0 g/cm 3 . In addition, the thermal diffusivity of the cured product was measured by a laser flash method using a thermal diffusivity measuring device (NETZSCH, LFA467). Thermal conductivity (W/(m·K)) was calculated from the product of the thermal diffusivity measured above, the density measured by the Archimedes method, and the specific heat measured by DSC (differential calorimeter). In addition, as for the thermal conductivity, A is defined as 2.5 W/(m·K) or more, and B is defined as less than 2.5 W/(m·K).

[表4]

Figure 107147230-A0304-0004
[Table 4]
Figure 107147230-A0304-0004

[表5]

Figure 107147230-A0304-0005
[table 5]
Figure 107147230-A0304-0005

[表6]

Figure 107147230-A0304-0006
[Table 6]
Figure 107147230-A0304-0006

如表4~表6所示般,根據具有三個峰值的實施例1~實施例11與具有兩個峰值的比較例1的結果,不管於無機填充材中佔據的氧化鋁的比例如何,於無機填充材的粒度分佈中不具有三個峰值,藉此流動性極端降低,導熱率降低。 另外,於無機填充材中不包含粒徑為1 μm以下的氧化鋁的比較例2與無機填充材中特別多地具有粒徑為1 μm以下的氧化鋁的實施例1、實施例5、實施例6、實施例8、實施例10及實施例11相比,結果為流動性同等或降低、導熱率降低。As shown in Table 4 to Table 6, according to the results of Examples 1 to 11 with three peaks and Comparative Example 1 with two peaks, regardless of the proportion of alumina occupied in the inorganic filler, in The particle size distribution of the inorganic filler does not have three peaks, so the fluidity is extremely reduced and the thermal conductivity is reduced. In addition, Comparative Example 2 in which the inorganic filler does not contain alumina with a particle size of 1 μm or less, and Example 1, Example 5, and Example 1 in which the inorganic filler has particularly many alumina with a particle size of 1 μm or less. Compared with Example 6, Example 8, Example 10 and Example 11, the result is that the fluidity is equal or lower, and the thermal conductivity is lower.

2017年12月28日申請的日本專利申請案2017-254883號的揭示的整體藉由參照而併入本說明書中。 關於本說明書中所記載的所有文獻、專利申請案、及技術規格,與具體且各個地記載有藉由參照而併入各個文獻、專利申請案、及技術規格的情況同等程度地,藉由參照而併入至本說明書中。The entire disclosure of Japanese Patent Application No. 2017-254883 filed on December 28, 2017 is incorporated herein by reference. All documents, patent applications, and technical specifications described in this specification are incorporated by reference to the same extent as if each document, patent application, and technical specification were specifically and individually stated to be incorporated by reference. and incorporated into this specification.

none

Claims (4)

一種密封組成物,其含有環氧樹脂、硬化劑、以及無機填充材,所述無機填充材的粒度分佈具有至少三個峰值,所述無機填充材包含粒徑為1μm以下的氧化鋁,所述無機填充材的粒度分佈於0.3μm~0.7μm的範圍、9μm~20μm的範圍及40μm~70μm的範圍具有峰值,於所述無機填充材中佔據的氧化鋁的比例為60質量%~95質量%。 A sealing composition, which contains an epoxy resin, a hardener, and an inorganic filler, the particle size distribution of the inorganic filler has at least three peaks, the inorganic filler includes alumina with a particle size of 1 μm or less, the The particle size distribution of the inorganic filler has peaks in the range of 0.3 μm to 0.7 μm, the range of 9 μm to 20 μm, and the range of 40 μm to 70 μm, and the proportion of alumina in the inorganic filler is 60 mass % to 95 mass % . 如申請專利範圍第1項所述的密封組成物,其中所述無機填充材中所含的於粒徑為1μm以下的無機粒子中佔據的氧化鋁的比例為1體積%~40體積%。 The sealing composition according to claim 1, wherein the proportion of alumina contained in the inorganic filler in the inorganic particles with a particle size of 1 μm or less is 1 vol % to 40 vol %. 如申請專利範圍第1項或第2項所述的密封組成物,其中所述無機填充材的平均圓度為0.80以上。 The sealing composition as described in claim 1 or claim 2, wherein the average circularity of the inorganic filler is above 0.80. 一種半導體裝置,其包含半導體元件、以及將所述半導體元件密封而成的如申請專利範圍第1項至第3項中任一項所述的密封組成物的硬化物。 A semiconductor device comprising a semiconductor element, and a cured product of the sealing composition described in any one of claims 1 to 3 of the patent claims obtained by sealing the semiconductor element.
TW107147230A 2017-12-28 2018-12-26 Sealing composition and semiconductor device TWI797222B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017254883 2017-12-28
JP2017-254883 2017-12-28

Publications (2)

Publication Number Publication Date
TW201934650A TW201934650A (en) 2019-09-01
TWI797222B true TWI797222B (en) 2023-04-01

Family

ID=67067545

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107147230A TWI797222B (en) 2017-12-28 2018-12-26 Sealing composition and semiconductor device

Country Status (5)

Country Link
JP (2) JP7238791B2 (en)
KR (1) KR20200103682A (en)
CN (1) CN111566163B (en)
TW (1) TWI797222B (en)
WO (1) WO2019131669A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230164858A (en) 2022-05-26 2023-12-05 동우 화인켐 주식회사 Composition for Encapsulating Semiconductor Device and Semiconductor Device Encapsulated Using the Same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278415A (en) * 1994-04-13 1995-10-24 Shin Etsu Chem Co Ltd Resin composition for semiconductor sealing and semiconductor device sealed therewith
JP2005290076A (en) * 2004-03-31 2005-10-20 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
TW200951073A (en) * 2008-04-30 2009-12-16 Denki Kagaku Kogyo Kk Alumina power, its manufacturing method and resin composition using the same
JP2010024464A (en) * 2009-11-04 2010-02-04 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
CN102382422A (en) * 2010-09-01 2012-03-21 北京科化新材料科技有限公司 Epoxy resin composition with hydrated alumina
JP2015205796A (en) * 2014-04-21 2015-11-19 新日鉄住金マテリアルズ株式会社 Spherical particle and production method therefor, and resin composition containing the same
TW201736494A (en) * 2016-01-13 2017-10-16 Lg化學股份有限公司 Thermosetting resin composition for semiconductor package and prepreg using the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4774778B2 (en) 2005-03-28 2011-09-14 住友ベークライト株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device
CN101522793B (en) * 2006-10-06 2011-12-28 住友电木株式会社 Epoxy resin composition for encapsulating semiconductor element and semiconductor device
JP6282390B2 (en) * 2010-12-16 2018-02-21 日立化成株式会社 Epoxy resin molding material for sealing and semiconductor device using the same
JP2013028659A (en) * 2011-07-26 2013-02-07 Hitachi Chemical Co Ltd Epoxy resin liquid sealing material for underfill and electric component apparatus using the same
WO2013145608A1 (en) * 2012-03-29 2013-10-03 住友ベークライト株式会社 Resin composition and semiconductor device
JP2014031460A (en) * 2012-08-06 2014-02-20 Panasonic Corp Epoxy resin composition for encapsulation and semiconductor device using the same
CN105899569B (en) * 2014-01-08 2018-04-10 信越化学工业株式会社 Encapsulating semiconductor liquid epoxy resin composition and resin-encapsulated semiconductor device
JP5905917B2 (en) * 2014-03-20 2016-04-20 住友ベークライト株式会社 Method for producing surface-treated particles

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278415A (en) * 1994-04-13 1995-10-24 Shin Etsu Chem Co Ltd Resin composition for semiconductor sealing and semiconductor device sealed therewith
JP2005290076A (en) * 2004-03-31 2005-10-20 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
TW200951073A (en) * 2008-04-30 2009-12-16 Denki Kagaku Kogyo Kk Alumina power, its manufacturing method and resin composition using the same
JP2010024464A (en) * 2009-11-04 2010-02-04 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
CN102382422A (en) * 2010-09-01 2012-03-21 北京科化新材料科技有限公司 Epoxy resin composition with hydrated alumina
JP2015205796A (en) * 2014-04-21 2015-11-19 新日鉄住金マテリアルズ株式会社 Spherical particle and production method therefor, and resin composition containing the same
TW201736494A (en) * 2016-01-13 2017-10-16 Lg化學股份有限公司 Thermosetting resin composition for semiconductor package and prepreg using the same

Also Published As

Publication number Publication date
CN111566163A (en) 2020-08-21
WO2019131669A1 (en) 2019-07-04
JPWO2019131669A1 (en) 2020-12-24
JP2023067951A (en) 2023-05-16
CN111566163B (en) 2024-02-13
KR20200103682A (en) 2020-09-02
JP7238791B2 (en) 2023-03-14
TW201934650A (en) 2019-09-01

Similar Documents

Publication Publication Date Title
TWI797222B (en) Sealing composition and semiconductor device
US11854919B2 (en) Sealing composition and semiconductor device
JP7263765B2 (en) Encapsulating composition and semiconductor device
TWI791075B (en) Sealing composition and semiconductor device
TW201934651A (en) Sealing composition and semiconductor device
JP7415950B2 (en) Encapsulation composition and semiconductor device
KR102668756B1 (en) Sealing composition and method for manufacturing the same and semiconductor device
TWI835960B (en) Sealing composition and semiconductor device
JP2019065224A (en) Curable resin composition, electronic part device and method for manufacturing electronic part device
TW202235578A (en) Sealing composition and semiconductor apparatus
JP2009173845A (en) Epoxy resin composition for use in semiconductor encapsulation and semiconductor device using it
JP6953973B2 (en) Curable resin composition, electronic component device and method for manufacturing electronic component device
KR20200103683A (en) Sealing composition and its manufacturing method and semiconductor device
JP2024055627A (en) Molding resin composition and electronic component device
JP2022049480A (en) Sealing composition and semiconductor device
JP2019065225A (en) Curable resin composition, electronic part device and method for manufacturing electronic part device