TWI792571B - 低溫泵及低溫泵的再生方法 - Google Patents

低溫泵及低溫泵的再生方法 Download PDF

Info

Publication number
TWI792571B
TWI792571B TW110134808A TW110134808A TWI792571B TW I792571 B TWI792571 B TW I792571B TW 110134808 A TW110134808 A TW 110134808A TW 110134808 A TW110134808 A TW 110134808A TW I792571 B TWI792571 B TW I792571B
Authority
TW
Taiwan
Prior art keywords
pressure
cryopump
temperature
range
increase rate
Prior art date
Application number
TW110134808A
Other languages
English (en)
Other versions
TW202214958A (zh
Inventor
髙橋走
Original Assignee
日商住友重機械工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商住友重機械工業股份有限公司 filed Critical 日商住友重機械工業股份有限公司
Publication of TW202214958A publication Critical patent/TW202214958A/zh
Application granted granted Critical
Publication of TWI792571B publication Critical patent/TWI792571B/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/06Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means
    • F04B37/08Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means by condensing or freezing, e.g. cryogenic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/06Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means
    • F04B37/08Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means by condensing or freezing, e.g. cryogenic pumps
    • F04B37/085Regeneration of cryo-pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/14Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/08Regulating by delivery pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/10Inlet temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

[課題] 本發明的目的為縮短低溫泵的再生時間。 [解決手段] 低溫泵(10)係具備:溫度感測器(26),測定低溫板(18)的溫度;壓力感測器(28),測定低溫泵容器(16)的內壓;壓力上升率比較部(110),測定溫度在第1溫度帶且測定壓力在第1壓力區域時,將低溫泵容器(16)的壓力上升率與第1壓力上升率臨界值進行比較;及冷凍機控制器(120),當壓力上升率低於第1壓力上升率臨界值時,控制冷凍機使低溫板(18)從第1溫度帶降溫至第2溫度帶。當測定溫度在第2溫度帶且測定壓力在第2壓力區域時,壓力上升率比較部(110)將低溫泵容器(16)的壓力上升率與第2壓力上升率臨界值進行比較。第2壓力區域比第1壓力區域低,第2壓力上升率臨界值比第1壓力上升率臨界值小。

Description

低溫泵及低溫泵的再生方法
本發明係有關一種低溫泵及低溫泵的再生方法。
低溫泵係真空泵,藉由凝結或吸附將氣體分子捕集到冷卻為極低溫之低溫板並排出。通常,低溫泵利用於以實現半導體電路製造工藝等中要求之清潔的真空環境為目的。由於低溫泵係所謂的氣體捕集式真空泵,因此需要將捕集到之氣體定期排出到外部進行再生。 [先前技術文獻]
[專利文獻1] 日本專利第6351525號公報
[發明所欲解決之問題]
本發明的一態樣的例示性目的之一為縮短低溫泵的再生時間。 [解決問題之技術手段]
依據本發明的一態樣,低溫泵具備:冷凍機;低溫板,藉由冷凍機冷卻;低溫泵容器,支撐冷凍機,並容納低溫板;溫度感測器,測定低溫板的溫度,並輸出表示該溫度之測定溫度訊號;壓力感測器,測定低溫泵容器的內壓,並輸出表示該內壓之測定壓力訊號;壓力上升率比較部,依據測定溫度訊號和測定壓力訊號,當低溫板的溫度在第1溫度帶且低溫泵容器的內壓在第1壓力區域時,將低溫泵容器的壓力上升率與第1壓力上升率臨界值進行比較;及冷凍機控制器,當低溫泵容器的壓力上升率低於第1壓力上升率臨界值時,控制冷凍機使低溫板從第1溫度帶降溫至比其低的第2溫度帶。壓力上升率比較部依據測定溫度訊號和測定壓力訊號,當低溫板的溫度在第2溫度帶且低溫泵容器的內壓在第2壓力區域時,將低溫泵容器的壓力上升率與第2壓力上升率臨界值進行比較。第2壓力區域比第1壓力區域低,第2壓力上升率臨界值比第1壓力上升率臨界值小。
依據本發明的一態樣,低溫泵再生方法具備如下步驟:測定低溫板的溫度;測定低溫泵容器的內壓;當低溫板的溫度在第1溫度帶且低溫泵容器的內壓在第1壓力區域時,將低溫泵容器的壓力上升率與第1壓力上升率臨界值進行比較;當低溫泵容器的壓力上升率低於第1壓力上升率臨界值時,將低溫板從第1溫度帶冷卻為比其低的第2溫度帶;及當低溫板的溫度在第2溫度帶且低溫泵容器的內壓在第2壓力區域時,將低溫泵容器的壓力上升率與第2壓力上升率臨界值進行比較。第2壓力區域比第1壓力區域低,第2壓力上升率臨界值比第1壓力上升率臨界值小。
另外,將以上構成元件的任意組合、本發明的構成元件或表述方式在方法、裝置、系統等之間彼此替換,作為本發明的實施態樣亦有效。 [發明之效果]
依據本發明,能夠縮短低溫泵的再生時間。
以下,參閱圖式,對用於實施本發明的形態進行詳細說明。在說明及圖式中,對相同或等同的構成元件、構件及處理標註相同的符號,並適當省略重複說明。為了便於說明適當設定有圖示之各部分的比例和形狀,除非另有說明,否則不會限定性地解釋。實施形態為示例,對本發明的範圍不作任何限定。實施形態中記載之所有特徵及其組合未必限定為發明的本質性部分。
圖1模式性表示實施形態之低溫泵10。低溫泵10安裝於例如離子植入裝置、濺射裝置、蒸鍍裝置或其他真空程序裝置的真空腔室,使用於將真空腔室內部的真空度提高至所期望的真空程序中所要求的水準。例如,在真空腔室中實現10 -5Pa至10 -8Pa左右的高真空度。
低溫泵10具備壓縮機12、冷凍機14、低溫泵容器16、低溫板18及低溫泵控制器100。又,低溫泵10具備粗抽閥20、清洗閥22及通氣閥24,該等設置於低溫泵容器16。
壓縮機12構成為從冷凍機14回收冷媒氣體,並將所回收之冷媒氣體進行升壓,重新將冷媒氣體供給到冷凍機14。冷凍機14亦被稱為膨脹機或冷頭,與壓縮機12一同構成極低溫冷凍機。壓縮機12與冷凍機14之間的冷媒氣體的循環係藉由冷凍機14內的冷媒氣體的適當的壓力變動和容積變動的組合來進行,藉此構成產生寒冷之熱力學循環,冷凍機14的冷卻台被冷卻為所期望的極低溫。藉此,能夠將與冷凍機14的冷卻台熱連接之低溫板18冷卻為目標冷卻溫度(例如10K~20K)。冷媒氣體通常為氦氣,但亦可以使用適當的其他氣體。為了便於理解,圖1中用箭頭來表示冷媒氣體流動之方向。作為一例,極低溫冷凍機雖是二級式吉福德-麥克馬洪(Gifford-McMahon;GM)冷凍機,但也可以是脈衝管冷凍機、斯特林冷凍機或其他類型的極低溫冷凍機。
低溫泵容器16係真空容器,設計成在低溫泵10的真空排氣運行中保持真空,並可以承受周圍環境的壓力(例如大氣壓)。低溫泵容器16具備具有吸氣口17之低溫板容納部16a及冷凍機容納部16b。低溫板容納部16a具有開放吸氣口17且其相反側封閉之圓頂狀形狀,低溫板18與冷凍機14的冷卻台一同容納於其內部。冷凍機容納部16b具有圓筒狀形狀,其一端固定於冷凍機14的室溫部,另一端連接於低溫板容納部16a,且在內部***有冷凍機14。如此,冷凍機14被低溫泵容器16支撐。從低溫泵10的吸氣口17進入之氣體藉由凝結或吸附被捕集到低溫板18。由於低溫板18的配置和形狀等低溫泵10的構成能夠適當採用各種公知的構成,因此在此不作詳述。
粗抽閥20安裝於低溫泵容器16,例如冷凍機容納部16b。粗抽閥20連接於設置在低溫泵10的外部之粗抽泵30。粗抽泵30係用於將低溫泵10真空抽氣至其動作開始壓力的真空泵。當粗抽閥20藉由低溫泵控制器100的控制而開放時,低溫泵容器16與粗抽泵30連通,當粗抽閥20關閉時,低溫泵容器16由粗抽泵30阻斷。藉由打開粗抽閥20並使粗抽泵30進行動作,能夠對低溫泵10進行減壓。
清洗閥22安裝於低溫泵容器16,例如低溫板容納部16a。清洗閥22連接於設置在低溫泵10的外部之淨化氣體供給裝置(未圖示)。當清洗閥22藉由低溫泵控制器100的控制而開放時,淨化氣體供給到低溫泵容器16,當清洗閥22關閉時,阻斷對低溫泵容器16的淨化氣體的供給。淨化氣體可以是例如氮氣或其他乾燥氣體,淨化氣體的溫度例如調整為室溫,或者可以加熱至比室溫高的溫度。藉由打開清洗閥22並將淨化氣體導入低溫泵容器16,能夠使低溫泵10進行升壓。又,能夠使低溫泵10從極低溫升溫至室溫或比其高的溫度。
通氣閥24安裝於低溫泵容器16,例如冷凍機容納部16b。通氣閥24是設置用於將流體從低溫泵10的內部排出到外部。通氣閥24連接於將排出之流體導入到低溫泵10的外部的儲罐(未圖示)之排出管線32。或者,在排出之流體無害的情況下,通氣閥24可以構成為將排出之流體排放到周圍環境。從通氣閥24排出之流體基本上為氣體,但亦可以是液體或氣液混合物。通氣閥24可藉由控制而開閉,並且可藉由低溫泵容器16內外的壓差而機械地打開。通氣閥24例如為常閉型控制閥,構成為並可發揮所謂的安全閥的功能。
在低溫泵10設置有測定低溫板18的溫度並輸出表示所測定之溫度的測定溫度訊號之溫度感測器26。溫度感測器26例如安裝於冷凍機14的冷卻台或低溫板18。低溫泵控制器100與溫度感測器26連接以接收該測定溫度訊號。
又,在低溫泵10設置有測定低溫泵容器16的內壓並輸出表示所測定之內壓的測定壓力訊號之壓力感測器28。壓力感測器28安裝於低溫泵容器16,例如冷凍機容納部16b。低溫泵控制器100與壓力感測器28連接以接收該測定壓力訊號。
低溫泵控制器100構成可控制低溫泵10。例如在低溫泵10的真空排氣運行中,低溫泵控制器100可依據基於溫度感測器26之低溫板18的測定溫度控制冷凍機14。又,在低溫泵10的再生運行中,低溫泵控制器100可依據基於壓力感測器28之低溫泵容器16內的測定壓力(或者,視需要依據低溫泵容器16內的測定壓力及低溫板18的測定溫度)控制冷凍機14、粗抽閥20、清洗閥22、粗抽泵24。低溫泵控制器100可一體設置於低溫泵10,亦可構成為與低溫泵10另體的控制裝置。
如圖1所示,作為示例性的控制構成,低溫泵控制器100具備壓力上升率比較部110、冷凍機控制器120及閥控制器130。
壓力上升率比較部110構成為依據藉壓力感測器28測定之低溫泵容器16的內壓執行所謂的壓力上升率測試。低溫泵再生的壓力上升率測試在低溫泵容器16內的壓力上升率不超過壓力上升率臨界值時判定為凝結物從低溫泵10充分排出之處理。壓力上升率測試主要是使用於確認水份從低溫泵10充分排出的情況。低溫泵容器16內的壓力上升率在關閉設置於低溫泵容器16之各閥使低溫泵容器16的內壓從周圍環境隔離之狀態下藉由壓力感測器28來測定。壓力上升率測試亦稱為RoR(Rate-of-Rise:上升率)測試。
在現有的低溫泵中,通常僅進行1個階段的RoR測試,當該測試合格時,將低溫泵從室溫重新冷卻至極低溫而完成再生。相對於此,在實施形態之低溫泵10中,壓力上升率比較部110構成為在不同的溫度及壓力條件下執行2個階段的RoR測試。
作為第1RoR測試,壓力上升率比較部110依據溫度感測器26的測定溫度訊號和壓力感測器28的測定壓力訊號,當低溫板18的溫度在第1溫度帶且低溫泵容器16的內壓在第1壓力區域時,將低溫泵容器16的壓力上升率與第1壓力上升率臨界值進行比較。作為第2RoR測試,壓力上升率比較部110依據溫度感測器26的測定溫度訊號和壓力感測器28的測定壓力訊號,當低溫板18的溫度在第2溫度帶且低溫泵容器16的內壓在第2壓力區域時,將低溫泵容器16的壓力上升率與第2壓力上升率臨界值進行比較。第2溫度帶比第1溫度帶低。第2壓力區域比第1壓力區域低,第2壓力上升率臨界值比第1壓力上升率臨界值小。
如此,第1RoR測試在高溫低真空下執行,第2RoR測試與第1RoR測試相比在低溫高真空下執行。
冷凍機控制器120構成為在低溫泵10的再生中,依據藉溫度感測器26測定之低溫板18的溫度和/或藉壓力感測器28測定之低溫泵容器16的內壓控制冷凍機14。例如當第1RoR測試合格時(亦即,低溫泵容器16的壓力上升率低於第1壓力上升率臨界值時),冷凍機控制器120可以控制冷凍機14使低溫板18從第1溫度帶降溫至比其低的第2溫度帶。當第2RoR測試合格時(亦即,低溫泵容器16的壓力上升率低於第2壓力上升率臨界值時),冷凍機控制器120可以控制冷凍機14使低溫板18從第2溫度帶降溫至比其低的第3溫度帶。
閥控制器130構成為在低溫泵10的再生中,依據藉溫度感測器26測定之低溫板18的溫度和/或藉壓力感測器28測定之低溫泵容器16的內壓,控制粗抽閥20、清洗閥22及通氣閥24。例如在使低溫板18從第1溫度帶降溫至第2溫度帶之期間,閥控制器130可依據壓力感測器28的測定壓力訊號,控制粗抽閥20使低溫泵容器16的內壓維持在既定壓力區域。
低溫泵控制器100可構成為儲存用於定義低溫泵10的再生順序的各種參數。藉由這樣的參數,確定再生順序在各步驟中允許之溫度和/或壓力的範圍。例如就RoR測試而言,可列舉允許執行RoR測試之溫度及壓力條件、壓力上升率臨界值等作為參數。這樣的參數可依據低溫泵10的設計者的經驗知識或設計者進行的實驗和模擬等適當設定,並預先儲存於低溫泵控制器100中。
又,低溫泵控制器100可構成為例如儲存溫度感測器26的測定溫度、壓力感測器28的測定壓力、各閥的開閉狀態、RoR測試的結果等與低溫泵10的再生或其他控制相關之資訊。低溫泵控制器100可構成為將這樣的資訊以視覺性或其他形式通知給用戶。低溫泵控制器100可構成為將這樣的資訊發送至其他機器,例如可經由網際網路等網路將資訊發送至遠程機器。
在低溫泵控制器100的內部構成中,作為硬體構成,可藉由電腦的CPU或以記憶體為代表之元件或電路來實現,作為軟體構成,雖可藉由電腦程式等來實現,但在圖中適當地繪製成藉由這兩者的協作來實現之功能方塊。本領域技術人員當然可以理解,該等功能方塊係藉由硬體與軟體的組合以各種形式來實現。
例如,低溫泵控制器100能夠藉由CPU (Central Processing Unit:中央處理單元)、微電腦等的處理器(硬體)、處理器(硬體)所執行之軟體程式的組合進行安裝。這樣的硬體處理器例如可以由FPGA(Field Programmable Gate Array:現場可程式閘陣列)等可程式邏輯元件構成,亦可以如同可程式邏輯控制器(PLC)的控制電路。軟體程式可用於使低溫泵控制器100執行低溫泵10的再生的電腦程式。
圖2係表示實施形態之低溫泵10的再生方法之流程圖。低溫泵10的再生順序包括升溫步驟(S10)、排出步驟(S20)及降溫步驟(S60)。在低溫泵10的再生中,藉由溫度感測器26定期測定低溫板18的溫度,並藉壓力感測器28定期測定低溫泵容器16的內壓。
在升溫步驟(S10)中,藉經由清洗閥22供給到低溫泵容器16之淨化氣體或其他加熱機構,低溫泵10從極低溫升溫至室溫或比其高的再生溫度(例如,約290K至約300K)。低溫泵10的升溫是例如可以利用基於冷凍機14之反向升溫,當低溫泵10設置有電加熱器時,亦可以利用該電加熱器。如此,使捕集到低溫板18之氣體重新氣化。
在排出步驟(S20)中,氣體從低溫泵容器16通過通氣閥24和排出管線32、或者通過粗抽閥20和粗抽泵30排出到外部。在排出步驟中,可進行所謂的粗抽及吹掃。所謂粗抽及吹掃係指藉交替反覆基於粗抽閥20之低溫泵容器16的粗抽與基於清洗閥22對低溫泵容器16的淨化氣體的供給,將殘留於低溫泵容器16之氣體(例如低溫板18上的例如被活性碳等吸附材料吸附之例如水蒸氣等氣體)從低溫泵容器16排出。
在該實施形態中,若為了確認應排出的氣體(主要為水份)從低溫泵10充分排出之情況,低溫泵容器16的內壓減壓至第1壓力區域(例如選自10Pa至100Pa的範圍或20Pa至30Pa的範圍之壓力值或壓力範圍),則在不同的溫度及壓力條件下執行2階段的RoR測試。
首先,作為第1RoR測試(S30),當低溫板18的溫度在第1溫度帶且低溫泵容器16的內壓在第1壓力區域時,低溫泵容器16的壓力上升率與第1壓力上升率臨界值進行比較。第1溫度帶例如可以比0℃高,亦可以比低溫泵10的耐熱溫度低。低溫泵10的耐熱溫度例如可以選自50℃至80℃的範圍。第1溫度帶例如可以是室溫,亦可以選自15℃至25℃的範圍之溫度值或溫度範圍。第1壓力上升率臨界值例如可以是選自每分鐘1Pa至每分鐘50Pa的範圍或每分鐘5Pa至每分鐘20Pa的範圍之壓力上升率的值。
當第1RoR測試(S30)合格時,作為預冷卻(S40),低溫板18藉由冷凍機14從第1溫度帶冷卻至比其低的第2溫度帶。第2溫度帶例如可以是選自50K以上100K以下的範圍之溫度值或溫度範圍。預冷卻的結果,低溫泵容器16內的殘留氣體中在第2溫度帶蒸氣壓充分下降之殘留氣體(例如水蒸氣等)在低溫板18再度凝結,藉此低溫泵容器16的內壓從第1壓力區域減壓至比其低的第2壓力區域。第2壓力區域例如可以是選自0.01Pa至1Pa的範圍之壓力值或壓力範圍,例如可小於0.1Pa。
正當進行預冷卻(S40)時,可以控制粗抽閥20使低溫泵容器16的內壓在低溫板18從第1溫度帶降溫至第2溫度帶之期間維持在既定壓力區域。既定壓力區域可以與執行第1RoR測試之第1壓力區域相同,例如亦可以選自10Pa至100Pa的範圍或20Pa至30Pa的範圍之壓力值或壓力範圍。
之後,作為第2RoR測試(S50),當低溫板18的溫度在第2溫度帶且低溫泵容器16的內壓在第2壓力區域時,低溫泵容器16的壓力上升率與第2壓力上升率臨界值進行比較。第2壓力上升率臨界值比第1壓力上升率臨界值小。第2壓力上升率臨界值例如可以選自每分鐘0.05Pa至每分鐘0.5Pa的範圍之壓力上升率的值(例如0.1Pa/分鐘左右)。
當第2RoR測試(S50)合格時,排出步驟(S20)結束,並開始降溫步驟(S60)。低溫板18藉由冷凍機14從第2溫度帶冷卻至比其低的第3溫度帶。第3溫度帶係能夠進行低溫泵10的真空排氣運行之極低溫,例如可以選自10K至20K的範圍之溫度值或溫度範圍。如此完成再生,低溫泵10能夠再度開始真空排氣運行。
圖3至圖5係分別更詳細表示圖2所示之再生方法的一部分之流程圖。圖3表示第1RoR測試(S30),圖4表示預冷卻(S40),圖5表示第2RoR測試(S50)。參閱圖3至圖5對第1RoR測試(S30)、預冷卻(S40)、第2RoR測試(S50)的一例進行說明。
如圖3所示,作為用於執行第1RoR測試的準備,打開粗抽閥20(S31)。若藉由閥控制器130打開粗抽閥20,則低溫泵容器16藉由粗抽泵30進行粗抽而減壓。該粗抽可以作為上述粗抽及吹掃的一部分進行。
在粗抽期間,藉由溫度感測器26測定低溫板18的溫度,並藉由壓力感測器28測定低溫泵容器16的內壓(S32)。溫度感測器26的測定溫度訊號與壓力感測器28的測定壓力訊號提供到低溫泵控制器100。
判定是否滿足第1RoR測試的開始條件(S33)。第1RoR測試的開始條件為低溫板18的溫度在第1溫度帶並且低溫泵容器16的內壓在第1壓力區域。如上述,第1溫度帶例如為室溫(例如選自15℃至25℃的範圍之溫度值或溫度範圍),第1壓力區域例如選自20Pa至30Pa的範圍之壓力值或壓力範圍。
因此,壓力上升率比較部110依據溫度感測器26的測定溫度訊號和壓力感測器28的測定壓力訊號,判定低溫板18的溫度是否在第1溫度帶並且低溫泵容器16的內壓是否在第1壓力區域。壓力上升率比較部110依據測定溫度訊號和測定壓力訊號,將低溫板18的測定溫度與第1溫度帶進行比較,並將低溫泵容器16的測定內壓與第1壓力區域進行比較。當測定溫度在第1溫度帶並且測定壓力在第1壓力區域時,壓力上升率比較部110可以判定為滿足第1RoR測試的開始條件。或者,當測定溫度在第1溫度帶或比其高的溫度並且測定壓力在第1壓力區域或比其低的壓力時,壓力上升率比較部110可以判定為滿足第1RoR測試的開始條件。
當不滿足第1RoR測試的開始條件時(S33的“否”),藉由溫度感測器26再次測定低溫板18的溫度,並藉由壓力感測器28再次測定低溫泵容器16的內壓(S32),從而再次判定是否滿足第1RoR測試的開始條件(S33)。當低溫板18的測定溫度超出第1溫度帶(例如比第1溫度帶低)時,在再次測定溫度之前,低溫泵控制器100可控制低溫泵10的升溫手段(例如清洗閥22、冷凍機14和/或電加熱器)以調整低溫板18的溫度。當低溫泵容器16的測定壓力超出第1壓力區域(例如比第1壓力區域高)時,在再次測定壓力之前,閥控制器130可以關閉粗抽閥20並打開清洗閥22,之後關閉清洗閥22並再次打開粗抽閥20。如此,可以在對低溫泵容器16供給淨化氣體之後,使低溫泵容器16再次進行粗抽。
當滿足第1RoR測試的開始條件時(S33的“是”),關閉粗抽閥20(S34)。此時,閥控制器130不僅關閉粗抽閥20,而且還關閉清洗閥22和通氣閥24。藉此,低溫泵容器16從周圍環境隔離。如此,開始第1RoR測試。
首先,藉由壓力感測器28測定低溫泵容器16的內壓(S35)。壓力上升率比較部110使用該測定壓力作為用於第1RoR測試的基準壓力。壓力上升率比較部110判定從獲取該基準壓力起是否經過了第1測定時間(S36)。第1測定時間例如可以幾十秒至幾分鐘(例如30秒至2分鐘左右或例如1分鐘)。壓力上升率比較部110待機至經過第1測定時間(S36的“否”)。若經過第1測定時間(S36的“是”),則藉由壓力感測器28再次測定低溫泵容器16的內壓(S37)。
作為第1RoR測試,壓力上升率比較部110將低溫泵容器16的壓力上升率與第1壓力上升率臨界值進行比較(S38)。為了與第1壓力上升率臨界值進行比較,壓力上升率比較部110依據第1測定時間內的低溫泵容器16的壓力上升量獲取壓力上升率。具體而言,壓力上升率比較部110從經過第1測定時間之後的測定內壓(S37)減去基準壓力(S35),以獲取第1測定時間內的低溫泵容器16的壓力上升量。壓力上升率比較部110將該壓力上升量除以第1測定 時間,獲取低溫泵容器16的壓力上升率,並將其與第1壓力上升率臨界值進行比較。第1壓力上升率臨界值例如選自5Pa/分鐘至20Pa/分鐘的範圍之壓力上升率的值。
當第1RoR測試不合格時,亦即當低溫泵容器16的壓力上升率超過第1壓力上升率臨界值時(S38的“否”),再次執行圖3所示之處理(S30)。在該情況下,在S31中再次打開粗抽閥20之前,閥控制器130可以打開一次清洗閥22,對低溫泵容器16供給淨化氣體。低溫泵控制器100可以儲存表示第1RoR測試不合格之資訊,或者通知用戶等輸出該資訊。低溫泵控制器100對第1RoR測試不合格次數進行計數,當該次數達到既定次數時,可以儲存或輸出該資訊,或者可以使低溫泵10停止運行。
當第1RoR測試合格時,亦即低溫泵容器16的壓力上升率低於第1壓力上升率臨界值時(S38的“是”),開始圖4所示之低溫泵10的預冷卻(S40)。
作為低溫泵10的預冷卻(S40),如圖4所示,冷凍機14的冷卻運行藉由冷凍機控制器120開始(S41),並冷卻低溫泵10。一邊將低溫板18從第1溫度帶冷卻至第2溫度帶,一邊藉由溫度感測器26測定低溫板18的溫度,並藉由壓力感測器28測定低溫泵容器16的內壓(S42)。
在低溫板18從第1溫度帶降溫至第2溫度帶之期間,藉由閥控制器130控制粗抽閥20使低溫泵容器16的內壓維持在既定壓力區域。既定壓力區域是例如設定上限值為30Pa、下限值為20Pa之壓力範圍。
之後,閥控制器130依據來自壓力感測器28的測定壓力訊號,將低溫泵容器16的測定壓力與既定壓力區域進行比較(S43)。當測定壓力超過既定壓力區域的上限值時(S43的A),閥控制器130打開粗抽閥20(S44)。如此,低溫泵容器16被減壓為低溫泵容器16的內壓低於上限值。當測定壓力低於既定壓力區域的下限值時(S43的B),閥控制器130關閉粗抽閥20(S45)。又,當測定壓力在既定壓力區域(在上限值與下限值之間)時(S43的C),閥控制器130保持粗抽閥20的當前的開閉狀態。如此,低溫泵容器16的內壓維持在既定壓力區域。
接下來,判定預冷卻是否完成(S46)。冷凍機控制器120依據溫度感測器26的測定溫度訊號,判定低溫板18的溫度是否在第2溫度帶。如上述,第2溫度帶例如選自50K以上100K以下的範圍,例如可以是80K至100K的溫度範圍。當低溫板18的測定溫度超出第2溫度帶(例如比第2溫度帶高)時(S46的“否”),再次執行圖4所示之處理(S40)。
當低溫板18的測定溫度在第2溫度帶(例如在第2溫度帶或低於第2溫度帶)時(S46的“是”)時,粗抽閥20(及其他閥)藉由閥控制器130關閉(S47),並開始圖5所示之第2RoR測試(S50)。在該情況下,冷凍機控制器120可依據來自溫度感測器26的測定溫度訊號,控制冷凍機14使低溫板18的溫度在第2RoR測試期間維持在第2溫度帶。
如圖5所示,作為用於執行第2RoR測試的準備,藉由溫度感測器26測定低溫板18的溫度,並藉由壓力感測器28測定低溫泵容器16的內壓(S51),從而判定是否滿足第2RoR測試的開始條件(S52)。第2RoR測試的開始條件為低溫板18的溫度在第2溫度帶且低溫泵容器16的內壓在第2壓力區域。如上述,第2壓力區域比第1壓力區域低,例如設定為低於0.1Pa。
因此,壓力上升率比較部110依據溫度感測器26的測定溫度訊號和壓力感測器28的測定壓力訊號,判定低溫板18的溫度是否在第2溫度帶並且低溫泵容器16的內壓是否在第2壓力區域。壓力上升率比較部110依據測定溫度訊號和測定壓力訊號,將低溫板18的測定溫度與第2溫度帶進行比較,並將低溫泵容器16的測定內壓與第2壓力區域進行比較。當測定溫度在第2溫度帶並且測定壓力在第2壓力區域時,壓力上升率比較部110判定為滿足第2RoR測試的開始條件。
當不滿足第2RoR測試的開始條件時(S52的“否”),藉由溫度感測器26再次測定低溫板18的溫度,並藉由壓力感測器28再次測定低溫泵容器16的內壓(S51),從而再次判定是否滿足第2RoR測試的開始條件(S52)。當滿足第2RoR測試的開始條件時(S52的“是”),開始第2RoR測試。
首先,藉由壓力感測器28測定低溫泵容器16的內壓(S53)。壓力上升率比較部110使用該測定壓力作為用於第2RoR測試的基準壓力。壓力上升率比較部110判定從獲取該基準壓力起是否經過了第2測定時間(S54)。第2測定時間比第1測定時間長,例如可以幾分鐘至幾十分鐘(例如5分鐘至20分鐘左右或例如10分鐘)。壓力上升率比較部110待機至經過第2測定時間(S54的“否”)。若經過第2測定時間(S54的“是”),則藉由壓力感測器28再次測定低溫泵容器16的內壓(S55)。
作為第2RoR測試,壓力上升率比較部110將低溫泵容器16的壓力上升率與第2壓力上升率臨界值進行比較(S56)。為了與第2壓力上升率臨界值進行比較,壓力上升率比較部110依據第2測定時間的低溫泵容器16的壓力上升量獲取壓力上升率。與第1RoR測試相同,使用於第2RoR測試之壓力上升率依據經過第2測定時間之後的測定內壓(S55)、基準壓力(S53)及第2測定時間求出。第2壓力上升率臨界值例如選自0.05Pa/分鐘至0.5Pa/分鐘的範圍之壓力上升率的值,例如0.1Pa/分鐘(亦即10分鐘內1Pa的壓力上升量)。
當第2RoR測試合格時,亦即低溫泵容器16的壓力上升率低於第2壓力上升率臨界值時(S56的“是”),開始低溫泵10的降溫(圖2的S60)。冷凍機控制器120控制冷凍機14使低溫板18從第2溫度帶降溫至比其低的第3溫度帶。
當第2RoR測試不合格時,亦即低溫泵容器16的壓力上升率超過第2壓力上升率臨界值時(S56的“否”),再次執行圖5所示之處理(S50)。或者,當第2RoR 測試不合格時,與合格時相同地開始低溫泵10的降溫(圖2的S60)。在該情況下,低溫泵控制器100可以儲存表示第2RoR測試不合格之資訊,或者通知用戶等輸出該資訊。低溫泵控制器100對第2RoR測試不合格次數進行計數,當該次數達到既定次數時,可以儲存或輸出該資訊,或者可以使低溫泵10停止運行。
另外,低溫泵控制器100可以監視第2RoR測試中的壓力上升率(或壓力上升量)。低溫泵控制器100可依據第2RoR測試中的壓力上升率的監視結果,執行低溫泵容器16的洩漏檢測。例如低溫泵控制器100將本次再生的第2RoR測試中的壓力上升率與以前的再生(例如上一次、上上一次或更久以前的再生)的第2RoR測試中的壓力上升率進行比較,當壓力上升率的變化量超過臨界值時,可以檢測低溫泵容器16的洩漏。如此,在低溫泵10的長期運行中,可以定期監視第2RoR測試中的壓力上升率。
然而,現有的低溫泵中,通常僅進行1個階段的RoR測試,當測試合格時,開始低溫泵的降溫並完成再生。在該1個階段的RoR測試中,首先將低溫泵粗抽至例如10Pa或比其低的基準壓力,並以該基準壓力進行RoR測試。用於RoR測試的壓力上升率臨界值例如為5Pa/分鐘。
RoR測試的主要目的為,檢測殘留於低溫泵內之氣體(例如低溫板18上的例如被活性碳等吸附材料吸附之例如水蒸氣等的氣體)從低溫泵充分排出之情況。另一個目的為檢測如粗抽閥等低溫泵的各閥中的洩漏情況。作為另一個目的,還可以列舉藉由將RoR測試的基準壓力如上述設為低於10Pa之低壓,以提高低溫泵容器的真空絕熱效果,藉此抑制熱量在降溫期間從周圍進入低溫泵內並縮短降溫時間,並且抑制低溫泵容器本身的冷卻及結露。
實際上,現有的低溫泵被設計成藉由1個階段的RoR測試來實現該等複數個目的。認為這樣的設計還有利於再生時間的縮短。但是,依據本發明人的研究,尤其當低溫泵搭載有大量的吸附材料時,粗抽期間吸附材料作為氣體的釋放源所發揮的作用提高,因此粗抽所需之時間往往很長。當將低溫泵粗抽至例如低於10Pa之低壓的基準壓力時,尤其從吸附材料的氣體釋放及基於粗抽之氣體排出受阻,可能使粗抽所需的時間顯著增加。作為一例,有可能20Pa至10Pa的粗抽消耗幾十分鐘以上的時間。或者,在與低溫泵一同使用之粗抽泵的排氣能力較低時,亦有可能使粗抽所需的時間增加。若粗抽的時間延長,則再生時間亦延長,所以不理想。
相對於此,實施形態之低溫泵10構成為在高溫低真空下執行第1RoR測試,且相比第1RoR測試在低溫高真空下執行第2RoR測試。藉由將現有的僅1個階段的RoR測試分成條件不同之2個階段的RoR測試,不僅能夠使各RoR測試的條件與其目的匹配,還能夠縮短再生時間。
更具體而言,在實施形態之低溫泵10中,作為第1RoR測試的基準壓力之第1壓力區域比作為第2RoR測試的基準壓力之第2壓力區域高。因此,對用於開始第1RoR測試的第1壓力區域進行粗抽與粗抽至更低壓之情況相比,能夠在更短時間內完成。這有利於再生時間的縮短。而且,藉由以上的第1RoR測試,還能夠檢測低溫泵容器16是否發生了嚴重的洩漏。認為如此嚴重的洩漏在通常情況下是由粗抽閥20等低溫泵10的各閥所引起洩漏。
第1壓力區域選自10Pa至100Pa的範圍為佳,選自20Pa至30Pa的範圍更佳。這樣一來,與現有的低溫泵中如同RoR測試設為低於10Pa的基準壓力之情況相比,能夠在相當短的時間內完成用於開始第1RoR測試的對第1壓力區域的粗抽。
又,在實施形態之低溫泵10中,執行第2RoR測試之第2溫度帶比執行第1RoR測試之第2溫度帶低。在執行第2RoR測試時,不僅藉由粗抽而減壓,而且還藉由這樣的從第1溫度帶至第2溫度帶的冷卻使低溫泵容器16的內壓減壓為第2壓力區域。這亦有助於粗抽時間以及再生時間的縮短。
而且,第2RoR測試的第2壓力上升率臨界值比第1RoR測試的第1壓力上升率臨界值小。藉此,藉由第2RoR測試,能夠實現精確的閥洩漏檢測。例如能夠檢測因為閥逐漸腐蝕而導致長期性的經時劣化所引起之輕微的閥洩漏或這樣的洩漏的迹象。如此,藉由監視閥的微小洩漏,能夠在閥產生嚴重洩漏之前進行閥的修理和更換等有計劃的維護,進而能夠採取將對低溫泵10及搭載該低溫泵之真空程序裝置的運轉的影響限制為最小之措施。
第2溫度帶選自50K以上100K以下的範圍。這樣一來,低溫泵容器16內的殘留氣體中在第2溫度帶蒸氣壓充分下降之殘留氣體(例如水蒸氣等)在低溫板18再次凝結,藉此能夠將低溫泵容器16的內壓減壓至第2壓力區域。如此,第2壓力區域能夠選自0.01Pa至1Pa的範圍,第2壓力上升率臨界值能夠選自每分鐘0.05Pa至每分鐘0.5Pa的範圍。藉由將第2壓力區域設為典型的粗抽泵30難以實現的低壓,並將第2壓力上升率臨界值設成相較於第1壓力上升率臨界值小一位數以上,能夠藉由第2RoR測試精確地進行閥的微小洩漏的檢測。另外,當將第2溫度帶設為比50K低溫時,例如使用於氮等洩漏檢測之氣體亦可能在低溫板18凝結,因此不適合洩漏檢測。
又,在該實施形態中,控制粗抽閥20使低溫泵容器16的內壓在從第1溫度帶預冷卻至第2溫度帶的期間維持在既定壓力區域(例如20Pa至30Pa的範圍)。這樣一來,能夠利用粗抽抑制預冷卻期間因氣體(例如水蒸氣)從活性碳等吸附材料脫離而使低溫泵內壓上升。
另外,依據低溫泵10的設計和動作的不同,藉由低溫泵內壓維持在既定壓力區域,與低溫泵內壓過低的情況(例如低於10Pa)相比,能夠縮短低溫泵10的冷卻時間。例如當藉由冷凍機14的調溫控制使低溫板18維持目標的極低溫時,藉由使低溫泵內壓如上述既定壓力區域達到一定程度,實現從周圍進入到低溫泵10的熱量使冷凍機14的製冷能力增加之效果,藉此還可能縮短低溫泵10的冷卻時間。
又,在第2RoR測試中,依據比第1測定時間長的第2測定時間內的低溫泵容器16的壓力上升量獲取壓力上升率。藉由延長第2測定時間,即使第2壓力上升率臨界值小,亦能夠依據更大的壓力上升量判定第2RoR測試。能夠精確地檢測微小的閥洩漏。
以上,依據實施形態對本發明進行了說明。本發明並不限於上述實施形態而可進行各種設計變更,對本領域技術人員而言,可以理解存在有各種變形例,並且該等變形例亦包括在本發明的範圍內。
10:低溫泵 14:冷凍機 16:低溫泵容器 18:低溫板 20:粗抽閥 26:溫度感測器 28:壓力感測器 30:粗抽泵 110:壓力上升率比較部 120:冷凍機控制器 130:閥控制器
[圖1]模式性表示實施形態之低溫泵。 [圖2]係表示實施形態之低溫泵的再生方法之流程圖。 [圖3]係更詳細表示圖2所示之再生方法的一部分之流程圖。 [圖4]係更詳細表示圖2所示之再生方法的一部分之流程圖。 [圖5]係更詳細表示圖2所示之再生方法的一部分之流程圖。
10:低溫泵
12:壓縮機
14:冷凍機
16:低溫泵容器
16a:低溫板容納部
16b:冷凍機容納部
17:吸氣口
18:低溫板
20:粗抽閥
22:清洗閥
24:通氣閥
26:溫度感測器
28:壓力感測器
30:粗抽泵
32:排出管線
100:低溫泵控制器
110:壓力上升率比較部
120:冷凍機控制器
130:閥控制器

Claims (11)

  1. 一種低溫泵,其特徵為,具備:冷凍機;低溫板,藉由前述冷凍機冷卻;低溫泵容器,支撐前述冷凍機,並容納前述低溫板;溫度感測器,測定前述低溫板的溫度,並輸出表示該溫度之測定溫度訊號;壓力感測器,測定前述低溫泵容器的內壓,並輸出表示該內壓之測定壓力訊號;壓力上升率比較部,依據前述測定溫度訊號和前述測定壓力訊號,當前述低溫板的溫度在第1溫度帶且前述低溫泵容器的內壓在第1壓力區域時,將在第1測定時間從前述低溫泵容器的壓力上升量獲取的壓力上升率與第1壓力上升率臨界值進行比較;及冷凍機控制器,當前述低溫泵容器的壓力上升率低於前述第1壓力上升率臨界值時,控制前述冷凍機使前述低溫板從前述第1溫度帶降溫至比其低的第2溫度帶,前述壓力上升率比較部依據前述測定溫度訊號和前述測定壓力訊號,當前述低溫板的溫度在第2溫度帶且前述低溫泵容器的內壓在第2壓力區域時,將在第2測定時間從前述低溫泵容器的壓力上升量獲取的壓力上升率與第2壓力上升率臨界值進行比較,前述第2壓力區域比前述第1壓力區域低,前述第2壓力上升率臨界值比前述第1壓力上升率臨界值小。
  2. 如請求項1記載之低溫泵,其中,前述第1壓力區域選自10Pa至100Pa的範圍,前述第1壓力上升率臨界值選自每分鐘1Pa至每分鐘50Pa的範圍,前述第2壓力區域選自0.01Pa至1Pa的範圍,前述第2壓力上升率臨界值選自每分鐘0.05Pa至每分鐘0.5Pa的範圍。
  3. 如請求項1或請求項2記載之低溫泵,其中,前述第1壓力區域選自20Pa至30Pa的範圍,前述第1壓力上升率臨界值選自每分鐘5Pa至每分鐘20Pa的範圍。
  4. 如請求項1或請求項2記載之低溫泵,其中,前述第2溫度帶選自50K以上100K以下的範圍。
  5. 如請求項1或請求項2記載之低溫泵,其中,前述第1溫度帶比0℃高。
  6. 如請求項1或請求項2記載之低溫泵,還具備:粗抽閥,安裝於前述低溫泵容器,並將前述低溫泵容器連接到粗抽泵;及閥控制器,在使前述低溫板從前述第1溫度帶降溫至前述第2溫度帶之期間,依據前述測定壓力訊號,控制前 述粗抽閥使前述低溫泵容器的內壓維持在既定壓力區域。
  7. 如請求項6記載之低溫泵,其中,前述既定壓力區域選自10Pa至100Pa的範圍。
  8. 如請求項6記載之低溫泵,其中,前述既定壓力區域選自20Pa至30Pa的範圍。
  9. 如請求項1或請求項2記載之低溫泵,其中,當前述低溫泵容器的壓力上升率低於前述第2壓力上升率臨界值時,前述冷凍機控制器控制前述冷凍機使前述低溫板從前述第2溫度帶降溫至比其低的第3溫度帶。
  10. 如請求項1或請求項2記載之低溫泵,其中,前述第2測定時間比前述第1測定時間長。
  11. 一種低溫泵再生方法,其特徵為,具備如下步驟:測定低溫板的溫度;測定低溫泵容器的內壓;當前述低溫板的溫度在第1溫度帶且前述低溫泵容器的內壓在第1壓力區域時,將在第1測定時間從前述低溫泵容器的壓力上升量獲取的壓力上升率與第1壓力上升率臨界值進行比較;當前述低溫泵容器的壓力上升率低於前述第1壓力上升率臨界值時,將前述低溫板從前述第1溫度帶冷卻為比其低的第2溫度帶;及 當前述低溫板的溫度在前述第2溫度帶且前述低溫泵容器的內壓在第2壓力區域時,將在第2測定時間從前述低溫泵容器的壓力上升量獲取的壓力上升率與第2壓力上升率臨界值進行比較,前述第2壓力區域比前述第1壓力區域低,前述第2壓力上升率臨界值比前述第1壓力上升率臨界值小。
TW110134808A 2020-10-05 2021-09-17 低溫泵及低溫泵的再生方法 TWI792571B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-168195 2020-10-05
JP2020168195A JP7455040B2 (ja) 2020-10-05 2020-10-05 クライオポンプおよびクライオポンプの再生方法

Publications (2)

Publication Number Publication Date
TW202214958A TW202214958A (zh) 2022-04-16
TWI792571B true TWI792571B (zh) 2023-02-11

Family

ID=80931203

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110134808A TWI792571B (zh) 2020-10-05 2021-09-17 低溫泵及低溫泵的再生方法

Country Status (5)

Country Link
US (1) US20220106949A1 (zh)
JP (1) JP7455040B2 (zh)
KR (1) KR20220045554A (zh)
CN (1) CN114382677B (zh)
TW (1) TWI792571B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11708757B1 (en) * 2019-05-14 2023-07-25 Fortress Downhole Tools, Llc Method and apparatus for testing setting tools and other assemblies used to set downhole plugs and other objects in wellbores
CN116906297B (zh) * 2023-09-12 2023-12-08 中国科学院合肥物质科学研究院 一种适用于托卡马克稳态运行的低温泵快再生***及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5375424A (en) * 1993-02-26 1994-12-27 Helix Technology Corporation Cryopump with electronically controlled regeneration
JPH0914133A (ja) * 1995-06-29 1997-01-14 Daikin Ind Ltd クライオポンプ及びクライオポンプの再生方法
US5862671A (en) * 1996-03-20 1999-01-26 Helix Technology Corporation Purge and rough cryopump regeneration process, cryopump and controller
CN101469689A (zh) * 2007-12-27 2009-07-01 佳能安内华科技股份有限公司 低温泵、低温泵单元、包括低温泵单元的真空处理设备以及低温泵再生方法
TW201435212A (zh) * 2013-03-12 2014-09-16 Sumitomo Heavy Industries 低溫泵及其再生方法
CN104929897A (zh) * 2014-03-18 2015-09-23 住友重机械工业株式会社 低温泵及低温泵的再生方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS601813A (ja) 1983-06-17 1985-01-08 Mitsubishi Electric Corp 超電導コイル装置
US6022195A (en) * 1988-09-13 2000-02-08 Helix Technology Corporation Electronically controlled vacuum pump with control module
US5819545A (en) * 1997-08-28 1998-10-13 Helix Technology Corporation Cryopump with selective condensation and defrost
US6116032A (en) * 1999-01-12 2000-09-12 Applied Materials, Inc. Method for reducing particulate generation from regeneration of cryogenic vacuum pumps
JP5634323B2 (ja) * 2011-05-13 2014-12-03 住友重機械工業株式会社 クライオポンプシステム、クライオポンプのための再生方法
JP5679910B2 (ja) * 2011-06-03 2015-03-04 住友重機械工業株式会社 クライオポンプ制御装置、クライオポンプシステム、及びクライオポンプの真空度保持判定方法
JP2016153617A (ja) 2015-02-20 2016-08-25 住友重機械工業株式会社 クライオポンプシステム、クライオポンプ制御装置、及びクライオポンプ再生方法
JP6351525B2 (ja) 2015-03-04 2018-07-04 住友重機械工業株式会社 クライオポンプシステム、クライオポンプ制御装置、及びクライオポンプ再生方法
JP6552335B2 (ja) * 2015-08-25 2019-07-31 アルバック・クライオ株式会社 クライオポンプの再生方法
JP6615663B2 (ja) * 2016-03-22 2019-12-04 住友重機械工業株式会社 クライオポンプ、クライオポンプ吸蔵ガス量推測装置及びクライオポンプ吸蔵ガス量推測方法
KR102638778B1 (ko) * 2018-04-25 2024-02-19 스미도모쥬기가이고교 가부시키가이샤 크라이오펌프, 크라이오펌프시스템, 크라이오펌프의 재생방법
JP2019203508A (ja) * 2019-08-23 2019-11-28 住友重機械工業株式会社 クライオポンプシステム、クライオポンプ制御装置、クライオポンプ再生方法、及びクライオポンプ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5375424A (en) * 1993-02-26 1994-12-27 Helix Technology Corporation Cryopump with electronically controlled regeneration
JPH0914133A (ja) * 1995-06-29 1997-01-14 Daikin Ind Ltd クライオポンプ及びクライオポンプの再生方法
US5862671A (en) * 1996-03-20 1999-01-26 Helix Technology Corporation Purge and rough cryopump regeneration process, cryopump and controller
CN101469689A (zh) * 2007-12-27 2009-07-01 佳能安内华科技股份有限公司 低温泵、低温泵单元、包括低温泵单元的真空处理设备以及低温泵再生方法
TW201435212A (zh) * 2013-03-12 2014-09-16 Sumitomo Heavy Industries 低溫泵及其再生方法
CN104929897A (zh) * 2014-03-18 2015-09-23 住友重机械工业株式会社 低温泵及低温泵的再生方法

Also Published As

Publication number Publication date
JP7455040B2 (ja) 2024-03-25
US20220106949A1 (en) 2022-04-07
TW202214958A (zh) 2022-04-16
KR20220045554A (ko) 2022-04-12
CN114382677A (zh) 2022-04-22
JP2022060637A (ja) 2022-04-15
CN114382677B (zh) 2024-05-10

Similar Documents

Publication Publication Date Title
TWI792571B (zh) 低溫泵及低溫泵的再生方法
KR101674088B1 (ko) 크라이오펌프, 및 크라이오펌프의 재생방법
US9810208B2 (en) Cryopump and method for regenerating the cryopump using two-stage discharge process
TWI599721B (zh) 低溫泵系統,低溫泵控制裝置,及低溫泵再生方法
KR101440720B1 (ko) 크라이오펌프 및 그 재생방법
US9415325B2 (en) Cryopump, method of regenerating cryopump, and control device for cryopump
TWI599722B (zh) Cryogenic pump system, cryogenic pump control device and cryogenic pump regeneration method
TWI630321B (zh) 低溫泵、低溫泵吸留氣體量推測裝置以及低溫泵吸留氣體量推測方法
JP2019203508A (ja) クライオポンプシステム、クライオポンプ制御装置、クライオポンプ再生方法、及びクライオポンプ
TWI757114B (zh) 低溫泵系統、低溫泵系統的控制裝置及再生方法
JP7455037B2 (ja) クライオポンプおよびクライオポンプの再生方法
WO2023176157A1 (ja) クライオポンプの再生方法およびクライオポンプ
TW202424354A (zh) 低溫泵及低溫泵再生方法