TWI788613B - 製程參數鑑別方法、系統以及非暫時性電腦可讀儲存媒體 - Google Patents

製程參數鑑別方法、系統以及非暫時性電腦可讀儲存媒體 Download PDF

Info

Publication number
TWI788613B
TWI788613B TW108147356A TW108147356A TWI788613B TW I788613 B TWI788613 B TW I788613B TW 108147356 A TW108147356 A TW 108147356A TW 108147356 A TW108147356 A TW 108147356A TW I788613 B TWI788613 B TW I788613B
Authority
TW
Taiwan
Prior art keywords
process parameter
parameter data
powder
melting
processor
Prior art date
Application number
TW108147356A
Other languages
English (en)
Other versions
TW202125301A (zh
Inventor
蔡宗汶
吳宗明
偉權 鍾
劉松河
林得耀
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW108147356A priority Critical patent/TWI788613B/zh
Publication of TW202125301A publication Critical patent/TW202125301A/zh
Application granted granted Critical
Publication of TWI788613B publication Critical patent/TWI788613B/zh

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Powder Metallurgy (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Stored Programmes (AREA)
  • Steroid Compounds (AREA)

Abstract

本揭露提出一種用於雷射積層製造的參數鑑別方法以及參數鑑別系統。參數鑑別方法包括以下步驟:依據製程參數資料來模擬粉體堆疊結構的燒熔成型剖面;分析燒熔成型剖面,以決定燒熔成型剖面的多個表面粒子;計算對應於燒熔成型剖面的所述多個表面粒子的多個表面軌跡斜率;以及依據所述多個表面軌跡斜率來判斷燒熔成型剖面是否完全燒熔,以定義製程參數資料為有效製程參數資料。

Description

製程參數鑑別方法、系統以及非暫時性電腦可讀儲存媒體
本揭露是有關於一種參數分析,且特別是有關於一種用於雷射積層製造(Additive Manufacturing, AM)的製程參數鑑別方法以及製程參數鑑別系統。
隨著製造技術的演進,雷射積層製造(Additive Manufacturing, AM)是目前積層製造領域的重要發展目標。然而,目前雷射積層製造所遇到的問題在於,當粉體受到雷射作用後,粉體的燒熔行為將牽涉複雜的多物理耦合的效應,因此導致使用者不易掌握適當製程參數來進行雷射積層製造。並且,若不恰當地控制製程參數,則將容易造成積層製造的成品品質不佳的問題。對此,傳統作法是透過試誤法來反覆實驗以使了解並且改善之,但是在面對各種新開發材料、特殊設備模組或新穎製程的情況下,傳統的試誤法將會有成本過高且效率極低的問題。有鑑於此,以下將提出幾個實施例的解決方案。
本揭露提供一種用於雷射積層製造的製程參數鑑別方法、製程參數鑑別系統以及非暫時性電腦可讀儲存媒體可有效且自動地判斷用於雷射積層製造的製程參數資料是否為有效製程參數資料。
本揭露的一種用於雷射積層製造的製程參數鑑別方法包括以下步驟:依據製程參數資料來模擬粉體堆疊結構的燒熔成型剖面;分析燒熔成型剖面,以決定燒熔成型剖面的多個表面粒子;計算對應於燒熔成型剖面的所述多個表面粒子的多個表面軌跡斜率;以及依據所述多個表面軌跡斜率來判斷燒熔成型剖面是否完全燒熔,以定義製程參數資料為有效製程參數資料。
本揭露的一種用於雷射積層製造的製程參數鑑別系統包括記憶體以及處理器。記憶體用以儲存模擬模組以及分析模組。處理器耦接記憶體。處理器用以執行模擬模組以及分析模組。處理器執行模擬模組以依據製程參數資料來模擬粉體堆疊結構的燒熔成型剖面。處理器執行分析模組以分析燒熔成型剖面。處理器決定燒熔成型剖面的多個表面粒子以計算對應於燒熔成型剖面的所述多個表面粒子的多個表面軌跡斜率。處理器依據所述多個表面軌跡斜率來判斷燒熔成型剖面是否完全燒熔,以定義製程參數資料為有效製程參數資料。
本揭露的一種非暫時性電腦可讀儲存媒體用以儲存模擬模組以及分析模組以載入電子裝置。電子裝置依據模擬模組以及分析模組執行以下操作:依據製程參數資料來模擬粉體堆疊結構的燒熔成型剖面;分析燒熔成型剖面,以決定燒熔成型剖面的多個表面粒子;計算對應於燒熔成型剖面的所述多個表面粒子的多個表面軌跡斜率;以及依據所述多個表面軌跡斜率來判斷燒熔成型剖面是否完全燒熔,以定義製程參數資料為有效製程參數資料。
基於上述,本揭露的製程參數鑑別方法、製程參數鑑別系統以及非暫時性電腦可讀儲存媒體可模擬對應於製程參數資料的真實的粉體堆疊結構的燒熔成型剖面,並且對燒熔成型剖面進行分析,以判斷燒熔成型剖面是否被適當地燒熔,進而定義此製程參數資料為有效製程參數資料。
為讓本揭露的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
為了使本揭露之內容可以被更容易明瞭,以下特舉實施例做為本揭露確實能夠據以實施的範例。另外,凡可能之處,在圖式及實施方式中使用相同標號的元件/構件/步驟,係代表相同或類似部件。
圖1是依照本揭露的一實施例的製程參數鑑別系統的方塊示意圖。參考圖1,製程參數鑑別系統100包括處理器110以及記憶體120。記憶體120可包括模擬模組121以及分析模組122。在本實施例中,處理器110耦接記憶體120,並且用以執行模擬模組121以及分析模組122,以進行製程參數鑑別。需說明的是,本揭露並不特別限制製程參數鑑別系統100的實施態樣。本實施例的製程參數鑑別系統100可例如是應用在個人電腦(Personal Computer, PC)、筆記型電腦(Notebook Computer)、工業電腦(Industrial PC, IPC)或雲端伺服器(Cloud Server)等,諸如此類的數位系統或雲端平台,或以軟體程式形式來安裝在上述各電腦設備中,以供使用者操作電腦設備而使自動執行製程參數鑑別,進而實現本揭露的用於雷射積層製造(Additive Manufacturing, AM)的製程參數鑑別功能。
在本實施例中,處理器110可例如是中央處理單元(Central Processing Unit, CPU),或是其他可程式化之一般用途或特殊用途的微處理器(Microprocessor)、數位訊號處理器(Digital Signal Processor, DSP)、可程式化控制器、特殊應用積體電路(Application Specific Integrated Circuits, ASIC)、可程式化邏輯裝置(Programmable Logic Device, PLD)、其他類似處理裝置或這些裝置的組合。
在本實施例中,記憶體120可例如是動態隨機存取記憶體(Dynamic Random Access Memory, DRAM)、快閃記憶體(Flash memory)或非揮發性隨機存取記憶體(Non-Volatile Random Access Memory, NVRAM)等。在本實施例中,模擬模組121以及分析模組122可例如是一種軟體應用程式。因此,記憶體120可預先儲存有模擬模組121以及分析模組122,並且還可載入或儲存有本揭露各實施例所述之製程參數資料、粉體堆疊模型、燒熔成型剖面以及製程參數資料表等,以供處理器110存取並執行之。在一實施例中,模擬模組121以及分析模組122亦可儲存在一個非暫時性電腦可讀儲存媒體(Non-transitory Computer-readable Storage Medium)當中,並可透過將模擬模組121以及分析模組122載入電子裝置來實現本揭露各實施例所述的製程參數鑑別。
在本實施例中,處理器110先執行模擬模組121,以依據製程參數資料來模擬真實情況的粉體堆疊結構的燒熔成型剖面。詳細而言,處理器110可模擬雷射光源以單線燒熔軌跡的方式來燒熔具有此粉體堆疊結構的粉體堆疊模型,以產生對應的燒熔成型剖面。接著,處理器110執行分析模組122,以分析燒熔成型剖面。在本實施例中,處理器110將決定燒熔成型剖面的多個表面粒子,並且計算對應於燒熔成型剖面的所述多個表面粒子的多個表面軌跡斜率。因此,處理器110可依據所述多個表面軌跡斜率來判斷燒熔成型剖面是否完全燒熔,以進一步定義製程參數資料為有效製程參數資料。換言之,本實施例的製程參數鑑別系統是藉由分析真實情況的粉體燒熔成型剖面的表面軌跡變化,來有效地判斷燒熔成型剖面的燒熔程度是否恰當,並且進而定義對應的製程參數資料為有效製程參數資料。然而,對於各階段的詳細實施方式,以下將由幾個步驟流程圖的實施例來詳細說明之。
圖2是依照本揭露的一實施例的執行模擬模組的步驟流程圖。圖3是依照本揭露的一實施例的粉體堆疊模型的剖面結構示意圖。參考圖1至圖3,處理器110可執行模擬模組121,以實施本實施例的步驟S210~S240。在步驟S210中,處理器110可先讀取製程參數資料。製程參數資料可以是預存在記憶體120或由使用者經由輸入裝置來輸入之,本揭露並不加以限制。並且,製程參數資料可例如包括用於模擬雷射光源(圖未示)燒熔粉體堆疊模型300的雷射掃描速度以及雷射功率,或是包括雷射光源的雷射光束類型以及光斑尺寸,或是包括粉體堆疊模型300的粉體粒徑分布曲線以及平均粉體粒徑。然而,本揭露並不限制製程參數資料的參數類型。並且,在一實施例中,上述製程參數可例如部分為固定參數或預設參數,並且另一部分為可變參數。
在步驟S220中,處理器110依據最密堆積(Sphere packing)排列的粉體堆疊結構來建立如圖3所示的粉體堆疊模型300。在圖3中,粉體320可沿第一方向D1以及第三方向D3以最密堆積方式排列在基板310上,並且粉體320可沿著基板310的第二方向D2單線延伸。第一方向D1、第二方向D2以及第三方向D3彼此垂直。第一方向D1以及第二方向D2例如形成水平面。雷射光源可由相反於第三方向D3的方向對粉體320發射雷射光,並且沿著第一方向D1移動,而對粉體320進行加熱,以使粉體320發生燒熔的情況。值得注意的是,本實施例的粉體係指金屬粉體,並且金屬粉體可例如是鈦(Titanium, Ti)金屬。然而,本揭露亦不限制金屬粉體的材料類型。
在步驟S230中,處理器110依據所述製程參數資料對粉體堆疊模型執行積層製造的多物理耦合分析(Multi-physics Coupling Analysis),以模擬雷射光源燒熔粉體堆疊模型300。因此,在步驟S240中,處理器110可產生單線燒熔軌跡的燒熔成型剖面。需說明的是,處理器110產生的燒熔成型剖面為經燒熔的粉體冷卻固化後的結果。也就是說,本實施例的模擬模組121可模擬真實的粉體堆疊模型300的燒融結果,以供後續的分析模組122來分析之。然而,關於粉體320的燒熔結果,以下將以圖5A以及圖6A兩個實施例的來舉例說明之。
圖4是依照本揭露的一實施例的執行分析模組的步驟流程圖。參考圖1以及圖4,處理器110可執行分析模組122,以實施本實施例的步驟S410~S480。處理器110可接續上述圖2實施例的步驟S210~S240來執行以下步驟S410~S480,以對模擬模組121對粉體堆疊模型進行燒熔模擬所產生的燒熔成型剖面進行分析。在步驟S410中,處理器110依據製程參數資料建立粉體堆疊模型,並且對粉體堆疊模型進行燒熔模擬,以產生燒熔成型剖面。對此,處理器110可例如執行如上述圖2實施例的步驟S210~S240的模擬方法,以產生燒熔成型剖面,但本揭露並不限於此。在步驟S420中,處理器110將決定燒熔成型剖面的多個表面粒子,以分析燒熔成型剖面的表面軌跡。在步驟S430中,處理器110計算所述多個表面粒子的多個表面軌跡斜率。
在步驟S440中,處理器110依據所述多個表面軌跡斜率來判斷燒熔成型剖面是否完全燒熔。若是,則處理器110執行步驟S450,以繼續分析。若否,則處理器110執行步驟S480,以結束本次製程參數資料鑑別或執行下一筆製程參數資料鑑別。值得注意的是,在本實施例中,處理器110可例如藉由判斷軌跡斜率變化是否存在反曲點,來定義製程參數資料為有效製程參數資料或無效製程參數資料。具體而言,若軌跡斜率變化未存在反曲點,則處理器110判斷燒熔成型剖面為完全燒熔,並且定義此製程參數資料為有效製程參數資料。反之,若軌跡斜率變化存在反曲點,則處理器110判斷燒熔成型剖面為未完全燒熔,並且定義製程參數資料為無效製程參數資料。
在步驟S450中,處理器110判斷燒熔軌跡長寬比以定義製程參數資料的類型。在本實施例中,若燒熔軌跡長寬比(h/w)大於第一長寬比門檻值(h/w>a1),則處理器110執行步驟S461。在步驟S461中,處理器110定義此製程參數資料為高品質製程參數資料類型。若燒熔軌跡長寬比小於或等於第一長寬比門檻值,並且大於或等於第二長寬比門檻值(a1≧h/w≧a2),則處理器110執行步驟S462。在步驟S462中,處理器110定義此製程參數資料為平衡製程參數資料類型。若燒熔軌跡長寬比小於第二長寬比門檻值,並且大於第三長寬比門檻值(a2>h/w>a3),則處理器110執行步驟S463。在步驟S463中,處理器110定義此製程參數資料為高效率製程參數資料類型。值得注意的是,第一長寬比門檻值(a1)大於第二長寬比門檻值(a2),並且第二長寬比門檻值(a2)大於第三長寬比門檻值(a3)。
當處理器110執行步驟S461、步驟S462或步驟S463結束後,處理器110可選擇執行步驟S470,或選擇直接輸出此製程參數資料的鑑別結果。在步驟S470中,處理器110將此製程參數資料的鑑別結果記錄至製程參數資料表。步驟S470可由處理器110依不同分析情境或需求來選擇性執行之。最後,在步驟S480中,處理器110結束本次製程參數資料鑑別或執行下一筆製程參數資料鑑別。舉例而言,處理器110可重新執行如圖2實施例的步驟S210~S240,以產生對應於另一筆製程參數資料的新的燒熔成型剖面,再接著執行本實施例的步驟S410~S480來分析新的燒熔成型剖面,以反覆鑑別例如對應於製程參數資料表當中的多筆製程參數資料。然而,關於本實施例的製程參數資料表,將由以下圖7實施例來詳細說明之。
也就是說,本實施例的分析模組122可自動地分析模擬燒熔真實的粉體堆疊模型的燒融結果,以先藉由判斷表面軌跡斜率,來定義此製程參數資料是否為有效製程參數資料。接著,本實施例的分析模組122更藉由判斷燒熔成型剖面的燒熔軌跡長寬比,來自動地定義此製程參數資料的製程參數資料類型。並且,本實施例的分析模組122還將製程參數資料的鑑別結果自動地記錄至製程參數資料表,以讓使用者可例如運用製程參數資料表,來準確地進行的實際積層製造任務,並可獲得期望的積層製造結果。另外,以下將以圖5A至圖5C的一實施例的燒熔成型剖面以及圖6A至圖6C的另一實施例的燒熔成型剖面來分別舉例說明之。
圖5A是依照本揭露的一實施例的燒熔成型剖面的剖面結構示意圖。圖5B是依照本揭露的圖5A的燒熔成型剖面的表面軌跡變化的示意圖。圖5C是依照本揭露的圖5A的燒熔成型剖面的表面斜率變化的示意圖。參考圖1、4以及圖5A至圖5C,並且搭配圖4的步驟流程來說明之。在步驟S410中,處理器110依據製程參數資料建立粉體堆疊模型,並且對粉體堆疊模型進行燒熔模擬,以由位於基板510上的粉體520所形成的粉體堆疊模型經雷射光燒熔後,產生如圖5A的燒熔成型剖面500,其中粉體520未完全燒熔。在步驟S420中,處理器110將決定燒熔成型剖面500的粉體520的多個表面粒子,以分析如圖5B所示的燒熔成型剖面500的表面軌跡530。在步驟S430中,處理器110計算如圖5C所示的對應於燒熔成型剖面500的所述多個表面粒子的多個表面軌跡斜率的表面軌跡斜率變化540。在步驟S440中,處理器110依據如圖5C所示的表面軌跡斜率變化540來判斷燒熔成型剖面500是否完全燒熔。在本實施例中,由於圖5C所示的表面軌跡斜率變化540存在有反曲點,因此處理器110可判斷燒熔成型剖面500為未完全燒熔,並且定義此製程參數資料為無效製程參數資料。並且,處理器110執行步驟S480,以結束本次製程參數資料鑑別或執行下一筆製程參數資料鑑別。因此,圖4實施例的執行分析模組的步驟流程可有效地鑑別製程參數資料。
圖6A是依照本揭露的另一實施例的燒熔成型剖面的剖面結構示意圖。圖6B是依照本揭露的圖6A的燒熔成型剖面的表面軌跡變化的示意圖。圖6C是依照本揭露的圖6A的燒熔成型剖面的表面斜率變化的示意圖。參考圖1、4以及圖6A至圖6C,並且搭配圖4的步驟流程來說明之。在步驟S410中,處理器110依據製程參數資料建立粉體堆疊模型,並且對粉體堆疊模型進行燒熔模擬,以由位於基板610上的粉體620所形成的粉體堆疊模型經雷射光燒熔後,產生如圖6A的燒熔成型剖面600,其中粉體620已完全燒熔。在步驟S420中,處理器110將決定燒熔成型剖面600的粉體620的多個表面粒子,以分析如圖6B所示的燒熔成型剖面600的表面軌跡630。在步驟S430中,處理器110計算如圖6C所示的對應於燒熔成型剖面600的所述多個表面粒子的多個表面軌跡斜率的表面軌跡斜率變化640。在步驟S440中,處理器110依據如圖6C所示的表面軌跡斜率變化640來判斷燒熔成型剖面600是否完全燒熔。在本實施例中,由於圖6C所示的表面軌跡斜率變化640未存在反曲點,因此處理器110可有效地判斷燒熔成型剖面600為已完全燒熔,並且定義此製程參數資料為有效製程參數資料。接著,在步驟S450中,處理器110判斷燒熔成型剖面600的燒熔軌跡長寬比以定義對應於燒熔成型剖面600的製程參數資料的類型,其中燒熔成型剖面600的長寬比為高度h與寬度w的比值。並且,在步驟S470中,處理器110將對應於燒熔成型剖面600的製程參數資料的鑑別結果記錄至製程參數資料表。因此,圖4實施例的執行分析模組的步驟流程可有效地鑑別製程參數資料,並且還可有效地分類製程參數資料的類型。
圖7是依照本揭露的一實施例的製程參數資料表的示意圖。參考圖1以及圖7,本揭露各實施例所述的製程參數資料表可如圖7所示的製程參數資料表700。在本實施例中,製程參數資料表700可以檔案資料的形式儲存在記憶體120中,或是透過顯示設備來顯示,或是顯示於特定介面中,其中特定介面可例如由製程參數鑑別程式所顯示的操作介面。在本實施例中,製程參數資料表700的列標題為雷射掃描速度V(mm/s),並且行標題為雷射功率P(W)。也就是說,製程參數鑑別系統100可分析製程參數資料表700中的每一個製程參數組(一個雷射掃描速度搭配一個雷射功率)。並且,每一個製程參數組可先經由模擬模組121來產生對應的燒熔成型剖面,並且再接著經由分析模組122分析製程參數資料類型。
在本實施例中,標記721(打叉)為用於標示對應的製程參數資料為無效製程參數資料。舉例而言,雷射掃描速度800mm/s以及雷射功率200w所產生的燒熔成型剖面未完全燒熔,因此此組製程參數屬於無效製程參數資料。然而,在本實施例中,標記722(方塊)為用於標示對應的製程參數資料為有效製程參數資料,其中對應的燒熔成型剖面可完全燒熔。並且,標記722為用於標示對應的製程參數資料屬於平衡製程參數資料。以此類推。在本實施例中,標記723(圓形)為標示對應的製程參數資料為有效製程參數資料,其中對應的燒熔成型剖面可完全燒熔。並且,標記723用於為標示對應的製程參數資料屬於高品質製程參數資料。在本實施例中,標記724(三角形)為標示對應的製程參數資料為有效製程參數資料,其中對應的燒熔成型剖面可完全燒熔。並且,標記724用於為標示對應的製程參數資料屬於高效率製程參數資料。
也就是說,在圖7所示的製程參數資料表700的多個有效製程參數資料可形成如圖7的有效製程參數資料視窗710。並且,在本實施例中,處理器110在製程參數資料表700中的有效製程參數資料視窗710中進一步定義多個製程參數資料的製程參數資料類型。然而,本揭露的製程參數資料表並不限於圖7。在一實施例中,製程參數資料表亦可包括其他類型的製程參數資料。
換言之,綜合上述各實施例,使用者只需建立或輸入如圖7的製程參數資料表700中的製程參數資料至製程參數鑑別系統100。製程參數鑑別系統100將可藉由自動地執行上述如圖2及圖4實施例的步驟流程,即可逐一自動地鑑別製程參數資料表700的多筆製程參數資料是否有效,並且還可自動地鑑別有效製程參數資料的資料類型。
圖8是依照本揭露的一實施例的分析燒熔成型剖面的表面粒子的步驟流程圖。參考圖1以及圖8,本揭露的各實施例所述的分析燒熔成型剖面的表面粒子的方式可如圖8所示的步驟流程,例如上述圖4實施例的步驟S420可進一步包括本實施例的步驟S810~S850。在步驟S810中,處理器110逐一計算燒熔成型剖面的多個粒子的各組局部粒子密度。其中,對應於個別粒子的各組局部粒子密度(ni )可如由以下公式(1)來決定,其中符號mj 為局部粒子質量,wij 為權重以及ρj 為材料密度。權重(wij )是依據某一粒子與周圍粒子分布關係來決定之,並且周圍粒子分布關係可例如是高斯分布。
Figure 02_image001
........................(1)
在步驟S820中,處理器110判斷局部粒子密度是否大於第一密度門檻值,並且小於或等於第二密度門檻值(na >ni ≦nb ),以判斷所述多個粒子的其中之一為表面粒子。若是,則處理器110執行步驟S831。在步驟S831中,處理器110判斷所述多個粒子的其中之一為表面粒子。若否,則處理器110執行步驟S832。在步驟S832中,處理器110判斷所述多個粒子的其中之一為內部粒子。當處理器110執行步驟S831或步驟S832結束後,處理器110執行步驟S840。在步驟S840中,處理器110判斷是否燒熔成型剖面的所述多個粒子已判斷完成。若是,則處理器110執行步驟S850。在步驟S850中,處理器110結束表面粒子的判斷,並接續執行表面粒子的分析,例如接續執行上述圖4實施例的步驟S430。或否,則處理器110重新執行步驟S810,以繼續計算燒熔成型剖面的所述多個粒子的其中之另一。因此,本實施例的分析燒熔成型剖面的表面粒子的步驟流程可有效地判斷燒熔成型剖面的表面軌跡,以供後續燒熔結果分析。
圖9是依照本揭露的一實施例的製程參數鑑別方法的步驟流程圖。參考圖1以及圖9,本實施例的製程參數鑑別方法可至少適用於圖1實施例的製程參數鑑別系統100。處理器110可執行記憶體120當中的模擬模組121以及分析模組122,以實施步驟S910~S940。在步驟S910中,處理器110依據製程參數資料來模擬粉體堆疊結構的燒熔成型剖面。在步驟S920中,處理器110分析燒熔成型剖面,並決定燒熔成型剖面的多個表面粒子。在步驟S930中,處理器110計算燒熔成型剖面的所述多個表面粒子的多個表面軌跡斜率。在步驟S940中,處理器110依據所述多個表面軌跡斜率來判斷燒熔成型剖面是否完全燒熔,以定義製程參數資料是否為有效製程參數資料。因此,本實施例的製程參數鑑別方法可藉由模擬真實的粉體堆疊結構的燒熔成型剖面,來有效地鑑別製程參數資料。
另外,關於本實施例所述的製程參數鑑別方法以及製程參數鑑別系統100的詳細分析方式、技術細節以及實施流程可參考上述圖1至圖8實施例的說明而獲致足夠的教示、建議以及實施說明,因此在此不再贅述。
綜上所述,本揭露的用於雷射積層製造的參數鑑別方法以及參數鑑別系統可藉由自動地分析模擬真實情況的粉體堆疊結構的燒熔成型剖面是否完全燒熔,以自動且有效地定義對應於此燒熔成型剖面的製程參數資料是否為有效製程參數資料。並且,本揭露的參數鑑別方法以及參數鑑別系統還進一步針對有效製程參數資料來進行分析,以判斷有效製程參數資料的製程參數資料類型。此外,本揭露的參數鑑別方法以及參數鑑別系統還可將前述分析結果進一步自動地記錄至製程參數資料表當中,以讓使用者可透過運用鑑別完成後的製程參數資料表,有效且正確地掌握適當製程參數來進行雷射積層製造。
雖然本揭露已以實施例揭露如上,然其並非用以限定本揭露,任何所屬技術領域中具有通常知識者,在不脫離本揭露的精神和範圍內,當可作些許的更動與潤飾,故本揭露的保護範圍當視後附的申請專利範圍所界定者為準。
100:製程參數鑑別系統 110:處理器 120:記憶體 121:模擬模組 122:分析模組 300:粉體堆疊模型 310、510、610:基板 320、520、620:粉體 500、600:燒熔成型剖面 530、630:表面軌跡 540、640:表面軌跡斜率變化 700:製程參數資料 710:有效製程參數資料視窗 721、722、723、724:標記 D1、D2、D3:方向 h:高度 w:寬度 S210~S240、S410~S480、S810~S850、S910~S940:步驟
圖1是依照本揭露的一實施例的製程參數鑑別系統的方塊示意圖。 圖2是依照本揭露的一實施例的執行模擬模組的步驟流程圖。 圖3是依照本揭露的一實施例的粉體堆疊模型的剖面結構示意圖。 圖4是依照本揭露的一實施例的執行分析模組的步驟流程圖。 圖5A是依照本揭露的一實施例的燒熔剖面結構示意圖。 圖5B是依照本揭露的圖5A的燒熔成型剖面的表面軌跡變化的示意圖。 圖5C是依照本揭露的圖5A的燒熔成型剖面的表面斜率變化的示意圖。 圖6A是依照本揭露的另一實施例的燒熔剖面結構示意圖。 圖6B是依照本揭露的圖6A的燒熔成型剖面的表面軌跡變化的示意圖。 圖6C是依照本揭露的圖6A的燒熔成型剖面的表面斜率變化的示意圖。 圖7是依照本揭露的一實施例的製程參數資料表的示意圖。 圖8是依照本揭露的一實施例的分析燒熔成型剖面的表面粒子的步驟流程圖。 圖9是依照本揭露的一實施例的製程參數鑑別方法的步驟流程圖。
S910~S940:步驟

Claims (21)

  1. 一種用於雷射積層製造的製程參數鑑別方法,包括:依據一製程參數資料來模擬一粉體堆疊結構的一燒熔成型剖面;分析該燒熔成型剖面,並決定該燒熔成型剖面的多個表面粒子;計算對應於該燒熔成型剖面的該些表面粒子的多個表面軌跡斜率;以及依據該些表面軌跡斜率來判斷該燒熔成型剖面是否完全燒熔,以定義該製程參數資料是否為一有效製程參數資料,其中依據該製程參數資料來模擬該粉體堆疊結構的該燒熔成型剖面的步驟包括:依據該製程參數資料來設定一雷射光源以及建立具有該粉體堆疊結構的一粉體堆疊模型;以及模擬該雷射光源燒熔具有該粉體堆疊結構的該粉體堆疊模型,以產生一單線燒熔軌跡的該燒熔成型剖面。
  2. 如申請專利範圍第1項所述的製程參數鑑別方法,其中該粉體堆疊結構為一最密堆積排列。
  3. 如申請專利範圍第1項所述的製程參數鑑別方法,其中模擬該雷射光源燒熔具有該粉體堆疊結構的該粉體堆疊模型的步驟包括:依據該製程參數資料對該粉體堆疊模型執行一積層製造的多 物理耦合分析,以模擬該雷射光源燒熔該粉體堆疊模型。
  4. 如申請專利範圍第1項所述的製程參數鑑別方法,其中該製程參數資料包括用於模擬該雷射光源燒熔該粉體堆疊模型的一雷射掃描速度以及一雷射功率。
  5. 如申請專利範圍第1項所述的製程參數鑑別方法,其中該製程參數資料包括該雷射光源的一雷射光束類型以及一光斑尺寸。
  6. 如申請專利範圍第1項所述的製程參數鑑別方法,其中該製程參數資料包括該粉體堆疊結構的一粉體粒徑分布曲線以及一平均粉體粒徑。
  7. 如申請專利範圍第1項所述的製程參數鑑別方法,其中分析該燒熔成型剖面,並決定該燒熔成型剖面的該些表面粒子的步驟包括:計算該燒熔成型剖面的多個粒子的多組局部粒子密度;以及分別判斷對應該些粒子的個別該組局部粒子密度是否大於一第一密度門檻值並且小於或等於一第二密度門檻值,以決定該些粒子是否為該燒熔成型剖面的該些表面粒子。
  8. 如申請專利範圍第1項所述的製程參數鑑別方法,其中依據該些表面軌跡斜率來判斷該燒熔成型剖面是否完全燒熔,以定義該製程參數資料是否為該有效製程參數資料的步驟包括:判斷該些表面軌跡斜率的一軌跡斜率變化是否存在一反曲點;若該軌跡斜率變化未存在該反曲點,則判斷該燒熔成型剖面 為完全燒熔,並且定義該製程參數資料為該有效製程參數資料;以及若該軌跡斜率變化存在該反曲點,則判斷該燒熔成型剖面為未完全燒熔,並且定義該製程參數資料為一無效製程參數資料。
  9. 如申請專利範圍第1項所述的製程參數鑑別方法,更包括:當該製程參數資料為該有效製程參數資料時,計算該燒熔成型剖面的一燒熔軌跡長寬比;判斷該燒熔軌跡長寬比是否大於一第一長寬比門檻值,以定義該製程參數資料為一高品質製程參數資料類型;判斷該燒熔軌跡長寬比是否小於或等於該第一長寬比門檻值並且大於或等於一第二長寬比門檻值,以定義該製程參數資料為一平衡製程參數資料類型;以及判斷該燒熔軌跡長寬比是否小於該第二長寬比門檻值並且大於一第三長寬比門檻值,以定義該製程參數資料為一高效率製程參數資料類型。
  10. 如申請專利範圍第9項所述的製程參數鑑別方法,更包括:依序判斷多個製程參數資料是否為該有效製程參數資料,以記錄至一製程參數資料表;以及分析經定義為該有效製程參數資料的該些製程參數資料的至少其中之一的該燒熔軌跡長寬比,以在該製程參數資料表中的一 有效製程參數資料視窗中進一步定義該些製程參數資料的至少其中之一的一製程參數資料類型。
  11. 一種用於雷射積層製造的製程參數鑑別系統,包括:一記憶體,用以儲存一模擬模組以及一分析模組;以及一處理器,耦接該記憶體,並且用以執行該模擬模組以及該分析模組,其中該處理器執行該模擬模組以依據一製程參數資料來模擬一粉體堆疊結構的一燒熔成型剖面,並且該處理器執行該分析模組以分析該燒熔成型剖面,其中該處理器決定該燒熔成型剖面的多個表面粒子以計算對應於該燒熔成型剖面的該些表面粒子的多個表面軌跡斜率,並且該處理器依據該些表面軌跡斜率來判斷該燒熔成型剖面是否完全燒熔,以定義該製程參數資料為一有效製程參數資料,其中該處理器依據該製程參數資料來設定一雷射光源以及建立具有該粉體堆疊結構的一粉體堆疊模型,並且該處理器執行該模擬模組以模擬該雷射光源燒熔具有該粉體堆疊結構的該粉體堆疊模型,以產生一單線燒熔軌跡的該燒熔成型剖面。
  12. 如申請專利範圍第11項所述的製程參數鑑別系統,其中該粉體堆疊結構為一最密堆積排列。
  13. 如申請專利範圍第11項所述的製程參數鑑別系統,其中該處理器依據該製程參數資料對該粉體堆疊模型執行一積層製造的多物理耦合分析,以模擬該雷射光源燒熔該粉體堆疊模型。
  14. 如申請專利範圍第11項所述的製程參數鑑別系統,其中該製程參數資料包括用於模擬該雷射光源燒熔該粉體堆疊模型的一雷射掃描速度以及一雷射功率。
  15. 如申請專利範圍第11項所述的製程參數鑑別系統,其中該製程參數資料包括該雷射光源的一雷射光束類型以及一光斑尺寸。
  16. 如申請專利範圍第11項所述的製程參數鑑別系統,其中該製程參數資料包括該粉體堆疊結構的一粉體粒徑分布曲線以及一平均粉體粒徑。
  17. 如申請專利範圍第11項所述的製程參數鑑別系統,其中該處理器計算該燒熔成型剖面的多個局部粒子密度,並且該處理器分別判斷該些局部粒子密度是否大於一第一密度門檻值並且小於或等於一第二密度門檻值,以決定該燒熔成型剖面的該些表面粒子。
  18. 如申請專利範圍第11項所述的製程參數鑑別系統,其中該處理器判斷該些表面軌跡斜率的一軌跡斜率變化是否存在一反曲點,其中若該軌跡斜率變化未存在該反曲點,則該處理器判斷該燒熔成型剖面為完全燒熔,並且定義該製程參數資料為該有效製程參數資料,其中若該軌跡斜率變化存在該反曲點,則該處理器判斷該燒熔成型剖面為未完全燒熔,並且定義該製程參數資料為一無效製 程參數資料。
  19. 如申請專利範圍第11項所述的製程參數鑑別系統,其中當該製程參數資料為該有效製程參數資料時,該處理器更計算該燒熔成型剖面的一燒熔軌跡長寬比,當該處理器判斷該燒熔軌跡長寬比大於一第一長寬比門檻值時,該處理器定義該製程參數資料為一高品質製程參數資料類型,當該處理器判斷該燒熔軌跡長寬比小於或等於該第一長寬比門檻值並且大於或等於一第二長寬比門檻值時,該處理器定義該製程參數資料為一平衡製程參數資料類型,當該處理器判斷該燒熔軌跡長寬比小於該第二長寬比門檻值並且大於一第三長寬比門檻值時,該處理器定義該製程參數資料為一高效率製程參數資料類型。
  20. 如申請專利範圍第11項所述的製程參數鑑別系統,其中該處理器更依序判斷多個製程參數資料是否為該有效製程參數資料,以建立一製程參數資料表,其中該處理器分析經定義為該有效製程參數資料的該些製程參數資料的至少其中之一的該燒熔軌跡長寬比,以在該製程參數資料表中的一有效製程參數資料視窗中進一步定義該些製程參數資料的至少其中之一的一製程參數資料類型。
  21. 一種非暫時性電腦可讀儲存媒體,用以儲存一模擬模組以及一分析模組以載入一電子裝置,其中該電子裝置依據該模擬模組以及該分析模組執行以下操作: 依據一製程參數資料來模擬一粉體堆疊結構的一燒熔成型剖面;分析該燒熔成型剖面,並決定該燒熔成型剖面的多個表面粒子;計算對應於該燒熔成型剖面的該些表面粒子的多個表面軌跡斜率;以及依據該些表面軌跡斜率來判斷該燒熔成型剖面是否完全燒熔,以定義該製程參數資料是否為一有效製程參數資料,其中依據該製程參數資料來模擬該粉體堆疊結構的該燒熔成型剖面的操作包括:依據該製程參數資料來設定一雷射光源以及建立具有該粉體堆疊結構的一粉體堆疊模型;以及模擬該雷射光源燒熔具有該粉體堆疊結構的該粉體堆疊模型,以產生一單線燒熔軌跡的該燒熔成型剖面。
TW108147356A 2019-12-24 2019-12-24 製程參數鑑別方法、系統以及非暫時性電腦可讀儲存媒體 TWI788613B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108147356A TWI788613B (zh) 2019-12-24 2019-12-24 製程參數鑑別方法、系統以及非暫時性電腦可讀儲存媒體

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108147356A TWI788613B (zh) 2019-12-24 2019-12-24 製程參數鑑別方法、系統以及非暫時性電腦可讀儲存媒體

Publications (2)

Publication Number Publication Date
TW202125301A TW202125301A (zh) 2021-07-01
TWI788613B true TWI788613B (zh) 2023-01-01

Family

ID=77908779

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108147356A TWI788613B (zh) 2019-12-24 2019-12-24 製程參數鑑別方法、系統以及非暫時性電腦可讀儲存媒體

Country Status (1)

Country Link
TW (1) TWI788613B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105478765A (zh) * 2015-12-12 2016-04-13 北京工业大学 一种基于金属3d打印球形粉末的紧密堆积的配粉方法
CN105598448A (zh) * 2015-12-23 2016-05-25 中国科学院金属研究所 一种金属材料激光3d打印原位预热温度的控制方法
CN106383968A (zh) * 2016-11-02 2017-02-08 中国科学院金属研究所 一种激光3d打印过程的实时模拟方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105478765A (zh) * 2015-12-12 2016-04-13 北京工业大学 一种基于金属3d打印球形粉末的紧密堆积的配粉方法
CN105598448A (zh) * 2015-12-23 2016-05-25 中国科学院金属研究所 一种金属材料激光3d打印原位预热温度的控制方法
CN106383968A (zh) * 2016-11-02 2017-02-08 中国科学院金属研究所 一种激光3d打印过程的实时模拟方法

Also Published As

Publication number Publication date
TW202125301A (zh) 2021-07-01

Similar Documents

Publication Publication Date Title
WO2022100233A1 (zh) 一种基于图数据库的电网检索方法及***
CN109783970B (zh) 一种面向电子产品可靠性仿真分析的热分析方法
JP6659407B2 (ja) 解析装置、解析方法および解析プログラム
WO2021174863A1 (zh) 车辆年款识别模型的训练方法以及车辆年款的识别方法
CN109933488B (zh) 芯片温度计算方法及芯片温度计算装置
CN110139149B (zh) 一种视频优化的方法、装置、电子设备
CN108334692B (zh) 预测增材制造零件变形的方法
CN114175092A (zh) 增材制造中基于图像的缺陷检测
JP4389843B2 (ja) 解析メッシュモデル生成装置、解析メッシュモデル生成方法、解析メッシュモデル生成プログラム、および記録媒体
WO2024020801A1 (zh) 一种碳排放量的计算方法、电子设备和可读介质
CN112749450B (zh) 基于Hyperworks的仿真分析方法及***
JP2010056690A5 (zh)
TWI788613B (zh) 製程參數鑑別方法、系統以及非暫時性電腦可讀儲存媒體
CN116579207A (zh) 焊点焊后残余应力预测与优化的变可信度模型确定方法
US8832623B1 (en) Universal design layout compliance
US8327196B2 (en) Identifying an optimized test bit pattern for analyzing electrical communications channel topologies
US8577717B2 (en) Method and system for predicting shrinkable yield for business assessment of integrated circuit design shrink
US20170091356A1 (en) Subtractive Design for Heat Sink Improvement
JP2007199961A (ja) 有限要素法解析モデルの解析方法、解析システム、及び解析プログラム
EP3412381A1 (en) Library of predefined shapes for additive manufacturing processes
CN107577867B (zh) 一种硬盘盒流阻性能的分析方法
Song et al. Automatic recognition and suppression of holes on mold bases for finite element applications
CN1525812A (zh) 安装处理模拟程序及用于同样目的的方法和***
TW202220847A (zh) 金屬積層製造的參數分析方法及參數分析系統
TW202114851A (zh) 參數分析方法、電子裝置以及非暫時性電腦可讀儲存媒體