TWI788613B - Process parameter identification method and system thereof, and non-transitory computer readable storage medium - Google Patents

Process parameter identification method and system thereof, and non-transitory computer readable storage medium Download PDF

Info

Publication number
TWI788613B
TWI788613B TW108147356A TW108147356A TWI788613B TW I788613 B TWI788613 B TW I788613B TW 108147356 A TW108147356 A TW 108147356A TW 108147356 A TW108147356 A TW 108147356A TW I788613 B TWI788613 B TW I788613B
Authority
TW
Taiwan
Prior art keywords
process parameter
parameter data
powder
melting
processor
Prior art date
Application number
TW108147356A
Other languages
Chinese (zh)
Other versions
TW202125301A (en
Inventor
蔡宗汶
吳宗明
偉權 鍾
劉松河
林得耀
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW108147356A priority Critical patent/TWI788613B/en
Publication of TW202125301A publication Critical patent/TW202125301A/en
Application granted granted Critical
Publication of TWI788613B publication Critical patent/TWI788613B/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

A process parameter identification method, a process parameter identification system for laser additive manufacturing and a non-transitory computer readable storage medium are provided. The process parameter identification method includes the following steps: simulating a melting section of a powder stack structure according to a process parameter data; analyzing the melting section to determine a plurality of surface particles of the melting section; and calculating a plurality of surface track slopes corresponding to the plurality of surface particles of the melting section; and determining whether the melting section is completely melted according to the plurality of surface track slopes to define the process parameter data is an effective process parameter data.

Description

製程參數鑑別方法、系統以及非暫時性電腦可讀儲存媒體Process parameter identification method, system, and non-transitory computer-readable storage medium

本揭露是有關於一種參數分析,且特別是有關於一種用於雷射積層製造(Additive Manufacturing, AM)的製程參數鑑別方法以及製程參數鑑別系統。The present disclosure relates to a parameter analysis, and in particular to a process parameter identification method and a process parameter identification system for Additive Manufacturing (AM).

隨著製造技術的演進,雷射積層製造(Additive Manufacturing, AM)是目前積層製造領域的重要發展目標。然而,目前雷射積層製造所遇到的問題在於,當粉體受到雷射作用後,粉體的燒熔行為將牽涉複雜的多物理耦合的效應,因此導致使用者不易掌握適當製程參數來進行雷射積層製造。並且,若不恰當地控制製程參數,則將容易造成積層製造的成品品質不佳的問題。對此,傳統作法是透過試誤法來反覆實驗以使了解並且改善之,但是在面對各種新開發材料、特殊設備模組或新穎製程的情況下,傳統的試誤法將會有成本過高且效率極低的問題。有鑑於此,以下將提出幾個實施例的解決方案。With the evolution of manufacturing technology, laser additive manufacturing (AM) is an important development goal in the field of additive manufacturing. However, the problem encountered in laser lamination manufacturing at present is that when the powder is subjected to laser action, the melting behavior of the powder will involve complex multi-physics coupling effects, which makes it difficult for users to grasp the appropriate process parameters to carry out Laser lamination manufacturing. Moreover, if the process parameters are not properly controlled, it will easily cause the problem of poor quality of the finished product of the additive manufacturing. In this regard, the traditional method is to repeatedly experiment through trial and error to understand and improve it. However, in the face of various newly developed materials, special equipment modules or novel manufacturing processes, the traditional trial and error method will cost too much high and low efficiency. In view of this, solutions of several embodiments will be proposed below.

本揭露提供一種用於雷射積層製造的製程參數鑑別方法、製程參數鑑別系統以及非暫時性電腦可讀儲存媒體可有效且自動地判斷用於雷射積層製造的製程參數資料是否為有效製程參數資料。The disclosure provides a process parameter identification method for laser lamination manufacturing, a process parameter identification system, and a non-transitory computer-readable storage medium that can effectively and automatically determine whether the process parameter data for laser lamination manufacturing is a valid process parameter material.

本揭露的一種用於雷射積層製造的製程參數鑑別方法包括以下步驟:依據製程參數資料來模擬粉體堆疊結構的燒熔成型剖面;分析燒熔成型剖面,以決定燒熔成型剖面的多個表面粒子;計算對應於燒熔成型剖面的所述多個表面粒子的多個表面軌跡斜率;以及依據所述多個表面軌跡斜率來判斷燒熔成型剖面是否完全燒熔,以定義製程參數資料為有效製程參數資料。A process parameter identification method for laser lamination manufacturing disclosed in the present disclosure includes the following steps: simulating the fused molding profile of the powder stacked structure according to the process parameter data; analyzing the fused molding profile to determine multiple fused molding profiles surface particles; calculating a plurality of surface track slopes corresponding to the plurality of surface particles of the fused molding section; and judging whether the fused molding section is completely melted according to the plurality of surface trajectory slopes, so as to define the process parameter data as Valid process parameter data.

本揭露的一種用於雷射積層製造的製程參數鑑別系統包括記憶體以及處理器。記憶體用以儲存模擬模組以及分析模組。處理器耦接記憶體。處理器用以執行模擬模組以及分析模組。處理器執行模擬模組以依據製程參數資料來模擬粉體堆疊結構的燒熔成型剖面。處理器執行分析模組以分析燒熔成型剖面。處理器決定燒熔成型剖面的多個表面粒子以計算對應於燒熔成型剖面的所述多個表面粒子的多個表面軌跡斜率。處理器依據所述多個表面軌跡斜率來判斷燒熔成型剖面是否完全燒熔,以定義製程參數資料為有效製程參數資料。A process parameter identification system for laser lamination manufacturing disclosed herein includes a memory and a processor. The memory is used to store simulation modules and analysis modules. The processor is coupled to the memory. The processor is used for executing the simulation module and the analysis module. The processor executes the simulation module to simulate the melting profile of the powder stacked structure according to the process parameter data. The processor executes the analysis module to analyze the fused profile. The processor determines a plurality of surface particles of the fused profile to calculate a plurality of surface trajectory slopes corresponding to the plurality of surface particles of the fused profile. The processor judges whether the melting profile is completely melted according to the slopes of the plurality of surface trajectories, so as to define the process parameter data as effective process parameter data.

本揭露的一種非暫時性電腦可讀儲存媒體用以儲存模擬模組以及分析模組以載入電子裝置。電子裝置依據模擬模組以及分析模組執行以下操作:依據製程參數資料來模擬粉體堆疊結構的燒熔成型剖面;分析燒熔成型剖面,以決定燒熔成型剖面的多個表面粒子;計算對應於燒熔成型剖面的所述多個表面粒子的多個表面軌跡斜率;以及依據所述多個表面軌跡斜率來判斷燒熔成型剖面是否完全燒熔,以定義製程參數資料為有效製程參數資料。A non-transitory computer-readable storage medium disclosed in the present disclosure is used for storing simulation modules and analysis modules for loading into electronic devices. The electronic device performs the following operations according to the simulation module and the analysis module: simulates the fused molding profile of the powder stacked structure according to the process parameter data; analyzes the fused molding section to determine multiple surface particles of the fused molding section; calculates the corresponding Multiple surface trajectory slopes of the plurality of surface particles in the fused molding section; and judging whether the fused molding section is completely fused according to the multiple surface trajectory slopes, so as to define the process parameter data as effective process parameter data.

基於上述,本揭露的製程參數鑑別方法、製程參數鑑別系統以及非暫時性電腦可讀儲存媒體可模擬對應於製程參數資料的真實的粉體堆疊結構的燒熔成型剖面,並且對燒熔成型剖面進行分析,以判斷燒熔成型剖面是否被適當地燒熔,進而定義此製程參數資料為有效製程參數資料。Based on the above, the process parameter identification method, process parameter identification system, and non-transitory computer-readable storage medium of the present disclosure can simulate the fused molding profile of a real powder stack structure corresponding to the process parameter data, and the fused molding profile Analysis is performed to determine whether the fused molding section is properly fused, and then the process parameter data is defined as valid process parameter data.

為讓本揭露的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present disclosure more comprehensible, the following specific embodiments are described in detail together with the accompanying drawings.

為了使本揭露之內容可以被更容易明瞭,以下特舉實施例做為本揭露確實能夠據以實施的範例。另外,凡可能之處,在圖式及實施方式中使用相同標號的元件/構件/步驟,係代表相同或類似部件。In order to make the content of the present disclosure more comprehensible, the following specific embodiments are taken as examples in which the present disclosure can indeed be implemented. In addition, wherever possible, elements/components/steps using the same reference numerals in the drawings and embodiments represent the same or similar parts.

圖1是依照本揭露的一實施例的製程參數鑑別系統的方塊示意圖。參考圖1,製程參數鑑別系統100包括處理器110以及記憶體120。記憶體120可包括模擬模組121以及分析模組122。在本實施例中,處理器110耦接記憶體120,並且用以執行模擬模組121以及分析模組122,以進行製程參數鑑別。需說明的是,本揭露並不特別限制製程參數鑑別系統100的實施態樣。本實施例的製程參數鑑別系統100可例如是應用在個人電腦(Personal Computer, PC)、筆記型電腦(Notebook Computer)、工業電腦(Industrial PC, IPC)或雲端伺服器(Cloud Server)等,諸如此類的數位系統或雲端平台,或以軟體程式形式來安裝在上述各電腦設備中,以供使用者操作電腦設備而使自動執行製程參數鑑別,進而實現本揭露的用於雷射積層製造(Additive Manufacturing, AM)的製程參數鑑別功能。FIG. 1 is a schematic block diagram of a process parameter identification system according to an embodiment of the present disclosure. Referring to FIG. 1 , the process parameter identification system 100 includes a processor 110 and a memory 120 . The memory 120 may include a simulation module 121 and an analysis module 122 . In this embodiment, the processor 110 is coupled to the memory 120 and used to execute the simulation module 121 and the analysis module 122 to identify process parameters. It should be noted that the present disclosure does not particularly limit the implementation of the process parameter identification system 100 . The process parameter identification system 100 of this embodiment can be applied to, for example, a personal computer (Personal Computer, PC), a notebook computer (Notebook Computer), an industrial computer (Industrial PC, IPC) or a cloud server (Cloud Server), etc. The digital system or cloud platform, or installed in the above-mentioned computer equipment in the form of software program, for the user to operate the computer equipment to automatically perform process parameter identification, and then realize the additive manufacturing (Additive Manufacturing) of this disclosure. , AM) process parameter identification function.

在本實施例中,處理器110可例如是中央處理單元(Central Processing Unit, CPU),或是其他可程式化之一般用途或特殊用途的微處理器(Microprocessor)、數位訊號處理器(Digital Signal Processor, DSP)、可程式化控制器、特殊應用積體電路(Application Specific Integrated Circuits, ASIC)、可程式化邏輯裝置(Programmable Logic Device, PLD)、其他類似處理裝置或這些裝置的組合。In this embodiment, the processor 110 can be, for example, a central processing unit (Central Processing Unit, CPU), or other programmable general purpose or special purpose microprocessor (Microprocessor), digital signal processor (Digital Signal Processor) Processor, DSP), programmable controller, application specific integrated circuit (Application Specific Integrated Circuits, ASIC), programmable logic device (Programmable Logic Device, PLD), other similar processing devices or a combination of these devices.

在本實施例中,記憶體120可例如是動態隨機存取記憶體(Dynamic Random Access Memory, DRAM)、快閃記憶體(Flash memory)或非揮發性隨機存取記憶體(Non-Volatile Random Access Memory, NVRAM)等。在本實施例中,模擬模組121以及分析模組122可例如是一種軟體應用程式。因此,記憶體120可預先儲存有模擬模組121以及分析模組122,並且還可載入或儲存有本揭露各實施例所述之製程參數資料、粉體堆疊模型、燒熔成型剖面以及製程參數資料表等,以供處理器110存取並執行之。在一實施例中,模擬模組121以及分析模組122亦可儲存在一個非暫時性電腦可讀儲存媒體(Non-transitory Computer-readable Storage Medium)當中,並可透過將模擬模組121以及分析模組122載入電子裝置來實現本揭露各實施例所述的製程參數鑑別。In this embodiment, the memory 120 can be, for example, a dynamic random access memory (Dynamic Random Access Memory, DRAM), a flash memory (Flash memory) or a non-volatile random access memory (Non-Volatile Random Access Memory, NVRAM), etc. In this embodiment, the simulation module 121 and the analysis module 122 can be, for example, a software application program. Therefore, the memory 120 can pre-store the simulation module 121 and the analysis module 122, and can also be loaded or stored with the process parameter data, powder stacking model, fused molding profile and process described in the various embodiments of the present disclosure. Parameter data tables, etc., for the processor 110 to access and execute. In one embodiment, the simulation module 121 and the analysis module 122 can also be stored in a non-transitory computer-readable storage medium (Non-transitory Computer-readable Storage Medium), and the simulation module 121 and the analysis module can be The module 122 is loaded into the electronic device to implement the process parameter identification described in various embodiments of the present disclosure.

在本實施例中,處理器110先執行模擬模組121,以依據製程參數資料來模擬真實情況的粉體堆疊結構的燒熔成型剖面。詳細而言,處理器110可模擬雷射光源以單線燒熔軌跡的方式來燒熔具有此粉體堆疊結構的粉體堆疊模型,以產生對應的燒熔成型剖面。接著,處理器110執行分析模組122,以分析燒熔成型剖面。在本實施例中,處理器110將決定燒熔成型剖面的多個表面粒子,並且計算對應於燒熔成型剖面的所述多個表面粒子的多個表面軌跡斜率。因此,處理器110可依據所述多個表面軌跡斜率來判斷燒熔成型剖面是否完全燒熔,以進一步定義製程參數資料為有效製程參數資料。換言之,本實施例的製程參數鑑別系統是藉由分析真實情況的粉體燒熔成型剖面的表面軌跡變化,來有效地判斷燒熔成型剖面的燒熔程度是否恰當,並且進而定義對應的製程參數資料為有效製程參數資料。然而,對於各階段的詳細實施方式,以下將由幾個步驟流程圖的實施例來詳細說明之。In this embodiment, the processor 110 executes the simulation module 121 first, so as to simulate the melting and molding profile of the actual powder stack structure according to the process parameter data. In detail, the processor 110 can simulate the laser light source to melt the powder stack model with the powder stack structure in a single-line melting trajectory, so as to generate a corresponding melting profile. Next, the processor 110 executes the analysis module 122 to analyze the fused profile. In this embodiment, the processor 110 determines a plurality of surface particles of the fused profile, and calculates a plurality of surface trajectory slopes corresponding to the plurality of surface particles of the fused profile. Therefore, the processor 110 can judge whether the melting profile is completely melted according to the slopes of the plurality of surface trajectories, so as to further define the process parameter data as effective process parameter data. In other words, the process parameter identification system of this embodiment is to effectively judge whether the melting degree of the fused molding profile is appropriate by analyzing the change of the surface trajectory of the powder fused molding profile in real conditions, and then define the corresponding process parameters The data is valid process parameter data. However, for the detailed implementation of each stage, it will be described in detail below by the embodiment of several step flow charts.

圖2是依照本揭露的一實施例的執行模擬模組的步驟流程圖。圖3是依照本揭露的一實施例的粉體堆疊模型的剖面結構示意圖。參考圖1至圖3,處理器110可執行模擬模組121,以實施本實施例的步驟S210~S240。在步驟S210中,處理器110可先讀取製程參數資料。製程參數資料可以是預存在記憶體120或由使用者經由輸入裝置來輸入之,本揭露並不加以限制。並且,製程參數資料可例如包括用於模擬雷射光源(圖未示)燒熔粉體堆疊模型300的雷射掃描速度以及雷射功率,或是包括雷射光源的雷射光束類型以及光斑尺寸,或是包括粉體堆疊模型300的粉體粒徑分布曲線以及平均粉體粒徑。然而,本揭露並不限制製程參數資料的參數類型。並且,在一實施例中,上述製程參數可例如部分為固定參數或預設參數,並且另一部分為可變參數。FIG. 2 is a flow chart of steps for executing a simulation module according to an embodiment of the disclosure. FIG. 3 is a schematic cross-sectional structure diagram of a powder stacking model according to an embodiment of the present disclosure. Referring to FIG. 1 to FIG. 3 , the processor 110 can execute the simulation module 121 to implement steps S210 - S240 of this embodiment. In step S210, the processor 110 may first read process parameter data. The process parameter data may be pre-stored in the memory 120 or input by the user through an input device, which is not limited in the present disclosure. Moreover, the process parameter data may include, for example, the laser scanning speed and laser power used to simulate the laser light source (not shown) to melt the powder stack model 300, or the laser beam type and spot size of the laser light source , or include the powder particle size distribution curve and the average powder particle size of the powder stacking model 300 . However, the present disclosure does not limit the parameter types of the process parameter data. Moreover, in an embodiment, the above-mentioned process parameters may be, for example, partly fixed parameters or preset parameters, and partly variable parameters.

在步驟S220中,處理器110依據最密堆積(Sphere packing)排列的粉體堆疊結構來建立如圖3所示的粉體堆疊模型300。在圖3中,粉體320可沿第一方向D1以及第三方向D3以最密堆積方式排列在基板310上,並且粉體320可沿著基板310的第二方向D2單線延伸。第一方向D1、第二方向D2以及第三方向D3彼此垂直。第一方向D1以及第二方向D2例如形成水平面。雷射光源可由相反於第三方向D3的方向對粉體320發射雷射光,並且沿著第一方向D1移動,而對粉體320進行加熱,以使粉體320發生燒熔的情況。值得注意的是,本實施例的粉體係指金屬粉體,並且金屬粉體可例如是鈦(Titanium, Ti)金屬。然而,本揭露亦不限制金屬粉體的材料類型。In step S220 , the processor 110 establishes a powder stacking model 300 as shown in FIG. 3 according to the powder stacking structure arranged by Sphere packing. In FIG. 3 , the powder 320 can be arranged on the substrate 310 in a closest packing manner along the first direction D1 and the third direction D3 , and the powder 320 can extend in a single line along the second direction D2 of the substrate 310 . The first direction D1 , the second direction D2 and the third direction D3 are perpendicular to each other. The first direction D1 and the second direction D2 form, for example, a horizontal plane. The laser light source can emit laser light on the powder 320 in a direction opposite to the third direction D3, and move along the first direction D1 to heat the powder 320 so that the powder 320 is melted. It should be noted that the powder system in this embodiment refers to metal powder, and the metal powder may be, for example, titanium (Titanium, Ti) metal. However, the present disclosure does not limit the material type of the metal powder.

在步驟S230中,處理器110依據所述製程參數資料對粉體堆疊模型執行積層製造的多物理耦合分析(Multi-physics Coupling Analysis),以模擬雷射光源燒熔粉體堆疊模型300。因此,在步驟S240中,處理器110可產生單線燒熔軌跡的燒熔成型剖面。需說明的是,處理器110產生的燒熔成型剖面為經燒熔的粉體冷卻固化後的結果。也就是說,本實施例的模擬模組121可模擬真實的粉體堆疊模型300的燒融結果,以供後續的分析模組122來分析之。然而,關於粉體320的燒熔結果,以下將以圖5A以及圖6A兩個實施例的來舉例說明之。In step S230 , the processor 110 performs multi-physics coupling analysis (Multi-physics Coupling Analysis) on the powder stacking model according to the process parameter data, so as to simulate the laser light source melting the powder stacking model 300 . Therefore, in step S240 , the processor 110 can generate a melting profile of a single-line melting track. It should be noted that the fused profile generated by the processor 110 is the result of cooling and solidifying the fused powder. That is to say, the simulation module 121 of this embodiment can simulate the ablation result of the real powder stacking model 300 for analysis by the subsequent analysis module 122 . However, regarding the melting result of the powder 320 , the two embodiments of FIG. 5A and FIG. 6A will be used as examples to illustrate.

圖4是依照本揭露的一實施例的執行分析模組的步驟流程圖。參考圖1以及圖4,處理器110可執行分析模組122,以實施本實施例的步驟S410~S480。處理器110可接續上述圖2實施例的步驟S210~S240來執行以下步驟S410~S480,以對模擬模組121對粉體堆疊模型進行燒熔模擬所產生的燒熔成型剖面進行分析。在步驟S410中,處理器110依據製程參數資料建立粉體堆疊模型,並且對粉體堆疊模型進行燒熔模擬,以產生燒熔成型剖面。對此,處理器110可例如執行如上述圖2實施例的步驟S210~S240的模擬方法,以產生燒熔成型剖面,但本揭露並不限於此。在步驟S420中,處理器110將決定燒熔成型剖面的多個表面粒子,以分析燒熔成型剖面的表面軌跡。在步驟S430中,處理器110計算所述多個表面粒子的多個表面軌跡斜率。FIG. 4 is a flow chart of steps for executing an analysis module according to an embodiment of the disclosure. Referring to FIG. 1 and FIG. 4 , the processor 110 can execute the analysis module 122 to implement steps S410 - S480 of this embodiment. The processor 110 may follow the steps S210-S240 of the above-mentioned embodiment in FIG. 2 to execute the following steps S410-S480, so as to analyze the melting profile generated by the simulation module 121 performing melting simulation on the powder stacking model. In step S410, the processor 110 establishes a powder stacking model according to the process parameter data, and performs a melting simulation on the powder stacking model to generate a melting molding profile. In this regard, the processor 110 may, for example, execute the simulation method of steps S210 - S240 in the embodiment of FIG. 2 to generate a fused profile, but the present disclosure is not limited thereto. In step S420 , the processor 110 determines a plurality of surface particles of the fused profile to analyze the surface trajectory of the fused profile. In step S430, the processor 110 calculates a plurality of surface trajectory slopes of the plurality of surface particles.

在步驟S440中,處理器110依據所述多個表面軌跡斜率來判斷燒熔成型剖面是否完全燒熔。若是,則處理器110執行步驟S450,以繼續分析。若否,則處理器110執行步驟S480,以結束本次製程參數資料鑑別或執行下一筆製程參數資料鑑別。值得注意的是,在本實施例中,處理器110可例如藉由判斷軌跡斜率變化是否存在反曲點,來定義製程參數資料為有效製程參數資料或無效製程參數資料。具體而言,若軌跡斜率變化未存在反曲點,則處理器110判斷燒熔成型剖面為完全燒熔,並且定義此製程參數資料為有效製程參數資料。反之,若軌跡斜率變化存在反曲點,則處理器110判斷燒熔成型剖面為未完全燒熔,並且定義製程參數資料為無效製程參數資料。In step S440 , the processor 110 determines whether the melted profile is completely melted according to the slopes of the multiple surface trajectories. If yes, the processor 110 executes step S450 to continue the analysis. If not, the processor 110 executes step S480 to end the identification of the process parameter data or execute the identification of the next process parameter data. It should be noted that, in this embodiment, the processor 110 can define the process parameter data as valid process parameter data or invalid process parameter data by determining whether there is an inflection point in the trajectory slope change, for example. Specifically, if there is no inflection point in the change of the trajectory slope, the processor 110 judges that the melting profile is completely melted, and defines the process parameter data as valid process parameter data. On the contrary, if there is an inflection point in the change of the trajectory slope, the processor 110 judges that the melting profile is not completely melted, and defines the process parameter data as invalid process parameter data.

在步驟S450中,處理器110判斷燒熔軌跡長寬比以定義製程參數資料的類型。在本實施例中,若燒熔軌跡長寬比(h/w)大於第一長寬比門檻值(h/w>a1),則處理器110執行步驟S461。在步驟S461中,處理器110定義此製程參數資料為高品質製程參數資料類型。若燒熔軌跡長寬比小於或等於第一長寬比門檻值,並且大於或等於第二長寬比門檻值(a1≧h/w≧a2),則處理器110執行步驟S462。在步驟S462中,處理器110定義此製程參數資料為平衡製程參數資料類型。若燒熔軌跡長寬比小於第二長寬比門檻值,並且大於第三長寬比門檻值(a2>h/w>a3),則處理器110執行步驟S463。在步驟S463中,處理器110定義此製程參數資料為高效率製程參數資料類型。值得注意的是,第一長寬比門檻值(a1)大於第二長寬比門檻值(a2),並且第二長寬比門檻值(a2)大於第三長寬比門檻值(a3)。In step S450, the processor 110 determines the aspect ratio of the melting track to define the type of the process parameter data. In this embodiment, if the aspect ratio (h/w) of the melting track is greater than the first aspect ratio threshold (h/w>a1), the processor 110 executes step S461. In step S461, the processor 110 defines the process parameter data as a high-quality process parameter data type. If the aspect ratio of the melting track is less than or equal to the first aspect ratio threshold and greater than or equal to the second aspect ratio threshold (a1≧h/w≧a2), the processor 110 executes step S462. In step S462, the processor 110 defines the process parameter data as a balanced process parameter data type. If the aspect ratio of the melting track is less than the second aspect ratio threshold and greater than the third aspect ratio threshold (a2>h/w>a3), the processor 110 executes step S463. In step S463, the processor 110 defines the process parameter data as a high-efficiency process parameter data type. It should be noted that the first aspect ratio threshold ( a1 ) is greater than the second aspect ratio threshold ( a2 ), and the second aspect ratio threshold ( a2 ) is greater than the third aspect ratio threshold ( a3 ).

當處理器110執行步驟S461、步驟S462或步驟S463結束後,處理器110可選擇執行步驟S470,或選擇直接輸出此製程參數資料的鑑別結果。在步驟S470中,處理器110將此製程參數資料的鑑別結果記錄至製程參數資料表。步驟S470可由處理器110依不同分析情境或需求來選擇性執行之。最後,在步驟S480中,處理器110結束本次製程參數資料鑑別或執行下一筆製程參數資料鑑別。舉例而言,處理器110可重新執行如圖2實施例的步驟S210~S240,以產生對應於另一筆製程參數資料的新的燒熔成型剖面,再接著執行本實施例的步驟S410~S480來分析新的燒熔成型剖面,以反覆鑑別例如對應於製程參數資料表當中的多筆製程參數資料。然而,關於本實施例的製程參數資料表,將由以下圖7實施例來詳細說明之。After the processor 110 finishes executing step S461, step S462 or step S463, the processor 110 may choose to execute step S470, or choose to directly output the identification result of the process parameter data. In step S470, the processor 110 records the identification result of the process parameter data into a process parameter data table. Step S470 can be selectively executed by the processor 110 according to different analysis scenarios or requirements. Finally, in step S480, the processor 110 ends the identification of the current process parameter data or executes the identification of the next process parameter data. For example, the processor 110 may re-execute steps S210-S240 in the embodiment shown in FIG. 2 to generate a new fused profile corresponding to another process parameter data, and then execute steps S410-S480 in this embodiment to The new fused profile is analyzed to repeatedly identify, for example, corresponding to multiple pieces of process parameter data in the process parameter data table. However, the process parameter data table of this embodiment will be described in detail with the embodiment of FIG. 7 below.

也就是說,本實施例的分析模組122可自動地分析模擬燒熔真實的粉體堆疊模型的燒融結果,以先藉由判斷表面軌跡斜率,來定義此製程參數資料是否為有效製程參數資料。接著,本實施例的分析模組122更藉由判斷燒熔成型剖面的燒熔軌跡長寬比,來自動地定義此製程參數資料的製程參數資料類型。並且,本實施例的分析模組122還將製程參數資料的鑑別結果自動地記錄至製程參數資料表,以讓使用者可例如運用製程參數資料表,來準確地進行的實際積層製造任務,並可獲得期望的積層製造結果。另外,以下將以圖5A至圖5C的一實施例的燒熔成型剖面以及圖6A至圖6C的另一實施例的燒熔成型剖面來分別舉例說明之。That is to say, the analysis module 122 of this embodiment can automatically analyze the sintering results of the simulated sintering real powder stacking model, and firstly determine whether the process parameter data is an effective process parameter by judging the slope of the surface trajectory material. Next, the analysis module 122 of this embodiment further automatically defines the process parameter data type of the process parameter data by judging the aspect ratio of the melting track of the melting molding section. Moreover, the analysis module 122 of this embodiment also automatically records the identification result of the process parameter data into the process parameter data table, so that the user can, for example, use the process parameter data table to accurately perform the actual lamination manufacturing task, and The desired additive manufacturing results can be obtained. In addition, the following will use the fusion molding cross section of one embodiment in FIGS. 5A to 5C and the fusion molding cross section of another embodiment in FIGS. 6A to 6C to illustrate respectively.

圖5A是依照本揭露的一實施例的燒熔成型剖面的剖面結構示意圖。圖5B是依照本揭露的圖5A的燒熔成型剖面的表面軌跡變化的示意圖。圖5C是依照本揭露的圖5A的燒熔成型剖面的表面斜率變化的示意圖。參考圖1、4以及圖5A至圖5C,並且搭配圖4的步驟流程來說明之。在步驟S410中,處理器110依據製程參數資料建立粉體堆疊模型,並且對粉體堆疊模型進行燒熔模擬,以由位於基板510上的粉體520所形成的粉體堆疊模型經雷射光燒熔後,產生如圖5A的燒熔成型剖面500,其中粉體520未完全燒熔。在步驟S420中,處理器110將決定燒熔成型剖面500的粉體520的多個表面粒子,以分析如圖5B所示的燒熔成型剖面500的表面軌跡530。在步驟S430中,處理器110計算如圖5C所示的對應於燒熔成型剖面500的所述多個表面粒子的多個表面軌跡斜率的表面軌跡斜率變化540。在步驟S440中,處理器110依據如圖5C所示的表面軌跡斜率變化540來判斷燒熔成型剖面500是否完全燒熔。在本實施例中,由於圖5C所示的表面軌跡斜率變化540存在有反曲點,因此處理器110可判斷燒熔成型剖面500為未完全燒熔,並且定義此製程參數資料為無效製程參數資料。並且,處理器110執行步驟S480,以結束本次製程參數資料鑑別或執行下一筆製程參數資料鑑別。因此,圖4實施例的執行分析模組的步驟流程可有效地鑑別製程參數資料。FIG. 5A is a schematic cross-sectional structure diagram of a fusion molding cross-section according to an embodiment of the present disclosure. FIG. 5B is a schematic diagram of surface track variation of the fused profile of FIG. 5A according to the present disclosure. FIG. 5C is a schematic diagram of the surface slope variation of the melt-molded profile of FIG. 5A according to the present disclosure. Referring to FIG. 1, 4 and FIG. 5A to FIG. 5C, and with the step flow of FIG. 4, it will be described. In step S410, the processor 110 establishes a powder stacking model according to the process parameter data, and performs a melting simulation on the powder stacking model, so that the powder stacking model formed by the powder 520 on the substrate 510 is laser burnt After melting, a fused profile 500 as shown in FIG. 5A is produced, wherein the powder 520 is not completely fused. In step S420 , the processor 110 determines a plurality of surface particles of the powder 520 of the fused profile 500 to analyze the surface trajectory 530 of the fused profile 500 as shown in FIG. 5B . In step S430 , the processor 110 calculates surface trajectory slope changes 540 corresponding to the surface trajectory slopes of the plurality of surface particles of the fused-molded profile 500 as shown in FIG. 5C . In step S440 , the processor 110 determines whether the melt-molded section 500 is completely melted or not according to the slope change 540 of the surface trajectory as shown in FIG. 5C . In this embodiment, since there is an inflection point in the slope change 540 of the surface trajectory shown in FIG. 5C, the processor 110 can judge that the melting profile 500 is not completely melted, and define this process parameter data as an invalid process parameter. material. Moreover, the processor 110 executes step S480 to end the identification of the current process parameter data or execute the next process parameter identification. Therefore, the step flow of executing the analysis module in the embodiment of FIG. 4 can effectively identify the process parameter data.

圖6A是依照本揭露的另一實施例的燒熔成型剖面的剖面結構示意圖。圖6B是依照本揭露的圖6A的燒熔成型剖面的表面軌跡變化的示意圖。圖6C是依照本揭露的圖6A的燒熔成型剖面的表面斜率變化的示意圖。參考圖1、4以及圖6A至圖6C,並且搭配圖4的步驟流程來說明之。在步驟S410中,處理器110依據製程參數資料建立粉體堆疊模型,並且對粉體堆疊模型進行燒熔模擬,以由位於基板610上的粉體620所形成的粉體堆疊模型經雷射光燒熔後,產生如圖6A的燒熔成型剖面600,其中粉體620已完全燒熔。在步驟S420中,處理器110將決定燒熔成型剖面600的粉體620的多個表面粒子,以分析如圖6B所示的燒熔成型剖面600的表面軌跡630。在步驟S430中,處理器110計算如圖6C所示的對應於燒熔成型剖面600的所述多個表面粒子的多個表面軌跡斜率的表面軌跡斜率變化640。在步驟S440中,處理器110依據如圖6C所示的表面軌跡斜率變化640來判斷燒熔成型剖面600是否完全燒熔。在本實施例中,由於圖6C所示的表面軌跡斜率變化640未存在反曲點,因此處理器110可有效地判斷燒熔成型剖面600為已完全燒熔,並且定義此製程參數資料為有效製程參數資料。接著,在步驟S450中,處理器110判斷燒熔成型剖面600的燒熔軌跡長寬比以定義對應於燒熔成型剖面600的製程參數資料的類型,其中燒熔成型剖面600的長寬比為高度h與寬度w的比值。並且,在步驟S470中,處理器110將對應於燒熔成型剖面600的製程參數資料的鑑別結果記錄至製程參數資料表。因此,圖4實施例的執行分析模組的步驟流程可有效地鑑別製程參數資料,並且還可有效地分類製程參數資料的類型。FIG. 6A is a schematic cross-sectional structure diagram of a fusion molding cross-section according to another embodiment of the present disclosure. FIG. 6B is a schematic diagram of surface track variation of the fused profile of FIG. 6A according to the present disclosure. FIG. 6C is a schematic diagram of the surface slope variation of the fused profile of FIG. 6A according to the present disclosure. Referring to FIG. 1, 4 and FIG. 6A to FIG. 6C, and with the step flow of FIG. 4, it will be described. In step S410, the processor 110 establishes a powder stacking model according to the process parameter data, and performs a melting simulation on the powder stacking model, so that the powder stacking model formed by the powder 620 on the substrate 610 is laser burnt After melting, a fused profile 600 as shown in FIG. 6A is generated, wherein the powder 620 has been completely fused. In step S420 , the processor 110 determines a plurality of surface particles of the powder 620 of the fused profile 600 to analyze the surface trajectory 630 of the fused profile 600 as shown in FIG. 6B . In step S430 , the processor 110 calculates surface track slope changes 640 corresponding to the surface track slopes of the plurality of surface particles of the fused-molded profile 600 as shown in FIG. 6C . In step S440 , the processor 110 determines whether the melt-molded section 600 is completely melted according to the surface track slope change 640 shown in FIG. 6C . In this embodiment, since there is no inflection point in the surface trajectory slope change 640 shown in FIG. 6C , the processor 110 can effectively determine that the melting profile 600 has been completely melted, and define this process parameter data as valid Process parameter information. Next, in step S450, the processor 110 judges the aspect ratio of the melting track of the melting molding section 600 to define the type of process parameter data corresponding to the melting molding section 600, wherein the aspect ratio of the melting molding section 600 is The ratio of height h to width w. Moreover, in step S470 , the processor 110 records the identification result of the process parameter data corresponding to the fused molding profile 600 into the process parameter data table. Therefore, the step flow of executing the analysis module in the embodiment of FIG. 4 can effectively identify the process parameter data, and can also effectively classify the types of the process parameter data.

圖7是依照本揭露的一實施例的製程參數資料表的示意圖。參考圖1以及圖7,本揭露各實施例所述的製程參數資料表可如圖7所示的製程參數資料表700。在本實施例中,製程參數資料表700可以檔案資料的形式儲存在記憶體120中,或是透過顯示設備來顯示,或是顯示於特定介面中,其中特定介面可例如由製程參數鑑別程式所顯示的操作介面。在本實施例中,製程參數資料表700的列標題為雷射掃描速度V(mm/s),並且行標題為雷射功率P(W)。也就是說,製程參數鑑別系統100可分析製程參數資料表700中的每一個製程參數組(一個雷射掃描速度搭配一個雷射功率)。並且,每一個製程參數組可先經由模擬模組121來產生對應的燒熔成型剖面,並且再接著經由分析模組122分析製程參數資料類型。FIG. 7 is a schematic diagram of a process parameter data table according to an embodiment of the disclosure. Referring to FIG. 1 and FIG. 7 , the process parameter data table described in each embodiment of the present disclosure may be the process parameter data table 700 shown in FIG. 7 . In this embodiment, the process parameter data table 700 can be stored in the memory 120 in the form of file data, or displayed through a display device, or displayed in a specific interface, wherein the specific interface can be, for example, created by a process parameter identification program. The displayed operation interface. In this embodiment, the column title of the process parameter data table 700 is laser scanning speed V (mm/s), and the row title is laser power P (W). That is to say, the process parameter identification system 100 can analyze each process parameter group in the process parameter data table 700 (one laser scanning speed and one laser power). Moreover, each process parameter group can firstly generate a corresponding melting profile through the simulation module 121 , and then analyze the type of process parameter data through the analysis module 122 .

在本實施例中,標記721(打叉)為用於標示對應的製程參數資料為無效製程參數資料。舉例而言,雷射掃描速度800mm/s以及雷射功率200w所產生的燒熔成型剖面未完全燒熔,因此此組製程參數屬於無效製程參數資料。然而,在本實施例中,標記722(方塊)為用於標示對應的製程參數資料為有效製程參數資料,其中對應的燒熔成型剖面可完全燒熔。並且,標記722為用於標示對應的製程參數資料屬於平衡製程參數資料。以此類推。在本實施例中,標記723(圓形)為標示對應的製程參數資料為有效製程參數資料,其中對應的燒熔成型剖面可完全燒熔。並且,標記723用於為標示對應的製程參數資料屬於高品質製程參數資料。在本實施例中,標記724(三角形)為標示對應的製程參數資料為有效製程參數資料,其中對應的燒熔成型剖面可完全燒熔。並且,標記724用於為標示對應的製程參數資料屬於高效率製程參數資料。In this embodiment, the mark 721 (crossed) is used to mark the corresponding process parameter data as invalid process parameter data. For example, the melting profile produced by the laser scanning speed of 800mm/s and the laser power of 200w is not completely melted, so this set of process parameters is an invalid process parameter data. However, in this embodiment, the marks 722 (squares) are used to indicate that the corresponding process parameter data is an effective process parameter data, wherein the corresponding melting profile can be completely melted. Moreover, the mark 722 is used to indicate that the corresponding process parameter data belongs to the balanced process parameter data. and so on. In this embodiment, the mark 723 (circle) indicates that the corresponding process parameter data is an effective process parameter data, and the corresponding melting molding profile can be completely melted. Moreover, the mark 723 is used to indicate that the corresponding process parameter data belongs to high-quality process parameter data. In this embodiment, the mark 724 (triangle) indicates that the corresponding process parameter data is an effective process parameter data, and the corresponding melting molding profile can be completely melted. Moreover, the mark 724 is used to indicate that the corresponding process parameter data belongs to the high-efficiency process parameter data.

也就是說,在圖7所示的製程參數資料表700的多個有效製程參數資料可形成如圖7的有效製程參數資料視窗710。並且,在本實施例中,處理器110在製程參數資料表700中的有效製程參數資料視窗710中進一步定義多個製程參數資料的製程參數資料類型。然而,本揭露的製程參數資料表並不限於圖7。在一實施例中,製程參數資料表亦可包括其他類型的製程參數資料。That is to say, a plurality of valid process parameter data in the process parameter data table 700 shown in FIG. 7 can form a valid process parameter data window 710 as shown in FIG. 7 . Moreover, in this embodiment, the processor 110 further defines the process parameter data types of the plurality of process parameter data in the effective process parameter data window 710 in the process parameter data table 700 . However, the process parameter data table of the present disclosure is not limited to FIG. 7 . In an embodiment, the process parameter data table may also include other types of process parameter data.

換言之,綜合上述各實施例,使用者只需建立或輸入如圖7的製程參數資料表700中的製程參數資料至製程參數鑑別系統100。製程參數鑑別系統100將可藉由自動地執行上述如圖2及圖4實施例的步驟流程,即可逐一自動地鑑別製程參數資料表700的多筆製程參數資料是否有效,並且還可自動地鑑別有效製程參數資料的資料類型。In other words, based on the above embodiments, the user only needs to create or input the process parameter data in the process parameter data table 700 shown in FIG. 7 to the process parameter identification system 100 . The process parameter identification system 100 can automatically identify whether the multiple process parameter data in the process parameter data table 700 are valid one by one by automatically executing the above-mentioned steps in the embodiment shown in FIG. 2 and FIG. 4 , and can also automatically A data type that identifies valid process parameter data.

圖8是依照本揭露的一實施例的分析燒熔成型剖面的表面粒子的步驟流程圖。參考圖1以及圖8,本揭露的各實施例所述的分析燒熔成型剖面的表面粒子的方式可如圖8所示的步驟流程,例如上述圖4實施例的步驟S420可進一步包括本實施例的步驟S810~S850。在步驟S810中,處理器110逐一計算燒熔成型剖面的多個粒子的各組局部粒子密度。其中,對應於個別粒子的各組局部粒子密度(ni )可如由以下公式(1)來決定,其中符號mj 為局部粒子質量,wij 為權重以及ρj 為材料密度。權重(wij )是依據某一粒子與周圍粒子分布關係來決定之,並且周圍粒子分布關係可例如是高斯分布。

Figure 02_image001
........................(1)FIG. 8 is a flow chart of steps for analyzing surface particles of a fused profile according to an embodiment of the present disclosure. Referring to FIG. 1 and FIG. 8 , the method of analyzing the surface particles of the melt-molded cross-section described in each embodiment of the present disclosure may follow the steps shown in FIG. 8 , for example, step S420 of the above-mentioned embodiment in FIG. Example steps S810~S850. In step S810 , the processor 110 calculates the local particle densities of each group of the plurality of particles in the fused profile one by one. Wherein, each group of local particle densities (n i ) corresponding to individual particles can be determined by the following formula (1), wherein the symbol m j is the local particle mass, w ij is the weight and ρ j is the material density. The weight (w ij ) is determined according to the distribution relationship between a certain particle and the surrounding particles, and the distribution relationship of the surrounding particles may be, for example, a Gaussian distribution.
Figure 02_image001
........................(1)

在步驟S820中,處理器110判斷局部粒子密度是否大於第一密度門檻值,並且小於或等於第二密度門檻值(na >ni ≦nb ),以判斷所述多個粒子的其中之一為表面粒子。若是,則處理器110執行步驟S831。在步驟S831中,處理器110判斷所述多個粒子的其中之一為表面粒子。若否,則處理器110執行步驟S832。在步驟S832中,處理器110判斷所述多個粒子的其中之一為內部粒子。當處理器110執行步驟S831或步驟S832結束後,處理器110執行步驟S840。在步驟S840中,處理器110判斷是否燒熔成型剖面的所述多個粒子已判斷完成。若是,則處理器110執行步驟S850。在步驟S850中,處理器110結束表面粒子的判斷,並接續執行表面粒子的分析,例如接續執行上述圖4實施例的步驟S430。或否,則處理器110重新執行步驟S810,以繼續計算燒熔成型剖面的所述多個粒子的其中之另一。因此,本實施例的分析燒熔成型剖面的表面粒子的步驟流程可有效地判斷燒熔成型剖面的表面軌跡,以供後續燒熔結果分析。In step S820, the processor 110 determines whether the local particle density is greater than the first density threshold and less than or equal to the second density threshold (n a >n i ≦n b ), so as to determine whether one of the plurality of particles One is surface particles. If yes, the processor 110 executes step S831. In step S831, the processor 110 determines that one of the plurality of particles is a surface particle. If not, the processor 110 executes step S832. In step S832, the processor 110 determines that one of the plurality of particles is an internal particle. After the processor 110 finishes executing step S831 or step S832, the processor 110 executes step S840. In step S840, the processor 110 determines whether the determination of the plurality of particles of the fused-molded section is completed. If yes, the processor 110 executes step S850. In step S850, the processor 110 ends the determination of the surface particles, and continues to perform the analysis of the surface particles, for example, continues to perform the step S430 of the above-mentioned embodiment in FIG. 4 . If not, the processor 110 re-executes step S810 to continue calculating the other one of the plurality of particles of the fused profile. Therefore, the step process of analyzing the surface particles of the fused-molded section in this embodiment can effectively determine the surface track of the fused-molded section for subsequent analysis of the fused result.

圖9是依照本揭露的一實施例的製程參數鑑別方法的步驟流程圖。參考圖1以及圖9,本實施例的製程參數鑑別方法可至少適用於圖1實施例的製程參數鑑別系統100。處理器110可執行記憶體120當中的模擬模組121以及分析模組122,以實施步驟S910~S940。在步驟S910中,處理器110依據製程參數資料來模擬粉體堆疊結構的燒熔成型剖面。在步驟S920中,處理器110分析燒熔成型剖面,並決定燒熔成型剖面的多個表面粒子。在步驟S930中,處理器110計算燒熔成型剖面的所述多個表面粒子的多個表面軌跡斜率。在步驟S940中,處理器110依據所述多個表面軌跡斜率來判斷燒熔成型剖面是否完全燒熔,以定義製程參數資料是否為有效製程參數資料。因此,本實施例的製程參數鑑別方法可藉由模擬真實的粉體堆疊結構的燒熔成型剖面,來有效地鑑別製程參數資料。FIG. 9 is a flowchart of steps of a process parameter identification method according to an embodiment of the present disclosure. Referring to FIG. 1 and FIG. 9 , the process parameter identification method of this embodiment is at least applicable to the process parameter identification system 100 of the embodiment of FIG. 1 . The processor 110 can execute the simulation module 121 and the analysis module 122 in the memory 120 to implement steps S910-S940. In step S910 , the processor 110 simulates the melting profile of the powder stack structure according to the process parameter data. In step S920, the processor 110 analyzes the fused profile and determines a plurality of surface particles of the fused profile. In step S930, the processor 110 calculates a plurality of surface trajectory slopes of the plurality of surface particles of the fused profile. In step S940 , the processor 110 judges whether the melting profile is completely melted according to the slopes of the plurality of surface trajectories, so as to define whether the process parameter data is a valid process parameter data. Therefore, the process parameter identification method of this embodiment can effectively identify the process parameter data by simulating the actual powder stacked structure fused and formed section.

另外,關於本實施例所述的製程參數鑑別方法以及製程參數鑑別系統100的詳細分析方式、技術細節以及實施流程可參考上述圖1至圖8實施例的說明而獲致足夠的教示、建議以及實施說明,因此在此不再贅述。In addition, for the detailed analysis method, technical details and implementation process of the process parameter identification method and the process parameter identification system 100 described in this embodiment, reference can be made to the descriptions of the embodiments in FIGS. 1 to 8 to obtain sufficient teachings, suggestions and implementations. description, and therefore will not be repeated here.

綜上所述,本揭露的用於雷射積層製造的參數鑑別方法以及參數鑑別系統可藉由自動地分析模擬真實情況的粉體堆疊結構的燒熔成型剖面是否完全燒熔,以自動且有效地定義對應於此燒熔成型剖面的製程參數資料是否為有效製程參數資料。並且,本揭露的參數鑑別方法以及參數鑑別系統還進一步針對有效製程參數資料來進行分析,以判斷有效製程參數資料的製程參數資料類型。此外,本揭露的參數鑑別方法以及參數鑑別系統還可將前述分析結果進一步自動地記錄至製程參數資料表當中,以讓使用者可透過運用鑑別完成後的製程參數資料表,有效且正確地掌握適當製程參數來進行雷射積層製造。To sum up, the parameter identification method and parameter identification system for laser lamination manufacturing disclosed in this disclosure can automatically and effectively analyze whether the fused molding section of the powder stack structure that simulates the real situation is completely fused. Clearly define whether the process parameter data corresponding to the fused molding profile is valid process parameter data. Moreover, the parameter identification method and the parameter identification system disclosed herein further analyze the effective process parameter data to determine the type of the effective process parameter data. In addition, the parameter identification method and parameter identification system disclosed in this disclosure can further automatically record the aforementioned analysis results into the process parameter data sheet, so that users can effectively and correctly grasp the Appropriate process parameters for laser lamination manufacturing.

雖然本揭露已以實施例揭露如上,然其並非用以限定本揭露,任何所屬技術領域中具有通常知識者,在不脫離本揭露的精神和範圍內,當可作些許的更動與潤飾,故本揭露的保護範圍當視後附的申請專利範圍所界定者為準。Although the present disclosure has been disclosed above with embodiments, it is not intended to limit the present disclosure. Anyone with ordinary knowledge in the technical field may make some changes and modifications without departing from the spirit and scope of the present disclosure. The scope of protection of this disclosure should be defined by the scope of the appended patent application.

100:製程參數鑑別系統 110:處理器 120:記憶體 121:模擬模組 122:分析模組 300:粉體堆疊模型 310、510、610:基板 320、520、620:粉體 500、600:燒熔成型剖面 530、630:表面軌跡 540、640:表面軌跡斜率變化 700:製程參數資料 710:有效製程參數資料視窗 721、722、723、724:標記 D1、D2、D3:方向 h:高度 w:寬度 S210~S240、S410~S480、S810~S850、S910~S940:步驟100: Process parameter identification system 110: Processor 120: memory 121: Analog module 122: Analysis module 300: Powder stacking model 310, 510, 610: Substrate 320, 520, 620: powder 500, 600: melting profile 530, 630: surface trajectory 540, 640: Surface track slope change 700: Process parameter information 710: Effective process parameter data window 721, 722, 723, 724: marking D1, D2, D3: direction h: height w: width S210~S240, S410~S480, S810~S850, S910~S940: steps

圖1是依照本揭露的一實施例的製程參數鑑別系統的方塊示意圖。 圖2是依照本揭露的一實施例的執行模擬模組的步驟流程圖。 圖3是依照本揭露的一實施例的粉體堆疊模型的剖面結構示意圖。 圖4是依照本揭露的一實施例的執行分析模組的步驟流程圖。 圖5A是依照本揭露的一實施例的燒熔剖面結構示意圖。 圖5B是依照本揭露的圖5A的燒熔成型剖面的表面軌跡變化的示意圖。 圖5C是依照本揭露的圖5A的燒熔成型剖面的表面斜率變化的示意圖。 圖6A是依照本揭露的另一實施例的燒熔剖面結構示意圖。 圖6B是依照本揭露的圖6A的燒熔成型剖面的表面軌跡變化的示意圖。 圖6C是依照本揭露的圖6A的燒熔成型剖面的表面斜率變化的示意圖。 圖7是依照本揭露的一實施例的製程參數資料表的示意圖。 圖8是依照本揭露的一實施例的分析燒熔成型剖面的表面粒子的步驟流程圖。 圖9是依照本揭露的一實施例的製程參數鑑別方法的步驟流程圖。FIG. 1 is a schematic block diagram of a process parameter identification system according to an embodiment of the present disclosure. FIG. 2 is a flow chart of steps for executing a simulation module according to an embodiment of the disclosure. FIG. 3 is a schematic cross-sectional structure diagram of a powder stacking model according to an embodiment of the present disclosure. FIG. 4 is a flow chart of steps for executing an analysis module according to an embodiment of the disclosure. FIG. 5A is a schematic diagram of a fused cross-sectional structure according to an embodiment of the present disclosure. FIG. 5B is a schematic diagram of surface track variation of the fused profile of FIG. 5A according to the present disclosure. FIG. 5C is a schematic diagram of the surface slope variation of the melt-molded profile of FIG. 5A according to the present disclosure. FIG. 6A is a schematic diagram of a fused cross-sectional structure according to another embodiment of the present disclosure. FIG. 6B is a schematic diagram of surface track variation of the fused profile of FIG. 6A according to the present disclosure. FIG. 6C is a schematic diagram of the surface slope variation of the fused profile of FIG. 6A according to the present disclosure. FIG. 7 is a schematic diagram of a process parameter data table according to an embodiment of the disclosure. FIG. 8 is a flow chart of steps for analyzing surface particles of a fused profile according to an embodiment of the present disclosure. FIG. 9 is a flowchart of steps of a process parameter identification method according to an embodiment of the present disclosure.

S910~S940:步驟S910~S940: Steps

Claims (21)

一種用於雷射積層製造的製程參數鑑別方法,包括:依據一製程參數資料來模擬一粉體堆疊結構的一燒熔成型剖面;分析該燒熔成型剖面,並決定該燒熔成型剖面的多個表面粒子;計算對應於該燒熔成型剖面的該些表面粒子的多個表面軌跡斜率;以及依據該些表面軌跡斜率來判斷該燒熔成型剖面是否完全燒熔,以定義該製程參數資料是否為一有效製程參數資料,其中依據該製程參數資料來模擬該粉體堆疊結構的該燒熔成型剖面的步驟包括:依據該製程參數資料來設定一雷射光源以及建立具有該粉體堆疊結構的一粉體堆疊模型;以及模擬該雷射光源燒熔具有該粉體堆疊結構的該粉體堆疊模型,以產生一單線燒熔軌跡的該燒熔成型剖面。 A process parameter identification method for laser lamination manufacturing, comprising: simulating a fused molding section of a powder stacked structure according to a process parameter data; analyzing the fused molding section, and determining the number of the fused molding section surface particles; calculate a plurality of surface trajectory slopes of the surface particles corresponding to the fused molding section; and judge whether the fused molding section is completely melted according to the surface trajectory slopes, so as to define whether the process parameter data is It is an effective process parameter data, wherein the step of simulating the melting profile of the powder stack structure according to the process parameter data includes: setting a laser light source according to the process parameter data and establishing a laser light source with the powder stack structure a powder stacking model; and simulating the laser light source ablating the powder stacking model with the powder stacking structure, so as to generate the ablation molding profile of a single-line ablation track. 如申請專利範圍第1項所述的製程參數鑑別方法,其中該粉體堆疊結構為一最密堆積排列。 The process parameter identification method described in item 1 of the scope of the patent application, wherein the powder stacking structure is a close-packed arrangement. 如申請專利範圍第1項所述的製程參數鑑別方法,其中模擬該雷射光源燒熔具有該粉體堆疊結構的該粉體堆疊模型的步驟包括:依據該製程參數資料對該粉體堆疊模型執行一積層製造的多 物理耦合分析,以模擬該雷射光源燒熔該粉體堆疊模型。 The process parameter identification method described in item 1 of the scope of the patent application, wherein the step of simulating the laser light source melting the powder stack model with the powder stack structure includes: according to the process parameter data, the powder stack model Executing an Additive Manufacturing Multi- Physical coupling analysis to simulate the laser light source melting the powder stack model. 如申請專利範圍第1項所述的製程參數鑑別方法,其中該製程參數資料包括用於模擬該雷射光源燒熔該粉體堆疊模型的一雷射掃描速度以及一雷射功率。 The process parameter identification method described in claim 1 of the patent application, wherein the process parameter information includes a laser scanning speed and a laser power for simulating the laser light source melting the powder stacking model. 如申請專利範圍第1項所述的製程參數鑑別方法,其中該製程參數資料包括該雷射光源的一雷射光束類型以及一光斑尺寸。 The process parameter identification method described in claim 1 of the patent application, wherein the process parameter information includes a laser beam type and a spot size of the laser light source. 如申請專利範圍第1項所述的製程參數鑑別方法,其中該製程參數資料包括該粉體堆疊結構的一粉體粒徑分布曲線以及一平均粉體粒徑。 The process parameter identification method described in item 1 of the patent application, wherein the process parameter data includes a powder particle size distribution curve and an average powder particle size of the powder stacked structure. 如申請專利範圍第1項所述的製程參數鑑別方法,其中分析該燒熔成型剖面,並決定該燒熔成型剖面的該些表面粒子的步驟包括:計算該燒熔成型剖面的多個粒子的多組局部粒子密度;以及分別判斷對應該些粒子的個別該組局部粒子密度是否大於一第一密度門檻值並且小於或等於一第二密度門檻值,以決定該些粒子是否為該燒熔成型剖面的該些表面粒子。 The method for identifying process parameters as described in item 1 of the scope of the patent application, wherein the step of analyzing the fused-molded section and determining the surface particles of the fused-molded section includes: calculating the number of particles of the fused-molded section Multiple groups of local particle densities; and respectively judging whether the individual group of local particle densities corresponding to the particles are greater than a first density threshold and less than or equal to a second density threshold, so as to determine whether the particles are melt-molded The surface particles of the section. 如申請專利範圍第1項所述的製程參數鑑別方法,其中依據該些表面軌跡斜率來判斷該燒熔成型剖面是否完全燒熔,以定義該製程參數資料是否為該有效製程參數資料的步驟包括:判斷該些表面軌跡斜率的一軌跡斜率變化是否存在一反曲點;若該軌跡斜率變化未存在該反曲點,則判斷該燒熔成型剖面 為完全燒熔,並且定義該製程參數資料為該有效製程參數資料;以及若該軌跡斜率變化存在該反曲點,則判斷該燒熔成型剖面為未完全燒熔,並且定義該製程參數資料為一無效製程參數資料。 For the process parameter identification method described in item 1 of the scope of the patent application, the step of judging whether the fused molding section is completely fused according to the slope of the surface trajectory to define whether the process parameter data is the effective process parameter data includes: : Judging whether there is an inflection point in a track slope change of the surface track slope; if there is no inflection point in the track slope change, then judge the melting profile It is completely melted, and the process parameter data is defined as the effective process parameter data; and if the trajectory slope change has the inflection point, it is judged that the melting molding profile is not completely melted, and the process parameter data is defined as 1. Invalid process parameter data. 如申請專利範圍第1項所述的製程參數鑑別方法,更包括:當該製程參數資料為該有效製程參數資料時,計算該燒熔成型剖面的一燒熔軌跡長寬比;判斷該燒熔軌跡長寬比是否大於一第一長寬比門檻值,以定義該製程參數資料為一高品質製程參數資料類型;判斷該燒熔軌跡長寬比是否小於或等於該第一長寬比門檻值並且大於或等於一第二長寬比門檻值,以定義該製程參數資料為一平衡製程參數資料類型;以及判斷該燒熔軌跡長寬比是否小於該第二長寬比門檻值並且大於一第三長寬比門檻值,以定義該製程參數資料為一高效率製程參數資料類型。 The process parameter identification method described in item 1 of the scope of the patent application further includes: when the process parameter data is the effective process parameter data, calculating the length-to-width ratio of a melting track of the melting molding section; judging the melting Whether the track aspect ratio is greater than a first aspect ratio threshold value to define the process parameter data as a high-quality process parameter data type; determine whether the melting track aspect ratio is less than or equal to the first aspect ratio threshold value and be greater than or equal to a second aspect ratio threshold value to define the process parameter data as a balanced process parameter data type; and determine whether the melting track aspect ratio is less than the second aspect ratio threshold value and greater than a first Three aspect ratio thresholds to define the process parameter data as a high-efficiency process parameter data type. 如申請專利範圍第9項所述的製程參數鑑別方法,更包括:依序判斷多個製程參數資料是否為該有效製程參數資料,以記錄至一製程參數資料表;以及分析經定義為該有效製程參數資料的該些製程參數資料的至少其中之一的該燒熔軌跡長寬比,以在該製程參數資料表中的一 有效製程參數資料視窗中進一步定義該些製程參數資料的至少其中之一的一製程參數資料類型。 The method for identifying process parameters as described in item 9 of the scope of the patent application further includes: sequentially judging whether a plurality of process parameter data is the valid process parameter data to record in a process parameter data table; and analyzing the defined valid process parameter data The aspect ratio of the melting track of at least one of the process parameter data of the process parameter data is represented by one of the process parameter data tables A process parameter data type of at least one of the process parameter data is further defined in the effective process parameter data window. 一種用於雷射積層製造的製程參數鑑別系統,包括:一記憶體,用以儲存一模擬模組以及一分析模組;以及一處理器,耦接該記憶體,並且用以執行該模擬模組以及該分析模組,其中該處理器執行該模擬模組以依據一製程參數資料來模擬一粉體堆疊結構的一燒熔成型剖面,並且該處理器執行該分析模組以分析該燒熔成型剖面,其中該處理器決定該燒熔成型剖面的多個表面粒子以計算對應於該燒熔成型剖面的該些表面粒子的多個表面軌跡斜率,並且該處理器依據該些表面軌跡斜率來判斷該燒熔成型剖面是否完全燒熔,以定義該製程參數資料為一有效製程參數資料,其中該處理器依據該製程參數資料來設定一雷射光源以及建立具有該粉體堆疊結構的一粉體堆疊模型,並且該處理器執行該模擬模組以模擬該雷射光源燒熔具有該粉體堆疊結構的該粉體堆疊模型,以產生一單線燒熔軌跡的該燒熔成型剖面。 A process parameter identification system for laser lamination manufacturing, comprising: a memory for storing a simulation module and an analysis module; and a processor coupled to the memory and used for executing the simulation model A group and the analysis module, wherein the processor executes the simulation module to simulate a fused molding profile of a powder stack structure according to a process parameter data, and the processor executes the analysis module to analyze the fused a shaped profile, wherein the processor determines a plurality of surface particles of the fused shaped profile to calculate a plurality of surface trajectory slopes corresponding to the surface particles of the fused shaped profile, and the processor calculates according to the surface trajectory slopes judging whether the melting molding section is completely melted to define the process parameter data as an effective process parameter data, wherein the processor sets a laser light source and establishes a powder with the powder stacking structure according to the process parameter data and the processor executes the simulation module to simulate the laser light source ablating the powder stacking model with the powder stacking structure, so as to generate the ablation profile of a single-line ablation trajectory. 如申請專利範圍第11項所述的製程參數鑑別系統,其中該粉體堆疊結構為一最密堆積排列。 The process parameter identification system described in item 11 of the scope of the patent application, wherein the powder stacking structure is a close-packed arrangement. 如申請專利範圍第11項所述的製程參數鑑別系統,其中該處理器依據該製程參數資料對該粉體堆疊模型執行一積層製造的多物理耦合分析,以模擬該雷射光源燒熔該粉體堆疊模型。 The process parameter identification system described in item 11 of the scope of the patent application, wherein the processor performs a multi-physics coupling analysis on the powder stacking model according to the process parameter data, so as to simulate the laser light source melting the powder Body stacking model. 如申請專利範圍第11項所述的製程參數鑑別系統,其中該製程參數資料包括用於模擬該雷射光源燒熔該粉體堆疊模型的一雷射掃描速度以及一雷射功率。 The process parameter identification system as described in claim 11 of the patent application, wherein the process parameter information includes a laser scanning speed and a laser power for simulating the laser light source melting the powder stack model. 如申請專利範圍第11項所述的製程參數鑑別系統,其中該製程參數資料包括該雷射光源的一雷射光束類型以及一光斑尺寸。 The process parameter identification system described in claim 11, wherein the process parameter information includes a laser beam type and a spot size of the laser light source. 如申請專利範圍第11項所述的製程參數鑑別系統,其中該製程參數資料包括該粉體堆疊結構的一粉體粒徑分布曲線以及一平均粉體粒徑。 The process parameter identification system as described in claim 11 of the patent application, wherein the process parameter data includes a powder particle size distribution curve and an average powder particle size of the powder stack structure. 如申請專利範圍第11項所述的製程參數鑑別系統,其中該處理器計算該燒熔成型剖面的多個局部粒子密度,並且該處理器分別判斷該些局部粒子密度是否大於一第一密度門檻值並且小於或等於一第二密度門檻值,以決定該燒熔成型剖面的該些表面粒子。 The process parameter identification system described in claim 11, wherein the processor calculates a plurality of local particle densities of the fused molding section, and the processor respectively determines whether the local particle densities are greater than a first density threshold value and less than or equal to a second density threshold to determine the surface particles of the fused profile. 如申請專利範圍第11項所述的製程參數鑑別系統,其中該處理器判斷該些表面軌跡斜率的一軌跡斜率變化是否存在一反曲點,其中若該軌跡斜率變化未存在該反曲點,則該處理器判斷該燒熔成型剖面為完全燒熔,並且定義該製程參數資料為該有效製程參數資料,其中若該軌跡斜率變化存在該反曲點,則該處理器判斷該燒熔成型剖面為未完全燒熔,並且定義該製程參數資料為一無效製 程參數資料。 The process parameter identification system described in claim 11 of the patent application, wherein the processor judges whether there is an inflection point in a track slope change of the surface track slopes, wherein if the track slope change does not exist the inflection point, Then the processor judges that the melting profile is completely melted, and defines the process parameter data as the effective process parameter data, wherein if the trajectory slope change has the inflection point, then the processor judges the melting profile It is not completely melted, and the process parameter data is defined as an invalid system Program parameter data. 如申請專利範圍第11項所述的製程參數鑑別系統,其中當該製程參數資料為該有效製程參數資料時,該處理器更計算該燒熔成型剖面的一燒熔軌跡長寬比,當該處理器判斷該燒熔軌跡長寬比大於一第一長寬比門檻值時,該處理器定義該製程參數資料為一高品質製程參數資料類型,當該處理器判斷該燒熔軌跡長寬比小於或等於該第一長寬比門檻值並且大於或等於一第二長寬比門檻值時,該處理器定義該製程參數資料為一平衡製程參數資料類型,當該處理器判斷該燒熔軌跡長寬比小於該第二長寬比門檻值並且大於一第三長寬比門檻值時,該處理器定義該製程參數資料為一高效率製程參數資料類型。 The process parameter identification system described in item 11 of the scope of the patent application, wherein when the process parameter data is the effective process parameter data, the processor further calculates a melting track aspect ratio of the melting molding section, when the When the processor determines that the aspect ratio of the melting track is greater than a first aspect ratio threshold, the processor defines the process parameter data as a high-quality process parameter data type, and when the processor determines that the aspect ratio of the melting track is When it is less than or equal to the first aspect ratio threshold value and greater than or equal to a second aspect ratio threshold value, the processor defines the process parameter data as a balanced process parameter data type, when the processor determines that the melting trajectory When the aspect ratio is less than the second aspect ratio threshold and greater than a third aspect ratio threshold, the processor defines the process parameter data as a high-efficiency process parameter data type. 如申請專利範圍第11項所述的製程參數鑑別系統,其中該處理器更依序判斷多個製程參數資料是否為該有效製程參數資料,以建立一製程參數資料表,其中該處理器分析經定義為該有效製程參數資料的該些製程參數資料的至少其中之一的該燒熔軌跡長寬比,以在該製程參數資料表中的一有效製程參數資料視窗中進一步定義該些製程參數資料的至少其中之一的一製程參數資料類型。 In the process parameter identification system described in item 11 of the scope of the patent application, wherein the processor further judges whether a plurality of process parameter data is the valid process parameter data in order to establish a process parameter data table, wherein the processor analyzes the defining as the aspect ratio of the melting track of at least one of the process parameter data of the effective process parameter data, so as to further define the process parameter data in an effective process parameter data window in the process parameter data table A process parameter data type of at least one of them. 一種非暫時性電腦可讀儲存媒體,用以儲存一模擬模組以及一分析模組以載入一電子裝置,其中該電子裝置依據該模擬模組以及該分析模組執行以下操作: 依據一製程參數資料來模擬一粉體堆疊結構的一燒熔成型剖面;分析該燒熔成型剖面,並決定該燒熔成型剖面的多個表面粒子;計算對應於該燒熔成型剖面的該些表面粒子的多個表面軌跡斜率;以及依據該些表面軌跡斜率來判斷該燒熔成型剖面是否完全燒熔,以定義該製程參數資料是否為一有效製程參數資料,其中依據該製程參數資料來模擬該粉體堆疊結構的該燒熔成型剖面的操作包括:依據該製程參數資料來設定一雷射光源以及建立具有該粉體堆疊結構的一粉體堆疊模型;以及模擬該雷射光源燒熔具有該粉體堆疊結構的該粉體堆疊模型,以產生一單線燒熔軌跡的該燒熔成型剖面。A non-transitory computer-readable storage medium for storing a simulation module and an analysis module for loading into an electronic device, wherein the electronic device performs the following operations according to the simulation module and the analysis module: Simulating a fused molding profile of a powder stacked structure according to a process parameter data; analyzing the fused molding profile, and determining a plurality of surface particles of the fused molding profile; calculating the fused molding profiles corresponding to the fused molding profile A plurality of surface trajectory slopes of the surface particles; and judging whether the melting profile is completely melted according to the surface trajectory slopes, so as to define whether the process parameter data is an effective process parameter data, wherein the simulation is performed according to the process parameter data The operation of the melting profile of the powder stacking structure includes: setting a laser light source according to the process parameter data and establishing a powder stacking model with the powder stacking structure; and simulating the melting of the laser light source with The powder stacking model of the powder stacking structure is used to generate the melting profile of a single-line melting track.
TW108147356A 2019-12-24 2019-12-24 Process parameter identification method and system thereof, and non-transitory computer readable storage medium TWI788613B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108147356A TWI788613B (en) 2019-12-24 2019-12-24 Process parameter identification method and system thereof, and non-transitory computer readable storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108147356A TWI788613B (en) 2019-12-24 2019-12-24 Process parameter identification method and system thereof, and non-transitory computer readable storage medium

Publications (2)

Publication Number Publication Date
TW202125301A TW202125301A (en) 2021-07-01
TWI788613B true TWI788613B (en) 2023-01-01

Family

ID=77908779

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108147356A TWI788613B (en) 2019-12-24 2019-12-24 Process parameter identification method and system thereof, and non-transitory computer readable storage medium

Country Status (1)

Country Link
TW (1) TWI788613B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105478765A (en) * 2015-12-12 2016-04-13 北京工业大学 Powder distributing method based on close stacking of metal 3D printing spherical powder
CN105598448A (en) * 2015-12-23 2016-05-25 中国科学院金属研究所 Control method of metal material laser 3D printing in-situ preheating temperature
CN106383968A (en) * 2016-11-02 2017-02-08 中国科学院金属研究所 Real-time simulation method for laser three-dimensional printing process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105478765A (en) * 2015-12-12 2016-04-13 北京工业大学 Powder distributing method based on close stacking of metal 3D printing spherical powder
CN105598448A (en) * 2015-12-23 2016-05-25 中国科学院金属研究所 Control method of metal material laser 3D printing in-situ preheating temperature
CN106383968A (en) * 2016-11-02 2017-02-08 中国科学院金属研究所 Real-time simulation method for laser three-dimensional printing process

Also Published As

Publication number Publication date
TW202125301A (en) 2021-07-01

Similar Documents

Publication Publication Date Title
WO2021185030A1 (en) Finite element simulation method and system, computer device, and storage medium
CN109783970B (en) Thermal analysis method for reliability simulation analysis of electronic product
JP6659407B2 (en) Analysis apparatus, analysis method and analysis program
CN109933488B (en) Chip temperature calculation method and chip temperature calculation device
CN110139149B (en) Video optimization method and device, and electronic equipment
CN108334692B (en) Method for predicting deformation of additive manufactured part
CN114175092A (en) Image-based defect detection in additive manufacturing
JP4389843B2 (en) Analysis mesh model generation device, analysis mesh model generation method, analysis mesh model generation program, and recording medium
WO2024020801A1 (en) Carbon emission calculation method, electronic device and readable medium
TWI788613B (en) Process parameter identification method and system thereof, and non-transitory computer readable storage medium
JP2010056691A5 (en)
US8832623B1 (en) Universal design layout compliance
US8577717B2 (en) Method and system for predicting shrinkable yield for business assessment of integrated circuit design shrink
US20170091356A1 (en) Subtractive Design for Heat Sink Improvement
JP2007199961A (en) Analysis method, analysis system, and analyzer program of finite element method analysis model
US8327196B2 (en) Identifying an optimized test bit pattern for analyzing electrical communications channel topologies
US10962958B2 (en) Library of predefined shapes for additive manufacturing processes
CN116579207A (en) Variable reliability model determining method for predicting and optimizing residual stress after welding and spot welding
JP2006252113A (en) Method, equipment and program for board analysis, and recording medium recorded with the program
CN107577867B (en) Analysis method for flow resistance performance of hard disk cartridge
JP3807911B2 (en) Analysis device, analysis method, and recording medium recording analysis program
Song et al. Automatic recognition and suppression of holes on mold bases for finite element applications
CN1525812A (en) Installation and treatment simulation program, method and system for the same purpose
TW202220847A (en) Parameter analysis method and parameter analysis system for metal additive manufacturing
TW202114851A (en) Parameter analysis method, electronic device, and non-transitory computer readable storage medium