TWI748226B - Photo sensor filtron and methods for forming the same - Google Patents

Photo sensor filtron and methods for forming the same Download PDF

Info

Publication number
TWI748226B
TWI748226B TW108129213A TW108129213A TWI748226B TW I748226 B TWI748226 B TW I748226B TW 108129213 A TW108129213 A TW 108129213A TW 108129213 A TW108129213 A TW 108129213A TW I748226 B TWI748226 B TW I748226B
Authority
TW
Taiwan
Prior art keywords
layer
filter
forming
photodiode
metal layer
Prior art date
Application number
TW108129213A
Other languages
Chinese (zh)
Other versions
TW202109903A (en
Inventor
王慶森
陳曠舉
蕭鵬展
劉漢英
陳慶宗
鄭書賢
黃文秀
Original Assignee
新唐科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新唐科技股份有限公司 filed Critical 新唐科技股份有限公司
Priority to TW108129213A priority Critical patent/TWI748226B/en
Priority to CN201911333690.1A priority patent/CN112397528B/en
Publication of TW202109903A publication Critical patent/TW202109903A/en
Application granted granted Critical
Publication of TWI748226B publication Critical patent/TWI748226B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1443Devices controlled by radiation with at least one potential jump or surface barrier
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

A photo sensor filter is provided. The photo sensor filter includes a substrate including an active area and a sensor area, a photodiode disposed in the sensor area of the substrate, and a filter structure disposed over the photodiode. The filter structure includes a first filter stack disposed on the photodiode and a second filter stack disposed on the first filter stack. The first filter stack includes a first adhesive layer disposed on the photodiode, a first metal layer disposed on the first adhesive layer, and a first insulating layer disposed on the first metal layer. The second filter stack includes a second adhesive layer disposed on the first insulating layer, a second metal layer disposed on the second adhesive layer, and a second insulating layer disposed on the second metal layer.

Description

光學感測濾光器及其形成方法Optical sensing filter and its forming method

本發明實施例是關於光學感測濾光器,且特別是有關於一種具有共振結構的光學感測濾光器。The embodiment of the present invention relates to an optical sensing filter, and particularly relates to an optical sensing filter having a resonance structure.

隨著數位科技的發展,光學感測濾光器變得更廣泛地被運用於社會。在移動裝置(例如,汽車)中,為了提高安全性,常會搭載光學感測濾光器。舉例來說,可以搭載環境光感測器來偵測環境中可見光的亮度,以感測環境變化及交通號誌燈,並提醒使用者或使汽車做出相應反應。亦可搭載近接感測器來偵測物體靠近程度,當行人或其他車輛太過靠近使用者時,可以發出警示音來提醒消費者。或者,當前方車輛緊急停止時,可令汽車即時做出反應,避免使用者發生車禍,增進行車安全。With the development of digital technology, optical sensing filters have become more widely used in society. In a mobile device (for example, a car), in order to improve safety, an optical sensor filter is often installed. For example, it can be equipped with an ambient light sensor to detect the brightness of visible light in the environment to sense changes in the environment and traffic lights, and remind users or make the car respond accordingly. It can also be equipped with a proximity sensor to detect the proximity of objects. When pedestrians or other vehicles are too close to the user, a warning sound can be issued to remind consumers. Or, when the vehicle in front stops in an emergency, the vehicle can be made to react immediately to prevent the user from being involved in a car accident and increase vehicle safety.

然而,雖然現有光學感測濾光器大致上合乎其預期目的,但並非在所有方面都完全令人滿意,仍需進一步改良,以提升產品的良率及可靠度。However, although the existing optical sensor filter generally meets its intended purpose, it is not completely satisfactory in all aspects, and further improvements are needed to improve the yield and reliability of the product.

本發明實施例提供一種光學感測濾光器。此光學感測濾光器包括具有主動區以及感測區的基板、設置在基板的感測區中的光電二極體、以及設置在光電二極體之上的濾光片結構。此濾光片結構包括設置在該光電二極體之上的第一濾光片堆疊以及設置在第一濾光片堆疊之上的第二濾光片堆疊。第一濾光片堆疊包括設置在光電二極體之上的第一黏著層、設置在第一黏著層之上的第一金屬層、以及設置在第一金屬層之上的第一絕緣層。第二濾光片堆疊包括設置在該第一絕緣層之上的第二黏著層、設置在第二黏著層之上的第二金屬層、以及設置在第二金屬層之上的第二絕緣層。The embodiment of the present invention provides an optical sensing filter. The optical sensing filter includes a substrate with an active area and a sensing area, a photodiode arranged in the sensing area of the substrate, and a filter structure arranged on the photodiode. This filter structure includes a first filter stack disposed on the photodiode and a second filter stack disposed on the first filter stack. The first filter stack includes a first adhesive layer provided on the photodiode, a first metal layer provided on the first adhesive layer, and a first insulating layer provided on the first metal layer. The second filter stack includes a second adhesive layer provided on the first insulating layer, a second metal layer provided on the second adhesive layer, and a second insulating layer provided on the second metal layer .

本發明實施例亦提供一種光學感測濾光器的形成方法。此方法包括提供具有主動區及感測區的基板、在基板的感測區中形成光電二極體、以及在光電二極體之上形成濾光片結構。形成濾光片結構的步驟包括在光電二極體之上形成第一濾光片堆疊以及在第一濾光片堆疊之上形成第二濾光片堆疊。形成該第一濾光片堆疊的步驟包括在光電二極體之上形成第一黏著層、在第一黏著層之上形成第一金屬層、以及在第一金屬層之上形成第一絕緣層。形成第二濾光片堆疊的步驟包括在第一絕緣層之上形成第二黏著層、在第二黏著層之上形成第二金屬層、以及在第二金屬層之上形成第二絕緣層。The embodiment of the present invention also provides a method for forming an optical sensing filter. The method includes providing a substrate having an active area and a sensing area, forming a photodiode in the sensing area of the substrate, and forming a filter structure on the photodiode. The step of forming the filter structure includes forming a first filter stack above the photodiode and forming a second filter stack above the first filter stack. The step of forming the first filter stack includes forming a first adhesive layer on the photodiode, forming a first metal layer on the first adhesive layer, and forming a first insulating layer on the first metal layer . The step of forming the second filter stack includes forming a second adhesive layer on the first insulating layer, forming a second metal layer on the second adhesive layer, and forming a second insulating layer on the second metal layer.

以下的實施例與所附的參考圖式將提供詳細的描述。The following embodiments and accompanying reference drawings will provide a detailed description.

以下的揭示內容提供許多不同的實施例或範例,以展示本發明實施例的不同部件。以下將揭示本說明書各部件及其排列方式之特定範例,用以簡化本揭露敘述。當然,這些特定範例並非用於限定本揭露。例如,若是本說明書以下的發明內容敘述了將形成第一部件於第二部件之上或上方,即表示其包括了所形成之第一及第二部件是直接接觸的實施例,亦包括了尚可將附加的部件形成於上述第一及第二部件之間,則第一及第二部件為未直接接觸的實施例。此外,本揭露說明中的各式範例可能使用重複的參照符號及/或用字。這些重複符號或用字的目的在於簡化與清晰,並非用以限定各式實施例及/或所述配置之間的關係。The following disclosure provides many different embodiments or examples to illustrate the different components of the embodiments of the present invention. The following will disclose specific examples of the components and their arrangement in this specification to simplify the description of this disclosure. Of course, these specific examples are not used to limit the present disclosure. For example, if the following invention content of this specification describes that the first part is formed on or above the second part, it means that it includes an embodiment in which the formed first and second parts are in direct contact, and also includes Additional components can be formed between the above-mentioned first and second components, and the first and second components are embodiments that are not in direct contact. In addition, the various examples in this disclosure may use repeated reference symbols and/or words. The purpose of these repeated symbols or words is for simplification and clarity, and is not used to limit the relationship between the various embodiments and/or the configurations.

再者,為了方便描述圖式中一元件或部件與另一(些)元件或部件的關係,可使用空間相對用語,例如「在…之下」、「下方」、「下部」、「上方」、「上部」及諸如此類用語。除了圖式所繪示之方位外,空間相對用語亦涵蓋使用或操作中之裝置的不同方位。當裝置被轉向不同方位時(例如,旋轉90度或者其他方位),則其中所使用的空間相對形容詞亦將依轉向後的方位來解釋。應可理解的是,於本發明實施例所述的方法之前、之中、及/或之後可提供額外的操作,且在方法的其他實施例中,可替換或省略一些所述的操作。Furthermore, in order to facilitate the description of the relationship between one element or component and another element or component(s) in the diagram, spatial relative terms can be used, such as "below", "below", "lower", "above" , "Upper" and the like. In addition to the orientation shown in the diagram, the relative terms of space also cover different orientations of the device in use or operation. When the device is turned in different directions (for example, rotated by 90 degrees or other directions), the spatially relative adjectives used therein will also be interpreted according to the turned position. It should be understood that additional operations may be provided before, during, and/or after the method described in the embodiments of the present invention, and in other embodiments of the method, some of the operations may be replaced or omitted.

在此,「約」、「大約」、「大抵」之用語通常表示在一給定值或範圍的20%之內,較佳是10%之內,且更佳是5%之內,或3%之內,或2%之內,或1%之內,或0.5%之內。應注意的是,說明書中所提供的數量為大約的數量,亦即在沒有特定說明「約」、「大約」、「大抵」的情況下,仍可隱含「約」、「大約」、「大抵」之含義。Here, the terms "about", "approximately", and "approximately" usually mean within 20% of a given value or range, preferably within 10%, and more preferably within 5%, or 3 Within %, or within 2%, or within 1%, or within 0.5%. It should be noted that the quantity provided in the manual is an approximate quantity, that is, if there is no specific description of "about", "approximately" or "approximately", "about", "approximately" and "approximately" can still be implied. The meaning of "probably".

此處描述示例方法及結構的一些變化。本領域具有通常知識者將可容易理解在其他實施例的範圍內可做其他的修改。雖然討論的一些方法實施例以特定順序進行,各式其他方法實施例可以另一合乎邏輯的順序進行,且可包括少於或多於此處討論的步驟。在一些圖示中,其中所示的一些組件或部件的元件符號可被省略,以避免與其他組件或部件混淆;此係為了便於描繪此些圖示。Some changes to the example method and structure are described here. Those with ordinary knowledge in the art will easily understand that other modifications can be made within the scope of other embodiments. Although some of the method embodiments discussed are performed in a specific order, various other method embodiments can be performed in another logical order, and may include fewer or more steps than those discussed herein. In some illustrations, the symbol of some components or parts shown therein may be omitted to avoid confusion with other components or parts; this is for the convenience of depicting these illustrations.

本發明實施例提供一種光學感測濾光器及其形成方法,特別適用於包括共振結構(resonator structure)的光學感測濾光器。在車用光學感測濾光器中,為了提高使用上的安全性,需通過較高溫度且長時間(例如,270℃、12小時)的可靠度測試。然而,由於共振結構中的絕緣材料及導電材料之間的熱膨脹係數差異較大,在熱製程或可靠度測試期間,容易於接面處發生爆米花(popping)效應或材料層剝離(peeling)導致元件不良或失效。在本發明一些實施例中,藉由形成重複的多個濾光片堆疊來形成包括共振結構的濾光片結構,可以避免因材料層間熱膨脹係數差異太大而導致的缺陷,進而提升光學感測濾光器的可靠度以及製程良率。The embodiment of the present invention provides an optical sensing filter and a forming method thereof, which is particularly suitable for an optical sensing filter including a resonator structure. In order to improve the safety of use in the optical sensor filter for vehicles, it is necessary to pass a high temperature and long time (for example, 270° C., 12 hours) reliability test. However, due to the large difference in thermal expansion coefficient between the insulating material and the conductive material in the resonant structure, during the thermal process or reliability test, the popping effect or peeling of the material layer is likely to occur at the junction. The component is defective or invalid. In some embodiments of the present invention, a filter structure including a resonant structure is formed by forming a plurality of repeated filter stacks, which can avoid defects caused by large differences in thermal expansion coefficients between material layers, thereby improving optical sensing The reliability of the filter and the process yield.

第1A-1F圖係根據一些實施例,繪示出用於形成第1F圖之光學感測濾光器10之示例方法的各個中間階段的剖面示意圖。FIGS. 1A-1F are schematic cross-sectional diagrams illustrating various intermediate stages of an exemplary method for forming the optical sensing filter 10 of FIG. 1F according to some embodiments.

第1A圖根據本發明實施例繪示出形成半導體裝置10之方法的起始步驟。如第1A圖所示,提供基板100。在一實施例中,上述基板100可為矽基板、矽鍺(silicon germanium, SiGe)基板、化合物半導體(compound semiconductor)基板、塊狀半導體(bulk semiconductor)基板、絕緣體上覆半導體(semiconductor-on-insulator, SOI)基板或類似基板,其可為摻雜(例如,使用p-型或n-型摻質)或未摻雜。FIG. 1A illustrates the initial steps of a method of forming a semiconductor device 10 according to an embodiment of the present invention. As shown in FIG. 1A, a substrate 100 is provided. In one embodiment, the above-mentioned substrate 100 may be a silicon substrate, a silicon germanium (SiGe) substrate, a compound semiconductor (compound semiconductor) substrate, a bulk semiconductor substrate, a semiconductor-on-insulator (semiconductor-on- Insulator (SOI) substrate or similar substrate, which can be doped (for example, using p-type or n-type dopants) or undoped.

在一些實施例中,基板100可包含各種隔離部件(未繪示),用以定義主動區及感測區,並電性隔離基板100之中/之上的主動區元件及感測區元件。在一些實施例中,隔離部件包含淺溝槽隔離(shallow trench isolation,STI)部件、局部矽氧化(local oxidation of silicon,LOCOS)部件、其他合適的隔離部件、或上述之組合。In some embodiments, the substrate 100 may include various isolation components (not shown) to define the active area and the sensing area, and electrically isolate the active area elements and the sensing area elements in/on the substrate 100. In some embodiments, the isolation features include shallow trench isolation (STI) features, local oxidation of silicon (LOCOS) features, other suitable isolation features, or a combination of the foregoing.

接著,如第1A圖所示,在一些實施例中,在基板100中形成光電二極體(photodiode)200。光電二極體200可與訊號處理電路(signal process circuitry)(未繪示)連接。在一些實施例中,光電二極體200可包含P型半導體層、本質層(intrinsic layer)、以及N型半導體層之三層結構的光電材料(photoelectric material),本質層吸收光以產生出激子(exciton),並且激子會在P型半導體層及N型半導體層的接面分成電子與電洞,進而產生電流訊號。接著,透過訊號處理電路處理上述電流訊號。Next, as shown in FIG. 1A, in some embodiments, a photodiode 200 is formed in the substrate 100. The photodiode 200 can be connected to signal process circuitry (not shown). In some embodiments, the photodiode 200 may include a three-layer photoelectric material of a P-type semiconductor layer, an intrinsic layer, and an N-type semiconductor layer. The intrinsic layer absorbs light to generate excitation. The excitons are divided into electrons and holes at the junction of the P-type semiconductor layer and the N-type semiconductor layer to generate a current signal. Then, the above-mentioned current signal is processed by the signal processing circuit.

第1B圖繪示出保護層202的形成,保護層202對應於光電二極體200。保護層108可以用來保護接下來形成的共振結構(resonator structure)(將詳述於後)。在一些實施例中,保護層202可以為或包括介電材料或絕緣材料,例如氧化物、氮化物、其他適合的高介電常數(high-k)介電材料、或上述組合。舉例來說,保護層202可以為或包括二氧化矽、氧化鉿、氧化鋯、氧化鋁、氮氧化矽、二氧化鉿-氧化鋁合金(hafnium dioxide-alumina alloy)、氧化鉿矽(hafnium silicon oxide)、氧氮化鉿矽(hafnium silicon oxynitride)、氧化鉭鉿(hafnium tantalum oxide)、氧化鉿鈦(hafnium titanium oxide)、氧化鉿鋯(hafnium zirconium oxide)、其他合適的材料、或上述組合。在一些實施例中,保護層202的厚度在約20奈米至約1000奈米的範圍,舉例來說,約600奈米。在一特定實施例中,保護層202包括厚度在約40奈米至約300奈米的氮化矽(SiN)。FIG. 1B illustrates the formation of the protective layer 202, and the protective layer 202 corresponds to the photodiode 200. The protective layer 108 can be used to protect the resonator structure (will be described in detail later) to be formed next. In some embodiments, the protective layer 202 may be or include a dielectric material or an insulating material, such as oxide, nitride, other suitable high-k dielectric materials, or a combination thereof. For example, the protective layer 202 may be or include silicon dioxide, hafnium oxide, zirconium oxide, aluminum oxide, silicon oxynitride, hafnium dioxide-alumina alloy, hafnium silicon oxide (hafnium silicon oxide). ), hafnium silicon oxynitride, hafnium tantalum oxide, hafnium titanium oxide, hafnium zirconium oxide, other suitable materials, or a combination of the above. In some embodiments, the thickness of the protective layer 202 is in the range of about 20 nanometers to about 1000 nanometers, for example, about 600 nanometers. In a specific embodiment, the protective layer 202 includes silicon nitride (SiN) with a thickness of about 40 nanometers to about 300 nanometers.

在一些實施例中,可以藉由沉積製程以及圖案化製程來形成保護層202。舉例來說,可以藉由沉積製程在基板100及發光二極體200上形成沉積的材料層。在一些實施例中,圖案化製程包括在沉積的材料層上形成圖案化遮罩層(未繪示),然後蝕刻沉積的材料層未被圖案化遮罩層覆蓋的部分,並且形成保護層202。In some embodiments, the protective layer 202 may be formed by a deposition process and a patterning process. For example, a deposited material layer can be formed on the substrate 100 and the light emitting diode 200 by a deposition process. In some embodiments, the patterning process includes forming a patterned mask layer (not shown) on the deposited material layer, and then etching the portion of the deposited material layer that is not covered by the patterned mask layer, and forming the protective layer 202 .

接著,如第1C圖所示,在保護層202之上形成黏著層304A。黏著層304A的形成係用以穩定地接合後續形成的金屬層306A(沒有繪示於第1C圖中,但可參照下述關於第1D圖的說明),以及在後續形成絕緣層308A的製程期間,用於穩定金屬層306A以避免產生缺陷(請參照下述關於第1E圖的說明)。Next, as shown in FIG. 1C, an adhesive layer 304A is formed on the protective layer 202. The adhesion layer 304A is formed to stably bond the subsequently formed metal layer 306A (not shown in Figure 1C, but refer to the description of Figure 1D below), and during the subsequent process of forming the insulating layer 308A , Used to stabilize the metal layer 306A to avoid defects (please refer to the description of Figure 1E below).

黏著層304A之材料的選擇可以取決於其底層(例如,保護層202)以及之後形成的膜層(例如,金屬層304A)之間的熱膨脹係數差異。在一些實施例中,黏著層304A的熱膨脹係數介於上下膜層(例如,保護層202及金屬層304A)的熱膨脹係數之間,以在熱製程及/或可靠度測試期間緩和之後形成的膜層(例如,金屬層304A),以避免產生缺陷(將詳述於後)。舉例來說,黏著層304A的熱膨脹係數可以在約10.1ⅹ10-6 /℃至約13.1ⅹ10-6 /℃的範圍,舉例來說,約10.8ⅹ10-6 /℃。在一些實施例中,黏著層304A的厚度在約0.01奈米至約20奈米的範圍,舉例來說,約1奈米。The choice of the material of the adhesive layer 304A may depend on the difference in thermal expansion coefficient between the bottom layer (for example, the protective layer 202) and the film layer (for example, the metal layer 304A) formed later. In some embodiments, the thermal expansion coefficient of the adhesive layer 304A is between the thermal expansion coefficients of the upper and lower film layers (for example, the protective layer 202 and the metal layer 304A), so as to relax the film formed after the thermal process and/or reliability test. Layer (e.g., metal layer 304A) to avoid defects (will be described in detail later). For example, the thermal expansion coefficient of the adhesive layer 304A can be in the range of about 10.1 10 -6 /°C to about 13.1 10 -6 /°C, for example, about 10.8 10 -6 /°C. In some embodiments, the thickness of the adhesive layer 304A is in the range of about 0.01 nanometers to about 20 nanometers, for example, about 1 nanometers.

在一些實施例中,上述黏著層304A之材料可為或包括鈦(titanium, Ti)、鉻(chromium, Cr)、氮化鈦(titanium nitride)、其他適當的材料、或上述之組合。在一特定實施例中,黏著層304A為厚度在約0.01奈米至約1奈米的鈦(Ti)。In some embodiments, the material of the adhesion layer 304A may be or include titanium (Ti), chromium (Cr), titanium nitride (titanium nitride), other suitable materials, or a combination thereof. In a specific embodiment, the adhesion layer 304A is titanium (Ti) with a thickness of about 0.01 nanometer to about 1 nanometer.

在一些實施例中,可以藉由沉積製程以及圖案化製程來形成黏著層304A。舉例來說,上述沉積製程可以包括化學氣相沉積(chemical vapor deposition,CVD)製程、流動式化學氣相沉積(flowable chemical vapor deposition,FCVD)製程、原子層沉積(atomic layer deposition,ALD)製程、低壓化學氣相沉積(low-pressure chemical vapor deposition,LPCVD)製程、電漿增強化學氣相沉積(plasma enhanced chemical vapor deposition,PECVD)製程、其他合適的製程、或前述之組合。用於形成黏著層304A的圖案化製程可以類似於前述提及的圖案化製程,因此於此不再贅述。In some embodiments, the adhesion layer 304A can be formed by a deposition process and a patterning process. For example, the foregoing deposition process may include a chemical vapor deposition (CVD) process, a flowable chemical vapor deposition (FCVD) process, an atomic layer deposition (ALD) process, A low-pressure chemical vapor deposition (LPCVD) process, a plasma enhanced chemical vapor deposition (PECVD) process, other suitable processes, or a combination of the foregoing. The patterning process used to form the adhesive layer 304A can be similar to the patterning process mentioned above, so it will not be repeated here.

如第1D圖所示,在黏著層304A之上形成金屬層306A。金屬層306A可作為之後形成的共振結構(將於後詳述)的底部金屬層。金屬層306A之材料的選擇可取決於之後形成的共振結構可以通過的光的波長。在一些實施例中,金屬層306A可以為或包括鋯(zirconium, Zr)、鈮(niobium, Nb)、鉬(molybdenum, Mo)、鎘(cadmium, Cd)、釕(ruthenium, Ru)、鈦(Ti)、鋁(aluminum, Al)、鎂(magnesium, Mg)、釩(vanadium, V)、鉿(hafnium, Hf)、鍺(germanium, Ge)、錳(manganese, Mn)、鉻(Cr)、鎢(tungsten, W)、鉭(tantalum, Ta)、銥(iridium, Ir)、鋅(zinc, Zn)、銅(copper, Cu)、鐵(iron, Fe)、鈷(cobalt, Co)、金(gold, Au)、鉑(platinum, Pt)、錫(tin, Sn)、鎳(nickel, Ni)、碲(tellurium, Te)、銀(silver, Ag)、其他適當的材料、上述之合金、或上述之組合。在一些實施例中,金屬層306A的厚度在約20奈米至約100奈米的範圍,舉例來說,約40奈米。在一特定實施例中,金屬層306A為厚度在約1奈米至約100奈米的銀。As shown in FIG. 1D, a metal layer 306A is formed on the adhesion layer 304A. The metal layer 306A can be used as the bottom metal layer of the resonance structure (to be described in detail later) to be formed later. The selection of the material of the metal layer 306A may depend on the wavelength of light that can pass through the resonant structure formed later. In some embodiments, the metal layer 306A may be or include zirconium (zirconium, Zr), niobium (niobium, Nb), molybdenum (molybdenum, Mo), cadmium (cadmium, Cd), ruthenium (ruthenium, Ru), titanium ( Ti), aluminum (aluminum, Al), magnesium (magnesium, Mg), vanadium (vanadium, V), hafnium (hafnium, Hf), germanium (germanium, Ge), manganese (manganese, Mn), chromium (Cr), Tungsten (tungsten, W), tantalum (tantalum, Ta), iridium (iridium, Ir), zinc (zinc, Zn), copper (copper, Cu), iron (iron, Fe), cobalt (cobalt, Co), gold (gold, Au), platinum (platinum, Pt), tin (tin, Sn), nickel (nickel, Ni), tellurium (Te), silver (silver, Ag), other appropriate materials, the above alloys, Or a combination of the above. In some embodiments, the thickness of the metal layer 306A is in the range of about 20 nanometers to about 100 nanometers, for example, about 40 nanometers. In a specific embodiment, the metal layer 306A is silver with a thickness of about 1 nanometer to about 100 nanometers.

在一些實施例中,可以藉由沉積製程以及圖案化製程來形成金屬層306A。舉例來說,上述沉積製程可以包括物理氣相沉積(PVD)(例如,電子束蒸鍍(electron beam evaporation))、化學氣相沉積(例如,有機金屬化學氣相沉積(metal organic CVD, MOCVD))、原子層沉積(ALD)、其他合適的製程、或前述之組合。用於形成金屬層306A的圖案化製程可以類似於前述提及的圖案化製程,因此於此不再贅述。雖然在此描述在不同的步驟中形成黏著層304A及金屬層306A,但本發明不限於此。舉例來說,用於黏著層304A及金屬層306A的材料層可以在同一沉積腔體中沉積,接著對上述材料層進行圖案化製程,以同時形成黏著層304A以及金屬層306A。In some embodiments, the metal layer 306A may be formed by a deposition process and a patterning process. For example, the above-mentioned deposition process may include physical vapor deposition (PVD) (for example, electron beam evaporation), chemical vapor deposition (for example, metal organic CVD, MOCVD) ), Atomic Layer Deposition (ALD), other suitable processes, or a combination of the foregoing. The patterning process for forming the metal layer 306A can be similar to the patterning process mentioned above, and therefore will not be repeated here. Although it is described here that the adhesion layer 304A and the metal layer 306A are formed in different steps, the present invention is not limited thereto. For example, the material layers used for the adhesion layer 304A and the metal layer 306A can be deposited in the same deposition chamber, and then the patterning process is performed on the material layer to form the adhesion layer 304A and the metal layer 306A at the same time.

第1E圖繪示出絕緣層308A的形成,其中黏著層304A、金屬層306A、以及絕緣層308A之組合共同構成濾光片堆疊302A。絕緣層308A用來作為之後形成的共振結構的共振腔體。可以藉由調整絕緣層308A的厚度以允許不同波長的光通過絕緣層308A。在一些實施例中,絕緣層308A的折射率(refractive index)在約1.5至約2.5的範圍,舉例來說,約2。此處所指之折射率為介質在夫朗和斐譜線d(氦黃線587.56奈米)的折射率(nd )。FIG. 1E illustrates the formation of the insulating layer 308A, in which the combination of the adhesive layer 304A, the metal layer 306A, and the insulating layer 308A together constitute the filter stack 302A. The insulating layer 308A is used as a resonant cavity of the resonant structure to be formed later. The thickness of the insulating layer 308A can be adjusted to allow light of different wavelengths to pass through the insulating layer 308A. In some embodiments, the refractive index of the insulating layer 308A is in the range of about 1.5 to about 2.5, for example, about 2. The refractive index referred to here is the refractive index (n d ) of the medium at the Fraunhofer line d (helium yellow line 587.56 nm).

用於形成絕緣層308A的製程及材料可以擇自於前述提及之用於形成保護層202的製程及材料,但保護層202與絕緣層308A的形成可以獨立地包含相同或不同的製程和材料。在一些實施例中,絕緣層308A可以為或包括介電材料或絕緣材料,例如氧化物、氮化物、其他適合的高介電常數材料、或上述組合。舉例來說,絕緣層308A可以為或包括二氧化矽、氧化鉿、氧化鋯、氧化鋁、氮氧化矽、二氧化鉿-氧化鋁合金(hafnium dioxide-alumina alloy)、氧化鉿矽(hafnium silicon oxide)、氧氮化鉿矽(hafnium silicon oxynitride)、氧化鉭鉿(hafnium tantalum oxide)、氧化鉿鈦(hafnium titanium oxide)、氧化鉿鋯(hafnium zirconium oxide)、其他合適的材料、或上述組合。在一些實施例中,絕緣層308A的厚度在約1奈米至約1000奈米的範圍,舉例來說,約5奈米。在一特定實施例中,絕緣層308A為厚度在約10奈米至約40奈米的氮化矽(SiN)。The process and materials used to form the insulating layer 308A can be selected from the processes and materials used to form the protective layer 202 mentioned above, but the formation of the protective layer 202 and the insulating layer 308A can independently include the same or different processes and materials . In some embodiments, the insulating layer 308A may be or include a dielectric material or an insulating material, such as oxide, nitride, other suitable high dielectric constant materials, or a combination thereof. For example, the insulating layer 308A may be or include silicon dioxide, hafnium oxide, zirconium oxide, aluminum oxide, silicon oxynitride, hafnium dioxide-alumina alloy, hafnium silicon oxide (hafnium silicon oxide). ), hafnium silicon oxynitride, hafnium tantalum oxide, hafnium titanium oxide, hafnium zirconium oxide, other suitable materials, or a combination of the above. In some embodiments, the thickness of the insulating layer 308A is in the range of about 1 nanometer to about 1000 nanometers, for example, about 5 nanometers. In a specific embodiment, the insulating layer 308A is silicon nitride (SiN) with a thickness of about 10 nanometers to about 40 nanometers.

可以藉由沉積製程以及圖案化製程來形成絕緣層308A。在一些實施例中,上述沉積製程可以為或包括化學氣相沉積(chemical vapor deposition)(例如,電漿化學氣相沉積(plasma enhanced CVD, PECVD))、物理氣相沉積(physical vapor deposition, PVD)(例如,濺鍍(sputtering))、其他適當的製程、或上述之組合。用於形成絕緣層308A的圖案化製程可以類似於前述提及的圖案化製程,因此於此不再贅述。The insulating layer 308A can be formed by a deposition process and a patterning process. In some embodiments, the foregoing deposition process may be or include chemical vapor deposition (for example, plasma enhanced CVD (PECVD)), physical vapor deposition (PVD) ) (For example, sputtering), other suitable processes, or a combination of the above. The patterning process used to form the insulating layer 308A can be similar to the patterning process mentioned above, and therefore will not be repeated here.

一般而言,在金屬層306A之上沉積絕緣層308A的沉積製程期間,由於上述沉積製程具有較高的製程溫度(例如,在約270℃至約300℃),金屬層306A容易因為與位於其下的保護層202的熱膨脹係數差異過大,而發生爆米花效應或材料層剝離,進而影響光學感測濾光器的可靠度。本發明實施例藉由在保護層202之上形成金屬層306A之前,先形成熱膨脹係數介於保護層202及金屬層306A之間的黏著層304A,以緩和保護層202及金屬層306A之間的熱膨脹係數差異,避免在高溫製程或可靠度測試期間所造成的缺陷,進而提升光學感測濾光器10的可靠度。Generally speaking, during the deposition process of depositing the insulating layer 308A on the metal layer 306A, since the above-mentioned deposition process has a relatively high process temperature (for example, at about 270° C. to about 300° C.), the metal layer 306A is prone to The thermal expansion coefficient difference of the lower protective layer 202 is too large, and the popcorn effect or material layer peeling occurs, thereby affecting the reliability of the optical sensing filter. In the embodiment of the present invention, an adhesive layer 304A with a thermal expansion coefficient between the protective layer 202 and the metal layer 306A is formed before the metal layer 306A is formed on the protective layer 202, so as to alleviate the gap between the protective layer 202 and the metal layer 306A. The difference in thermal expansion coefficient avoids defects caused during high-temperature manufacturing or reliability testing, thereby improving the reliability of the optical sensing filter 10.

接著,如第1F圖所示,在濾光片堆疊302A之上形成濾光片堆疊302B,且濾光片堆疊302A及濾光片堆疊302B之組合共同構成濾光片結構300。在一些實施例中,濾光片堆疊302B包括形成在絕緣層308A之上的黏著層304B、形成在黏著層304B之上的金屬層306B、以及形成在金屬層306B之上的絕緣層308B,其中金屬層306B可作為共振結構(於後詳述)的頂部金屬層。金屬層306B之材料的選擇與SiN的厚度可取決於之後形成的共振結構可以通過的光的波長。如前述所提及的,黏著層304B的熱膨脹係數可以介於上下膜層(例如,金屬層306B與絕緣層308A)的熱膨脹係數之間,以緩和金屬層306B與絕緣層308A之間的熱膨脹係數差異,進而避免在高溫製程期間所造成的缺陷。Next, as shown in FIG. 1F, a filter stack 302B is formed on the filter stack 302A, and the combination of the filter stack 302A and the filter stack 302B together constitute the filter structure 300. In some embodiments, the filter stack 302B includes an adhesion layer 304B formed on the insulating layer 308A, a metal layer 306B formed on the adhesion layer 304B, and an insulating layer 308B formed on the metal layer 306B, wherein The metal layer 306B can be used as the top metal layer of the resonance structure (detailed later). The selection of the material of the metal layer 306B and the thickness of SiN may depend on the wavelength of light that can pass through the resonant structure formed later. As mentioned above, the thermal expansion coefficient of the adhesive layer 304B can be between the thermal expansion coefficients of the upper and lower film layers (for example, the metal layer 306B and the insulating layer 308A) to relax the thermal expansion coefficient between the metal layer 306B and the insulating layer 308A Differences in order to avoid defects caused during the high temperature process.

在此實施例中,濾光片結構300中的金屬層306A、絕緣層308A、黏著層304B、以及金屬層306B之組合共同構成一共振結構。共振結構亦可以稱為波導(waveguide),其包括作為MIM(metal-insulator-metal)結構的底部金屬層(例如,金屬層306A)、絕緣層(例如,絕緣層308A),以及頂部金屬層(例如,金屬層306B)。相較於不與共振結構共振的光的波長,與共振結構共振的光的波長具有較大的穿透率。亦即,共振結構可以允許特定的光的波長通過。In this embodiment, the combination of the metal layer 306A, the insulating layer 308A, the adhesion layer 304B, and the metal layer 306B in the filter structure 300 together constitute a resonance structure. The resonant structure can also be called a waveguide, which includes a bottom metal layer (e.g., metal layer 306A), an insulating layer (e.g., insulating layer 308A), and a top metal layer ( For example, metal layer 306B). Compared with the wavelength of light that does not resonate with the resonance structure, the wavelength of light that resonates with the resonance structure has a greater transmittance. That is, the resonance structure can allow a specific wavelength of light to pass.

用於形成黏著層304B、金屬層306B、以及絕緣層308B的製程及材料可以擇自於前述提及之用於形成黏著層304A、金屬層306A、以及絕緣層308A的製程及材料,因此於此不再贅述。濾光片堆疊302B的形成可以獨立地與濾光片堆疊302A包含相同或不同的製程、材料、及/或厚度,舉例來說,金屬層306B可以具有較金屬層306A大的厚度。The process and materials for forming the adhesion layer 304B, the metal layer 306B, and the insulating layer 308B can be selected from the aforementioned processes and materials for forming the adhesion layer 304A, the metal layer 306A, and the insulating layer 308A. No longer. The formation of the filter stack 302B may independently include the same or different processes, materials, and/or thicknesses from the filter stack 302A. For example, the metal layer 306B may have a larger thickness than the metal layer 306A.

雖然在第1F圖繪示的實施例中,光學感測濾光器10的濾光片結構300僅具有兩個濾光片堆疊(即,濾光片堆疊302A及濾光片堆疊302B),但本發明不限於此,可以依據實際產品所需的特性調整濾光片結構300所包括的濾光片堆疊數目。藉由調整濾光片堆疊的數量來調整共振結構的數目,能選擇具有更窄波段波長的光穿過濾光片結構。Although in the embodiment depicted in FIG. 1F, the filter structure 300 of the optical sensing filter 10 has only two filter stacks (ie, the filter stack 302A and the filter stack 302B), The present invention is not limited to this, and the number of filter stacks included in the filter structure 300 can be adjusted according to the characteristics required by the actual product. By adjusting the number of filter stacks to adjust the number of resonant structures, it is possible to select light-passing filter structures with narrower wavelengths.

雖然在此描述在不同的步驟中形成用於濾光片結構300的黏著層304A、金屬層306A、絕緣層308A、黏著層304B、金屬層306B、以及絕緣層308B,但本發明不限於此。舉例來說,可以先個別沉積用於黏著層304A、金屬層306A、絕緣層308A、黏著層304B、金屬層306B、以及絕緣層308B的材料層,接著對上述材料層進行圖案化製程,以同時形成濾光片堆疊302A以及濾光片堆疊302B。Although it is described here that the adhesion layer 304A, the metal layer 306A, the insulating layer 308A, the adhesion layer 304B, the metal layer 306B, and the insulating layer 308B for the filter structure 300 are formed in different steps, the present invention is not limited thereto. For example, the material layers for the adhesion layer 304A, the metal layer 306A, the insulating layer 308A, the adhesion layer 304B, the metal layer 306B, and the insulating layer 308B can be separately deposited first, and then the above-mentioned material layers are patterned to simultaneously A filter stack 302A and a filter stack 302B are formed.

在上述的實施例中,藉由在保護層或絕緣層之上形成金屬層之前,先形成熱膨脹係數介於保護層或絕緣層與金屬層之間的黏著層,以緩和金屬層與其下膜層之間的熱膨脹係數差異,可以避免在高溫製程及可靠度測試期間所造成的缺陷,進而提升光學感測濾光器的可靠度以及製程良率。In the above-mentioned embodiment, before forming the metal layer on the protective layer or the insulating layer, an adhesion layer with a thermal expansion coefficient between the protective layer or the insulating layer and the metal layer is formed to relax the metal layer and the underlying film layer The difference in thermal expansion coefficient between the two can avoid defects caused during the high-temperature process and reliability test, thereby improving the reliability of the optical sensor filter and the process yield.

前述濾光片結構300可以應用於各種結構及應用,但本發明不限於此。第2A-2C圖為在一些實施例中形成包含濾光片結構300的光學感測濾光器20之示例方法的各個中間階段的剖面示意圖。為了清楚起見,相似或相同的元件及製程將使用相同的參照符號。為了簡明之目的,此處不再重複對這些製程及裝置的描述。The aforementioned filter structure 300 can be applied to various structures and applications, but the present invention is not limited thereto. 2A-2C are schematic cross-sectional diagrams of various intermediate stages of an exemplary method of forming the optical sensing filter 20 including the filter structure 300 in some embodiments. For the sake of clarity, similar or identical components and processes will use the same reference symbols. For the sake of brevity, the description of these processes and devices will not be repeated here.

請參照第2A圖,首先提供具有主動區100A及感測區100B的基板100。如第2A圖所示,在基板100的主動區100A中形成各種主動元件,例如電晶體400,並在基板100的感測區100B中形成光電二極體200。上述電晶體400包括閘極結構404以及位於閘極結構404兩側的源極/汲極區406。在此實施例中,由於感測元件(例如,光電二極體200以及濾光片結構300)並未直接形成在主動元件(例如,電晶體400)之上,而是分別形成在基板100的主動區100A以及感測區100B中,可以避免光學感測濾光器20的膜層數量太多而導致的崩塌問題。此外,如先前所提及的,可以藉由在基板100中形成各種隔離部件(未繪示),用以定義主動區100A及感測區100B。Please refer to FIG. 2A. First, a substrate 100 having an active area 100A and a sensing area 100B is provided. As shown in FIG. 2A, various active elements, such as a transistor 400, are formed in the active region 100A of the substrate 100, and a photodiode 200 is formed in the sensing region 100B of the substrate 100. The aforementioned transistor 400 includes a gate structure 404 and source/drain regions 406 located on both sides of the gate structure 404. In this embodiment, since the sensing elements (for example, the photodiode 200 and the filter structure 300) are not directly formed on the active element (for example, the transistor 400), but are formed on the substrate 100 respectively. In the active area 100A and the sensing area 100B, the collapse problem caused by too many layers of the optical sensing filter 20 can be avoided. In addition, as mentioned previously, various isolation components (not shown) can be formed in the substrate 100 to define the active region 100A and the sensing region 100B.

繼續參照第2A圖,在基板100之上形成金屬間介電(inter-metal dielectric, IMD)層,並在主動區100A中的金屬間介電層102中形成內連線結構,其例如可包括第一導電層504A、第二導電層504B、以及第三導電層504C,其中第一導電層504A、第二導電層504B、以及第三導電層504C個別藉由第一導孔502A、第二導孔502B、以及第三導孔503C與電晶體400的源極/汲極區406電性連接。上述內連線結構用以將電晶體400與其他元件及/或裝置電性連接。Continuing to refer to FIG. 2A, an inter-metal dielectric (IMD) layer is formed on the substrate 100, and an interconnection structure is formed in the inter-metal dielectric layer 102 in the active region 100A, which may include, for example, The first conductive layer 504A, the second conductive layer 504B, and the third conductive layer 504C, wherein the first conductive layer 504A, the second conductive layer 504B, and the third conductive layer 504C are respectively connected through the first via 502A, the second conductive layer The hole 502B and the third via 503C are electrically connected to the source/drain region 406 of the transistor 400. The interconnection structure described above is used to electrically connect the transistor 400 with other components and/or devices.

在一些實施例中,金屬間介電層102可以包括或為氧化物(例如氧化矽、二氧化矽(silicon dioxide))、氮化物(nitride)、低介電常數(low-k)介電材料(例如,介電常數低於二氧化矽的材料)、氮氧化矽、磷矽酸鹽玻璃(phosphosilicate glass, PSG)、硼矽酸鹽玻璃(borosilicate glass, BSG)、硼磷矽酸鹽玻璃(borophosphosilicate glass, BPSG)、未摻雜的矽酸鹽玻璃(undoped silicate glass, USG)、摻雜氟的矽酸鹽玻璃(fluorinated silicate glass, FSG)、有機矽酸鹽玻璃(organosilicate glasses, OSG)、摻雜碳的氧化矽(carbon doped silicon oxide)、碳矽材料、上述之複合物(composite)、相似材料、或上述之組合。在一些實施例中,可以使用任何合適的沉積製程來形成金屬間介電層102,例如高密度電漿化學氣相沉積(high density plasma CVD, HDP-CVD)、流動式化學氣相沉積(flowable CVD, FCVD)、其他適當的沉積製程、或上述之組合。In some embodiments, the intermetal dielectric layer 102 may include or be an oxide (such as silicon oxide, silicon dioxide), nitride, or low-k dielectric material. (For example, materials with a lower dielectric constant than silicon dioxide), silicon oxynitride, phosphosilicate glass (PSG), borosilicate glass (BSG), borophosphosilicate glass ( borophosphosilicate glass (BPSG), undoped silicate glass (USG), fluorinated silicate glass (FSG), organosilicate glasses (OSG), Carbon doped silicon oxide (carbon doped silicon oxide), carbon silicon material, the above-mentioned composite (composite), similar materials, or a combination of the above. In some embodiments, any suitable deposition process may be used to form the intermetallic dielectric layer 102, such as high density plasma chemical vapor deposition (HDP-CVD), flowable chemical vapor deposition (HDP-CVD), and high density plasma chemical vapor deposition (HDP-CVD). CVD, FCVD), other appropriate deposition processes, or a combination of the above.

在一些實施例中,可以使用包括使用例如鑲嵌(damascene)製程、雙鑲嵌(dual damascene)製程、上述之組合、或類似製程來形成上述內連線結構,且用於內連線結構的導電材料可以是銅、銅合金、銀、金、鎢、鈷、鋁、鎳、或相似材料。In some embodiments, conductive materials including the use of, for example, a damascene process, a dual damascene process, a combination of the foregoing, or a similar process to form the foregoing interconnection structure, and used for the interconnection structure It can be copper, copper alloy, silver, gold, tungsten, cobalt, aluminum, nickel, or similar materials.

如第2B圖所示,蝕刻金屬間介電層102,以形成對應於光電二極體200的凹口104,其中凹口104露出光電二極體200的頂表面。由於凹口104貫穿金屬間介電層102至露出光電二極體200的頂表面,因此可以降低金屬間介電層102中的材料對光子吸收的干擾。在一些實施例中,如第2B圖所示,凹口104之側壁可以與凹口104之底表面夾一角度θ,上述角度θ可以在約88度至92度的範圍。舉例來說,上述角度θ可以為90度(即,凹口104具有垂直的側壁)、或可以為88度(即,凹口104具有傾斜的側壁)。由於凹口104具有接近垂直的側壁,因此可以具有準直效果,進而提高光學感測濾光器20的靈敏度。在一些實施例中,用於形成凹口104的蝕刻製程可以包括乾式蝕刻製程、濕式蝕刻製程、或前述之組合。As shown in FIG. 2B, the intermetal dielectric layer 102 is etched to form a recess 104 corresponding to the photodiode 200, wherein the recess 104 exposes the top surface of the photodiode 200. Since the recess 104 penetrates through the intermetal dielectric layer 102 to expose the top surface of the photodiode 200, the interference of the material in the intermetal dielectric layer 102 on photon absorption can be reduced. In some embodiments, as shown in FIG. 2B, the sidewall of the recess 104 and the bottom surface of the recess 104 may form an angle θ, and the angle θ may be in the range of about 88 degrees to 92 degrees. For example, the above-mentioned angle θ may be 90 degrees (that is, the notch 104 has vertical side walls), or may be 88 degrees (that is, the notch 104 has inclined side walls). Since the notch 104 has close to vertical sidewalls, it can have a collimating effect, thereby improving the sensitivity of the optical sensing filter 20. In some embodiments, the etching process for forming the recess 104 may include a dry etching process, a wet etching process, or a combination of the foregoing.

接下來,對基板100的感測區100B進行相似於第1B至1F圖所述之製程的一系列製程,沿著感測區100B中的金屬間介電層102及凹口104順應性地形成濾光片結構300,以完成如第2C圖中所示的光學感測濾光器20。Next, the sensing area 100B of the substrate 100 is subjected to a series of processes similar to the processes described in FIGS. 1B to 1F, and conformally formed along the intermetal dielectric layer 102 and the recess 104 in the sensing area 100B The filter structure 300 is used to complete the optical sensing filter 20 as shown in FIG. 2C.

在上述實施例中,可以藉由將主動元件以及感測元件分別形成在基板的主動區及感測區中,以防止光學感測濾光器因膜層數量太多而導致的崩塌問題。In the above embodiments, the active element and the sensing element can be formed in the active area and the sensing area of the substrate, respectively, to prevent the collapse of the optical sensing filter due to too many layers.

如第2C圖所示,光學感測濾光器20包括具有主動區100A以及感測區100B的基板100、設置在基板100的感測區100B中的光電二極體200、以及設置在光電二極體200之上的濾光片結構300。藉由將主動元件以及感測元件分別形成在基板100的主動區100A及感測區100B中,可以防止光學感測濾光器因膜層數量太多而導致的崩塌問題。As shown in Figure 2C, the optical sensing filter 20 includes a substrate 100 having an active region 100A and a sensing region 100B, a photodiode 200 disposed in the sensing region 100B of the substrate 100, and a photodiode 200 The filter structure 300 on the pole body 200. By forming the active element and the sensing element in the active area 100A and the sensing area 100B of the substrate 100, respectively, the collapse of the optical sensing filter due to too many layers can be prevented.

上述濾光片結構300包括設置在光電二極體200之上的第一濾光片堆疊302A以及設置在第一濾光片堆疊302A之上的第二濾光片堆疊302B。第一濾光片堆疊302A包括設置在光電二極體200之上的第一黏著層304A、設置在第一黏著層304A之上的第一金屬層306A、以及設置在第一金屬層306A之上的第一絕緣層308A。第二濾光片堆疊302B包括設置在第一絕緣層308A之上的第二黏著層304B、設置在第二黏著層304B之上的第二金屬層306B、以及設置在第二金屬層306B之上的第二絕緣層308B。藉由在保護層或絕緣層(例如,保護層202或第一絕緣層308A)之上形成金屬層(例如,第一金屬層306A或第二金屬層306B)之前,先形成熱膨脹係數介於保護層或絕緣層與金屬層之間的黏著層(例如,第一黏著層304A或第二黏著層304B),以緩和金屬層與其下膜層之間的熱膨脹係數差異,可以避免在高溫製程及可靠度測試期間所造成的爆米花效應及材料層剝離,進而提升光學感測濾光器的可靠度以及製程良率。The aforementioned filter structure 300 includes a first filter stack 302A disposed on the photodiode 200 and a second filter stack 302B disposed on the first filter stack 302A. The first filter stack 302A includes a first adhesion layer 304A disposed on the photodiode 200, a first metal layer 306A disposed on the first adhesion layer 304A, and a first metal layer 306A The first insulating layer 308A. The second filter stack 302B includes a second adhesive layer 304B disposed on the first insulating layer 308A, a second metal layer 306B disposed on the second adhesive layer 304B, and a second metal layer 306B The second insulating layer 308B. Before forming a metal layer (e.g., the first metal layer 306A or the second metal layer 306B) on the protective layer or the insulating layer (e.g., the protective layer 202 or the first insulating layer 308A), a thermal expansion coefficient between the protective layer The adhesive layer between the insulating layer and the metal layer (for example, the first adhesive layer 304A or the second adhesive layer 304B) to alleviate the thermal expansion coefficient difference between the metal layer and the underlying film layer, which can avoid the high temperature process and reliable The popcorn effect and material layer peeling caused by the degree of testing, thereby improving the reliability of the optical sensor filter and the process yield.

綜上所述,本發明實施例藉由在保護層或絕緣層之上形成金屬層之前,先形成熱膨脹係數介於保護層或絕緣層與金屬層之間的黏著層,以緩和金屬層與其下膜層之間的熱膨脹係數差異,以避免在高溫製程及可靠度測試期間所造成的缺陷,進而提升光學感測濾光器的可靠度以及製程良率。In summary, in the embodiment of the present invention, an adhesion layer with a thermal expansion coefficient between the protective layer or the insulating layer and the metal layer is formed before the metal layer is formed on the protective layer or the insulating layer, so as to relax the metal layer and the underlying metal layer. The thermal expansion coefficient difference between the film layers can avoid defects caused during the high-temperature process and reliability test, thereby improving the reliability of the optical sensor filter and the process yield.

以上概略說明了本發明數個實施例的特徵,使所屬技術領域內具有通常知識者對於本揭露可更為容易理解。任何所屬技術領域內具有通常知識者應瞭解到本說明書可輕易作為其他結構或製程的變更或設計基礎,以進行相同於本揭露實施例的目的及/或獲得相同的優點。任何所屬技術領域內具有通常知識者亦可理解與上述等同的結構或製程並未脫離本揭露之精神及保護範圍內,且可在不脫離本揭露之精神及範圍內,當可作更動、替代與潤飾。The above briefly describes the features of several embodiments of the present invention, so that those with ordinary knowledge in the technical field can more easily understand the present disclosure. Anyone with ordinary knowledge in the relevant technical field should understand that this specification can easily be used as a basis for modification or design of other structures or processes to perform the same purpose and/or obtain the same advantages as the embodiments of the present disclosure. Anyone with ordinary knowledge in the technical field can also understand that the structure or manufacturing process equivalent to the above does not deviate from the spirit and scope of the disclosure, and can be changed or substituted without departing from the spirit and scope of the disclosure. And retouch.

10、20:光學感測濾光器 100:基板 100A:主動區 100B:感測區 102:金屬間介電層 200:光電二極體 202:保護層 300:濾光片結構 302A、302B:濾光片堆疊 304A、304B:黏著層 306A、306B:金屬層 308A、308B:絕緣層 400:電晶體 404:閘極結構 406:源極/汲極區 500:介電層 502A、502B、502C:導孔 504A、504B、504C:導電層10.20: Optical sensor filter 100: substrate 100A: active area 100B: Sensing area 102: Intermetal dielectric layer 200: photodiode 202: protective layer 300: filter structure 302A, 302B: filter stack 304A, 304B: Adhesive layer 306A, 306B: metal layer 308A, 308B: insulating layer 400: Transistor 404: Gate structure 406: source/drain region 500: Dielectric layer 502A, 502B, 502C: pilot hole 504A, 504B, 504C: conductive layer

以下將配合所附圖式詳述本發明的一些實施例。應注意的是,依據在業界的標準做法,各種部件並未按照比例繪製且僅用以說明例示。事實上,可能任意地放大或縮小元件的尺寸,以清楚地表現出本發明實施例的部件。 第1A-1F圖係根據一些實施例,繪示出用於形成第1F圖之光學感測濾光器之示例方法的各個中間階段的剖面示意圖。 第2A-2C圖係根據一些實施例,繪示出用於形成第2C圖之光學感測濾光器之示例方法的各個中間階段的剖面示意圖。Hereinafter, some embodiments of the present invention will be described in detail with the accompanying drawings. It should be noted that, according to standard practices in the industry, various components are not drawn to scale and are only used for illustration and illustration. In fact, it is possible to arbitrarily enlarge or reduce the size of the element to clearly show the components of the embodiment of the present invention. Figures 1A-1F are schematic cross-sectional diagrams illustrating various intermediate stages of an exemplary method for forming the optical sensing filter of Figure 1F according to some embodiments. FIGS. 2A-2C are schematic cross-sectional diagrams illustrating various intermediate stages of an exemplary method for forming the optical sensing filter of FIG. 2C according to some embodiments.

20:光學感測濾光器 20: Optical sensing filter

100:基板 100: substrate

100A:主動區 100A: active area

100B:感測區 100B: Sensing area

102:金屬間介電層 102: Intermetal dielectric layer

200:光電二極體 200: photodiode

202:保護層 202: protective layer

300:濾光片結構 300: filter structure

302A、302B:濾光片堆疊 302A, 302B: filter stack

304A、304B:黏著層 304A, 304B: Adhesive layer

306A、306B:金屬層 306A, 306B: metal layer

308A、308B:絕緣層 308A, 308B: insulating layer

400:電晶體 400: Transistor

404:閘極結構 404: Gate structure

406:源極/汲極區 406: source/drain region

500:介電層 500: Dielectric layer

502A、502B、502C:導孔 502A, 502B, 502C: pilot hole

504A、504B、504C:導電層 504A, 504B, 504C: conductive layer

Claims (9)

一種光學感測濾光器,包括:一基板,包括一主動區以及一感測區;一光電二極體,設置在該基板的該感測區中;以及一濾光片結構,設置在該光電二極體之上,其中該濾光片結構包括:一第一濾光片堆疊,設置在該光電二極體之上,其中該第一濾光片堆疊包括:一第一黏著層,設置在該光電二極體之上;一第一金屬層,設置在該第一黏著層之上;以及一第一絕緣層,設置在該第一金屬層之上;以及一第二濾光片堆疊,設置在該第一濾光片堆疊之上,其中該第二濾光片堆疊包括:一第二黏著層,設置在該第一絕緣層之上;一第二金屬層,設置在該第二黏著層之上;以及一第二絕緣層,設置在該第二金屬層之上;以及一保護層,位於該光電二極體及該第一黏著層之間,其中該第一黏著層的熱膨脹係數介於該保護層及該第一金屬層的熱膨脹係數之間,且該第二黏著層的熱膨脹係數介於該第一絕緣層及該第二金屬層的熱膨脹係數之間。 An optical sensing filter includes: a substrate including an active area and a sensing area; a photodiode arranged in the sensing area of the substrate; and a filter structure arranged on the Above the photodiode, wherein the filter structure includes: a first filter stack disposed on the photodiode, wherein the first filter stack includes: a first adhesive layer disposed On the photodiode; a first metal layer disposed on the first adhesive layer; and a first insulating layer disposed on the first metal layer; and a second filter stack , Disposed on the first filter stack, wherein the second filter stack includes: a second adhesive layer disposed on the first insulating layer; a second metal layer disposed on the second On the adhesive layer; and a second insulating layer disposed on the second metal layer; and a protective layer located between the photodiode and the first adhesive layer, wherein the thermal expansion of the first adhesive layer The coefficient is between the thermal expansion coefficients of the protective layer and the first metal layer, and the thermal expansion coefficient of the second adhesive layer is between the thermal expansion coefficients of the first insulating layer and the second metal layer. 如申請專利範圍第1項所述之光學感測濾光器,其中該第一黏著層及/或該第二黏著層的厚度在約0.01奈米至約1奈米的範圍。 The optical sensor filter according to claim 1, wherein the thickness of the first adhesive layer and/or the second adhesive layer is in the range of about 0.01 nanometer to about 1 nanometer. 如申請專利範圍第1項所述之光學感測濾光器,其中該保護層與該第一絕緣層及/或該第二絕緣層包括相同的材料。 According to the optical sensing filter described in claim 1, wherein the protective layer and the first insulating layer and/or the second insulating layer comprise the same material. 如申請專利範圍第1項所述之光學感測濾光器,更包括:一電晶體,位於該基板的該主動區中;一金屬間介電層,位於該基板之上,其中該金屬間介電層覆蓋該電晶體;以及一凹口,穿過該金屬間介電層且露出該光電二極體的頂表面,其中該濾光片結構順應性地沿著該感測區中的該金屬間介電層及該凹口設置。 The optical sensing filter described in the first item of the scope of patent application further includes: a transistor located in the active region of the substrate; an intermetal dielectric layer located on the substrate, wherein the intermetallic The dielectric layer covers the transistor; and a notch that passes through the intermetallic dielectric layer and exposes the top surface of the photodiode, wherein the filter structure conforms to the sensing area along the The intermetal dielectric layer and the recess are arranged. 如申請專利範圍第4項所述之光學感測濾光器,其中該凹口的底表面與該凹口的側壁夾一角度,且其中該角度在約88度至約92度的範圍。 The optical sensor filter according to claim 4, wherein the bottom surface of the notch and the side wall of the notch form an angle, and the angle is in the range of about 88 degrees to about 92 degrees. 一種光學感測濾光器的形成方法,包括:提供一基板,該基板包括一主動區以及一感測區;在該基板的該感測區中形成一光電二極體;以及在該光電二極體之上形成一濾光片結構,其中形成該濾光片結構的步驟包括:在該光電二極體之上形成一第一濾光片堆疊,其中形成該第一濾光片堆疊的步驟包括:在該光電二極體之上形成一第一黏著層;在該第一黏著層之上形成一第一金屬層;以及在該第一金屬層之上形成一第一絕緣層;以及在該第一濾光片堆疊之上形成一第二濾光片堆疊,其中形 成該第二濾光片堆疊的步驟包括:在該第一絕緣層之上形成一第二黏著層;在該第二黏著層之上形成一第二金屬層;以及在該第二金屬層之上形成一第二絕緣層;以及在該光電二極體及該第一黏著層之間形成一保護層,其中該第一黏著層的熱膨脹係數介於該保護層及該第一金屬層的熱膨脹係數之間,且該第二黏著層的熱膨脹係數介於該第一絕緣層及該第二金屬層的熱膨脹係數之間。 A method for forming an optical sensing filter includes: providing a substrate including an active area and a sensing area; forming a photodiode in the sensing area of the substrate; and forming a photodiode on the photodiode A filter structure is formed on the pole body, wherein the step of forming the filter structure includes: forming a first filter stack on the photodiode, wherein the step of forming the first filter stack The method includes: forming a first adhesive layer on the photodiode; forming a first metal layer on the first adhesive layer; and forming a first insulating layer on the first metal layer; and A second filter stack is formed on the first filter stack, wherein the shape The step of forming the second filter stack includes: forming a second adhesive layer on the first insulating layer; forming a second metal layer on the second adhesive layer; and on the second metal layer Forming a second insulating layer on top; and forming a protective layer between the photodiode and the first adhesive layer, wherein the thermal expansion coefficient of the first adhesive layer is between the thermal expansion of the protective layer and the first metal layer And the thermal expansion coefficient of the second adhesive layer is between the thermal expansion coefficients of the first insulating layer and the second metal layer. 如申請專利範圍第6項所述之光學感測濾光器的形成方法,其中以相同的材料形成該保護層與該第一絕緣層及/或該第二絕緣層。 According to the method for forming an optical sensing filter described in item 6 of the scope of patent application, the protective layer and the first insulating layer and/or the second insulating layer are formed of the same material. 如申請專利範圍第6項所述之光學感測濾光器的形成方法,在形成該濾光片結構之前更包括:在該基板的該主動區中形成一電晶體;在該基板上形成一金屬間介電層,其中該金屬間介電層覆蓋該電晶體及該光電二極體;以及蝕刻該金屬間介電層,以形成露出該光電二極體的頂表面的一凹口,其中形成該濾光片結構的步驟更包括沿著該感測區中的該金屬間介電層及該凹口順應性地形成該濾光片結構。 The method for forming an optical sensing filter as described in item 6 of the scope of patent application, before forming the filter structure, further includes: forming a transistor in the active region of the substrate; and forming a transistor on the substrate. An intermetal dielectric layer, wherein the intermetal dielectric layer covers the transistor and the photodiode; and etching the intermetal dielectric layer to form a recess exposing the top surface of the photodiode, wherein The step of forming the filter structure further includes conformably forming the filter structure along the intermetal dielectric layer in the sensing area and the notch. 如申請專利範圍第8項所述之光學感測濾光器的形成方法,其中該凹口的底表面與該凹口的側壁夾一角度,且其中該角度在約88度至約92度的範圍。 According to the method for forming an optical sensor filter described in claim 8, wherein the bottom surface of the recess and the side wall of the recess form an angle, and the angle is about 88 degrees to about 92 degrees. Scope.
TW108129213A 2019-08-16 2019-08-16 Photo sensor filtron and methods for forming the same TWI748226B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW108129213A TWI748226B (en) 2019-08-16 2019-08-16 Photo sensor filtron and methods for forming the same
CN201911333690.1A CN112397528B (en) 2019-08-16 2019-12-23 Optical sensing filter and forming method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108129213A TWI748226B (en) 2019-08-16 2019-08-16 Photo sensor filtron and methods for forming the same

Publications (2)

Publication Number Publication Date
TW202109903A TW202109903A (en) 2021-03-01
TWI748226B true TWI748226B (en) 2021-12-01

Family

ID=74603762

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108129213A TWI748226B (en) 2019-08-16 2019-08-16 Photo sensor filtron and methods for forming the same

Country Status (2)

Country Link
CN (1) CN112397528B (en)
TW (1) TWI748226B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230170361A1 (en) * 2021-11-30 2023-06-01 Visera Technologies Company Ltd. Optical device
WO2024082212A1 (en) * 2022-10-20 2024-04-25 Visera Technologies Company Ltd. Optical element with distant layer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101567377A (en) * 2008-04-21 2009-10-28 索尼株式会社 Solid camera device, method for manufacturing the solid camera device, and electronic device
TW201110335A (en) * 2009-07-06 2011-03-16 Pixart Imaging Inc Image sensor device and method for making same
CN108987518A (en) * 2017-06-05 2018-12-11 杭州朗旭新材料科技有限公司 A kind of flexibility condenser mirror

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4044090B2 (en) * 2003-12-26 2008-02-06 シャープ株式会社 Color filter substrate, liquid crystal display device including the same, and method for manufacturing color filter substrate
KR20050103027A (en) * 2004-04-23 2005-10-27 매그나칩 반도체 유한회사 Image sensor having notch filter and method for fabrication of the same
US7297916B1 (en) * 2005-02-22 2007-11-20 Magnachip Semiconductor, Ltd. Optically improved CMOS imaging sensor structure to lower imaging lens requirements
KR100835439B1 (en) * 2006-12-28 2008-06-04 동부일렉트로닉스 주식회사 Image sensor and method of manufacturing the same
US8063465B2 (en) * 2008-02-08 2011-11-22 Omnivision Technologies, Inc. Backside illuminated imaging sensor with vertical pixel sensor
KR20100064624A (en) * 2008-12-05 2010-06-15 삼성에스디아이 주식회사 Front filter for display device and method of manufacturing the same
CN103000585B (en) * 2011-09-08 2014-12-24 九齐科技股份有限公司 Manufacturing method of mask ROM (read only memory)
US8779542B2 (en) * 2012-11-21 2014-07-15 Intersil Americas LLC Photodetectors useful as ambient light sensors and methods for use in manufacturing the same
CN103926629B (en) * 2013-01-11 2017-03-08 原相科技股份有限公司 optical device, photosensitive element using microlens and manufacturing method thereof
CN104238822A (en) * 2014-09-24 2014-12-24 业成光电(深圳)有限公司 Sensing electrode lamination structure, touch lamination structure and forming method thereof
US10224357B1 (en) * 2017-09-07 2019-03-05 Visera Technologies Company Limited Image sensor packages

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101567377A (en) * 2008-04-21 2009-10-28 索尼株式会社 Solid camera device, method for manufacturing the solid camera device, and electronic device
TW201110335A (en) * 2009-07-06 2011-03-16 Pixart Imaging Inc Image sensor device and method for making same
CN108987518A (en) * 2017-06-05 2018-12-11 杭州朗旭新材料科技有限公司 A kind of flexibility condenser mirror

Also Published As

Publication number Publication date
CN112397528A (en) 2021-02-23
TW202109903A (en) 2021-03-01
CN112397528B (en) 2023-09-29

Similar Documents

Publication Publication Date Title
US7745250B2 (en) Image sensor and method for manufacturing the same
TWI748226B (en) Photo sensor filtron and methods for forming the same
US20070114671A1 (en) Interconnect structure and fabricating method thereof
US20060049439A1 (en) Image device and method of fabricating the same
TWI495043B (en) Method for forming recess-free interconnect structure
JP5146504B2 (en) Manufacturing method of semiconductor device
CN106783901B (en) The manufacturing method and domain structure of backside-illuminated sensor
US7897425B2 (en) Image sensor and method for fabricating the same
TWI505431B (en) Semiconductor device and manufacturing method of integrated circuit
JP4936643B2 (en) Semiconductor device and manufacturing method thereof
US20090053538A1 (en) Interconnection structure having oxygen trap pattern in semiconductor device
US10916699B2 (en) Resistive memory crossbar array employing selective barrier layer growth
JP2006100679A (en) Semiconductor device
US10672984B2 (en) Resistive memory crossbar array compatible with Cu metallization
US10852193B2 (en) Thermal infrared detector and manufacturing method thereof
JP2005235888A (en) Semiconductor device and its manufacturing method
KR102558608B1 (en) Patterning interconnects and other structures by photo-sensitizing method
JP4675050B2 (en) Semiconductor device
JP4484548B2 (en) Semiconductor device
US11024539B2 (en) Self-aligned cut process for self-aligned via process window
US9589837B2 (en) Electrode manufacturing method, fuse device and manufacturing method therefor
US20230005960A1 (en) Semiconductor device
US20230343701A1 (en) Semiconductor device
US20230069025A1 (en) Semiconductor device and manufacturing method thereof
JP2005268749A (en) Semiconductor device