TWI728475B - Solar cell electrode and fabrication method thereof and solar cell including the same - Google Patents

Solar cell electrode and fabrication method thereof and solar cell including the same Download PDF

Info

Publication number
TWI728475B
TWI728475B TW108134145A TW108134145A TWI728475B TW I728475 B TWI728475 B TW I728475B TW 108134145 A TW108134145 A TW 108134145A TW 108134145 A TW108134145 A TW 108134145A TW I728475 B TWI728475 B TW I728475B
Authority
TW
Taiwan
Prior art keywords
mol
solar cell
glass frit
electrode
weight
Prior art date
Application number
TW108134145A
Other languages
Chinese (zh)
Other versions
TW202015247A (en
Inventor
張東珍
金周熙
金哲奎
申東一
庾相勳
李性恩
許倫旼
Original Assignee
大陸商常州聚和新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商常州聚和新材料股份有限公司 filed Critical 大陸商常州聚和新材料股份有限公司
Publication of TW202015247A publication Critical patent/TW202015247A/en
Application granted granted Critical
Publication of TWI728475B publication Critical patent/TWI728475B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/10Frit compositions, i.e. in a powdered or comminuted form containing lead
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

Disclosed herein are a method for forming solar cell electrodes, a solar cell electrode fabricated by the same, and a solar cell including the same. The method includes: forming a first finger electrode pattern by applying a first electrode composition comprising a conductive powder, a first glass frit, and an organic vehicle; forming a second finger electrode pattern and a bus electrode pattern by applying a second electrode composition comprising the conductive powder, a second glass frit, and the organic vehicle, wherein the second glass frit contains 1 mol% to 20 mol% of elemental manganese (Mn); and performing a baking process.

Description

太陽能電池電極與其製備方法以及包含其的太陽能電池Solar cell electrode, preparation method thereof, and solar cell containing the same

本發明是有關於一種形成太陽能電池電極的方法、由所述方法製作的太陽能電池電極以及包括所述太陽能電池電極的太陽能電池。相關申請的交叉引用 The present invention relates to a method for forming a solar cell electrode, a solar cell electrode produced by the method, and a solar cell including the solar cell electrode. Cross-references to related applications

本申請主張在2018年10月10日在韓國智慧財產權局提出申請的韓國專利申請第10-2018-0120783號的權益,所述韓國專利申請的全部公開內容以引用的方式併入本文供參考。This application claims the rights and interests of Korean Patent Application No. 10-2018-0120783 filed with the Korean Intellectual Property Office on October 10, 2018, and the entire disclosure of the Korean patent application is incorporated herein by reference.

矽系太陽能電池由基板及發射極層構成,所述基板由p型矽半導體形成,且所述發射極層由n型矽半導體形成。在p型基板與n型發射極層之間形成有PN結(PN junction)。當日光入射在具有此種結構的太陽能電池上時,通過光生伏打效應,會在由n型矽半導體形成的發射極層中產生電子作為多數載流子,且在由p型矽半導體形成的基板中產生電洞作為多數載流子。由光生伏打效應產生的電子及電洞分別向形成於發射極層的上側及下側的前電極及後電極移動。當這些電極通過導線彼此連接時,電流流動。太陽能電池的電極通過塗佈、圖案化及烘烤太陽能電池電極用組成物而形成在晶片上。The silicon-based solar cell is composed of a substrate and an emitter layer. The substrate is formed of a p-type silicon semiconductor, and the emitter layer is formed of an n-type silicon semiconductor. A PN junction (PN junction) is formed between the p-type substrate and the n-type emitter layer. When sunlight is incident on a solar cell with such a structure, through the photovoltaic effect, electrons are generated as majority carriers in the emitter layer formed by n-type silicon semiconductor, and in the form of p-type silicon semiconductor Holes are generated in the substrate as majority carriers. The electrons and holes generated by the photovoltaic effect move to the front electrode and the back electrode formed on the upper and lower sides of the emitter layer, respectively. When these electrodes are connected to each other by wires, current flows. The electrode of the solar cell is formed on the wafer by coating, patterning, and baking the composition for the solar cell electrode.

作為太陽能電池電極用組成物,通常使用包含導電粉、玻璃料及有機載體等的導電膏。玻璃料用於溶解形成在半導體基板上的抗反射膜,以使導電粉能夠與半導體基板電接觸。具體來說,玻璃料與抗反射膜的反應對太陽能電池的電特性(例如,由導電膏形成的電極的串聯電阻(Rs)及開路電壓(Voc))有影響,從而最終影響太陽能電池的填充因數(fill factor)及轉換效率。As the composition for solar cell electrodes, a conductive paste containing conductive powder, glass frit, organic vehicle, and the like is generally used. The glass frit is used to dissolve the anti-reflection film formed on the semiconductor substrate so that the conductive powder can make electrical contact with the semiconductor substrate. Specifically, the reaction between the glass frit and the anti-reflection film affects the electrical characteristics of the solar cell (for example, the series resistance (Rs) and open circuit voltage (Voc) of the electrode formed by the conductive paste), which ultimately affects the filling of the solar cell Factor (fill factor) and conversion efficiency.

此種太陽能電池電極包括指狀電極(finger electrode)及匯流排電極(bus electrode)。在製造太陽能電池後的模組化工藝中,在焊接工藝期間將匯流排電極附裝到條帶(ribbon)。因此,匯流排電極需要對條帶具有高黏合力。Such solar cell electrodes include finger electrodes and bus electrodes. In the modularization process after the solar cell is manufactured, the busbar electrodes are attached to the ribbon during the welding process. Therefore, the bus bar electrode needs to have high adhesion to the strip.

本發明的目的是提供一種形成太陽能電池電極的方法、由所述方法製作的太陽能電池電極以及包括所述太陽能電池電極的太陽能電池,所述方法能夠實現與條帶具有高黏合力並提供改善的開路電壓的太陽能電池電極,從而提高太陽能電池的轉換效率。The object of the present invention is to provide a method for forming a solar cell electrode, a solar cell electrode produced by the method, and a solar cell including the solar cell electrode, the method can achieve high adhesion to the strip and provide improved The open circuit voltage of the solar cell electrode improves the conversion efficiency of the solar cell.

根據本發明的一個方面,提供一種形成太陽能電池電極的方法,所述方法包括:通過塗佈包含導電粉、第一玻璃料及有機載體的第一電極組成物來形成第一指狀電極圖案;通過塗佈包含所述導電粉、第二玻璃料及所述有機載體的第二電極組成物來形成第二指狀電極圖案及匯流排電極圖案,所述第二玻璃料含有1摩爾%到20摩爾%的元素錳(Mn);以及執行烘烤工藝。According to one aspect of the present invention, there is provided a method of forming a solar cell electrode, the method comprising: forming a first finger electrode pattern by coating a first electrode composition including a conductive powder, a first glass frit, and an organic carrier; The second electrode composition including the conductive powder, the second glass frit and the organic carrier is coated to form a second finger electrode pattern and a bus bar electrode pattern, and the second glass frit contains 1 mol% to 20 mol% The element manganese (Mn); and perform the baking process.

所述第一玻璃料可不含元素錳(Mn)。The first glass frit may not contain elemental manganese (Mn).

所述第二玻璃料還可包含元素鉛(Pb)、鉍(Bi)及碲(Te)。The second glass frit may further include the elements lead (Pb), bismuth (Bi), and tellurium (Te).

所述第二玻璃料還可包含元素鉛(Pb)、鉍(Bi)及碲(Te),且所述第二玻璃料可總共包含20摩爾%到50摩爾%的元素鉛(Pb)及鉍(Bi)以及30摩爾%到60摩爾%的元素碲(Te)。The second glass frit may further include the elements lead (Pb), bismuth (Bi), and tellurium (Te), and the second glass frit may include a total of 20 mol% to 50 mol% of the elements lead (Pb) and bismuth (Bi) and the element tellurium (Te) from 30 mol% to 60 mol%.

所述第一電極組成物可包含60重量%到95重量%的所述導電粉、0.1重量%到20重量%的所述第一玻璃料及1重量%到30重量%的所述有機載體。The first electrode composition may include 60% to 95% by weight of the conductive powder, 0.1% to 20% by weight of the first glass frit, and 1% to 30% by weight of the organic carrier.

所述第二電極組成物可包含60重量%到95重量%的所述導電粉、0.1重量%到20重量%的所述第二玻璃料及1重量%到30重量%的所述有機載體。The second electrode composition may include 60% to 95% by weight of the conductive powder, 0.1% to 20% by weight of the second glass frit, and 1% to 30% by weight of the organic carrier.

根據本發明的另一方面,提供一種太陽能電池電極,所述太陽能電池電極由所述形成太陽能電池電極的方法製作而成。According to another aspect of the present invention, a solar cell electrode is provided, and the solar cell electrode is manufactured by the method for forming a solar cell electrode.

根據本發明的又一方面,提供一種太陽能電池,所述太陽能電池包括如由所述形成太陽能電池電極的方法製作的太陽能電池電極。According to yet another aspect of the present invention, a solar cell is provided, the solar cell including a solar cell electrode manufactured by the method for forming a solar cell electrode.

由根據本發明的形成太陽能電池電極的方法製作的電極與條帶具有良好的黏合力,且包括所述電極的太陽能電池具有良好的轉換效率。The electrode and the strip made by the method for forming a solar cell electrode according to the present invention have good adhesion, and the solar cell including the electrode has good conversion efficiency.

本文中所使用的單數形式“一(a及an)”及“所述(the)”旨在也包括複數形式,除非上下文另有明確說明。The singular forms "一 (a and an)" and "the" as used herein are intended to also include the plural form, unless the context clearly dictates otherwise.

此外,當在本說明書中使用用語“包括(comprises及comprising)”和/或“包含(includes及including)”時,是指明存在所述特徵、整數、步驟、操作、元件、元件和/或其群組,但不排除一個或多個其他特徵、整數、步驟、操作、元件、元件和/或其群組的存在或添加。In addition, when the terms "comprises and comprising" and/or "includes and including" are used in this specification, they indicate the presence of the features, integers, steps, operations, elements, elements and/or Group, but does not exclude the existence or addition of one or more other features, integers, steps, operations, elements, elements and/or groups thereof.

應理解,儘管在本文中可能使用“第一”、“第二”、“A”、“B”等用語來描述各種元件、元件、區域、層和/或區段,但這些元件、元件、區域、層和/或區段不應受這些用語限制。這些用語僅用於區分一個元件、元件、區域、層或區段與另一元件、元件、區域、層或區段。It should be understood that although terms such as "first", "second", "A", "B" and the like may be used herein to describe various elements, elements, regions, layers and/or sections, these elements, elements, Regions, layers and/or sections should not be restricted by these terms. These terms are only used to distinguish one element, element, region, layer or section from another element, element, region, layer or section.

下文將更詳細地描述形成太陽能電池電極的方法。製備第一電極組成物及第二電極組成物 Hereinafter, the method of forming the solar cell electrode will be described in more detail. Preparation of the first electrode composition and the second electrode composition

可通過將導電粉與第一玻璃料及有機載體混合來製備第一電極組成物,且可通過將導電粉與第二玻璃料及有機載體混合來製備第二電極組成物。導電粉 The first electrode composition can be prepared by mixing the conductive powder with the first glass frit and the organic carrier, and the second electrode composition can be prepared by mixing the conductive powder with the second glass frit and the organic carrier. Conductive powder

導電粉可包括例如選自由銀(Ag)、金(Au)、鉑(Pt)、鈀(Pd)、鋁(Al)及鎳(Ni)粉形成的群組的至少一種金屬粉,但並不僅限於此。在一個實施例中,導電粉可包括銀粉。The conductive powder may include, for example, at least one metal powder selected from the group consisting of silver (Ag), gold (Au), platinum (Pt), palladium (Pd), aluminum (Al), and nickel (Ni) powder, but not only Limited to this. In one embodiment, the conductive powder may include silver powder.

導電粉可具有各種顆粒形狀,例如球形、薄片形、或非晶形顆粒形狀,對此並無限制。The conductive powder may have various particle shapes, such as spherical, flake-shaped, or amorphous particle shapes, without limitation.

導電粉可具有納米級細微性或微米級細微性。舉例來說,導電粉可具有數十納米到數百納米的平均粒徑或數微米到數十微米的平均粒徑。作為另外一種選擇,導電粉可為具有不同細微性的兩種或更多種導電粉的混合物。The conductive powder may have nano-level fineness or micro-level fineness. For example, the conductive powder may have an average particle diameter of tens of nanometers to hundreds of nanometers or an average particle diameter of several micrometers to tens of micrometers. Alternatively, the conductive powder may be a mixture of two or more conductive powders having different finenesses.

導電粉可具有0.1微米到10微米、具體來說0.5微米至5微米、例如0.5微米、1微米、2微米、3微米、4微米或5微米的平均粒徑(D50)。在此範圍內,所述導電粉可減小串聯電阻及接觸電阻。此處,可在25°C下經由超聲波(ultrasonication)作用3分鐘將導電粉分散在異丙醇(isopropyl alcohol,IPA)中後,利用粒徑分析儀(1064LD型,西萊斯有限公司(CILAS Co., Ltd.))來測量平均粒徑(D50)。The conductive powder may have an average particle diameter (D50) of 0.1 micrometers to 10 micrometers, specifically 0.5 micrometers to 5 micrometers, for example 0.5 micrometers, 1 micrometers, 2 micrometers, 3 micrometers, 4 micrometers, or 5 micrometers. Within this range, the conductive powder can reduce series resistance and contact resistance. Here, the conductive powder can be dispersed in isopropyl alcohol (IPA) through ultrasonication at 25°C for 3 minutes, and then a particle size analyzer (1064LD type, CILAS Co., Ltd. (CILAS) can be used to disperse the conductive powder in isopropyl alcohol (IPA). Co., Ltd.)) to measure the average particle size (D50).

儘管導電粉的量不受特別限制,但以第一電極組成物或第二電極組成物的總重量計,可存在60重量%到95重量%、具體來說70重量%到90重量%,例如70重量%、71重量%、72重量%、73重量%、74重量%、75重量%、76重量%、77重量%、78重量%、79重量%、80重量%、81重量%、82重量%、83重量%、84重量%、85重量%、86重量%、87重量%、88重量%、89重量%或90重量%的量的導電粉。在此範圍內,第一電極組成物及第二電極組成物中的每一者可提高太陽能電池轉換效率且可易於製備成膏狀。第一玻璃料及第二玻璃料 Although the amount of conductive powder is not particularly limited, based on the total weight of the first electrode composition or the second electrode composition, there may be 60% to 95% by weight, specifically 70% to 90% by weight, for example 70% by weight, 71% by weight, 72% by weight, 73% by weight, 74% by weight, 75% by weight, 76% by weight, 77% by weight, 78% by weight, 79% by weight, 80% by weight, 81% by weight, 82% by weight %, 83% by weight, 84% by weight, 85% by weight, 86% by weight, 87% by weight, 88% by weight, 89% by weight, or 90% by weight of conductive powder. Within this range, each of the first electrode composition and the second electrode composition can improve the conversion efficiency of the solar cell and can be easily prepared into a paste. The first glass frit and the second glass frit

第一玻璃料及第二玻璃料中的每一者用於在對應電極組成物的烘烤工藝期間通過蝕刻抗反射層及熔化導電粉而在發射極區域中形成導電粉的晶粒。此外,第一玻璃料及第二玻璃料中的每一者改善導電粉對晶片的黏合力,並在烘烤工藝期間被軟化以降低烘烤溫度。Each of the first glass frit and the second glass frit is used to form crystal grains of conductive powder in the emitter region by etching the anti-reflection layer and melting the conductive powder during the baking process of the corresponding electrode composition. In addition, each of the first glass frit and the second glass frit improves the adhesion of the conductive powder to the wafer, and is softened during the baking process to lower the baking temperature.

第一電極組成物包含第一玻璃料。The first electrode composition includes a first glass frit.

第一玻璃料可與第二電極組成物中包含的第二玻璃料相同或不同。The first glass frit may be the same as or different from the second glass frit contained in the second electrode composition.

舉例來說,第一玻璃料可含有或可不含有元素錳(Mn)。For example, the first glass frit may or may not contain the element manganese (Mn).

在一個實施例中,第一玻璃料可不含元素錳(Mn)。當第一玻璃料不含元素錳(Mn)時,由於接觸電阻降低,因此太陽能電池轉換效率可得以提高。In one embodiment, the first glass frit may not contain the element manganese (Mn). When the first glass frit does not contain the element manganese (Mn), since the contact resistance is reduced, the conversion efficiency of the solar cell can be improved.

第一玻璃料可以是例如含有元素鉛(Pb)、鉍(Bi)及碲(Te)的鉛-鉍-碲氧化物(Pb-Bi-Te-O)玻璃料。使用含有元素鉛(Pb)、鉍(Bi)及碲(Te)的第一玻璃料可在較寬的烘烤溫度範圍內提供高的太陽能電池轉換效率。The first glass frit may be, for example, a lead-bismuth-tellurium oxide (Pb-Bi-Te-O) glass frit containing the elements lead (Pb), bismuth (Bi), and tellurium (Te). The use of the first glass frit containing the elements lead (Pb), bismuth (Bi) and tellurium (Te) can provide high solar cell conversion efficiency in a wide baking temperature range.

元素鉛(Pb)及鉍(Bi)可以20摩爾%到50摩爾%、具體來說30摩爾%到50摩爾%、例如30摩爾%、31摩爾%、32摩爾%、33摩爾%、34摩爾%、35摩爾%、36摩爾%、37摩爾%、38摩爾%、39摩爾%、40摩爾%、41摩爾%、42摩爾%、43摩爾%、44摩爾%、45摩爾%、46摩爾%、47摩爾%、48摩爾%、49摩爾%或50摩爾%的總量存在於第一玻璃料中。在此範圍內,第一玻璃料可在較寬的烘烤溫度範圍內提供良好的串聯電阻。The element lead (Pb) and bismuth (Bi) may be 20 mol% to 50 mol%, specifically 30 mol% to 50 mol%, for example, 30 mol%, 31 mol%, 32 mol%, 33 mol%, 34 mol% , 35 mol%, 36 mol%, 37 mol%, 38 mol%, 39 mol%, 40 mol%, 41 mol%, 42 mol%, 43 mol%, 44 mol%, 45 mol%, 46 mol%, 47 The total amount of mol%, 48 mol%, 49 mol%, or 50 mol% is present in the first glass frit. Within this range, the first glass frit can provide good series resistance in a wider baking temperature range.

元素碲(Te)可以30摩爾%到60摩爾%、具體來說30摩爾%到50摩爾%或30摩爾%到47摩爾%、例如30摩爾%、31摩爾%、32摩爾%、33摩爾%、34摩爾%、35摩爾%、36摩爾%、37摩爾%、38摩爾%、39摩爾%、40摩爾%、41摩爾%、42摩爾%、43摩爾%、44摩爾%、45摩爾%、46摩爾%或47摩爾%的量存在於第一玻璃料中。在此範圍內,第一玻璃料可具有進一步改善的均勻性。The element tellurium (Te) can be 30 mol% to 60 mol%, specifically 30 mol% to 50 mol% or 30 mol% to 47 mol%, for example, 30 mol%, 31 mol%, 32 mol%, 33 mol%, 34 mol%, 35 mol%, 36 mol%, 37 mol%, 38 mol%, 39 mol%, 40 mol%, 41 mol%, 42 mol%, 43 mol%, 44 mol%, 45 mol%, 46 mol % Or 47 mol% is present in the first glass frit. Within this range, the first glass frit may have further improved uniformity.

除鉛(Pb)、鉍(Bi)及碲(Te)之外,第一玻璃料還可包含其他元素金屬。舉例來說,第一玻璃料還可包含鋰(Li)、鋅(Zn)、磷(P)、鍺(Ge)、鎵(Ga)、鈰(Ce)、鐵(Fe)、矽(Si)、鎢(W)、鎂(Mg)、銫(Cs)、鍶(Sr)、鉬(Mo)、鈦(Ti)、錫(Sn)、銦(In)、釩(V)、鋇(Ba)、鎳(Ni)、銅(Cu)、鈉(Na)、鉀(K)、砷(As)、鈷(Co)、鋯(Zr)及錳(Mn)中的至少一者。In addition to lead (Pb), bismuth (Bi), and tellurium (Te), the first glass frit may also include other elemental metals. For example, the first glass frit may also include lithium (Li), zinc (Zn), phosphorus (P), germanium (Ge), gallium (Ga), cerium (Ce), iron (Fe), silicon (Si) , Tungsten (W), Magnesium (Mg), Cesium (Cs), Strontium (Sr), Molybdenum (Mo), Titanium (Ti), Tin (Sn), Indium (In), Vanadium (V), Barium (Ba) , At least one of nickel (Ni), copper (Cu), sodium (Na), potassium (K), arsenic (As), cobalt (Co), zirconium (Zr), and manganese (Mn).

在一個實施例中,第一玻璃料可包括鉛-鉍-碲-鋰氧化物 (Pb-Bi-Te-Li-O)玻璃料。在另一實施例中,第一玻璃料可包括鉛-鉍-碲-鋰-矽氧化矽(Pb-Bi-Te-Li-Si-O)玻璃料,但並不僅限於此。In one embodiment, the first glass frit may include lead-bismuth-tellurium-lithium oxide (Pb-Bi-Te-Li-O) glass frit. In another embodiment, the first glass frit may include lead-bismuth-tellurium-lithium-silicon oxide (Pb-Bi-Te-Li-Si-O) glass frit, but is not limited thereto.

以第一電極組成物的總重量計,可存在0.1重量%至20重量%、具體來說0.5重量%至10重量%、例如0.5重量%、1重量%、2重量%、3重量%、4重量%、5重量%、6重量%、7重量%、8重量%、9重量%或10重量%的量的第一玻璃料。在此範圍內,第一玻璃料可提供良好的開路電壓及串聯電阻,從而提高太陽能電池效率。Based on the total weight of the first electrode composition, there may be 0.1% to 20% by weight, specifically 0.5% to 10% by weight, such as 0.5% by weight, 1% by weight, 2% by weight, 3% by weight, 4% by weight. The first glass frit in an amount of wt%, 5 wt%, 6 wt%, 7 wt%, 8 wt%, 9 wt%, or 10 wt%. Within this range, the first glass frit can provide good open circuit voltage and series resistance, thereby improving solar cell efficiency.

第二電極組成物包括含有1摩爾%至20摩爾%的元素錳(Mn)的第二玻璃料。當第二玻璃料中的元素錳(Mn)的量在此範圍內時,第二電極組成物可使開路電壓的損耗最小化,從而在表現出與條帶良好的黏合力的同時提高太陽能電池效率。The second electrode composition includes a second glass frit containing 1 mol% to 20 mol% of the element manganese (Mn). When the amount of elemental manganese (Mn) in the second glass frit is within this range, the second electrode composition can minimize the loss of open circuit voltage, thereby exhibiting good adhesion to the ribbon while improving the solar cell effectiveness.

舉例來說,第二玻璃料中的元素錳(Mn)的量的下限可選自1摩爾%、2摩爾%、3摩爾%、4摩爾%、5摩爾%、6摩爾%、7摩爾%、8摩爾%、9摩爾%及10摩爾%,且第二玻璃料中的元素錳(Mn)的量的上限可選自20摩爾%、19摩爾%、18摩爾%、17摩爾%、16摩爾%、15摩爾%、14摩爾%、13摩爾%、12摩爾%、11摩爾%及10摩爾%。再舉例來說,元素錳(Mn)可以大於1摩爾%、2摩爾%、3摩爾%、4摩爾%、5摩爾%、6摩爾%、7摩爾%、8摩爾%或9摩爾%且小於20摩爾%、19摩爾%、18摩爾%、17摩爾%、16摩爾%、15摩爾%、14摩爾%、13摩爾%、12摩爾%或11摩爾%的量存在於第二玻璃料中。For example, the lower limit of the amount of elemental manganese (Mn) in the second glass frit can be selected from 1 mol%, 2 mol%, 3 mol%, 4 mol%, 5 mol%, 6 mol%, 7 mol%, 8 mol%, 9 mol%, and 10 mol%, and the upper limit of the amount of elemental manganese (Mn) in the second glass frit can be selected from 20 mol%, 19 mol%, 18 mol%, 17 mol%, 16 mol% , 15 mol%, 14 mol%, 13 mol%, 12 mol%, 11 mol%, and 10 mol%. For another example, the elemental manganese (Mn) can be greater than 1 mol%, 2 mol%, 3 mol%, 4 mol%, 5 mol%, 6 mol%, 7 mol%, 8 mol%, or 9 mol% and less than 20 mol%. An amount of mol%, 19 mol%, 18 mol%, 17 mol%, 16 mol%, 15 mol%, 14 mol%, 13 mol%, 12 mol%, or 11 mol% is present in the second glass frit.

第二玻璃料可以是例如含有元素錳(Mn)、鉛(Pb)、鉍(Bi)及碲(Te)的錳-鉛-鉍-碲-氧化物(Mn-Pb-Bi-Te-O)玻璃料。使用含有元素錳(Mn)、鉛(Pb)、鉍(Bi)及碲(Te)的第二玻璃料可在較寬的烘烤溫度範圍內提供良好的開路電壓及串聯電阻,從而提高太陽能電池效率。The second glass frit may be, for example, manganese-lead-bismuth-tellurium-oxide (Mn-Pb-Bi-Te-O) containing the elements manganese (Mn), lead (Pb), bismuth (Bi) and tellurium (Te) Frit glass. The use of the second glass frit containing the elements manganese (Mn), lead (Pb), bismuth (Bi) and tellurium (Te) can provide good open circuit voltage and series resistance in a wide baking temperature range, thereby improving solar cells effectiveness.

元素鉛(Pb)及鉍(Bi)可以20摩爾%到50摩爾%、具體來說30摩爾%到50摩爾%、例如30摩爾%、31摩爾%、32摩爾%、33摩爾%、34摩爾%、35摩爾%、36摩爾%、37摩爾%、38摩爾%、39摩爾%、40摩爾%、41摩爾%、42摩爾%、43摩爾%、44摩爾%、45摩爾%、46摩爾%、47摩爾%、48摩爾%、49摩爾%或50摩爾%的總量存在於第二玻璃料中。在此範圍內,第二玻璃料可在較寬的烘烤溫度範圍內提供良好的串聯電阻。The element lead (Pb) and bismuth (Bi) may be 20 mol% to 50 mol%, specifically 30 mol% to 50 mol%, for example, 30 mol%, 31 mol%, 32 mol%, 33 mol%, 34 mol% , 35 mol%, 36 mol%, 37 mol%, 38 mol%, 39 mol%, 40 mol%, 41 mol%, 42 mol%, 43 mol%, 44 mol%, 45 mol%, 46 mol%, 47 The total amount of mol%, 48 mol%, 49 mol%, or 50 mol% is present in the second glass frit. Within this range, the second glass frit can provide good series resistance in a wider baking temperature range.

元素碲(Te)可以30摩爾%到60摩爾%、具體來說30摩爾%到50摩爾%或30摩爾%至47摩爾%、例如30摩爾%、31摩爾%、32摩爾%、33摩爾%、34摩爾%、35摩爾%、36摩爾%、37摩爾%、38摩爾%、39摩爾%、40摩爾%、41摩爾%、42摩爾%、43摩爾%、44摩爾%、45摩爾%、46摩爾%或47摩爾%的量存在於第二玻璃料中。在此範圍內,第二玻璃料可具有進一步改善的均勻性。The element tellurium (Te) can be 30 mol% to 60 mol%, specifically 30 mol% to 50 mol% or 30 mol% to 47 mol%, for example, 30 mol%, 31 mol%, 32 mol%, 33 mol%, 34 mol%, 35 mol%, 36 mol%, 37 mol%, 38 mol%, 39 mol%, 40 mol%, 41 mol%, 42 mol%, 43 mol%, 44 mol%, 45 mol%, 46 mol % Or 47 mol% is present in the second glass frit. Within this range, the second glass frit may have further improved uniformity.

除錳(Mn)、鉛(Pb)、鉍(Bi)及碲(Te)之外,第二玻璃料還可包含其他元素金屬。舉例來說,第二玻璃料還可包含鋰(Li)、鋅(Zn)、磷(P)、鍺(Ge)、鎵(Ga)、鈰(Ce)、鐵(Fe)、矽(Si)、鎢(W)、鎂(Mg)、銫(Cs)、鍶(Sr)、鉬(Mo)、鈦(Ti)、錫(Sn)、銦(In)、釩(V)、鋇(Ba)、鎳(Ni)、銅(Cu)、鈉(Na)、鉀(K)、砷(As)、鈷(Co)及鋯(Zr)中的至少一者。In addition to manganese (Mn), lead (Pb), bismuth (Bi), and tellurium (Te), the second glass frit may also include other elemental metals. For example, the second glass frit may also include lithium (Li), zinc (Zn), phosphorus (P), germanium (Ge), gallium (Ga), cerium (Ce), iron (Fe), silicon (Si) , Tungsten (W), Magnesium (Mg), Cesium (Cs), Strontium (Sr), Molybdenum (Mo), Titanium (Ti), Tin (Sn), Indium (In), Vanadium (V), Barium (Ba) , At least one of nickel (Ni), copper (Cu), sodium (Na), potassium (K), arsenic (As), cobalt (Co), and zirconium (Zr).

在一個實施例中,第二玻璃料可包括錳-鉛-鉍-碲-鋰-氧化物 (Mn-Pb-Bi-Te-Li-O)玻璃料。在另一實施例中,第二玻璃料可包括錳-鉛-鉍-碲-鋰-矽-氧化物(Mn-Pb-Bi-Te-Li-Si-O)玻璃料,但並不僅限於此。In one embodiment, the second glass frit may include manganese-lead-bismuth-tellurium-lithium-oxide (Mn-Pb-Bi-Te-Li-O) glass frit. In another embodiment, the second glass frit may include manganese-lead-bismuth-tellurium-lithium-silicon-oxide (Mn-Pb-Bi-Te-Li-Si-O) glass frit, but is not limited to this .

以第二電極組成物的總重量計,可存在0.1重量%到20重量%、具體來說0.5重量%到10重量%、例如0.5重量%、1重量%、2重量%、3重量%、4重量%、5重量%、6重量%、7重量%、8重量%、9重量%或10重量%的量的第二玻璃料。在此範圍內,第二玻璃料可提供良好的開路電壓及串聯電阻,從而提高太陽能電池效率。Based on the total weight of the second electrode composition, there may be 0.1% to 20% by weight, specifically 0.5% to 10% by weight, such as 0.5% by weight, 1% by weight, 2% by weight, 3% by weight, 4% by weight. The second glass frit in an amount of wt%, 5 wt%, 6 wt%, 7 wt%, 8 wt%, 9 wt%, or 10 wt%. Within this range, the second glass frit can provide good open circuit voltage and series resistance, thereby improving solar cell efficiency.

第一玻璃料及第二玻璃料中的每一者的形狀及尺寸不受特別限制。舉例來說,第一玻璃料及第二玻璃料中的每一者可具有球形或非晶形形狀,且可具有0.1微米到10微米、具體來說0.5微米到5微米、例如0.5微米、1微米、2微米、3微米、4微米或5微米的平均粒徑(D50)。此處,可在25℃下經由超聲波作用3分鐘將導電粉分散在異丙醇(IPA)中後,利用粒徑分析儀(1064LD型,西萊斯有限公司)來測量平均粒徑(D50)。The shape and size of each of the first glass frit and the second glass frit are not particularly limited. For example, each of the first glass frit and the second glass frit may have a spherical or amorphous shape, and may have 0.1 micrometers to 10 micrometers, specifically 0.5 micrometers to 5 micrometers, such as 0.5 micrometers, 1 micrometers, Average particle size (D50) of 2 microns, 3 microns, 4 microns or 5 microns. Here, the conductive powder can be dispersed in isopropyl alcohol (IPA) by ultrasonic action at 25°C for 3 minutes, and then the average particle size (D50) can be measured with a particle size analyzer (1064LD type, Siles Co., Ltd.) .

可通過所屬領域中已知的任何典型方法由所述金屬和/或其氧化物來製備第一玻璃料及第二玻璃料中的每一者。舉例來說,可通過以下方式來製備第一玻璃料及第二玻璃料中的每一者:使用球磨機或行星式磨機將所述金屬和/或其氧化物混合,在800°C到1300℃下熔融所述混合物,並將所述經熔融混合物淬火到25℃,然後使用盤磨機、行星式磨機等將所獲得的產物粉碎。有機載體 Each of the first glass frit and the second glass frit may be prepared from the metal and/or its oxide by any typical method known in the art. For example, each of the first glass frit and the second glass frit can be prepared by using a ball mill or a planetary mill to mix the metal and/or its oxide at 800°C to 1300°C The mixture is melted down, and the molten mixture is quenched to 25° C., and then the obtained product is pulverized using a disc mill, a planetary mill, or the like. Organic carrier

有機載體通過與第一電極組成物及第二電極組成物中的無機組分進行機械混合而對所述組成物中的每一者賦予適合於印刷的黏度及流變特性。The organic carrier is mechanically mixed with the inorganic components in the first electrode composition and the second electrode composition to impart viscosity and rheological properties suitable for printing to each of the compositions.

有機載體可為太陽能電池電極用組成物中所用的任何典型有機載體,且可包含黏合劑樹脂、溶劑等。The organic vehicle may be any typical organic vehicle used in the composition for solar cell electrodes, and may include a binder resin, a solvent, and the like.

黏合劑樹脂可選自丙烯酸酯樹脂或纖維素樹脂。在一個實施例中,可使用乙基纖維素作為黏合劑樹脂。在另一實施例中,黏合劑樹脂可選自乙基羥乙基纖維素、硝基纖維素、乙基纖維素與酚醛樹脂的摻合物、醇酸樹脂、酚醛樹脂、丙烯酸酯樹脂、二甲苯樹脂、聚丁烯樹脂(polybutane resin)、聚酯樹脂、脲樹脂、三聚氰胺樹脂、乙酸乙烯酯樹脂、木松香及醇的聚甲基丙烯酸酯。The binder resin may be selected from acrylate resin or cellulose resin. In one embodiment, ethyl cellulose can be used as the binder resin. In another embodiment, the binder resin may be selected from ethyl hydroxyethyl cellulose, nitrocellulose, a blend of ethyl cellulose and phenol resin, alkyd resin, phenol resin, acrylic resin, two Toluene resin, polybutane resin, polyester resin, urea resin, melamine resin, vinyl acetate resin, wood rosin and alcohol polymethacrylate.

所述溶劑可選自由例如己烷(hexane)、甲苯(toluene)、乙基溶纖劑(ethyl cellosolve)、環己酮(cyclohexanone)、丁基溶纖劑(butyl cellosolve)、丁基卡必醇(二乙二醇單丁醚)(butyl carbitol(diethylene glycol monobutyl ether))、二丁基卡必醇(二乙二醇二丁醚)(dibutyl carbitol(diethylene glycol dibutyl ether))、丁基卡必醇乙酸酯(二乙二醇單丁醚乙酸酯)(butyl carbitol acetate(diethylene glycol monobutyl ether acetate))、丙二醇單甲醚(propylene glycol monomethyl ether)、己二醇(hexylene glycol)、萜品醇(terpineol)、甲基乙基酮(methylethylketone)、苯甲醇(benzylalcohol)、γ-丁內酯(γ-butyrolactone)、乳酸乙酯(ethyl lactate)及2,2,4-三甲基-1,3-戊二醇單異丁酸酯(2,2,4-trimethyl-1,3-pentanediol monoisobutyrate)(例如,特神龍(Texanol))組成的群組。這些溶劑可單獨使用或以混合物形式使用。The solvent can be selected from, for example, hexane, toluene, ethyl cellosolve, cyclohexanone, butyl cellosolve, butyl carbitol (two Butyl carbitol (diethylene glycol monobutyl ether), dibutyl carbitol (diethylene glycol dibutyl ether), butyl carbitol Ester (butyl carbitol acetate (diethylene glycol monobutyl ether acetate)), propylene glycol monomethyl ether (propylene glycol monomethyl ether), hexylene glycol, terpineol ( terpineol, methylethylketone, benzylalcohol, γ-butyrolactone, ethyl lactate and 2,2,4-trimethyl-1,3 -A group consisting of 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate (for example, Texanol). These solvents can be used alone or in the form of a mixture.

儘管有機載體的量不受特別限制,但以第一電極組成物或第二電極組成物的總重量計,可存在1重量%到30重量%、具體來說3重量%到25重量%、例如3重量%、4重量%、5重量%、6重量%、7重量%、8重量%、9重量%、10重量%、11重量%、12重量%、13重量%、14重量%、15重量%、16重量%、17重量%、18重量%、19重量%、20重量%、21重量%、22重量%、23重量%、24重量%或25重量%的量的有機載體。在此範圍內,有機載體可對所述組成物提供足夠的黏合強度及良好的印刷適性。添加劑 Although the amount of the organic vehicle is not particularly limited, it may be present in the range of 1% to 30% by weight, specifically 3% to 25% by weight, based on the total weight of the first electrode composition or the second electrode composition, for example 3wt%, 4wt%, 5wt%, 6wt%, 7wt%, 8wt%, 9wt%, 10wt%, 11wt%, 12wt%, 13wt%, 14wt%, 15wt %, 16% by weight, 17% by weight, 18% by weight, 19% by weight, 20% by weight, 21% by weight, 22% by weight, 23% by weight, 24% by weight, or 25% by weight of organic vehicle. Within this range, the organic vehicle can provide sufficient adhesion strength and good printability to the composition. additive

第一電極組成物或第二電極組成物還可視需要進一步包含任何典型的添加劑以增強流動性、加工性及穩定性。所述添加劑可包括分散劑、觸變劑、塑化劑、黏度穩定劑、消泡劑、顏料、紫外線穩定劑、抗氧化劑、及偶合劑等。這些添加劑可單獨使用或以其混合物形式使用。以第一電極組成物或第二電極組成物的總重量計,可存在0.1重量%到5重量%、例如0.1重量%、0.5重量%、1重量%、2重量%、3重量%、4重量%或5重量%的量的添加劑,但所述添加劑的含量可視需要進行改變。製備太陽能電池電極 The first electrode composition or the second electrode composition may further include any typical additives as needed to enhance fluidity, processability and stability. The additives may include dispersants, thixotropic agents, plasticizers, viscosity stabilizers, defoamers, pigments, ultraviolet stabilizers, antioxidants, and coupling agents. These additives can be used alone or in the form of a mixture thereof. Based on the total weight of the first electrode composition or the second electrode composition, there may be 0.1% to 5% by weight, such as 0.1% by weight, 0.5% by weight, 1% by weight, 2% by weight, 3% by weight, 4% by weight % Or 5% by weight of the additive, but the content of the additive can be changed as needed. Preparation of solar cell electrodes

首先,將第一電極組成物以預定圖案塗佈到基板的表面,然後進行乾燥,從而形成第一指狀電極圖案。First, the first electrode composition is applied to the surface of the substrate in a predetermined pattern, and then dried to form a first finger electrode pattern.

然後,將第二電極組成物塗佈到上面形成有第一指狀電極圖案的基板上,然後進行乾燥,從而形成第二指狀電極圖案及匯流排電極圖案。Then, the second electrode composition is coated on the substrate on which the first finger electrode pattern is formed, and then dried to form the second finger electrode pattern and the bus bar electrode pattern.

可通過例如絲網印刷、凹版膠印(gravure offset printing)、旋轉絲網印刷或剝離印刷(lift-off printing)來執行第一電極組成物及第二電極組成物的塗佈,但並不僅限於此。The coating of the first electrode composition and the second electrode composition can be performed by, for example, screen printing, gravure offset printing, rotary screen printing, or lift-off printing, but is not limited to this .

例如可在約200°C到400°C下對第一電極組成物及第二電極組成物進行乾燥大約10到60秒,但並不僅限於此。For example, the first electrode composition and the second electrode composition can be dried at about 200°C to 400°C for about 10 to 60 seconds, but it is not limited to this.

然後,對由第一電極組成物及第二電極組成物形成的電極圖案進行烘烤,從而形成太陽能電池電極。此處,烘烤工藝可例如在約400°C到980°C(具體來說,約600°C到900°C)的溫度下進行約60到210秒,但並不僅限於此。Then, the electrode pattern formed by the first electrode composition and the second electrode composition is baked to form a solar cell electrode. Here, the baking process may be performed at a temperature of about 400°C to 980°C (specifically, about 600°C to 900°C) for about 60 to 210 seconds, but is not limited thereto.

本發明的其他方面涉及通過所述形成太陽能電池電極的方法形成的太陽能電池電極以及包括所述太陽能電池電極的太陽能電池。Other aspects of the present invention relate to a solar cell electrode formed by the method of forming a solar cell electrode and a solar cell including the solar cell electrode.

圖1是根據本發明一個實施例的太陽能電池100的示意圖。Fig. 1 is a schematic diagram of a solar cell 100 according to an embodiment of the present invention.

參照圖1,可通過以下方式來形成後電極21及前電極23:將太陽能電池電極用組成物印刷在包括p層(或n層)11及將用作發射極的n層(或p層)12的基板或晶片10上,然後進行烘烤。圖1中的R為電阻器。舉例來說,可通過以下方式來執行製備前電極的初步工藝:將第一電極組成物印刷在晶片的前表面上,然後進行乾燥以形成第一指狀電極圖案,並將第二電極組成物印刷在第一指狀電極圖案上,然後進行乾燥以形成第二指狀電極圖案及匯流排電極圖案。此外,可通過以下方式來執行製備後電極的初步工藝:在晶片的背面上印刷鋁膏,然後在約200°C到約400°C下乾燥約10到60秒。然後,可通過在約400°C到約950°C、例如在約600°C到約900°C下烘烤晶片約30到210秒來形成前電極及後電極。1, the back electrode 21 and the front electrode 23 can be formed by the following method: the solar cell electrode composition is printed on the p-layer (or n-layer) 11 and the n-layer (or p-layer) to be used as the emitter 12 on the substrate or wafer 10, and then bake. R in Figure 1 is a resistor. For example, the preliminary process of preparing the front electrode can be performed in the following manner: the first electrode composition is printed on the front surface of the wafer, and then dried to form the first finger electrode pattern, and the second electrode composition It is printed on the first finger electrode pattern and then dried to form the second finger electrode pattern and the bus bar electrode pattern. In addition, the preliminary process of preparing the back electrode may be performed by printing aluminum paste on the back surface of the wafer, and then drying at about 200°C to about 400°C for about 10 to 60 seconds. Then, the front electrode and the back electrode may be formed by baking the wafer at about 400°C to about 950°C, for example, at about 600°C to about 900°C for about 30 to 210 seconds.

接下來,將參照實例來更詳細地闡述本發明。然而,應注意,提供這些實例僅用於說明,而不應將所述實例解釋為以任何方式限制本發明。實例 製備例 1 Next, the present invention will be explained in more detail with reference to examples. However, it should be noted that these examples are provided for illustration only, and the examples should not be construed as limiting the present invention in any way. Example Preparation Example 1

在60℃下將作為黏合劑樹脂的3重量%的乙基纖維素(STD4,陶氏化學公司(Dow Chemical Company))充分溶解在了6.5重量%的丁基卡必醇(三春化學公司(SAMCHUN Chemicals))中,並向所述黏合劑溶液中添加了平均粒徑為2.0微米的86.9重量%的球形銀粉(AG-4-8,同和高科技有限公司(Dowa Hightech Co. Ltd.))、在表1中所示的3.1重量%的玻璃料A、0.2重量%的分散劑(BYK102,畢克化學公司(BYK-chemie))以及0.3重量%的觸變劑(薩克塞特羅ST(Thixatrol ST),海明斯股份有限公司(Elementis Co., Ltd.)),隨後在3輥捏合機中混合及捏合,從而製備太陽能電池電極用組成物。製備例 2 到製備例 14 3% by weight of ethyl cellulose (STD4, Dow Chemical Company) as a binder resin was fully dissolved in 6.5% by weight of butyl carbitol (SAMCHUN) at 60°C. Chemicals)) and added 86.9% by weight spherical silver powder (AG-4-8, Dowa Hightech Co. Ltd.) with an average particle size of 2.0 microns to the adhesive solution, Table 1 shows 3.1% by weight of glass frit A, 0.2% by weight of dispersant (BYK102, BYK-chemie) and 0.3% by weight of thixotropic agent (Saxetrol ST ( Thixatrol ST), Elementis Co., Ltd.), and then mixed and kneaded in a 3-roll kneader to prepare a composition for solar cell electrodes. Preparation example 2 to preparation example 14

除了使用表1所列的玻璃粉B到玻璃料N來代替玻璃粉A之外,以與製備例1相同的方式製備了太陽能電池電極用組成物。A composition for solar cell electrodes was prepared in the same manner as in Preparation Example 1, except that glass frit B to glass frit N listed in Table 1 were used instead of glass frit A.

表1

Figure 108134145-A0304-0001
(單位:摩爾%)實例 1 Table 1
Figure 108134145-A0304-0001
(Unit: mol%) Example 1

通過絲網印刷將在製備例12中(使用玻璃料L)製備的太陽能電池電極用組成物沈積在晶片(通過對摻雜有硼(B)的p型晶片的正面進行紋理化、在紋理化表面上形成POCl3 的n+層、並在n+層上形成氮化矽(SiNx :H)的抗反射膜而製備的單晶晶片)的正面上,然後在250°C下的紅外線(IR)乾燥爐中乾燥45秒,從而形成第一指狀電極圖案。然後,通過絲網印刷將在製備例1中(使用玻璃料A)製備的太陽能電池電極用組成物沈積在經乾燥的第一指狀電極圖案上,然後在200°C下的紅外線乾燥爐中乾燥45秒,從而形成第二指狀電極圖案及匯流排電極圖案。然後,在晶片的背面上印刷鋁膏,並在300下的紅外線乾燥爐中乾燥45秒。在600°C到900°C下的帶式烘爐中將根據此程序形成的電池烘烤60到210秒,從而製作太陽能電池。實例 2 到實例 8 以及比較例 1 到比較例 6 The solar cell electrode composition prepared in Preparation Example 12 (using glass frit L) was deposited on the wafer by screen printing (by texturing the front surface of the p-type wafer doped with boron (B), On the front side of a single crystal wafer prepared by forming an n+ layer of POCl 3 on the surface and forming an anti-reflection film of silicon nitride (SiN x :H) on the n+ layer, and then infrared (IR) at 250°C Dry in a drying oven for 45 seconds, thereby forming a first finger electrode pattern. Then, the solar cell electrode composition prepared in Preparation Example 1 (using glass frit A) was deposited on the dried first finger electrode pattern by screen printing, and then in an infrared drying oven at 200°C Dry for 45 seconds to form a second finger electrode pattern and a bus bar electrode pattern. Then, aluminum paste was printed on the back of the wafer and dried in an infrared drying oven at 300°C for 45 seconds. The battery formed according to this procedure is baked in a belt oven at 600°C to 900°C for 60 to 210 seconds to produce solar cells. Example 2 to Example 8 and Comparative Example 1 to Comparative Example 6

除了在形成第二指狀電極圖案及匯流排電極圖案時使用在製備例2到製備例14中製備的太陽能電池電極用組成物之外,以與實例1相同的方式製作了太陽能電池。評估:測量黏合強度 A solar cell was produced in the same manner as in Example 1, except that the solar cell electrode composition prepared in Preparation Example 2 to Preparation Example 14 was used when forming the second finger electrode pattern and the bus bar electrode pattern. Evaluation: Measuring the bonding strength

將助焊劑(952S,凱斯特(Kester))塗佈到在實例1到實例8以及比較例1到比較例6中製作的每個太陽能電池的匯流排電極圖案,並使用焊鐵在360°C下接合到條帶(62Sn/36Pb/2Ag,厚度:0.18毫米,寬度:1.5毫米)。然後使用張力機(H5K-T型,天氏歐森公司(Tinius Olsen))評估了所得產物在180°的剝離角及50毫米/分鐘(mm/min)的拉伸速率下的黏合強度。結果示於表2中。評估:電性質 Apply flux (952S, Kester) to the bus electrode pattern of each solar cell made in Example 1 to Example 8 and Comparative Example 1 to Comparative Example 6, and use a soldering iron at 360° Bonded to a strip (62Sn/36Pb/2Ag, thickness: 0.18 mm, width: 1.5 mm) under C. Then, a tension machine (type H5K-T, Tinius Olsen) was used to evaluate the adhesive strength of the resulting product at a peel angle of 180° and a tensile rate of 50 millimeters per minute (mm/min). The results are shown in Table 2. Evaluation: electrical properties

利用太陽能電池效率測定儀(h.a.l.m.,哈爾姆)評估了在實例1到實例8以及比較例1到比較例6中製作的太陽能電池中的每一者的開路電壓(Voc,單位:毫伏特)及轉換效率(Eff.,單位:%)。結果示於表2中。The open circuit voltage (Voc, unit: millivolt) of each of the solar cells fabricated in Example 1 to Example 8 and Comparative Example 1 to Comparative Example 6 was evaluated using a solar cell efficiency meter (halm, Halm) And conversion efficiency (Eff., unit: %). The results are shown in Table 2.

表2

Figure 108134145-A0304-0002
Table 2
Figure 108134145-A0304-0002

從表2所示的結果可以看出,與比較例1到比較例6的太陽能電池相比,實例1到實例8的太陽能電池表現出良好的電性質(開路電壓、轉換效率)及良好的黏合強度。It can be seen from the results shown in Table 2 that compared with the solar cells of Comparative Examples 1 to 6, the solar cells of Examples 1 to 8 exhibit good electrical properties (open circuit voltage, conversion efficiency) and good adhesion. strength.

應理解,在不悖離本發明的精神及範圍的條件下,所屬領域中的技術人員可做出各種修改、改變、變更及等效實施例。It should be understood that those skilled in the art can make various modifications, changes, alterations and equivalent embodiments without departing from the spirit and scope of the present invention.

10:晶片/基板 11:p層(或n層) 12:n層(或p層) 21:後電極 23:前電極 100:太陽能電池 R:電阻器10: Wafer/substrate 11: p layer (or n layer) 12: n layer (or p layer) 21: back electrode 23: front electrode 100: solar cell R: resistor

圖1是根據本發明的一個實施例的太陽能電池的示意圖。Fig. 1 is a schematic diagram of a solar cell according to an embodiment of the present invention.

10:晶片/基板 10: Wafer/substrate

11:p層(或n層) 11: p layer (or n layer)

12:n層(或p層) 12: n layer (or p layer)

21:後電極 21: back electrode

23:前電極 23: front electrode

100:太陽能電池 100: solar cell

R:電阻器 R: resistor

Claims (7)

一種形成太陽能電池電極的方法,包括:通過塗佈包含導電粉、第一玻璃料及有機載體的第一電極組成物來形成第一指狀電極圖案,其中所述第一玻璃料不含元素錳;通過塗佈包含所述導電粉、第二玻璃料及所述有機載體的第二電極組成物來形成第二指狀電極圖案及匯流排電極圖案,其中所述第二玻璃料含有1摩爾%到20摩爾%的元素錳;以及執行烘烤製程。 A method for forming a solar cell electrode, comprising: forming a first finger electrode pattern by coating a first electrode composition containing conductive powder, a first glass frit and an organic carrier, wherein the first glass frit does not contain element manganese; The second finger electrode pattern and the bus bar electrode pattern are formed by coating the second electrode composition including the conductive powder, the second glass frit and the organic carrier, wherein the second glass frit contains 1 mol% to 20%. Mole% of elemental manganese; and perform the baking process. 如申請專利範圍第1項所述的形成太陽能電池電極的方法,其中所述第二玻璃料還包含元素鉛、鉍及碲。 According to the method for forming a solar cell electrode according to the first item of the scope of patent application, the second glass frit further contains the elements lead, bismuth and tellurium. 如申請專利範圍第2項所述的形成太陽能電池電極的方法,其中所述第二玻璃料包含總共20摩爾%到50摩爾%的元素鉛及鉍以及30摩爾%到60摩爾%的元素碲。 The method for forming a solar cell electrode as described in the scope of the patent application, wherein the second glass frit contains a total of 20 mol% to 50 mol% of elemental lead and bismuth and 30 mol% to 60 mol% of elemental tellurium. 如申請專利範圍第1項所述的形成太陽能電池電極的方法,其中所述第一電極組成物包含60重量%到95重量%的所述導電粉、0.1重量%到20重量%的所述第一玻璃料及1重量%到30重量%的所述有機載體。 The method for forming a solar cell electrode as described in the first item of the scope of patent application, wherein the first electrode composition contains 60% to 95% by weight of the conductive powder, and 0.1% to 20% by weight of the first electrode composition. A glass frit and 1% to 30% by weight of the organic vehicle. 如申請專利範圍第1項所述的形成太陽能電池電極的方法,其中所述第二電極組成物包含60重量%到95重量%的所述導電粉、0.1重量%到20重量%的所述第二玻璃料及1重量%到30重量%的所述有機載體。 The method for forming a solar cell electrode as described in the first item of the scope of patent application, wherein the second electrode composition contains 60% to 95% by weight of the conductive powder, and 0.1% to 20% by weight of the first electrode composition. Two glass frit and 1% to 30% by weight of the organic vehicle. 一種太陽能電池電極,由申請專利範圍第1項到第5項中任一項所述的形成太陽能電池電極的方法製作而成。 A solar cell electrode is manufactured by the method for forming a solar cell electrode according to any one of the first to fifth items of the scope of patent application. 一種太陽能電池,包括根據申請專利範圍第6項所述的太陽能電池電極。 A solar cell includes the solar cell electrode according to item 6 of the scope of patent application.
TW108134145A 2018-10-10 2019-09-23 Solar cell electrode and fabrication method thereof and solar cell including the same TWI728475B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180120783A KR102316662B1 (en) 2018-10-10 2018-10-10 Method for forming solar cell electrode, solar cell electrode manufactured therefrom and solar cell
KR10-2018-0120783 2018-10-10

Publications (2)

Publication Number Publication Date
TW202015247A TW202015247A (en) 2020-04-16
TWI728475B true TWI728475B (en) 2021-05-21

Family

ID=70231926

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108134145A TWI728475B (en) 2018-10-10 2019-09-23 Solar cell electrode and fabrication method thereof and solar cell including the same

Country Status (3)

Country Link
KR (1) KR102316662B1 (en)
CN (1) CN111048601B (en)
TW (1) TWI728475B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201207053A (en) * 2010-05-04 2012-02-16 Du Pont Thick-film pastes containing lead-tellurium-lithium-oxides, and their use in the manufacture of semiconductor devices
TWI532062B (en) * 2015-04-27 2016-05-01 Giga Solar Materials Corp Conductive pulp and a method of manufacturing the same
TWI599058B (en) * 2015-12-02 2017-09-11 三星Sdi股份有限公司 Method of forming electrode, electrode manufactured therefrom and solar cell

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140105847A (en) * 2011-12-22 2014-09-02 헤레우스 프레셔스 메탈즈 노스 아메리카 콘쇼호켄 엘엘씨 Solar cell pastes for low resistance contacts
KR101780531B1 (en) * 2013-12-17 2017-09-22 삼성에스디아이 주식회사 Composition for forming solar cell electrode and electrode prepared using the same
US9039937B1 (en) * 2013-12-17 2015-05-26 Samsung Sdi Co., Ltd. Composition for solar cell electrodes and electrode fabricated using the same
KR101696985B1 (en) * 2014-12-30 2017-01-17 삼성에스디아이 주식회사 Composition for forming solar cell electrode and electrode prepared using the same
KR20160075422A (en) * 2016-06-08 2016-06-29 삼성에스디아이 주식회사 Composition for forming solar cell electrode and electrode prepared using the same
KR20170141559A (en) * 2016-06-15 2017-12-26 삼성에스디아이 주식회사 Composition for forming solar cell electrode and electrode prepared using the same
KR20180063750A (en) * 2016-12-02 2018-06-12 삼성에스디아이 주식회사 Method for manufacturing finger electrode for solar cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201207053A (en) * 2010-05-04 2012-02-16 Du Pont Thick-film pastes containing lead-tellurium-lithium-oxides, and their use in the manufacture of semiconductor devices
TWI532062B (en) * 2015-04-27 2016-05-01 Giga Solar Materials Corp Conductive pulp and a method of manufacturing the same
TWI599058B (en) * 2015-12-02 2017-09-11 三星Sdi股份有限公司 Method of forming electrode, electrode manufactured therefrom and solar cell

Also Published As

Publication number Publication date
TW202015247A (en) 2020-04-16
CN111048601A (en) 2020-04-21
KR20200040626A (en) 2020-04-20
CN111048601B (en) 2022-05-24
KR102316662B1 (en) 2021-10-25

Similar Documents

Publication Publication Date Title
JP6396335B2 (en) Composition for forming solar cell electrode and electrode manufactured using the same
US9741876B2 (en) Composition for solar cell electrodes and electrode fabricated using the same
US10164128B2 (en) Composition for solar cell electrodes and electrode fabricated using the same
JP6605800B2 (en) Composition for forming solar cell electrode and electrode produced thereby
TWI728475B (en) Solar cell electrode and fabrication method thereof and solar cell including the same
KR101940170B1 (en) Composition forforming electrode, electrode manufactured using the same and solar cell
TWI684286B (en) Composition for forming solar cell electrode and electrode prepared using the same
TWI714323B (en) Method for forming solar cell electrode and solar cell
TWI663739B (en) Composition for solar cell electrodes and solar cell electrode fabricated using the same
TWI741393B (en) Composition for forming dsw based solar cell electrode and dsw based solar cell electrode prepared using the same
TWI741283B (en) Composition for electrodes of solar cell and solar cell
TWI681410B (en) Composition for solar cell electrode and solar cell electrode prepared using the same
TWI731243B (en) Composition for forming solar cell electrode and electrode prepared using the same
KR20190113131A (en) Composition for forming solar cell electrode and electrode prepared using the same
TWI686959B (en) Composition for solar cell electrode and electrode fabricated using the same
CN110689992B (en) Composition for forming solar cell electrode and electrode prepared using the same
TW201800354A (en) Composition for P-type solar cell electrode, electrode prepared therefrom and P-type solar cell prepared using the same
KR20170025892A (en) Composition forforming electrode, electrode manufactured using the same and solar cell