TWI706622B - 用於以氮化鎵型電力裝置爲基礎的電池充電器的系統架構及其中所使用的直流-直流轉換器 - Google Patents

用於以氮化鎵型電力裝置爲基礎的電池充電器的系統架構及其中所使用的直流-直流轉換器 Download PDF

Info

Publication number
TWI706622B
TWI706622B TW106102632A TW106102632A TWI706622B TW I706622 B TWI706622 B TW I706622B TW 106102632 A TW106102632 A TW 106102632A TW 106102632 A TW106102632 A TW 106102632A TW I706622 B TWI706622 B TW I706622B
Authority
TW
Taiwan
Prior art keywords
switch
voltage
output terminal
pair
junction
Prior art date
Application number
TW106102632A
Other languages
English (en)
Other versions
TW201735488A (zh
Inventor
尤金V 索羅多福尼克
卡米爾J 卡里米
Original Assignee
美商波音公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商波音公司 filed Critical 美商波音公司
Publication of TW201735488A publication Critical patent/TW201735488A/zh
Application granted granted Critical
Publication of TWI706622B publication Critical patent/TWI706622B/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/24Using the vehicle's propulsion converter for charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • H02J7/06Regulation of charging current or voltage using discharge tubes or semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4216Arrangements for improving power factor of AC input operating from a three-phase input voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33538Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type
    • H02M3/33546Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D2221/00Electric power distribution systems onboard aircraft
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/44The network being an on-board power network, i.e. within a vehicle for aircrafts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/009Converters characterised by their input or output configuration having two or more independently controlled outputs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/50On board measures aiming to increase energy efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Dc-Dc Converters (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Rectifiers (AREA)

Abstract

本發明提供一種用於採用氮化鎵型電力裝置之電池充電器之系統架構。該系統利用對在其輸入處之功率因數校正及在其輸出處之恆定電流/恆定電壓調節之控制而利用用於電力轉換之主動功率電子電路。特定言之,提議通用氮化鎵型電池充電器架構以用於使用三相230-V可變頻率或三相115-V恆定頻率AC輸入電力充電低或高電壓電池,同時滿足嚴格的功率品質及電磁干擾航空太空要求。

Description

用於以氮化鎵型電力裝置為基礎的電池充電器的系統架構及其中所使用的直流-直流轉換器
本發明大體上係關於用於電池之充電裝置,及詳言之,係關於用於飛機上所使用之電池之充電裝置。
商用飛機利用不同技術之電池及對應電池充電器。每一充電器採用對應於特定電池技術之充電演算法及適合於特定輸入電力之電力轉換架構。在過去,在商業航空中,輸入電力始終為115V AC及恆定400Hz頻率,而充電器電池輸出取決於所使用之低電壓電池技術始終在24V DC與32V DC之間。舉例而言,將三相115V AC電力轉換為28V DC電力之傳統充電器係在87%至89%範圍內之電力轉換效率之情況下使用。充電器輸出電壓之不顯著改變及輸入電力之單一標準允許略微調整充電邏輯以滿足特定電池技術,即可再使用舊版充電器設計。
減少燃料燃燒、CO2排放及重量以及改良總體效率之最新航太工業趨向已導致新的較高電壓輸入電力之引入,其亦變為可變頻率(VF)電力。另外,電池技術之發展及出於降低重量而使用較高DC電壓之行業趨 向促使在許多應用中使用高電壓電池(76V、270V、540V等)。與功率電子裝置之較大發展(例如,寬帶隙SiC及氮化鎵型電力開關之商業可用性)結合,行業中之此等變化使得有可能出於設計相較於傳統充電器設計較輕且較為高效的新通用充電器架構之目的而重考慮傳統電池充電器設計。另外,出於成本效益,此充電器必須能夠在充電不同電池(包括傳統的(24V DC及32V DC)或最新的高電壓(200V DC及320V DC)電池)時利用任何標準飛行器輸入電壓電力(115V AC,恆定頻率或230V AC,可變頻率)。
鑒於在最新飛機架構中可變頻率功率、較高電壓及不同電池技術之引入,設計在所有共同電力系統架構中均可操作且可充電所有電池(傳統或高電壓)的新通用電池充電器將為有利的。
下文中詳細揭示之標的物係針對用於採用基於氮化鎵之電晶體(在下文中為「氮化鎵型電力開關」)之電池充電器之輕且高效的系統架構。所提議系統利用對在其輸入處之功率因數校正及在其輸出處之恆定電流/恆定電壓調節之控制而利用用於電力轉換之主動功率電子電路。特定言之,本發明提議用於由三相230-V可變頻率或三相115-V 400-Hz恆定頻率AC輸入電力充電低或高電壓電池,同時滿足嚴格的功率品質及電磁干擾(EMI)航空太空要求之通用氮化鎵型電池充電器架構。
本文中所揭示之通用電池充電器可在所有共同飛機電力系統架構中操作且可充電所有電池,傳統電池或高電壓電池。另外,本文中所揭示之新充電器採用具有高頻切換能力(其允許濾波器及變壓器之大小及重量之減小)之寬帶隙氮化鎵型電力開關。
本文中所提議之解決方案提供增強型功能性,減小電池充電器之重量及大小,歸因於使用氮化鎵型電力開關而具有增強型效率,及藉助於能夠針對不同飛機電池架構利用單個共同部分而節省成本。更特定言之,本文中所提議之電池充電器經由使用更為先進的電力系統架構(諸如,三相230-V AC,VF輸入電力及高電壓電池)而實現重量及大小減小,同時與傳統的電力系統架構及傳統的電池相容。所提議電池充電器亦藉助於使用氮化鎵型電力裝置而將電力轉換效率改良至95%至96%。氮化鎵型電力開關之額外優點為其可在相較於習知Si裝置還高許多的頻率下切換,此對於充電器之輸入及輸出EMI濾波器中使用之磁性件實現相當大的重量節省。
下文中詳細揭示之標的物之一個態樣為電池充電器,其包含:第一與第二直流鏈導體;連接至第一與第二直流鏈導體且經組態以將AC電壓轉換成跨越第一與第二直流鏈導體的直流鏈電壓的交流-直流整流器;以及直流-直流轉換器,其包含第一與第二輸出端子對、連接至第一與第二直流鏈導體之第一與第二輸入端子、連接至第一輸出端子對中之一者之第一開關及連接至第二輸出端子對中之一者之第二開關,其中直流-直流轉換器經組態以在第一開關閉合及第二開關斷開時輸出隨直流鏈電壓而變的直流電流,以用於充電連接至第一輸出端子對之低電壓電池,且進一步經組態以在第一開關斷開及第二開關閉合時輸出隨直流鏈電壓而變的直流電流,以用於充電連接至第二輸出端子對之高電壓電池。在所揭示具體實例中,直流-直流轉換器進一步經組態以在第一開關閉合及第二開關斷開時以諧振轉換器模式操作,且在第一開關斷開及第二開關閉合時以降壓式轉 換器模式操作。交流-直流整流器包含維也納(Vienna)類型升壓式整流器。較佳地,交流-直流整流器及直流-直流轉換器兩者均包含多個基於氮化鎵之電晶體。
另一態樣為電池充電器,其包含:第一與第二直流鏈導體;連接至第一與第二直流鏈導體且經組態以將AC電壓轉換成跨越第一與第二直流鏈導體的直流鏈電壓的維也納類型升壓式整流器;直流-直流轉換器,其包含第一與第二輸出端子對、連接至第一與第二直流鏈導體之第一與第二輸入端子、連接至第一輸出端子對中之一者之第一開關及連接至第二輸出端子對中之一者之第二開關,其中直流-直流轉換器在第一開關閉合及第二開關斷開時可以諧振轉換器模式操作,且在第一開關斷開及第二開關閉合時可以降壓式轉換器模式操作。
下文中詳細地揭示之標的物之另一態樣為直流-直流轉換器,其包含:第一輸出端子對;第一與第二輸入端子;連接至第一輸出端子對中之一者之第一開關;跨越第一與第二輸入端子串聯連接之多個電力開關;藉由各別電導體連接至串聯連接之電力開關中之最後一者、連接至第二輸入端子及連接至第一輸出端子對中之一者的第一接合點;沿著連接電力開關中之兩者之電導體安置的第二接合點;耦接第一與第二接合點之串聯連接,該串聯連接包含電感器、變壓器之初級繞組及第一電容器;藉由各別電導體連接至第一電容器、第一開關及變壓器之初級繞組之第三接合點;以及將第一輸出端子對中之第一輸出端子耦接至第一輸出端子對中之第二輸出端子的第二電容器,其中第一開關安置於第三接合點與第一輸出端子對中之第二輸出端子之間,且直流-直流轉換器經組態以在第一開關 閉合時以降壓式轉換器模式操作。在下文中所揭示之具體實例中,直流-直流轉換器進一步包含:第二輸出端子對;第四接合點;安置於第四接合點與第二輸出端子對中之第一輸出端子之間的第二開關;串聯連接的變壓器之第一與第二次級繞組;安置於第一次級繞組與第四接合點之間的第一電晶體;以及安置於第二次級繞組與第四接合點之間的第二電晶體,其中直流-直流轉換器經組態以在第一開關斷開及第二開關閉合時以諧振轉換器模式操作。
下文中揭示適合於充電不同類型的飛機電池之電池充電器架構之其他態樣。
10:電池充電器
12:輸入濾波器
14:(三位準)交流-直流維也納升壓式整流器
16:直流鏈
18a:諧振直流-直流轉換器
18b:降壓式轉換器
18:(三位準)直流-直流轉換器
20:電池
22:散熱片
24:散熱片
26:接合點
28:接合點
30a、30b:直流鏈導體/直流鏈
32、34:輸入端子
40:開關網路
42:輸入電感器
44:二極體
46、48:電容器
50:相電流控制器
52:直流鏈電壓及平衡控制器/平衡控制器
54:電池恆定電壓(CV)/恆定電流(CC)控制器
56:DCX控制器
60a、60b、60c、60d:電源開關
64:電感器
65:分流電感器
66:電容器
68:高頻變壓器/變壓器
70、72:MOSFET電晶體
74:接合點
76、78:輸出端子
80:電容器
82、84:接合點
86:電容器
88、90:輸出端子
92、94、96:接合點
100:過程
102:第一求和器
104、114、118:比例積分控制器
106:輸入電壓
108:第二求和器
110:直流鏈控制方案
112、116:求和器
120:空間向量脈寬調變(SVPWM)區塊
126:DCX控制方案
128:電池模式
M:中點節點
K1、K2:開關
圖1為根據一個架構的識別通用電池充電器之主要組件之方塊圖。
圖2為根據一個具體實例的展示通用氮化鎵型電池充電器電路拓撲之電路圖。
圖3為展示在電池充電器用於充電傳統的28V DC電池時圖2中所描繪的通用氮化鎵型電池充電器電路拓撲之狀態的電路圖。
圖4為展示在電池充電器用於充電高電壓270-V DC電池時圖2中所描繪的通用氮化鎵型電池充電器電路拓撲之狀態的電路圖。
圖5為根據一個具體實例的展示圖2中所描繪的通用氮化鎵型電池充電器電路拓撲之各部分及表示用於控制氮化鎵型電池充電器電路之控制架構之區塊的混合圖。
圖6為展示用於使用圖5中所描繪的電池充電器電路拓撲及控制架構 將三相AC電力轉換成直流電流以用於充電電池之過程之各步驟的流程圖。
在下文中將參看圖式,其中不同圖式中之類似元件具有相同參考標號。
在下文中相當詳細地描述電池充電系統之說明性具體實例。然而,並非在本說明書中描述實際實施方案之所有特徵。熟習此項技術者應瞭解,在任何此類實際具體實例的發展中,必須作出大量實施方案特定決策以實現開發者的特定目標,諸如符合系統相關以及商業相關的約束,這在各個實施方案之間將是不同的。此外,應瞭解,這類開發工作可為複雜且耗時的,但儘管如此亦將為受益於本發明的一般熟習此項技術者的常規任務。
本發明提議用於適合於航空太空應用之通用電池充電器之系統架構。所提議電池充電器採取主動功率電子電路及控制的優點以主動地調節充電器之輸出電壓及電流,從而實現嚴格的電壓及電流調節以滿足電池充電要求。所提議通用電池充電器可在傳統的24-V及32-V直流電池或高電壓200-V至320-V直流電池之情況下使用。充電器亦可用於傳統飛機中(其中充電器之輸入電力為三相恆定頻率115-V AC,400Hz電力)或用於飛機電池架構中(其中充電器之輸入電力為三相220-V AC至260-V AC,可變頻率(360Hz至800Hz)電力)。此類變通性引入在許多類型之飛機當中的通用性且實現成本降低。充電器使用可在高切換頻率下極高效地操作的氮化鎵型電力裝置,從而實現EMI濾波器之大小及重量之降低。所提議電池充電器滿足包括功率品質及EMI之所有航空太空要求。
本文中所提議之架構採用包含主動前端及直流-直流轉換器 之兩功率級途徑,其提供寬輸入及輸出電壓範圍且滿足嚴格的效率要求。更特定言之,所提議兩功率級拓撲可實施為與三位準直流-直流轉換器串接的三位準交流-直流維也納升壓式整流器。另外,提議控制方案。根據該控制方案,利用前端功率級以藉由控制直流鏈電壓而控制充電電流。目標為隨電池上之載荷而變地改變直流鏈電壓。
直流-直流轉換器之主要功能為理想地在100%效率之情況下轉換DC電壓及電流位準。可在模型中藉由理想DC變壓器表示此功能。DC變壓器模型具有等於靜態電壓轉換比率之有效匝比。此遵守變壓器之所有常見性質(除其可傳遞直流電壓及電流以外)。因此,本文中所揭示之直流-直流轉換器表現為在最佳操作點處操作之DC變壓器。可調整直流-直流轉換器之電壓增益以在電池之給定電壓變化下使直流鏈電壓維持大於最小臨限值。藉由等效雙頻調變三位準直流-直流轉換器,此實現較低切換損耗及較低被動體積及重量。術語「等效雙頻」意謂每一單個電力裝置在一個特定切換頻率(例如,1MHz)下操作,但連接有所有開關之變壓器的頻率為每一個別電力裝置之操作切換頻率的兩倍(例如,2MHz)。因此,歸因於變壓器之較高等效頻率,可使得其較小,同時每一個別電力裝置不必在極高頻率下操作。
圖1中呈現具有上述兩功率級拓撲之通用電池充電器10之一般架構。電池充電器10包含:三個輸入端子,其接收相對於共同參考具有相同頻率及電壓振幅但具有三分之一週期之相位差的各別交替電流ABC;輸入濾波器12,其對交替電流ABC進行濾波且輸出經設計以有助於滿足功率品質及EMI要求的交替電流abc;三位準交流-直流維 也納升壓式整流器14(在下文中為「維也納升壓式整流器14」),其確保電池充電器之功率因數接近於一;直流鏈16;以及三位準直流-直流轉換器18,其調節電池20之充電電壓及充電電流。(經調節輸出電壓及充電電流將分別由下文描述的圖6中之參數V out I bat 表示)。部分歸因於熱量至散熱片22中之傳導而將維也納升壓式整流器14之溫度維持在所要位準。類似地,部分歸因於熱量至散熱片24中之傳導而將直流-直流轉換器18之溫度維持在所要位準。
熟知維也納升壓式整流器之結構與操作。維也納整流器為單向三相三開關三位準脈寬調變(PWM)整流器。其可被視為具有為一的功率因數之具有整合升壓式轉換器之三相二極體橋,其作為介面起作用以藉由減小無功功率消耗及供電電流諧波而確保高能效以及維持恆定DC匯流排電壓(在下文中為「直流鏈電壓」)。
具有圖1中所示之架構的根據一個具體實例之電池充電器之電路拓撲在圖2中展示為在高位準下。圖2中所示之電路經設計以使重量最小化及使效率最大化。圖2中所描繪的電池充電器之前端為維也納升壓式整流器14,其包含如圖2中所示經連接之三個輸入電感器42、六個二極體44、由三個氮化鎵型電力開關對組成之開關網路40、以及兩個電容器46與48。後端包含直流-直流轉換器18。直流-直流轉換器18之輸入端子32與34分別連接至直流鏈導體30a與30b,其形成圖1中所識別之直流鏈16。
如圖2中所見,直流鏈30a將直流-直流轉換器18之輸入端子32連接至維也納升壓式整流器14內部之接合點26,而直流鏈30b將直流-直流轉換器18之輸入端子34連接至維也納升壓式整流器14內部之接合 點28。電容器46之端子分別連接至接合點26及中點節點M,而電容器48之端子分別連接至接合點28及中點節點M。
在圖2中所描繪的具體實例中,每一輸入電感器42可藉助於開關網路40之各別串聯連接之氮化鎵型電力開關對,而選擇性地連接至中點節點M。將各別輸入電感器42連接至開關網路40之各別氮化鎵型電力開關對的每一電導體藉由如圖2中所示之各別二極體44而連接至接合點26與28。此三位準拓撲減小開關網路40之氮化鎵型電力開關上之電壓應力,從而允許減小輸入電感器42之值及大小,產生較少電磁干擾且允許高效整流。
仍參看圖2,直流鏈導體30a與30b連接至直流-直流轉換器18之輸入端子32與34。直流-直流轉換器18包含由串聯連接之多個高功率(例如,600V至650V)氮化鎵型電力開關60a至60d組成之開關網路60,氮化鎵型電力開關60a之一個端子連接至輸入端子32且氮化鎵型電力開關60d之一個端子藉助於接合點82連接至輸入端子34。
直流-直流轉換器18進一步包含高頻變壓器68,其在以諧振轉換器模式操作轉換器時在轉換器輸入與輸出之間提供DC隔離(稍後參看圖3描述)。在圖2中所描繪的具體實例中,變壓器68具有初級繞組及串聯連接之雙次級繞組。分流電感器65與初級繞組並聯連接。高頻變壓器68之初級繞組之一個端子藉助於電感器64而耦接至氮化鎵型電力開關60b與60c之間的接合點。高頻變壓器68之初級繞組之另一端子藉助於接合點84及電容器66而耦接至接合點82,如圖2中所見。接合點82與84亦在開關K2閉合時藉助於開關K2及電容器86而彼此耦接。提供輸出端子對88與90 以用於連接至高電壓(例如,270V)電池(圖2中未展示)。輸出端子88安置於接合點82與電容器86之間,而輸出端子90安置於電容器86與開關K2之間。
直流-直流轉換器18進一步包含一對輸出端子76與78以用於連接至低電壓(例如,28V)電池(圖2中未展示)及一對MOSFET電晶體70與72,該對MOSFET電晶體70與72安置於接合點74與分別屬於高頻變壓器68之串聯連接之次級繞組的對置端子之間。MOSFET電晶體70與72經控制使得其同步地整流變壓器68之次級繞組上之AC信號。開關K1安置於接合點74與輸出端子76之間,而輸出端子78連接至接合點92,該接合點92安置於串聯連接之次級繞組之間。另外,直流-直流轉換器18包含電容器80,其具有連接至安置於開關K1與輸出端子76之間的接合點94之一個端子、及連接至位於接合點92與輸出端子78之間的接合點96之另一端子。電容器80充當低通濾波器。
直流-直流轉換器18可經由開關K1與K2重組態。當開關K1閉合及開關K2斷開時,充電器經組態以用於充電傳統電池。更特定言之,直流-直流轉換器18使用高頻變壓器68以將直流鏈電壓(亦即,跨越輸入端子32與34之電壓)轉換成跨越輸出端子76與78之經調節DC電壓。相反地,當開關K1斷開及開關K2閉合時,充電器經組態以用於充電高電壓電池。更特定言之,直流-直流轉換器18將直流鏈電壓轉換成跨越輸出端子88與90之經調節DC電壓(在此組態中並不使用高頻變壓器)。舉例而言,直流-直流轉換器18能夠在開關K1閉合及開關K2斷開時產生50A之充電電流,以用於充電連接至輸出端子76與78之28-V電池、或者是在開關K1 斷開及開關K2閉合時產生5.5A之充電電流,以用於充電連接至輸出端子88與90之270-V電池。
圖3為描繪電池充電器在經組態用於28-V DC/50-A輸出以用於充電傳統電池時之電路圖。在此組態(亦即開關K1閉合及開關K2斷開)中,充電器作為諧振轉換器18a起作用,其允許零電壓切換以減小裝置切換損耗且改良轉換效率。零電壓切換亦減小EMI,由於每一電力開關60a至60d在跨越開關之電壓為零時自ON狀態過渡至OFF狀態或自OFF狀態過渡至ON狀態。在諧振轉換器組態中,高頻變壓器68歸因於大輸入-輸出電壓比率而為必要的。高頻變壓器68較佳地具有平面設計(亦即,繞組印刷在多層印刷電路板上,核心在頂部),此減小其佔據面積。高頻變壓器68之次級繞組提供高電流輸出。因此,可利用兩個次級繞組以改良效率且使熱約束最小化。選擇變壓器核心以使高切換頻率下之核心損耗最小化。在高頻變壓器68之次級繞組上,利用同步整流以進一步減小損耗。
諧振直流-直流轉換器18a依賴於直流鏈電壓來操作。直流鏈電壓由來自三相AC系統之升壓式整流器14產生。以此方式,諧振直流-直流轉換器18a依賴於三相AC電壓。
在諧振轉換器中,串聯連接之電感器64與電容器66之諧振電路用於實現轉換器之電力裝置之零電壓切換。在電力裝置自ON狀態過渡至OFF狀態時產生切換功率損耗(及對應低效率及熱生成),或反之亦然。然而,若在ON-OFF過渡期間,跨越裝置之電壓為零,則切換功率損耗由於功率等於電壓與電流之乘積(P=V*I)而亦為零。因此,若V=0,則P=0且不存在切換損耗。此為所有諧振轉換器試圖實現之情形。然而,零電壓切 換為理想情形。實際上,其並非真的為零(儘管遠低於全電壓)。歸因於轉換器載荷變化,理想諧振操作點將始終移動,因此轉換器幾乎將從未在理想操作點處操作。可藉由在變壓器初級中(藉由特殊繞組技術)利用較小漏電感而擴寬諧振轉換器之「理想」操作。因此,諧振轉換器大部分時間在良好、幾乎理想的諧振條件下操作。
諧振直流-直流轉換器18a包括連接至變壓器68之初級側之總共四個開關60a至60d。四個開關之原因係由於直流鏈電壓較高且單個側向GaN裝置無法處理此高電壓。因此,直流-直流轉換器18a每個支路具有串聯之兩個GaN裝置,因此在所有此等裝置當中劃分全直流鏈電壓。因此,初級側上正使用三位準拓撲。當電力裝置在正電壓位準與零之間及在零與負電壓位準之間切換時,裝置上之電壓應力減小。
根據另一特徵,變壓器68之次級上之諧振直流-直流轉換器18a使用MOSFET電晶體70及72以執行同步整流。此方法由於更為高效而具有優於使用二極體之優點。二極體具有p-n接面且因此其具有固定壓降,此在二極體中產生功率損耗。MOSFET電晶體具有通道。此通道並不具有固定壓降,而是在通道為ON時充當電阻器。因此,若並聯之MOSFET之數目增大,則有可能相較於常規二極體減小通道電阻且改良損耗。此為正使用同步整流之原因。然而,同步整流的確需要對MOSFET裝置之主動控制,因此相較於使用二極體控制之複雜度較大。
圖4為描繪電池充電器在經組態以用於產生270-V DC/5.5-A輸出以用於充電高電壓電池時之電路圖。在此組態(亦即,開關K1斷開及開關K2閉合)中,充電器作為降壓式轉換器18b起作用。降壓式轉換器為 電壓步降及電流步升轉換器。降壓式轉換器18b由開關網路60(其使用PWM控制以減小電壓之DC分量)及低通濾波器(亦即,電感器64及電容器66)(其移除高頻切換諧波)組成。在此狀況下,由於輸入電壓與輸出電壓之比率並非極大,因此並不需要高頻變壓器68。
降壓式轉換器18b產生DC輸出電壓V out,其量值可經由工作循環控制。轉換比率M buck 定義為在穩態條件下之DC輸出電壓(亦即,V out )對於DC輸入電壓(亦即,V dc )之比率。可藉由調整工作循環而控制DC輸出電壓V。由於轉換器輸出電壓v(t)為開關工作循環之函數,因此可提供變化工作循環以使得輸出電壓遵循給定參考之控制方案。
圖5為根據一個具體實例的展示圖2中所描繪的通用氮化鎵型電池充電器電路拓撲之各部分(並未展示開關K1及K2以減小圖式中之雜波)及表示用於控制電池充電器電路之控制架構之區塊的混合電路方塊圖。控制策略如下。
在電池之充電期間,電池恆定電壓(CV)/恆定電流(CC)控制器54經組態以防止電池之過度充電。間歇性地進行充電;充電系統始終連接至飛機機載電池。當充電器電壓維持恆定時恆定電壓為充電器操作模式;當充電器電流維持恆定時恆定電流為充電器操作模式。電池CV/CC控制器54將參考DC電壓V dc_ref 輸出至直流鏈電壓及平衡控制器52。平衡控制器52維持中點M電壓平衡(亦即,使跨越頂部電容器46及底部電容器48之電壓維持在相同位準下)。參考DC電壓V dc_ref 隨載荷要求而變化。直流鏈電壓及平衡控制器52將參考電流I d_ref 輸出至相電流控制器50,該參考電流為參考DC電壓V dc_ref 與跨越直流-直流轉換器18之輸入端子32與34之直 流鏈電壓V dc 之間的差之函數。相電流控制器50接著將脈寬調變(PWM)電流(由圖5中之箭頭PWM指示)輸出至連接至開關網路40之氮化鎵型電力開關之電晶體閘極驅動器(未展示),從而迫使三相AC載荷中之電流遵循參考信號。藉由比較命令與相電流之所量測的瞬時值,相電流控制器50產生開關網路40之氮化鎵型電力開關之切換狀態以用於控制直流鏈電壓V dc 。另外,前端級調節充電器之輸入電流以實施功率因數校正。
脈寬調變為可用於控制供應至電氣裝置之功率之調變技術。藉由在快速速率下接通及關閉在供電與載荷之間的開關而控制饋入至載荷之電壓(及電流)之平均值。相較於開關關閉週期,開關接通週期愈長,供應至載荷之總功率愈高。術語「工作循環」描述ON時間與常規間隔或時間「週期」之比例;低工作循環對應於低功率,由於在大多數時間電源處於關閉。PWM之主要優點為開關裝置中之功率損耗極低。當開關關閉時,實際上不存在電流,且當開關接通且功率轉移至載荷時,跨越開關幾乎不存在壓降。為電壓與電流之乘積的功率損耗因此在兩種狀況下均接近於零。
根據本文中所揭示之雙級電池充電器之一個具體實例,利用空間向量脈寬調變(SVPWM)。空間向量脈寬調變為用於多相AC產生之PWM控制演算法,其中有規律地取樣參考信號;在每一取樣之後,選擇鄰近於參考向量之非零主動切換向量及零切換向量中之一或多者以用於取樣週期之適當部分,以便將參考信號合成為所使用向量之平均值。
直流-直流轉換器18作為DC變壓器(DCX,其中X表示等效DC變壓器匝比(電壓增益))操作。藉由DCX控制器56控制開關網路 60之狀態,DCX控制器56在DCX模式下經程式化以產生使得變壓器68能夠在最佳操作點處操作之可調整電壓轉換比率。更特定言之,DCX控制器56將PWM電流(由圖5中之箭頭PWM指示)輸出至連接至開關網路60之開關60a直至60d之電晶體閘極驅動器(未展示)。
對於本文中所揭示之電池充電器之實施,氮化鎵型寬帶隙裝置用於使電路及控制演算法之優點最大化。舉例而言,開關網路40之氮化鎵型電力開關之快速切換允許輸入電感器42及EMI濾波器12(參見圖1)之大小及重量減小。與氮化鎵型電力裝置相關聯之低切換損耗實現在高切換速度下之高效率。氮化鎵型電力開關網路40用於三位準電路拓撲中,其允許使用將流經輸入電感器42的電流位準減小且因此將通用充電器之重量、大小及成本減小的升壓式電路。開關網路40之氮化鎵型電力開關之高切換頻率亦使得有可能在高功率電路中利用主動諧波消除技術。
圖6為展示用於使用圖5中所描繪的電池充電器電路拓撲及控制架構而將三相AC電力轉換成DC電流I bat以用於充電電池之過程100之各步驟的流程圖。電池CV/CC控制器54(參見圖5)內部之第一求和器102形成電池充電DC電流I bat 之倒數與參考充電電流I cc_ref 之總和,該總和被輸入至將電流值轉換為電壓值之比例積分控制器104。電池CV/CC控制器54內部之第二求和器108形成比例積分控制器104之輸出與正向饋入電池CV/CC控制器54的整流器之輸入電壓106(V forward )之總和。第二求和器108之輸出為參考DC電壓V dc_ref ,其充當由維也納升壓式整流器輸出之直流鏈電壓V dc 之參考信號。
中間DC電壓被輸入至直流鏈電壓及平衡控制器52(參見圖 5),該控制器執行直流鏈控制方案110以輸出參考DC電壓V dc_ref 。直流鏈電壓及平衡控制器52包含形成參考DC電壓V dc_ref 與直流鏈電壓V dc 之總和之求和器112,該總和被輸入至將電壓值轉換為參考電流值I d_ref 之比例積分控制器114,該參考電流值表示維也納升壓式整流器14之參考d軸電流。如圖5中所見,參考電流值I d_ref 被輸入至相電流控制器50。
此時,解釋術語「d軸」及在下文中所使用之相關術語可有幫助。在電氣工程中,直接正交轉換為將三相系統之參考座標系旋轉以致力於簡化對三相電路之分析的數學轉換。在平衡三相電路之狀況下,應用直接正交轉換將三個AC量(如電壓及電流)轉換成兩個DC量。接著可在執行反變換以恢復實際三相AC結果之前對此等DC量進行簡化計算。使用直接正交轉換得簡化用於控制維也納升壓式整流器之三相輸入的計算。直接正交轉換被實施為直流鏈電壓及平衡控制器52之部分,其將所有感測到的AC變數實時轉換成直接正交域。因此,在圖6中,d d 為d軸控制器之工作循環;d q 為q軸控制器之工作循環;I d 為d軸電流;I q 為q軸電流(在本申請案中等於零);G id (s)為將d軸工作循環PWM轉換成d軸電流之轉移函數;G v_id (s)為將d軸電流I d 轉換成直流鏈電壓V dc 之轉移函數。
現將參看圖6描述相電流控制器50之組件,其自直流鏈電壓及平衡控制器52接收參考電流值I d_ref 。相電流控制器50包含形成參考電流值I d_ref 與d軸電流I d 之總和之求和器116,該總和被輸入至將電流值轉換為工作循環d d 之比例積分控制器118。空間向量脈寬調變(SVPWM)區塊120將脈寬調變(PWM)電流輸出至開關網路40(參見圖1)之氮化鎵型電力開關,以迫使三相AC載荷中之電流遵循參考信號。更特定言之,SVPWM 區塊120自鎖相迴路(PLL)接收工作循環d d d q 及信號,且產生接著饋入轉移函數G id (s)之工作循環輸出,轉移函數G id (s)又產生d軸電流I d 。在此情況下,q軸電流I q 經設定為零。此為為何圖6中並未展示q軸分支(其將類似於d軸分支)。工作循環d q 被設定為零;q軸電流I q 控制功率因數。若I q (或d q )被設定為零,則可達成單位功率因數。d軸電流I d 接著藉由轉移函數G v_id (s)轉換成直流鏈電壓V dc 。藉由比較命令與相電流之所量測的瞬時值,相電流控制器50產生開關網路40之氮化鎵型電力開關之切換狀態以用於控制直流鏈電壓V dc 。直流鏈電壓V dc 供直流-直流轉換器18之DCX控制方案126使用。
控制器之工作方式如下。直流-直流轉換器18以恆定工作循環工作,亦即,其減小輸入直流鏈電壓V dc 以藉由固定比率來輸出電池電壓V out 。其並不對電池電流I bat 執行任何控制,該電池電流實際上取決於表示恆定電壓模式或恆定電流模式之轉移函數的電池模式128。充電電流(電池需要在該充電電流下被充電)為I cc_ref 。藉由控制直流鏈電壓V dc 而控制此電流。直流鏈電壓愈低,電池充電電流將愈低。因此,基於所需的充電電流,計算直流鏈電壓之參考V dc_ref ,接著與實際直流鏈電壓V dc 進行比較。控制器基於電池充電電流需要來調節由維也納升壓式整流器輸出之直流鏈電壓,且同時藉由將q軸電流設定為零而維持在整流器輸入處之單位功率因數。
現將出於說明之目的而描述根據一個具體實例之控制方案。約束如下:(a)DC輸出:28V/50A(範圍:20V至33.6V)及270V/5.5A(範圍:180V至302V);(b)AC輸入:115V或235V相電壓。標稱條件如下:(a)整流器控制彈性直流鏈電壓:低界限606V,高界限800V; 以及(b)直流-直流轉換器在諧振28-V模式之固定轉換比率M resonant 及降壓270-V模式之固定轉換比率M buck 下作為DC變壓器工作。
為了促進28-V諧振模式下之20V至33.6V變化,在參考DC電壓V dc_ref >606V時,將M resonant 固定為標稱值以維持諧振模式之最大效率。若參考DC電壓V dc_ref 接近於606V,則減小電壓轉換比率M resonant 以防止直流鏈電壓V dc 降低。頻率自其諧振點偏離。同步整流損耗略微增大。
為了促進270-V降壓模式下之180V至302V變化,在參考DC電壓V dc_ref >606V時,將M buck 固定為標稱值以維持降壓模式之最大效率。若參考DC電壓V dc_ref 接近於606V,則減小降壓模式下之工作循環,以使直流鏈電壓V dc 保持大於606V。
總體而言,已提議用於兩功率級電池充電器系統之控制方案。利用前端級以藉由控制直流鏈電壓而控制充電電流。直流-直流轉換器級簡單地表現為在最佳操作點處操作之DC變壓器。可調整直流-直流轉換器級之電壓增益以在電池之給定電壓變化下使直流鏈電壓維持大於最小臨限值。藉由等效雙頻來調變處於諧振轉換器模式之三位準直流-直流轉換器,此實現較低切換損耗及較低被動體積及重量。
升壓式整流器14使用可在MHz頻率範圍內切換之GaN電力裝置。此允許電感器、變壓器及電容器之重量及大小降低。然而,MHz頻率切換帶來許多挑戰。在僅可按數十kHz切換之傳統Si電力裝置設計之情況下並不存在此等挑戰。由於GaN裝置之關閉及接通時間極短(在奈秒範圍內),因此其可在高很多的切換頻率下切換。此為為何亦有可能明顯減小切換損耗且因此明顯改良轉換效率。切換損耗確切發生在裝置自ON狀態 過渡至OFF狀態及自OFF狀態過渡至ON狀態期間。若此過渡花費太長時間,則切換損耗將較大。GaN裝置使切換損耗最小化。
由高速切換所造成之挑戰中之一者為,歸因於自ON狀態至OFF狀態之短過度時間的高dI/dt使得硬體之機械封裝極為困難。裝置封裝中(亦即,印刷電路板中)之所有寄生電感產生可損壞GaN裝置之極高電壓尖峰。此係由於V=L*dI/dt。因此,在高dI/dt之情況下,在裝置自ON過渡至OFF期間產生高電壓尖峰。為克服此問題,印刷電路板應經設計以使寄生電感最小化。電感與跡線之長度成比例。因此,為使電感最小化,應使該等跡線之長度最小化,亦即接近於裝置來置放閘極驅動器,更接近於裝置來置放變壓器等。設計能夠使得所有組件裝設在極緊密封裝中以使電感最小化的PCB佈局係具有挑戰性的。
本文中所揭示之電路之另一獨特態樣為所獲得充電器為通用,亦即能夠充電高電壓電池及低電壓電池兩者。此指定直流-直流轉換器之可重組態電路拓撲。拓撲可在降壓式轉換器拓撲與諧振轉換器拓撲之間重新組態及切換。開關K1及K2有助於此操作。重新組態可為手動進行或可在感測電池之輸出電壓之後或在接腳程式化等之後自動進行。
軟體與控制方案經設計以實施GaN裝置之高頻切換。在高頻率之情況下,所有事情必須快速得多地進行。在數字信號處理器(DSP)中對控制信號進行類比/數位轉換與數位/類比轉換、計算及處理。有可能藉由現成的DSP硬體(諸如,雙核DSP處理器)進行此操作。並且,吾人必須極其密切地關注控制程式碼之效率(亦即,高效撰寫程式碼),以使得其在讀取感測器與將控制信號輸出至閘極驅動器之間的一個循環期間快速地 執行。
軟體之另一態樣係關於充電器之「可重新組態性」。目前,軟體需要更為複雜以便取決於接腳程式化或感測到的電池電壓位準重新組態開關K1及K2。另一態樣為軟體應能夠取決於充電器之輸入電壓位準(其可為115V或230V)而調整PFC控制。
本文中所揭示之充電系統之另一態樣為直流-直流轉換器可以諧振轉換器模式或降壓式轉換器模式操作。電路之通用本質將允許降低用於每下一種新飛機之特定充電器硬體之開發成本。實際上,將有可能再使用一個通用充電器部分,而與電池或操作電壓位準無關。
儘管已參看特定具體實例描述通用電池充電器,但熟習此項技術者應理解,在不脫離在下文中所闡述之申請專利範圍之範圍之情況下,可進行各種變化及可用等效物取代其元件。另外,在不脫離申請專利範圍之範圍之情況下可進行許多修改以使本文中的教示適應於特定情形。
應注意:以下段落描述本發明之另外的態樣:
A1.直流-直流轉換器,其包含:第一輸出端子對;第一與第二輸入端子;連接至第一輸出端子對中之一者之第一開關;跨越第一與第二輸入端子串聯連接之多個電力開關;藉由各別電導體連接至串聯連接之電力開關中之最後一者、第二輸入端子及第一輸出端子對中之一者的第一接合點;沿著連接電力開關中之兩者之電導體安置之第二接合點; 耦接第一與第二接合點之串聯連接,該串聯連接包含電感器、變壓器之初級繞組以及第一電容器;藉由各別電導體連接至第一電容器、第一開關以及變壓器之初級繞組之第三接合點;以及將第一輸出端子對中之第一輸出端子耦接至第一輸出端子對中之第二輸出端子的第二電容器,其中第一開關安置於第三接合點與第一輸出端子對中之第二輸出端子之間,且直流-直流轉換器經組態以在第一開關閉合時以降壓式轉換器模式操作。
A2.如段落A1中所述之直流-直流轉換器,其中電力開關為基於氮化鎵之電晶體。
A3.如段落A1中所述之直流-直流轉換器,其進一步包含:第二輸出端子對;第四接合點;安置於第四接合點與第二輸出端子對中之第一輸出端子之間的第二開關;串聯連接之變壓器之第一與第二次級繞組;安置於第一次級繞組與第四接合點之間的第一電晶體;以及安置於第二次級繞組與第四接合點之間的第二電晶體,其中直流-直流轉換器經組態以在第一開關斷開及第二開關閉合時以諧振轉換器模式操作。
A4.如段落A3中所述之直流-直流轉換器,其中第二輸出端子對中之第 二輸出端子連接至第一與第二次級繞組之間的中點。
A5.如段落A4中所述之直流-直流轉換器,其中該直流-直流轉換器進一步包含:安置於第二開關與第二輸出端子對中之第一輸出端子之間的第五接合點;安置於第二輸出端子對中之第二輸出端子與第一與第二次級繞組之間的中點之間的第六接合點;以及將第五接合點耦接至第六接合點之第三電容器。
10:電池充電器
12:輸入濾波器
14:(三位準)交流-直流維也納升壓式整流器
16:直流鏈
18:(三位準)直流-直流轉換器
20:電池
22:散熱片
24:散熱片

Claims (19)

  1. 一種電池充電器,其包含:第一直流鏈導體與第二直流鏈導體;一三相、三位準的交流-直流整流器,其連接至該第一直流鏈導體與該第二直流鏈導體,且經組態以將AC電壓轉換成跨越該第一直流鏈導體與該第二直流鏈導體的一直流鏈電壓;一三位準的直流-直流轉換器,其包含第一輸出端子對與第二輸出端子對、連接至該第一直流鏈導體與該第二直流鏈導體之第一輸入端子與第二輸入端子、連接至該第一輸出端子對中之一者的一第一開關、及連接至該第二輸出端子對中之一者的一第二開關;以及一控制器,其經組態以隨一電池上的一三相AC載荷來變化該直流鏈電壓,該電池包括一高電壓電池和一低電壓電池,其中該直流-直流轉換器經組態以在該第一開關閉合及該第二開關斷開時輸出隨該直流鏈電壓而變化的直流電流,以用於對連接至該第一輸出端子對的該低電壓電池充電,且進一步經組態以在該第一開關斷開及該第二開關閉合時輸出隨該直流鏈電壓而變化的直流電流,以用於對連接至該第二輸出端子對之該高電壓電池充電;且其中該控制器包括:一電池恆定電壓/恆定電流控制器,其經組態以防止該電池之過度充電,並且輸出一參考直流電壓,該參考直流電壓隨該三相載荷的要求而變化;一直流鏈電壓及平衡控制器,其經組態以接收來自該電池恆定電壓 /恆定電流控制器的參考直流電壓,並且輸出一參考電流,該參考電流是在該參考直流電壓與該直流鏈電壓之間的差之一函數;以及一相電流控制器,其經組態以接收來自該直流鏈電壓及平衡該控制器的參考電流,並且接著將脈寬調變電流輸出至該交流-直流整流器,以迫使該三相AC載荷中之該直流電流遵循該參考直流電壓和該參考電流。
  2. 如申請專利範圍第1項之電池充電器,其中該直流-直流轉換器進一步經組態以在該第一開關閉合及該第二開關斷開時以一諧振轉換器模式操作,且在該第一開關斷開及該第二開關閉合時以一降壓式轉換器模式操作。
  3. 如申請專利範圍第1項之電池充電器,其中該直流-直流轉換器進一步包含跨越該第一輸入端子與該第二輸入端子串聯連接之多個電力開關。
  4. 如申請專利範圍第3項之電池充電器,其中該多個電力開關為基於氮化鎵之電晶體。
  5. 如申請專利範圍第1項之電池充電器,其中該交流-直流整流器包含一維也納類型升壓式整流器。
  6. 如申請專利範圍第1項之電池充電器,其中該交流-直流整流器包含:第一輸入端子、第二輸入端子及第三輸入端子;一中點節點;第一接合點與第二接合點,其分別連接至該第一直流鏈導體與該第二直流鏈導體; 一第一電感器及一第一高功率開關對,其經組態以在該第一高功率開關對閉合時將該第一輸入端子耦接至該中點節點;一第二電感器及一第二高功率開關對,其經組態以在該第二高功率開關對閉合時將該第二輸入端子耦接至該中點節點;一第三電感器及一第三高功率開關對,其經組態以在該第三高功率開關對閉合時將該第三輸入端子耦接至該中點節點;一第一電容器,其具有連接至該中點節點之一個端子及連接至該第一接合點之另一端子;以及一第二電容器,其具有連接至該中點節點之一個端子及連接至該第二接合點之另一端子。
  7. 如申請專利範圍第6項之電池充電器,其中該第一高功率開關對、該第二高功率開關對及該第三高功率開關對為基於氮化鎵之電晶體。
  8. 一種電池充電器,其包含:第一直流鏈導體與第二直流鏈導體;一交流-直流整流器,其連接至該第一直流鏈導體與該第二直流鏈導體,且經組態以將AC電壓轉換成跨越該第一直流鏈導體與該第二直流鏈導體的一直流鏈電壓;以及一直流-直流轉換器,其包含第一輸出端子對與第二輸出端子對、連接至該第一直流鏈導體與該第二直流鏈導體之第一輸入端子與第二輸入端子、連接至該第一輸出端子對中之一者的一第一開關、及連接至該第二輸出端子對中之一者的一第二開關,其中該直流-直流轉換器經組態以在該第一開關閉合及該第二開關斷開 時輸出隨該直流鏈電壓而變化的直流電流,以用於對連接至該第一輸出端子對的一電池充電,且進一步經組態以在該第一開關斷開及該第二開關閉合時輸出隨該直流鏈電壓而變化的直流電流,以用於對連接至該第二輸出端子對之一電池充電,該第二輸出端子對中之另一者連接至該第二輸入端子,及該直流-直流轉換器進一步包含:第一電力開關到第四電力開關,其經串聯連接跨越該第一輸入端子與該第二輸入端子;一電感器,其連接在該第二電力開關與該第三電力開關之間的一中點;一變壓器,其包含一初級繞組及一第一次級繞組,該初級繞組將該電感器連接至該第二開關;以及一第一電容器,其將該初級繞組耦接至該第四電力開關。
  9. 如申請專利範圍第8項之電池充電器,其中該變壓器進一步包含串聯連接至該第一次級繞組之一第二次級繞組,且該第一輸出端子對中之另一者連接在該第一次級繞組與該第二次級繞組之間的一中點。
  10. 如申請專利範圍第9項之電池充電器,其中該直流-直流轉換器進一步包含:一第一接合點,其在該第一開關閉合時連接至該第一輸出端子對中之該一者;一第三開關,其在閉合時將該第一接合點連接至該第一次級繞組;以及一第四開關,其在閉合時將該第一接合點連接至該第二次級繞組。
  11. 如申請專利範圍第10項之電池充電器,其中該第三開關及該第四開關為MOSFET電晶體。
  12. 如申請專利範圍第10項之電池充電器,其中該直流-直流轉換器進一步包含:一第二接合點,其安置於該第一開關與該第一輸出端子對中之該一者之間;一第三接合點,其安置於該第一輸出端子對中之另一者與介於該第一次級繞組與該第二次級繞組的該中點之間;以及一第二電容器,其安置於該第二接合點與該第三接合點之間。
  13. 一種電池充電器,其包含:第一直流鏈導體與第二直流鏈導體;一維也納類型升壓式整流器,其連接至該第一直流鏈導體與該第二直流鏈導體,且經組態以將AC電壓轉換成跨越該第一直流鏈導體與該第二直流鏈導體的一直流鏈電壓;一三位準直流-直流轉換器,其包含第一輸出端子對與第二輸出端子對、連接至該第一直流鏈導體與該第二直流鏈導體之第一輸入端子與第二輸入端子、連接至該第一輸出端子對中之一者的一第一開關、及連接至該第二輸出端子對中之一者的一第二開關,其中該三位準直流-直流轉換器在該第一開關閉合及該第二開關斷開時以一諧振轉換器模式進行操作,及在該第一開關斷開及該第二開關閉合時以一降壓式轉換器模式進行操作;以及一控制器,其經組態以隨一電池上的一三相AC載荷來變化該直流鏈電 壓,其中該控制器包括:一電池恆定電壓/恆定電流控制器,其經組態以防止該電池之過度充電,並且輸出一參考直流電壓,該參考直流電壓隨該三相AC載荷的要求而變化;一直流鏈電壓及平衡控制器,其經組態以接收來自該電池恆定電壓/恆定電流控制器的參考直流電壓,並且輸出一參考電流,該參考電流是在該參考直流電壓與該直流鏈電壓之間的差之一函數;以及一相電流控制器,其經組態以接收來自該直流鏈電壓及平衡控制器的參考電流,並且接著將脈寬調變電流輸出至該維也納類型升壓式整流器,以迫使該三相AC載荷中之一直流電流遵循該參考直流電壓和該參考電流。
  14. 如申請專利範圍第13項之電池充電器,其中該直流-直流轉換器進一步包含跨越該第一輸入端子與該第二輸入端子串聯連接之多個基於氮化鎵之電晶體。
  15. 如申請專利範圍第13項之電池充電器,其中該維也納類型升壓式整流器包含:第一輸入端子、第二輸入端子及第三輸入端子;一中點節點;第一接合點與第二接合點,其分別連接至該第一直流鏈導體與該第二直流鏈導體;一第一電感器及一第一高功率開關對,其經組態以在該第一高功率開關對閉合時將該第一輸入端子耦接至該中點節點; 一第二電感器及一第二高功率開關對,其經組態以在該第二高功率開關對閉合時將該第二輸入端子耦接至該中點節點;一第三電感器及一第三高功率開關對,其經組態以在該第三高功率開關對閉合時將該第三輸入端子耦接至該中點節點;一第一電容器,其具有連接至該中點節點之一個端子及連接至該第一接合點之另一端子;以及一第二電容器,其具有連接至該中點節點之一個端子及連接至該第二接合點之另一端子,其中該第一高功率開關對、該第二高功率開關對及該第三高功率開關對為基於氮化鎵之電晶體。
  16. 一種直流-直流轉換器,其包含:一第一輸出端子對;第一輸入端子與第二輸入端子;一第一開關,其連接至該第一輸出端子對中之一者;多個電力開關,其經串聯連接跨越該第一輸入端子與該第二輸入端子;一第一接合點,其藉由各別的電導體而連接至經串聯連接之電力開關中之最後一者,連接至該第二輸入端子,且連接至該第一輸出端子對中之一者;一第二接合點,其沿著連接該多個電力開關中之兩者之一電導體來安置;一串聯連接,其耦接該第一接合點與該第二接合點,該串聯連接包含一電感器,一變壓器之一初級繞組,及一第一電容器; 一第三接合點,其藉由各別的電導體而連接至該第一電容器,該第一開關,及該變壓器之該初級繞組;以及一第二電容器,其將該第一輸出端子對中之一第一輸出端子耦接至該第一輸出端子對中之一第二輸出端子,一第二輸出端子對;一第四接合點;一第二開關,其安置於該第四接合點與該第二輸出端子對中之一第一輸出端子之間;該變壓器之第一次級繞組與第二次級繞組,其經串聯連接;一第一電晶體,其安置於該第一次級繞組與該第四接合點之間;以及一第二電晶體,其安置於該第二次級繞組與該第四接合點之間,其中該第一開關安置於該第三接合點與該第一輸出端子對中之第二輸出端子之間,並且該直流-直流轉換器經組態以在該第一開關閉合時以一降壓式轉換器模式操作,以及在該第一開關斷開且該第二開關閉合時以一諧振轉換器模式操作。
  17. 如申請專利範圍第16項之直流-直流轉換器,其中該多個電力開關為基於氮化鎵之電晶體。
  18. 如申請專利範圍第16項之直流-直流轉換器,其中該第二輸出端子對中之一第二輸出端子連接在該第一次級繞組與該第二次級繞組之間的一中點。
  19. 如申請專利範圍第18項之直流-直流轉換器,其中該直流-直流轉換器進一步包含: 一第五接合點,其安置於該第二開關與該第二輸出端子對中之第一輸出端子之間;一第六接合點,其安置於該第二輸出端子對中之第二輸出端子與介於該第一次級繞組與該第二次級繞組的一中點之間;以及一第三電容器,其將該第五接合點耦接至該第六接合點。
TW106102632A 2016-03-28 2017-01-24 用於以氮化鎵型電力裝置爲基礎的電池充電器的系統架構及其中所使用的直流-直流轉換器 TWI706622B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/082,810 2016-03-28
US15/082,810 US10063077B2 (en) 2016-03-28 2016-03-28 System architecture for battery charger

Publications (2)

Publication Number Publication Date
TW201735488A TW201735488A (zh) 2017-10-01
TWI706622B true TWI706622B (zh) 2020-10-01

Family

ID=58428157

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106102632A TWI706622B (zh) 2016-03-28 2017-01-24 用於以氮化鎵型電力裝置爲基礎的電池充電器的系統架構及其中所使用的直流-直流轉換器

Country Status (9)

Country Link
US (1) US10063077B2 (zh)
EP (1) EP3226377B1 (zh)
JP (1) JP6683645B2 (zh)
KR (1) KR102163105B1 (zh)
CN (1) CN107248774B (zh)
BR (1) BR102017006074B1 (zh)
CA (1) CA2958694C (zh)
RU (1) RU2721332C2 (zh)
TW (1) TWI706622B (zh)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10964467B2 (en) 2015-04-14 2021-03-30 Hanchett Entry Systems, Inc. Solenoid assembly with included constant-current controller circuit
US11424061B2 (en) 2015-04-14 2022-08-23 Hanchett Entry Systems, Inc. Solenoid assembly actuation using resonant frequency current controller circuit
EP3232470B1 (en) * 2016-04-13 2019-01-02 ABB Schweiz AG Cooling of wide bandgap semiconductor devices
US10027244B2 (en) * 2016-06-21 2018-07-17 General Electric Company Active voltage regulator systems and methods
CN107623344A (zh) * 2016-07-15 2018-01-23 华为技术有限公司 无线充电电路、无线充电***及电路控制方法
FR3067886B1 (fr) * 2017-06-15 2023-05-26 Nissan Motor Procede de commande d'un redresseur de vienne triphase
US10298138B2 (en) * 2017-08-31 2019-05-21 Google Llc Programmable power adapter
FR3073342B1 (fr) * 2017-11-09 2019-10-25 Renault S.A.S Procede de commande d'un chargeur de batterie d'accumulateurs electriques
US10625626B2 (en) * 2017-11-29 2020-04-21 Nio Usa, Inc. Charging systems and methods for electric vehicles
KR102432265B1 (ko) * 2017-12-04 2022-08-12 에그트로닉 엔지니어링 에스.피.에이. 정류 회로 및 이를 포함하는 장치
US10940813B2 (en) * 2018-05-03 2021-03-09 Hamilton Sunstrand Corporation Universal platform architecture for hybrid more electric aircraft
US10363828B1 (en) * 2018-06-12 2019-07-30 Nio Usa, Inc. Systems and methods for regulating charging of electric vehicles
CN109177809B (zh) * 2018-09-06 2021-04-20 北京长城华冠汽车科技股份有限公司 电动汽车的充电控制方法、***及电动汽车
CN109039120A (zh) * 2018-09-10 2018-12-18 重庆大全泰来电气有限公司 一种单晶炉的电源***
FR3087614B1 (fr) * 2018-10-19 2020-10-09 Sagemcom Energy & Telecom Sas Carte electrique comprenant un pont de redressement
NL2021926B1 (en) * 2018-11-02 2020-05-14 Prodrive Tech Bv Electrical power converter
CN113169576A (zh) * 2018-11-27 2021-07-23 胡斯华纳有限公司 具有多个次级变压器电路的电池充电器
US20200220368A1 (en) * 2019-01-08 2020-07-09 Google Llc Universal Adapter
CN110011549A (zh) * 2019-01-21 2019-07-12 关键禾芯科技股份有限公司 调压整流电路***
US11482921B2 (en) 2019-05-03 2022-10-25 Witricity Corporation Active harmonics cancellation
GB2618463B (en) * 2019-05-08 2024-03-06 Hanchett Entry Systems Inc Solenoid assembly with included constant-current controller circuit
DE102019129754A1 (de) 2019-05-23 2020-11-26 Universität Paderborn Vorrichtung und Verfahren zur Ladung eines elektrischen Batteriefahrzeugs
US10924008B2 (en) 2019-07-09 2021-02-16 Nio Usa, Inc. Devices, systems, and methods for charging electric vehicles
CN111146962B (zh) * 2020-03-02 2021-12-31 香江科技股份有限公司 一种能源互联网用紧凑型电力电子变压器及其控制方法
JP7306316B2 (ja) * 2020-04-28 2023-07-11 Tdk株式会社 スイッチング電源装置および電力供給システム
KR102647079B1 (ko) * 2020-05-15 2024-03-14 서울과학기술대학교 산학협력단 단상 및 3상 겸용 양방향 충전시스템
US11495982B2 (en) 2020-08-31 2022-11-08 The Boeing Company System and method for allocating propulsion load power drawn from high-energy and high-power batteries
US12028009B2 (en) 2020-09-20 2024-07-02 The Boeing Company Protection system for aircraft electric propulsion motor and motor controller
US11424640B2 (en) 2020-09-25 2022-08-23 Apple Inc. Integrated high-voltage-low-voltage DC-DC converter and charger with active filter
US11967842B2 (en) 2020-10-09 2024-04-23 The Boeing Company Smart battery disconnect and protection architecture for airborne high-power modular multi-string battery pack
EP4047784A1 (en) * 2021-02-23 2022-08-24 ABB Schweiz AG Power supply assembly
CN113162182A (zh) * 2021-04-30 2021-07-23 杰华特微电子股份有限公司 一种电源设备的充电控制方法及电源设备
KR20220154455A (ko) 2021-05-13 2022-11-22 손이찬 모듈형 스마트 화분
US11878594B2 (en) 2021-06-16 2024-01-23 The Boeing Company Protection system for aircraft electric propulsion motor and motor controller
TWI773392B (zh) * 2021-06-21 2022-08-01 立錡科技股份有限公司 可追蹤最大效率之充電控制方法與充電系統
DE102021118432A1 (de) 2021-07-16 2023-01-19 Avl Software And Functions Gmbh Mobile Energieübertragungsvorrichtung
CN113839458B (zh) * 2021-08-31 2023-02-14 深圳市雅晶源科技有限公司 一种基于氮化镓的超级快充
WO2023110049A1 (en) * 2021-12-13 2023-06-22 Huawei Digital Power Technologies Co., Ltd. Power converter arrangement
US11522372B1 (en) * 2021-12-28 2022-12-06 Beta Air, Llc Charger for an electric aircraft with failure monitoring and a method for its use
US11850961B1 (en) 2022-08-17 2023-12-26 Beta Air, Llc Charging connector with integrated cooling channel

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1020973A2 (en) * 1999-01-18 2000-07-19 Hitachi, Ltd. A charge and discharge system for electric power storage equipment
TW480801B (en) * 1999-09-15 2002-03-21 Delta Electronics Inc Back-up power device and applications thereof
US20030042404A1 (en) * 2001-09-05 2003-03-06 The Boeing Company III-Nitride laser activated semiconductor switch and associated methods of fabrication and operation
EP2262087A1 (de) * 2009-06-10 2010-12-15 ABB Research Ltd. Wandlerschaltung mit einem Umrichter
US20120182769A1 (en) * 2011-01-13 2012-07-19 Fujitsu Limited Dc-dc converter, power supply unit and an information processing apparatus
US8228690B2 (en) * 2009-08-05 2012-07-24 Honda Motor Co., Ltd. DC-DC converter and power supplying system including same
TW201336219A (zh) * 2012-02-16 2013-09-01 Delta Electronics Shanghai Co 三相ac-dc變換電路和其變換方法與控制系統
JP2015208171A (ja) * 2014-04-23 2015-11-19 日立オートモティブシステムズ株式会社 電源装置
CN105356758A (zh) * 2015-12-03 2016-02-24 东北电力大学 一种高频隔离型dc-dc双级功率变换***结构

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266881A (en) 1989-04-11 1993-11-30 Solid State Chargers Research And Development Limited Universal high current battery charger
FR2691853B1 (fr) * 1992-06-01 2002-12-20 Smh Man Services Ag Appareil pour charger un accumulateur d'énergie électrique rechargeable.
EP0623987B1 (en) 1993-05-05 1999-07-07 STMicroelectronics Pte Ltd. Battery charger
US5574636A (en) 1994-09-09 1996-11-12 Center For Innovative Technology Zero-voltage-transition (ZVT) 3-phase PWM voltage link converters
US5570279A (en) 1994-09-21 1996-10-29 The Research And Development Institute, Inc. At Montana State University PWM converters for three phase AC power control and AC to DC conversion
WO1998009368A1 (en) 1996-08-30 1998-03-05 Sgs-Thomson Microelectronics Method and apparatus for automatic average current mode controlled power factor correction without input voltage sensing
JP2000197347A (ja) * 1998-12-25 2000-07-14 Hitachi Ltd 電源装置
JP3511927B2 (ja) * 1999-01-18 2004-03-29 株式会社日立製作所 電力蓄積手段の充放電装置
BR9907351A (pt) 1999-12-22 2001-08-07 Ericsson Telecomunicacoees S A Método e circuito de controle para retificador do tipo elevador trifásico de três nìveis
US6341076B1 (en) 2000-05-23 2002-01-22 Next Power Corporation Loss reduction circuit for switching power converters
US20050029867A1 (en) * 2001-09-10 2005-02-10 Wood Steven J. Energy management system for vehicle
US7057376B2 (en) * 2004-01-14 2006-06-06 Vanner, Inc. Power management system for vehicles
US7633782B1 (en) 2006-11-21 2009-12-15 Edward Herbert 100% duty-cycle buck-derived and 0% duty-cycle boost-derived power factor corrected (PFC) 3-phase Ac-Dc power converters
US8253373B2 (en) * 2006-12-20 2012-08-28 Techtium Ltd Battery powered charger
HUP0700300A2 (en) * 2007-04-24 2008-12-29 Andras Fazakas Battery recharger circuit operated from three-phase mains
JP5118913B2 (ja) * 2007-07-24 2013-01-16 トヨタ自動車株式会社 電源システムおよびそれを備えた電動車両ならびに電源システムの制御方法
JP2010088150A (ja) * 2008-09-29 2010-04-15 Tdk Corp 充電装置
US7893791B2 (en) * 2008-10-22 2011-02-22 The Boeing Company Gallium nitride switch methodology
ATE531247T1 (de) * 2008-10-24 2011-11-15 Fiat Ricerche Kraftfahrzeugwechselrichtereinheit
US8143862B2 (en) * 2009-03-12 2012-03-27 02Micro Inc. Circuits and methods for battery charging
JP2011125124A (ja) * 2009-12-09 2011-06-23 Sanyo Electric Co Ltd サーバーとサーバーに収納される無停電電源装置
US8058935B2 (en) * 2010-02-05 2011-11-15 The Boeing Company Scalable millimeter wave power source
JP5555004B2 (ja) * 2010-02-17 2014-07-23 本田技研工業株式会社 充電ケーブル、車両、および車両の充電システム
US9071070B2 (en) * 2010-09-03 2015-06-30 Honda Motor Co., Ltd. Charge controller and charging system
JP5645582B2 (ja) * 2010-10-07 2014-12-24 株式会社日立情報通信エンジニアリング 共振形充電装置及びそれを用いた車両
US8698354B2 (en) 2010-11-05 2014-04-15 Schneider Electric It Corporation System and method for bidirectional DC-AC power conversion
DE102011016537A1 (de) 2011-04-08 2012-10-11 Audi Ag Ladeeinrichtung für eine Hochspannungsbatterie eines Kraftfahrzeugs, Ladeanordnung und Verfahren zum Betrieb einer Ladeanordnung
JP5617748B2 (ja) * 2011-04-08 2014-11-05 株式会社デンソー 充電装置
CN102157968A (zh) * 2011-04-15 2011-08-17 株洲南车时代电气股份有限公司 一种磁悬浮列车用大功率充电机
US9178354B2 (en) 2011-08-24 2015-11-03 3Dfs L.L.C. Multipurpose, universal converter with battery control and real-time power factor correction
US8891261B2 (en) 2012-01-31 2014-11-18 Delta Electronics, Inc. Three-phase three-level soft-switched PFC rectifiers
JP5575185B2 (ja) * 2012-06-15 2014-08-20 オムロンオートモーティブエレクトロニクス株式会社 車両用電源制御装置
US9203307B2 (en) 2012-10-31 2015-12-01 Cree, Inc. Power converter with bias voltage regulation circuit
WO2014112925A1 (en) * 2013-01-15 2014-07-24 E-Power Nordic Ab Battery charging system for electric vehicle
CN103434421B (zh) * 2013-07-29 2015-10-21 华北电力大学(保定) 一种基于新能源的混合双向互动式直流牵引供电***
US9356460B2 (en) 2013-08-05 2016-05-31 Texas Instruments Incorporated Method and apparatus of fast battery charging with universal high power input source
DE102013225493A1 (de) * 2013-08-12 2015-02-12 Hyundai Motor Company Umwandlervorrichtung und -verfahren eines Elektrofahrzeugs
US9180781B2 (en) 2013-11-13 2015-11-10 Honda Motor Co., Ltd. Electric automobile
US10491034B2 (en) * 2013-12-31 2019-11-26 Schneider Electric It Corporation System and methods of grid stabilization
KR101601549B1 (ko) * 2014-02-27 2016-03-08 단국대학교 산학협력단 배터리 충전 제어 방법 및 장치
WO2015181988A1 (ja) * 2014-05-30 2015-12-03 富士電機株式会社 充電器
KR101628133B1 (ko) * 2014-07-04 2016-06-08 현대자동차 주식회사 펄스폭 변조 공진 컨버터 및 이를 이용한 차량용 충전기
JP6161127B2 (ja) * 2014-12-03 2017-07-12 オムロンオートモーティブエレクトロニクス株式会社 電力変換装置
US9758047B2 (en) * 2015-02-13 2017-09-12 Mcmaster University Dual voltage charging system with an integrated active filter auxiliary power module

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1020973A2 (en) * 1999-01-18 2000-07-19 Hitachi, Ltd. A charge and discharge system for electric power storage equipment
TW480801B (en) * 1999-09-15 2002-03-21 Delta Electronics Inc Back-up power device and applications thereof
US20030042404A1 (en) * 2001-09-05 2003-03-06 The Boeing Company III-Nitride laser activated semiconductor switch and associated methods of fabrication and operation
EP2262087A1 (de) * 2009-06-10 2010-12-15 ABB Research Ltd. Wandlerschaltung mit einem Umrichter
US8228690B2 (en) * 2009-08-05 2012-07-24 Honda Motor Co., Ltd. DC-DC converter and power supplying system including same
US20120182769A1 (en) * 2011-01-13 2012-07-19 Fujitsu Limited Dc-dc converter, power supply unit and an information processing apparatus
TW201336219A (zh) * 2012-02-16 2013-09-01 Delta Electronics Shanghai Co 三相ac-dc變換電路和其變換方法與控制系統
JP2015208171A (ja) * 2014-04-23 2015-11-19 日立オートモティブシステムズ株式会社 電源装置
CN105356758A (zh) * 2015-12-03 2016-02-24 东北电力大学 一种高频隔离型dc-dc双级功率变换***结构

Also Published As

Publication number Publication date
CA2958694C (en) 2021-06-15
RU2017102579A3 (zh) 2020-03-11
CN107248774B (zh) 2019-08-06
EP3226377B1 (en) 2019-01-02
TW201735488A (zh) 2017-10-01
JP2017208997A (ja) 2017-11-24
KR20170113219A (ko) 2017-10-12
CN107248774A (zh) 2017-10-13
US10063077B2 (en) 2018-08-28
EP3226377A1 (en) 2017-10-04
BR102017006074B1 (pt) 2023-01-31
CA2958694A1 (en) 2017-09-28
JP6683645B2 (ja) 2020-04-22
KR102163105B1 (ko) 2020-10-08
BR102017006074A2 (pt) 2017-10-03
RU2721332C2 (ru) 2020-05-19
US20170279287A1 (en) 2017-09-28
RU2017102579A (ru) 2018-07-26

Similar Documents

Publication Publication Date Title
TWI706622B (zh) 用於以氮化鎵型電力裝置爲基礎的電池充電器的系統架構及其中所使用的直流-直流轉換器
CN110139775B (zh) 用于控制电动或混合车辆上车载的充电设备的方法
US11381159B2 (en) High power density power converter and uninterruptible power supply circuit and methods
WO2016130757A1 (en) Dc-dc converter
Chen et al. Design and implementation of forced air-cooled, 140khz, 20kw sic mosfet based vienna pfc
CA3000773A1 (en) A bidirectional power converter
Johnson et al. A dual-DSP controlled SiC MOSFET based 96%-efficiency 20kW EV on-board battery charger using LLC resonance technology
Abbasi et al. An SiC-based AC/DC CCM bridgeless onboard EV charger with coupled active voltage doubler rectifiers for 800-V battery systems
KR20190115364A (ko) 단상 및 3상 겸용 충전기
US20240204555A1 (en) Power converters with wide bandgap semiconductors
Zhang et al. A three-phase synergetically controlled buck-boost current DC-link EV charger
Zanatta et al. A two-stage isolated resonant DC-DC converter for wide voltage range operation
Narasimharaju et al. Optimized dual active bridge Bi-directional DC-DC converter for UPS application
Nitzsche et al. Comprehensive comparison of 99% efficient totem-pole PFC with fixed (PWM) or variable (TCM) switching frequency
Ammar Advances in resonant power conversion for offline converter applications
Li et al. A current fed two-inductor boost converter with lossless snubbing for photovoltaic module integrated converter applications
Costa et al. Analysis and simulation of the LLC resonant converter under different control methods
US20240136943A1 (en) Power converter
Adachi et al. Multi-Modular Isolated Three-Phase AC-DC Converter for Rapid Charging with Autonomous Distributed Control
Lee et al. New three-phase on-board battery charger without electrolytic capacitor for PHEV application
Belaguli et al. Characteristics of fixed-frequency hybrid resonant converter operating on the utility line
Mesic et al. Investigation of Bridgeless Power Factor Correction Topologies for 3 kW Operation
Mao et al. Topology Design and Analysis of Bidirectional Battery DC-DC Converter for DC Grid Voltage Control
Mahajan et al. Ultra-Wide Voltage Gain Hybrid Modulated CLLC Converter for Electric Vehicle
Power AND9813/D