TWI703404B - 一種用於對一光阻的輪廓進行建模之方法、電腦可讀取儲存媒介以及系統 - Google Patents

一種用於對一光阻的輪廓進行建模之方法、電腦可讀取儲存媒介以及系統 Download PDF

Info

Publication number
TWI703404B
TWI703404B TW104122424A TW104122424A TWI703404B TW I703404 B TWI703404 B TW I703404B TW 104122424 A TW104122424 A TW 104122424A TW 104122424 A TW104122424 A TW 104122424A TW I703404 B TWI703404 B TW I703404B
Authority
TW
Taiwan
Prior art keywords
photoresist
computer
concentration
inhibitor concentration
inhibitor
Prior art date
Application number
TW104122424A
Other languages
English (en)
Other versions
TW201614530A (en
Inventor
承恩 吳
海青 魏
喬林 張
華 宋
Original Assignee
美商新思科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商新思科技股份有限公司 filed Critical 美商新思科技股份有限公司
Publication of TW201614530A publication Critical patent/TW201614530A/zh
Application granted granted Critical
Publication of TWI703404B publication Critical patent/TWI703404B/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

一個電腦實作方法包括,使用電腦依據部署於光阻中的一抑制劑濃度的一梯度的大小,來對一光阻的輪廓進行建模。

Description

一種用於對一光阻的輪廓進行建模之方法、電腦可讀取儲 存媒介以及系統
本發明涉及到積體電路電腦輔助設計的一種方法和系統,特別是對一光阻的輪廓進行建模。
大部分現代的高科技產業,特別是電子產業,都建立在半導體裝置製造的先進技術上,特別是微型光刻技術。現代半導體晶片設計和光刻技術,越來越多地依賴於電腦模擬技術,統稱為電腦光刻技術,也就是運用一數學模型來進行程序的開發、分析、特徵化、細化和實作。
大多數的電腦光刻應用,都同時具有兩種相互矛盾的需求。一種需求是可靠和準確的數學模型,以適當地獲取相關的物理和/或化學程序,通常它們與實際物理結果有精確的數值一致性。另一種需求則要求同樣的數學模型,可依照有效的數值演算法在短時間內和有限的計算資源下,來操作大量的設計和/或程序資料。
依據本發明的一個實施例,一個電腦實作方法包括,使用電腦依據部署於光阻內一抑制劑濃度的一梯度的大小,來特徵化一光阻形貌。在一個實 施例中,電腦實作方法進一步包括,使用電腦依據抑制劑濃度,來特徵化光阻形貌。
在一個實施例中,抑制劑濃度包括一部署於光阻內一光酸濃度的一指數函數。在一個實施例中,電腦實作方法進一步包括,使用電腦依據抑制劑濃度提升至n次方,來特徵化光阻形貌,其中n為大於或等於5的一個實數。在一個實施例中,電腦實作方法進一步包括,應用已特徵化的光阻形貌來降低一印刷光阻樣式中的一個失真,該失真來自於光阻對一電磁波和/或粒子束的響應。
在一個實施例中,電腦實作方法進一步包括使用電腦來特徵化光阻。該特徵化被定義為光阻內所部署抑制劑的臨界值,該值等於至少一第一項和一第二項之和。其中第一項包括一抑制劑濃度,而第二項包括抑制劑濃度的梯度的一個大小。
在一個實施例中,第二項包括抑制劑濃度的梯度大小和抑制劑濃度提升至n次方後的相乘結果,其中n為大於或等於5的一個實數。在一個實施例中,第一項包括部署於光阻內一個光酸濃度的一指數函數。在一個實施例中,第二項包括一第三項和一第四項的和。在一個實施例中,第三項包括抑制劑濃度的梯度大小和抑制劑濃度提升至n次方後的相乘結果,其中n為大於或等於5的一個實數。
依據本發明的一個實施例,一個非暫時性電腦可讀取儲存媒介包括,可被電腦執行的指令,該指令使得電腦可依據部署於光阻內一抑制劑濃度的一梯度的大小,來特徵化一光阻形貌。在一個實施例中,該指令進一步使得電腦依據抑制劑濃度來特徵化光阻形貌。
在一個實施例中,該指令進一步使得電腦依據抑制劑濃度提升至n次方來特徵化光阻形貌,其中n為大於或等於5的一個實數。在一個實施例中,該指令進一步使得電腦應用已特徵化的光阻形貌來降低一印刷光阻樣式中的一個失真,該失真來自於光阻對一電磁波和/或粒子束的響應。
在一個實施例中,該指令進一步使得電腦來特徵化光阻。該特徵化被定義為光阻內所部署抑制劑的臨界值,該值等於至少一第一項和一第二項之和。其中第一項包括一抑制劑濃度,而第二項包括抑制劑濃度的梯度的一個大小。
依據本發明的一個實施例,一系統被設定用來根據部署於光阻內一抑制劑濃度的一梯度的大小,來特徵化一光阻形貌。在一個實施例中,該系統進一步根據抑制劑濃度被設定用來特徵化光阻形貌。
在一個實施例中,該系統進一步被設定用來依據抑制劑濃度提升至n次方來特徵化光阻形貌,其中n為大於或等於5的一個實數。在一個實施例中,該系統進一步被設定用來應用已特徵化的光阻形貌來降低一印刷光阻樣式中的一個失真,該失真來自於光阻對一電磁波和/或粒子束的響應。
在一個實施例中,該系統進一步被設定用來特徵化光阻。該特徵化被定義為光阻內所部署抑制劑的臨界值,該值等於至少一第一項和一第二項之和。其中第一項包括一抑制劑濃度,而第二項包括抑制劑濃度的梯度的一個大小。
更好理解本發明的實施例的優點和性質,可以參考以下詳細描述和附圖說明。
100:產品概念
110:EDA軟體
140:下線
150:製造
160:封裝與組合
170:晶片
112:系統設計
114:邏輯設計與功能驗證
116:合成與測試設計
118:連線清單Netlist驗證
120:設計規劃
122:物理實現
124:分析與萃取
126:物理驗證
128:解析度提升
130:光罩資料準備
202:辨識影響最後所顯影的光阻關鍵尺寸和拓樸輪廓結果的主要機制與參數
204:分析主要機制中的物理性與化學性,並辨識出信號的激勵-響應關係
206:使用數學分析技巧來取出簡潔具說明性的參數化的建模項目,藉以獲取影響已開發光阻結果的主要機制和參數之間的關係
208:將建模項目併入至一一般模型形式
410:顯影阻抗區域
420:快速顯影區域
430:慢速顯影區域
440:內顯影路徑
600:通訊網路
610:監視器或圖形使用者介面
620:電腦
630:輸出裝置
640:輸入裝置
650:通訊介面
660:處理器
670:隨機存取記憶體
680:磁碟機或非暫時性記憶體
690:匯流排次系統
圖1 說明可能使用本發明實施例的積體電路,在設計和製造上的簡化範例步驟。
圖2 說明推導一個一般化模型形式的簡化流程圖,該模型形式包括依據本發明一個實施例的物理合理化模型項次。
圖3 說明依據本發明一個實施例,做為模型信號場的抑制劑濃度M(x,y)、具有顯影偏差量建模項目的整體信號,以及顯影CD偏差量和反置信號偏差量之間的關係。
圖4 說明使用本發明實施例的顯影光阻形貌的橫切面。
圖5 說明根據本發明的一個實施例,一個利用電腦根據部署在光阻內抑制劑濃度的梯度大小,來特徵化一光阻形貌的流程圖。
圖6 為本發明實施例中一個電腦系統的方塊圖。
本發明的實施例在強調使用電腦模擬光刻光阻化學性時,包括程序中曝光、抵制烘焙和顯影的步驟中,對電腦模型和計算方面有嚴格的要求。因此需要一個確切的數學模型,能正確有效地來表示光阻複雜的非線性響應。模型的項次數目應該要最少,以便能達到數值的效率,但從模型確切性而言卻帶來了挑戰,因為一個確切的模型應該要有足夠的項次以及項次的變化,以便能完整獲取整個物理上和化學上的參數,以及涉及複雜程序的機制。以下所述為光阻確切模型的合理地物理化模型化項次的一個方法和多個實施例,其中合理的模型化項次最好是由物理的考量和數學分析所推導而來的,而且可以結合可 調整和具物理意義的參數透過量測資料來進行調校。物理合理化方法的優點,在於最小化模型化項次的同時,可以改善模型的準確性和數值上的效率。不論是”物理地合理化”或是”物理合理化”,都代表著推導確切模型中,具有可調整和物理意義參數的模型化項次的方法和步驟,也就是基於物理考量和數學分析。
在電腦化光刻領域中,對於光阻和程序的行為和響應進行建模或模擬,是件重要但困難的工作,與光阻薄膜上光學影像成形的步驟相比,在物理上有足夠的瞭解,並且可以使用一組嚴謹的線性轉換方程式提供確實並有效的解答或是概算。光阻建模的困難點來自於,化學反應與融合的高度非線性化以及分散的動態,以及合成時來自於光阻開發的非線性和非區域性的響應。
圖1說明使用本發明實施例,於設計和製造一積體電路時簡化的範例步驟101。該程序始於一產品想法100,並使用電子設計自動化(EDA)軟體110來實現。最後設計出的晶片170,可透過製造150的執行以及組合封裝步驟160而被產生出來。以下所描述使用到EDA軟體110的一個範例設計流程,僅用於說明目的。例如,在一個真正的積體電路設計,會需要一個設計者執行與下述序列,順序不盡相同順序的一序列工作。
在系統設計112中,一個設計者會描述要被實現的功能性。該設計者也可執行假設的規劃,來細化功能性,並檢查成本。此外,硬體-軟體架構的分割會發生在此一步驟。在設計與功能驗證114,會產生一HDL設計並檢查功能性是否正確。
在合成與設計116中,HDL碼被轉換成一個網表,並可為目標技術來最佳化。此外,測試可被設計和實現,用來檢查已完成的晶片。在網表驗證 118中,網表可用來檢查與時間限制符合狀況,以及與HDL碼的對應狀況。在設計規劃120中,可建構晶片的完整平面圖,並進行時間和上層繞線的分析。接著,在物理實作122中,會執行佈局和佈線的工作。
在分析與萃取124中,電路的功能性可被驗證至電晶體層級。在物理驗證126中,會檢查設計以修正任何功能上、製造上、電子上或光刻的問題。在解析度強化128中,在布局上會進行幾何操作來改善設計的製造性。最後,在光罩資料準備130中,設計可被下線140產生光罩來產生最終的晶片。本發明的實施例可與其他EDA工具結合使用,用於物理驗證126和/或光罩資料準備130的步驟中。例如,實施例中關於光阻處理的模型,在當電腦被用來模擬光阻經過曝光、後曝光烘焙和開發的半導體處理流程時,可以和光罩布局資料一起使用來獲取最後的樣式。在一個實施例中,該光阻電腦模型的結果,可能包括一特徵化的光阻形貌,可用來降低一印刷光阻樣式中的一個失真,該失真來自於光阻對一電磁波和/或粒子束的響應。在一個實施例中,失真的降低可藉由布局樣式的調整而獲得。在另一個實施例中,失真的降低可藉由改變光阻程序的特性而獲得。
本發明的實施例說明使用具有物理合理化項次的確切模型,來表示光阻行為和響應的一個方法,該方法經得起使用量測資料進行快速收殮的參數調整,並且極適合在一大型半導體的整個表面區域上進行快速的模擬。在一個實施例中,該方法的第一步是確認出主要的機制和參數,它們對於已開發光阻關鍵尺寸和布局形貌最後結果的變化,會有一定的影響和貢獻。第二步則是分析每個主要機制的物理和化學特性,確認出信號的激勵-效應關係和其主導的數學方程式。接著,第三步則是使用一些數學分析技巧包括空間化、縮放和漸 近分析、萃取出確切、具說明性和參數化的建模項目,藉以獲取影響已顯影光阻結果主要機制和參數之間的關係。最後,該方法的第四步驟則將建模項目合併為一般模型形式。
如上述第四步驟所描述,獲得的一般模型形式會構成一確切模型,該模型包括合理化物理建模項目。當然,該確切模型與其他已知大多數的經驗模型形式相比之下,其本身會變得非常物理化。根據上述四個步驟所得到以物理為基礎的模型形式的立即優點,便是在參數或條件不確定性或變動的狀況下,有較佳的模型穩定性,此外,與大部分的經驗模型形式相比,當程序條件和參數變化超出原本調校範圍時,它也具有較強的預測能力。另一個使用物理合理化建模項目的顯著優勢,在於該模型可提供最確切和簡潔的模型形式,因此可幫助最小化建模項目的數目,並且促進在模型調校和模型模擬時,相較於其他經驗模型可以取得較有效的數值解。
傳統在大範圍半導體晶片的電腦光刻模擬會使用確切的模型形式,該模型會計算一個二維或三維的信號場S,該信號場為光罩布局樣式、光學物件O(x,y)和其他不同的程序參數統稱為P的函數,這些P參數來自於多個程序步驟的總括效應。一個臨界常數值S th 被用來萃取出預測的(或模擬的)外形,或已開發光阻樣式或拓樸的CD。依據一個確切模型形式S[O(x,y),P]的一個電腦光刻確切模型,可以有效地解出以下的方程式:S th =S[O(x,y),P], (1)以便能產生所需的外形或CD預測。
在一個確切模型形式中所涵蓋的多個程序步驟,通常包括光學成像和光阻化學。早期的確切模型,臨界值操作係用來表示光阻化學的整體性,因此信號場只是單純的光學強度模型,該模型來自於光學物件的二次式:I(x,y)=〈O(x,y)|TCC(P)|O(x,y)〉, (2)其中P相關的TCC為相關於傳輸切面係數的一個線性運算子。有時候O(x,y)的一個線性函式,也就是O(x,y)和核心函數K(x,y)的捲旋積分,會被加至信號場中,以獲取特定樣式的密度相關效應,像是光學光暈。光學光暈可能來自於光罩上不規則表面、薄皮上的灰塵、以及光學鏡片中玻璃材料固有的微觀密度波動,所產生的隨機光散射。此外,光學密度通常會被一個適當的擴散核心函數G(x,y)模糊化,該函數可以量化地表示在已處理光阻中、紫外線激光源帶寬、以及/或階段震動引起的模糊下的光酸擴散效應。該模型方程式會變成:I th =G(x,y)*I(x,y)+K(x,y)*O(x,y), (3)其中I(x,y)定義於前述的方程式(2)。
隨著光刻技術的進步,光阻CD和模擬錯誤容錯度可以降低很多,因此光阻響應的模型就必須更正確以及更詳細。特別是,僅僅採用光學密度臨界值來預測光阻的外形和CD可能已經不再適用,像是方程式(3)的狀況。因此,有必要修正已預測的光阻形貌/外形/CD、或是信號場,來增強光學密度臨界值預測的基準結果,以便讓模擬的和實際的光阻形貌結果在晶圓上有較佳的匹配。光學密度臨界值預測,對於非線性和高度變化的光阻開發響應有著很大的用處,即使開發響應不是一個理想的sigmoid,也就是嚴格的臨界值。因此,過去已經看過許多”變量臨界值”確切模型的一般形式為:S th =G(x,y)*I(x,y)+K(x,y)*O(x,y)+△S[I(x,y)], (4) 其中△S為光學強度I(x,y)的一個函數,也表示一組模型項次分別關聯於斜率的絕對值、二次微分(例如:Laplacian)、以及信號場I(x,y)的其他推導結果。該△S[I(x,y)]被稱為”變量臨界值”,而方程式(4)則稱為”變量臨界值”模型形式,因為當△S[I(x,y)]被移至方程式(4)的左側時,會依據信號分布在空間周邊狀況,有效地調整在每個特定位置(x,y)的臨界值。
在後面已知的技藝中,該”變量臨界值”確切模型會緩慢地演化,並使用到已預先決定好△S[I(x,y)]特定的數學經驗公式,也就是一個已預先決定好的模型形式,其中一個已知的典型配方,牽涉到使用一組正交基底函數的多個事先決定好的數學核心,並將每個事先決定好的數學核心與信號I(x,y)進行捲旋積分,最終形成一個積分結果和可調變係數的線性組合來表示”變量臨界值”△S[I(x,y)]。在某種意義上,”與事先決定好的數學核心進行捲旋積分”的方式,會一般化先前直接對信號場取其微分的方法,因為微分可以透過適當核心的捲旋積分而得到近似的結果。
上述提到已知確切模型的”變量臨界值”在本質上還是經驗式,其中事先決定的數學核心的引入和選取,並非基於特定的物理/化學步驟、機制或參數,而是具有非常大的任意性並且大多沒有數學上或數值上的便利性,在廣義上,這僅僅反映已開發光阻外形或CD的經驗觀測,並非完全由現場的光學強度所決定,但是與空間周邊的信號分布有相當的相關性。這種經驗式的”變量臨界值”模型,在過去多個世代的半導體製造技術存在了一段的時間。但是該模型的經驗式本質嚴重地限制模型在不確定性和條件波動下的穩定性,並且在模型調校後擴展其程序條件和參數會削減模型在預測上的能力。經驗式模型通常需要較多的量測資料來進行調校,調校的過程會花較長的時間收殮,甚至有時 還不會收殮,因為模型的最佳化程序會在一個相當高維度的參數空間中搜尋最佳解,但是這樣的空間充滿著許多”區域最佳陷阱”或是不需要的解。
根本上來說,數學上的完整性對於經驗式模型是個重要的議題。對於線性系統來說,在理論上具有數學完整性的保證,因為任何線性系統可以透過信號捲旋積分的線性組合來近似化到一定準確程度的事先決定模型,只要捲旋積分的核心來自於一組完整的正交基底函數,以及模型形式內的線性組合包括足夠數量的捲旋積分核心。不幸的是,我們都熟知光阻的響應是散亂的並且是高度的非線性,因此無法使用線性組合和臨界值法來得到近似結果。U作為補救措施,低階乘方和低階捲旋積分的叉積結果,會被加至經驗式的”變量臨界值”模型。然而,在經驗模型形式中的低階非線性式,並無法真實呈現出光阻響應的散亂性和高度的非線性。另一方面,當乘方和捲旋積分叉積的階度上升時,經驗式模型會受到模型複雜度成指數成長的痛苦,單從模型項次的數目來說,很快地會使該經驗式模型進行電腦模擬時讓計算變的困難。
為了克服經驗式模型的限制和不足,本發明的一個實施例提供一個一般的方法和程序,來建構並使用包括物理合理化模型項次的以物理為基礎的模型形式。該模型形式可以是物理合理化模型形式組合的一個一般化數學函數,但是每個模型項次可能來自於與實際光阻相關的多個特定的物理/化學步驟、機制或參數的考量和分析。圖2說明推導一個一般化模型形式的簡化流程圖,該模型形式包括依據本發明一個實施例的物理合理化模型項次。該流程圖包括四個一般化的步驟。在第一個步驟中,影響最後所顯影的光阻關鍵尺寸(CD)和拓樸形貌結果的主要機制和參數會被確認202。
在第二個步驟中,主要機制中的物理和化學性會被分析出來204,並且會確認出信號的激勵-響應關係,以及支配的數學方程式。在第三個步驟中,一些數學分析技巧包括空間化、縮放和漸近分析,被用來萃取出確切、具說明性和參數化的建模項目,藉以獲取影響已開發光阻結果主要機制和參數之間的關係。在第四個步驟中,建模項目會被合併至一般模型形式內。在一個推薦的實施例中,一般模型形式為建模項目的一個線性組合。在另一個推薦的實施例中,一般模型形式則包括建模項目的乘積。
由上述四個步驟程序可得到一個一般化以物理為基礎的確切模型,該模型包括合理化的物理建模項目。相對於傳統的經驗模型,以物理為基礎的模型可在建模過程中,參數和條件波動或不確定的情況下達到較佳的穩定性,而且當程序條件和參數變化超出原本調校範圍時,它也具有較強的預測能力。此外,使用物理合理化建模項目有個顯著的優勢,就是當該模型在維持其調適和預測能力,以合適地特徵化光阻真正的物理和/或化學行為時,其建模項目的數目可以最小化,因為每個建模項目均相關於一個真正的基本物理和/或化學步驟或機制,而且所有主要的基本物理和/或化學步驟或機制在模型形式中都有一個相關和代表的建模項目。具有物理合理化建模項目的以物理為基礎確切模型,其主要優點為確切性和簡約性,這代表著該模型在解決模型調校和模型模擬的計算問題上,比起已知經驗式的確切模型具有較高的數值效率。
在上述的四個步驟過程中,正確地確認出影響已顯影光阻結果的主要機制和參數是件重要的事,此外應用適當的數學分析技巧來萃取出確切、具說明性和參數化的建模項目也很重要。在許多基本的物理和/或化學步驟和機制中,信號的激勵-響應關係在數學上會有簡單和熟知的乘方定標、指數法則、 Gaussian捲旋積分、原始的加法和乘法。當應用適當的數學分析技巧,像是空間化、縮放和漸近分析時,萃取出的建模項目也會是數學上的簡單形式,像是乘方、指數、Gaussian捲旋積分、原始的加法和乘法,因此可激發出直觀和有吸引力的解釋並且方便高效的計算。
在一個推薦的實施例中,以下稱為”抑制劑”的溶解抑制劑濃度M(x,y),或是控制光阻材料在顯影過程中溶解率的其他物理或化學成份的濃度或密度,在曝光和後曝光烘烤步驟之後會被佈置於光阻之中,並被選為模型信號場,且該模型形式為:M th =M(x,y)+△M(x,y), (5)其中M th 為一臨界值常數,可應用至模型信號場來萃取出已顯影光阻樣式或拓樸的預測或模擬形貌或CD,也就是一個臨界值操作,此外△M(x,y)則表示一個建模項目的集合稱之為”變量基底”。方程式(5)選擇抑制劑密度M(x,y)做為模型信號場,因為曝光和後曝光烘烤步驟,會透過整場信號處理法則被嚴密地處理或是近似嚴密的處理。因此在一個實施例中,電腦實作方法包括,使用電腦依據部署於光阻內抑制劑濃度的梯度大小,來特徵化一光阻形貌502。光阻進一步包括處理電磁輻射的光酸產生劑和淬滅劑,該電磁幅射像是紫外光或電子光束。曝光步驟可視為光酸產生劑的指數化減少,而光酸的產生則進一步說明如下。基於光酸和淬滅劑的反應-擴散程序,可被一個”碎步”法則很好地近似,其中每個”碎步”不是”僅有擴散而無非線性”就是”僅有非線性而無擴散”,兩者均適合於高效的電腦計算。
方程式(5)中除了M(x,y)之外還有光阻顯影的步驟,通常缺少嚴格的數值演算法,並且必須以一個物理合理化的建模項目來表示作為一個”可變偏 壓”,通常稱為顯影偏壓。基於光阻顯影的非理想臨界值反應,或許可假設真正顯影的光阻CD或形貌,會偏離具有偏差量△CD(x,y)抑制劑濃度M(x,y)直接臨界值的預測,該偏差量稱為顯影CD偏量,取決於抑制劑在(x,y)空間週遭的分佈狀況。由於模型形式植基於抑制劑濃度M(x,y)的一個方程式,有必要將顯影CD偏量△CD(x,y),反置為變量信號偏量△M(x,y)的一個建模項目。建模項目的特定數學形式為如下的物理合理化形式。依據本發明的一個實施例,圖3說明做為模型信號場的抑制劑濃度M(x,y)、具有顯影偏差量建模項目的整體信號,以及位於常數臨界值M=M th 中顯影CD偏差量△CD(x,y),和反置信號偏差量之間的關係。首先,如圖3所顯示,被關注量的小變化,像是抑制劑濃度,均與其差異有關,使得:△M(x,y)=|▽M(x,y)|×△CD(x,y), (6)換言之就是抑制劑模型需要變化,以獲得光阻程序模型的信號。圖3進一步說明整個信號為TS=M(x,y)+△M(x,y)。
其次,基於光阻顯影速率R[M(x,y)]是個高度非線性的抑制劑濃度M(x,y)函數,以及最大顯影速率R max 和最小顯影速率R min 之間的對比,即使是負向顯影(NTD)光阻,可由實驗觀察到快速發展出的光阻顯影區域,會很快速地在一至幾秒之間被顯影劑溶解,當顯影劑佔有大量的顯影時間時,剩下的幾十秒,只在光阻的”光阻顯影”區域中前進了一點點,產生非常小的顯影CD偏差量△CD(x,y),可近似為:△CD(x,y)=R[M(x,y)]×△T, (7)其中為顯影時間,因此本質幾乎相同並且與光刻樣式無關。圖4說明使用本發明實施例顯影光阻形貌的橫切面,其中深灰色表示光阻的”顯影阻抗”區域410。 白色的帶區420表示光阻的快速顯影區域,或是換言之為純粹抑制劑臨界值模型或是純粹光學模型的CD。非常窄的淺灰色層430,代表慢速顯影並且用掉大部分的顯影時間,箭頭則表示在430層內顯影路徑440的部分。
最後,根據Mack顯影模型,顯影速率可表達為:
Figure 104122424-A0305-02-0015-1
用於正向顯影(PTD)光阻,或表達為:
Figure 104122424-A0305-02-0015-2
用於負向顯影(NTD)光阻,其中a為一個相關於臨界值M th 的常數,n為顯影反應的階次參數。對一個負向顯影(NTD)光阻,特別是a>>1時,顯影速率可漸近為:
Figure 104122424-A0305-02-0015-3
其值會隨M的n次方來增減。結合所有漸近化、空間化、和縮放分析,一個變量偏差值的物理合理化建模項目,可用來表示顯影偏差的效應:△M(x,y)=C×|▽M(x,y)|×[M(x,y)] n , (11)其中Cn為調校參數。物理的合理化也可知道C相關於R max T的乘積,n則相關於顯影反應的程度。因此在一個實施例中,電腦實作方法包括,使用電腦依據抑制劑濃度提升至n次方,來特徵化光阻形貌,其中n為一個大於或等於10的實數。
實驗量測和模型實作都顯示顯影反應程度n通常是個大數目,可能會在5到30之間。因此,物理合理化建模項目的次方數,可從高度非線性(n
Figure 104122424-A0305-02-0015-4
5)和散亂性(M(x,y)包括光酸和猝滅劑溶解的效應)響應得到些瞭解。使用經驗 式模型很難讓建模項目具有如此高階的非線性和散亂性。圖5說明根據本發明的一個實施例,一個利用電腦根據部署在光阻內抑制劑濃度的梯度大小,來特徵化一光阻形貌的流程圖502,如同上述方程式(5)、(6)、和(11)所表示。
在另一個實施例中,抑制劑密度M(x,y)在方程式(5)本身會被物理合理化為確切建模項目,方式為透過物理和數學分析曝光和PEB的步驟。在某個分析中,曝光步驟可近似為光學密度I(x,y)至光酸濃度的線性轉換,H(x,y)=C Dill I(x,y),其中C Dill 為“Dill C”參數。而FEB步驟可近似為定量猝滅劑濃度B 0的瞬時中和度,加上”被刪減”光酸和猝滅劑濃度分別與Gaussian核心G H (x,y)和G B (x,y)做捲旋積分,用來表示溶解的效應,最後再加上另一個溶解的光酸與猝滅劑瞬時中和的結果。因此,最後的光酸濃度為:H(x,y)=max{G H (x,y)*max[C Dill I(x,y)-B 0 ,0]-G B (x,y)*max[B 0-C Dill I(x,y),0],0}. (12)
化學放大抑制劑去塊效應的不斷持續過程,會被合理化為一個單一的指數相關如下:M(x,y)=exp[-C CAR H(x,y)]=exp[-C CAR ×max{G H (x,y)*max[C Dill I(x,y)-B 0 ,0]-G B (x,y)*max[B 0-C Dill I(x,y),0],0}], (13)其中C CAR 為正比於化學放大抑制劑去塊效應反應速率的一個參數。另一方面,“Dill C”曝光步驟會被嚴格處理以獲得一個初始的光酸濃度:H 0(x,y)=[PAG]{1-exp[-C Dill I(x,y)]}, (14)其中[PAG]為光酸產生劑的濃度。以酸為基礎的溶解中和和化學放大過程,在上面會被視為相同的物理合理化,故可得到:H(x,y)=max{G H (x,y)*max[H 0(x,y)-B 0 ,0]-G B (x,y)*max[B 0-H 0(x,y),0],0}, (15) 和M(x,y)=exp[-C CAR H(x,y)]=exp[-C CAR ×max{G H (x,y)*max[H 0(x,y)-B 0 ,0]-G B (x,y)*max[B 0-H 0(x,y),0],0}]. (16)
要注意的是M(x,y)在方程式(13)或(16)中的物理合理化建模項目,是高度的非線性和散亂的,也就是來自於高度的溶解,因此,如果沒有物理合理化的模型形式,便很難在傳統的經驗模型中出現。另一方面,物理合理化會使方程式(13)或(16)中的建模項目M(x,y),和少數的可調整參數變的相當確切,而且適合於高效的計算機數值演算法。
在一個實施例中,部署在光阻中可光分解猝滅劑(PDQ)的效應的實驗結果可被確認,其相關物理合理化的建模項目可被推導出來如下。當可光分解猝滅劑吸收光能量,並且開始分解時,光分解產物被假設為遲鈍的,並且不會影響光酸和其相關的化學反應。特別的是,光分解猝滅劑會失去中和光酸的能力。因此,在明亮曝光的區域中會產生極高的光酸濃度,PDQ也會大量的分解和消失,所以只有少量的猝滅劑存在來中和光酸。相反地,在較小曝光的區域中會產生較低的光酸濃度,PDQ不會大量的分解和消失,所以會有較多的猝滅劑來有效地中和少數光酸。其淨效應為化學潛影對比度的提升。
物理合理化建模項目有多個選項,來表示這種非線性的對比增強效應。個選擇是使用一個適當的臨界值,依據Dill的公式來裁剪光酸潛影影像,並且忽略掉在臨界值之下的光酸區域,在物理合理化之下低濃度光酸會完全被一個高初始濃度的猝滅劑所覆蓋。只有在光酸濃度高於臨界值的區域,光酸才能克服耗損的猝滅劑濃度,並且在擴散至空間時,主動地催化抑制劑的去塊作 用。另一個選擇就是單純地調正光酸潛影影像,或是將光酸濃度的次方提升至大於1的狀況。
上述每個選擇中的主要物理合理化,代表著非線性對比增強效應,它結合了針對光學強度中光酸濃度的非線性縮放,以便於表達和近似對比的非線性增強,這是由於光分解猝滅劑與光酸劑生成的規範過程所結合的結果。另一種選擇是將光分解猝滅劑以嚴格的“Dill C”方式來處理,因此猝滅劑濃度在方程式(12)或(15)中不再是個常數,猝滅劑濃度會變成一個光學強度相關的空間分佈:B 0(x,y)=[BASE]exp[-C Dill,Base I(x,y)], (17)其中[BASE]為曝光前初始的猝滅劑基底濃度,為一個表示在曝光狀況下猝滅劑基底的光吸收和光分解速率的“Dill C”參數。因此,方程式(15)和(16)可被擴充並且被物理合理化為:H(x,y)=max{G H (x,y)*max[H 0(x,y)-B 0(x,y),0]-G B (x,y)*max[B 0(x,y)-H 0(x,y),0],0}, (18)
M(x,y)=exp[-C CAR H(x,y)]=exp[-C CAR ×max{G H (x,y)*max[H 0(x,y)-B 0(x,y),0]-G B (x,y)*max[B 0(x,y)-H 0(x,y),0],0}], (19)其中B 0(x,y)定義於方程式(17)。
方程式(17)、(18)和(19)的節組合,提供一個確切和有效地可計算的建模項目,並可做為模型信號進入方程式(5),也就是物理合理化地代表在曝光與PEB步驟之後的抑制劑濃度。因此在一個實施例中,抑制劑濃度包括部署於光阻內光酸濃度的一個自然指數函數。
在一個實施例中,方程式(12)或(15)的光酸濃度H(x,y)結合了另一個建模項目,該項目用來物理合理化地表示”化學閃光”的效應,指的是光酸由高濃度區域轉移到相當低的濃度區域,透過一些複雜的程序,像是,從光阻薄膜產生的光酸氣體流會進入PEB烘烤室內、在PEB烘烤室內產生氣體擴散,以及接著重新沉積然後再被吸收至光阻薄膜之內。因為物理合理化的緣故,氣體擴散導致一較大的擴散長度,因此,一個建模項目△H(x,y)=G ChemicalFlare (x,y)*max[C Dill I(x,y)-B 0(x,y),0] (20)或△H(x,y)=G ChemicalFlare (x,y)*max[H 0(x,y)-B 0(x,y),0] (21)可能會附加地與方程式(12)或(15)的H(x,y)結合在一起,其中Gaussian捲旋核心G ChemicalFlare (x,y)比G H (x,y)具有較大的擴散長度,反映出”化學閃光”的氣體擴散現象。類似地,猝滅劑基底也有”化學閃光”的效應,指的是具有較長範圍擴散的猝滅劑基底進行了一些步驟,像是,從光阻薄膜產生的氣體流、氣體擴散,以及重新沉積至猝滅劑基底的光阻薄膜之內。這樣猝滅劑基底的”化學閃光”的效應,也類似地被物理合理化為一個建模項目:△B(x,y)=G' ChemicalFlare (x,y)*max[B 0(x,y)-C Dill I(x,y),0], (22)或△B(x,y)=G' ChemicalFlare (x,y)*max[B 0(x,y)-H 0(x,y),0], (23)其中Gaussian捲旋核心G' ChemicalFlare (x,y)的擴散長度極大於G B (x,y),反映出猝滅劑基底的”化學閃光”的氣體擴散現象。物理合理化地建模項目△H(x,y)和△B(x,y),會以附加方式結合至方程式(19)的H(x,y)中,故可獲得抑制劑濃度的一個物理合理化建模項目為: M(x,y)=exp{-C CAR ×[H(x,y)+△H(x,y)-△B(x,y)]}, (24)其中H(x,y)、△H(x,y)和△B(x,y)分別定義於方程式(18)、(20)或(21)和(22)或(23)之中。方程式(24)中M(x,y)的物理合理化的建模項目,反過來可代入方程式(5)以物理為基礎的確切模型形式中。
在另一個實施例中,可確認出時變的效應,以及光阻薄膜下面接近晶圓基板部分與光圈大小相關的顯影速率。顯影速率可以根據質量傳遞限制來分析,也就是顯影劑從整個顯影溶液到光阻薄膜下部,透過光阻中已開啟光圈的有限質量轉移速率,以及對於已溶解的光阻材料從光圈流出,再進入顯影溶液的的轉移速率。
從物理上的角度來看,可以合理地認為質量傳輸限制的顯影速率,應該是整體顯影速率R(M)和質量傳輸的光圈尺寸限制速率R'[A(x,y)],的乘積,其中A(x,y)為光圈密度函數,代表著在光阻薄膜下部某一點(x,y)所看出去的有效光圈尺寸。實際上,光圈密度函數的獲得,可藉由光阻薄膜上部的可能光阻樣式或是模擬的顯影光阻形貌,與一適當權重核心進行捲旋積分而得之,該權重核心代表一個在光阻薄膜上部中,相對於光阻薄膜下部中某點(x,y)的光阻光圈開啟的權重區域。
另一方面,光圈密度函數的計算,可透過對光阻薄膜上部(也就是從光阻薄膜下部某點(x,y)的可見部分)的可能光阻樣式或模擬顯影光阻形貌的區域,進行加權積分的運算,換言之,加權積分僅針對與某點(x,y)有”視距內”連結的光阻開啟位置,來聚積加權區域。因此,光阻開啟中的任何位置都能直線指向某點(x,y),而被未顯影光阻擋住的部分則不列入加權積分的計算。
”視距內”區域加權積分的物理合理化形式,即為產生並影響光阻顯影程序的質量傳輸程序,被化學物質的”視距內”傳輸所主導。當光圈限制效應不嚴重時,可以合理地將質量傳輸速率展開為低階多項式:R'[A(x,y)]=R' 0-R' 1 A(x,y)+R' 2[A(x,y)]2+… (25)省略掉方程式(25)中的二次與高次項次,質量傳輸限制的顯影速率可讀為:R'[A(x,y)]R[M(x,y)]=R' 0 R[M(x,y)]-R' 1 A(x,y)R[M(x,y)]. (26)
方程式(26)右邊的第一項與方程式(11)的變量偏差的物理合理化建模項目恰巧相同,而方程式(26)右邊的第二項,當與方程式(6)、(7)和(10)結合時,產生另一個變量偏差的物理合理化建模項目:△M 2(x,y)=-C×A(x,y)×|▽M(x,y)|×[M(x,y)] n , (27)代表著光阻光圈引起的顯影偏差,並可進入方程式(5)做為變量偏差集合△M(x,y)的附加項目。
圖6為本發明實施例中一個電腦系統的方塊圖。圖6僅是本發明一個實施例的說明,它並不會限制請求項中所述發明的範圍。本領域的普通技術人員可認知到其他的變化、修改、和替換。
在一個實施例中,電腦系統600通常包括一個監視器610、一個電腦620、使用者輸出裝置630、使用者輸入裝置640、通訊介面650,和其他類似部分。
如圖6所顯示,電腦620包括一處理器660,透過匯流排次系統690與多個週邊裝置相互通訊。這些週邊裝置包括使用者輸出裝置630、使用者輸入裝置640、通訊介面650,和一個儲存系統,像是隨機存取記憶體(RAM)670和磁碟機680。
使用者輸入裝置640,包括所有可能形式的裝置和機制,用來輸入資訊至電腦系統620之中。這些裝置包括鍵盤、鍵板、與顯示器結合的觸控螢幕、音訊輸入裝置像是語音辨識系統、麥克風、和其他型式的輸入裝置。在不同的實施例中,使用者輸入裝置630通常為電腦滑鼠、軌跡球、軌跡板、搖桿、無線遙控、繪圖板、語音命令系統、眼球追蹤系統,和其他類似裝置。使用者輸入裝置630通常允許使用者,透過命令像是點選或是按鈕,來選取出現在監視器610上的物件、圖像、文字和其他類似物。
使用者輸出裝置630包括所有可能形式的裝置和機制,用來從電腦系統620之中輸出資訊。這些裝置包括顯示器(例如:監視器610)、非可視化顯示器像是音訊輸出裝置等。
通訊介面650對其他通訊網路和裝置提供一個介面。通訊介面650可做為與其他系統傳送與接收資料的介面。通訊介面650的實施例通常包括Ethernet卡、調變解調器(電話、衛星、有線電視、ISDN)、(非同步)數位用戶線路(DSL)單元、FireWire介面、USB介面和其他類似裝置。例如,通訊介面650可能會與電腦網路、或FireWire匯流排,或其他類似系統一起運作。在其他實施例中,通訊介面650會具體地整合至電腦620的主機板中,也可能是個軟體程式,像是軟式DSL,或其他類似作法。
在不同的實施例中,電腦系統600包括可在網路進行通訊的軟體,像是HTTP、TCP/IP、RTP/RTSP等通訊協議,和其他類似協議。在本發明其他不同的實施例中,也會用到其他通訊軟體和傳輸協議,例如:IPX、UDP或其他類似協議。
在某些實施例中,電腦620包括一個或多個Intel的Xeon微處理器,做為處理器660。再者,有個實施例中,電腦620包括UNIX作業系統。
RAM 670和磁碟機680屬於實體用來儲存資料的媒介,像是本發明實施例的資料,包括可執行程式碼、人類可讀程式碼或類似的資料。其他形式的實質媒介包括磁碟片、移動式硬碟、光學儲存媒介像是CD-ROM、DVD和條碼,半導體記憶體像是閃存記憶體、唯讀記憶體(ROM)、電池支持的易失性存儲器、網路儲存裝置,和其他類似裝置。RAM 670和磁碟機680可被設定儲存基本的程序和資料架構,以提供本發明的功能性。
提供本發明功能性的軟體程式模組和指令,可被儲存於RAM 670和磁碟機680之中。這些軟體模組可被處理器660所執行。RAM 670和磁碟機680也可提供一個儲存場所用來儲存本發明的資料。
RAM 670和磁碟機680包括許多種記憶體,包括在程式執行時儲存資料和指令的主要隨機存取記憶體(RAM),以及儲存固定非暫時性指令的唯讀記憶體(ROM)。RAM 670和磁碟機680會包括一個檔案儲存次系統,用來提供程序和資料檔案的持久性儲存。RAM 670和磁碟機680也會包括移動式儲存系統,像是可移動的閃存記憶體。
匯流排次系統690提供一個機制,讓不同的組件和電腦620次系統彼此之間進行溝通。雖然匯流排次系統690的概要圖顯示為一個單一匯流排,不同實施例的匯流排次系統可能會使用到多個匯流排。
圖6為一個可代表本發明實施例的電腦系統。對本領域技術人員而言,許多其它硬件和軟件配置均適用於本發明,是顯而易見的。例如,電腦可以是桌上型、攜帶型、機架型或是平板式的配置。除此之外,電腦也可以 是一系列的網路電腦。此外,也可能使用其他種微處理器,像是PentiumTM或ItaniumTM微處理器,來自於Advanced Micro Devices,Inc的OpteronTM or AthlonXPTM微處理器,和其他類似的微處理器。另外,其他形式的作業系統也會被採用,像是Windows®、WindowsXP®、WindowsNT®或其他來自Microsoft Corporation的類似系統,來自Sun Microsystems的Solaris,LINUX,UNIX和類似的系統。在其他的實施例中,上述技巧也可能實作在一個晶片上或一個輔助的處理板上。
本發明的不同實施例,可被實作在軟體或硬體或兩者組合的邏輯形式中。該邏輯可以一組指令的方式被儲存在一個電腦可讀或是機器可讀的非暫時性儲存媒介中,該組指令會指示電腦系統的處理器,執行本發明實施例所揭露的步驟。該邏輯可以是電腦程式產品的一部分,指示資訊處理裝置執行本發明實施例所揭露的步驟。根據此處所提供的揭露和教示,熟知本技術的一般人員可以瞭解到應用其他方式或方法來實作本發明。
此處所描述的資料結構和程式碼,有一部分或全部會儲存在一個電腦可讀的儲存媒介,和/或一個硬體模組,和/或硬體裝置。一個電腦可讀的儲存媒介包括,但不限於,暫時性記憶體、非暫時性記憶體、磁性和光學儲存裝置,像是磁碟機、磁帶、CD、DVD,或其他媒介,不論是已知或未來會發展出來,都足以儲存程式碼和/或資料。此處所描述的硬體模組或裝置,包括但不限於,特殊應用積體電路(ASICs)、現場可程式閘陣列(FPGA)、專屬或共享的處理器、以及其他目前已知或未來會發展出來的硬體模組或裝置。
此處所描述的方法和程序,有一部分或全部會以程式碼和/或資料的方式儲存在一個電腦可讀的儲存媒介或裝置中,當電腦系統讀取並執行程式碼 和/或資料時,電腦系統可執行相關的方法和程序。這些方法和程序有一部分或全部會被實現於硬體模組或裝置內,當這些硬體模組或裝置啟動時,它們會執行相關的方法和程序。
以上所述本發明的實施例,旨在說明而不在於限制。不同的替代方式和相當做法是可能的。雖然,本發明以抑制劑濃度為例,我們應該瞭解本發明並不限於抑制劑濃度,它也可應用基於不同物理或數學量做為模型信號的模型形式,這些信號像是光學強度、光酸濃度、化學放大地抑制劑去塊濃度或其補充劑、直接與光酸濃度或光學強度相關的光阻顯影溶解度的量測值、以及最終光阻顯影時間的空間分佈。除此之外,本發明的技藝和系統可與許多不同的電子設計自動化(EDA)工具和方法論用來設計、測試、和/或製造系統,這些系統的描述來自於信號流、事件或數位系統方程式的組合。本發明的範圍不應當參照上面的描述來確定,而是應該參照權利要求項連同其全部範圍或等同物來確定。
202:辨識影響最後所顯影的光阻關鍵尺寸和拓樸輪廓結果的主要機制與參數
204:分析主要機制中的物理性與化學性,並辨識出信號的激勵-響應關係
206:使用數學分析技巧來取出簡潔具說明性的參數化的建模項目,藉以獲取影響已開發光阻結果的主要機制和參數之間的關係
208:將建模項目併入至一一般模型形式

Claims (30)

  1. 一種用於對一光阻的輪廓進行建模之方法,包括,依據設置於該光阻中的一抑制劑濃度的一梯度的大小對該光阻的輪廓進行建模。
  2. 根據請求項1所述的方法,進一步包括,依據一抑制劑濃度對該光阻的輪廓進行建模。
  3. 根據請求項1所述的方法,其中該抑制劑濃度包括一設置於該光阻中的一光酸濃度的一指數函數。
  4. 根據請求項1所述的方法,進一步包括,將該抑制劑濃度提升至n次方以對該光阻的輪廓進行建模,其中n為大於或等於5的一個實數。
  5. 根據請求項1所述的方法,進一步包括,應用已被建模的該光阻的輪廓來降低一印刷光阻樣式中的一個失真,該失真來自於該光阻對一程序中的一電磁波和/或粒子束的響應。
  6. 根據請求項1所述的方法,其中,該建模被定義為該光阻內的該抑制劑的一臨界值,該臨界值等於至少一第一項和一第二項之和,其中該第一項包括一抑制劑濃度,而該第二項包括該抑制劑濃度的梯度的一個大小。
  7. 根據請求項6所述的方法,其中,該第二項包括該抑制劑濃度的梯度大小和該抑制劑濃度提升至n次方後的相乘結果,其中n為大於或等於5的一個實數。
  8. 根據請求項6所述的方法,其中該第一項包括部署於該光阻中的一個光酸濃度的一指數函數。
  9. 根據請求項6所述方法,其中該第二項包括一第三項和一第四項的和。
  10. 根據請求項9所述的方法,其中該第三項包括該抑制劑濃度的梯度大小和該抑制劑濃度提升至n次方後的相乘結果,其中n為大於或等於5的一個實數。
  11. 一種用於對一光阻的輪廓進行建模之電腦可讀取儲存媒介,包括可被電腦執行的指令,該指令使得電腦可依據設置於一光阻中的一抑制劑濃度的一梯度的大小對該光阻的輪廓進行建模。
  12. 根據請求項11所述的電腦可讀取儲存媒介,該指令進一步使得電腦依據該抑制劑濃度來對該光阻的輪廓進行建模。
  13. 根據請求項11所述的電腦可讀取儲存媒介,其中該抑制劑濃度包括部署於該光阻中的一光酸濃度的一指數函數。
  14. 根據請求項11所述的電腦可讀取儲存媒介,該指令進一步使得電腦將該抑制劑濃度提升至n次方以對該光阻的輪廓進行建模,其中n為大於或等於5的一個實數。
  15. 根據請求項11所述的性電腦可讀取儲存媒介,該指令進一步使得電腦應用已被建模的該光阻的輪廓來降低一印刷光阻樣式中的一個失真,該失真來自於該光阻對一程序中的一電磁波和/或粒子束的響應。
  16. 根據請求項11所述的性電腦可讀取儲存媒介,其中,該建模被定義為光阻內所部署抑制劑的臨界值,該臨界值等於至少一第一項和一第二項之和,其中第一項包括一抑制劑濃度,而第二項包括該抑制劑濃度的梯度的一個大小。
  17. 根據請求項16所述的電腦可讀取儲存媒介,其中第二項包括抑制劑濃度的梯度大小和抑制劑濃度提升至n次方後的相乘結果,其中n為大於或等於5的一個實數。
  18. 根據請求項16所述的電腦可讀取儲存媒介,其中第一項包括部署於光阻中的一個光酸濃度的一指數函數。
  19. 根據請求項16所述的電腦可讀取儲存媒介,其中第二項包括一第三項和一第四項的和。
  20. 根據請求項19所述的電腦可讀取儲存媒介,其中第三項包括該抑制劑濃度的梯度大小和該抑制劑濃度提升至n次方後的相乘結果,其中n為大於或等於5的一個實數。
  21. 一種用於對一光阻的輪廓進行建模之系統,被設定為依據設置於該光阻中的一抑制劑濃度的一梯度的大小對該光阻的輪廓進行建模。
  22. 根據請求項21所述系統,進一步被設定為依據該抑制劑濃度以對該光阻的輪廓進行建模。
  23. 根據請求項21所述系統,其中該抑制劑濃度包括設置於該光阻中的一光酸濃度的一指數函數。
  24. 根據請求項21所述系統,進一步被設定為將該抑制劑濃度提升至n次方以對該光阻的輪廓進行建模,其中n為大於或等於5的一個實數。
  25. 根據請求項21所述系統,進一步被設定為應用已被建模的該光阻的輪廓來降低一印刷光阻樣式中的一個失真,該失真來自於該光阻對一程序中的一電磁波和/或粒子束的響應。
  26. 根據請求項21所述系統,其中,該建模被定義為該光阻內之該抑制劑的臨界值,該臨界值等於至少一第一項和一第二項之和,其中該第一項包括一抑制劑濃度,該第二項包括該抑制劑濃度的梯度的一個大小。
  27. 根據請求項26所述系統,其中第二項包括抑該制劑濃度的梯度大小和該抑制劑濃度提升至n次方後的相乘結果,其中n為大於或等於5的一個實數。
  28. 根據請求項26所述系統,其中第一項包括設置於該光阻中的一光酸濃度的一指數函數。
  29. 根據請求項26所述系統,其中該第二項包括一第三項和一第四項的和。
  30. 根據請求項29所述系統,其中該第三項包括該抑制劑濃度的梯度大小和該抑制劑濃度提升至n次方後的相乘結果,其中n為大於或等於5的一個實數。
TW104122424A 2014-07-11 2015-07-09 一種用於對一光阻的輪廓進行建模之方法、電腦可讀取儲存媒介以及系統 TWI703404B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462023551P 2014-07-11 2014-07-11
US62/023,551 2014-07-11

Publications (2)

Publication Number Publication Date
TW201614530A TW201614530A (en) 2016-04-16
TWI703404B true TWI703404B (zh) 2020-09-01

Family

ID=55067775

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104122424A TWI703404B (zh) 2014-07-11 2015-07-09 一種用於對一光阻的輪廓進行建模之方法、電腦可讀取儲存媒介以及系統

Country Status (3)

Country Link
US (1) US10386718B2 (zh)
KR (1) KR102438831B1 (zh)
TW (1) TWI703404B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018206275A1 (en) 2017-05-12 2018-11-15 Asml Netherlands B.V. Methods for evaluating resist development
US11493850B2 (en) 2019-07-23 2022-11-08 Samsung Electronics Co., Ltd. Lithography method using multi-scale simulation, semiconductor device manufacturing method and exposure equipment
KR20220149823A (ko) * 2021-04-30 2022-11-09 삼성전자주식회사 멀티-스케일 시뮬레이션을 이용한 리소그라피 방법, 및 그 리소그라피 방법을 기반으로 한 반도체 소자 제조방법 및 노광 설비
US20230222264A1 (en) * 2022-01-07 2023-07-13 Applied Materials, Inc. Processing chamber calibration

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070282574A1 (en) * 2006-05-31 2007-12-06 Jensheng Huang Method and apparatus for determining a process model that models the impact of CAR/PEB on the resist profile
TW200804969A (en) * 2006-04-21 2008-01-16 Shinetsu Chemical Co Photomask blank
US20120079436A1 (en) * 2010-09-29 2012-03-29 Nikon Corporation Fast photoresist model

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3364385B2 (ja) * 1996-08-22 2003-01-08 株式会社東芝 形状シミュレーション方法
JP3087675B2 (ja) * 1997-02-06 2000-09-11 日本電気株式会社 ポストベークシミュレーション方法
SG124406A1 (en) * 2005-01-28 2006-08-30 Asmil Masktools B V Method, program product and apparatus for improving calibration of resist models used in critical dimension calculation
US8555209B2 (en) * 2011-02-04 2013-10-08 Samsung Electronics Co., Ltd. Method for fabricating a semiconductor device using a modeling algorithm to model the proximity effect from the sub-layer
US9733576B2 (en) * 2014-03-17 2017-08-15 Kla-Tencor Corporation Model for accurate photoresist profile prediction

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200804969A (en) * 2006-04-21 2008-01-16 Shinetsu Chemical Co Photomask blank
US20070282574A1 (en) * 2006-05-31 2007-12-06 Jensheng Huang Method and apparatus for determining a process model that models the impact of CAR/PEB on the resist profile
US20120079436A1 (en) * 2010-09-29 2012-03-29 Nikon Corporation Fast photoresist model

Also Published As

Publication number Publication date
TW201614530A (en) 2016-04-16
US20160012175A1 (en) 2016-01-14
US10386718B2 (en) 2019-08-20
KR20160007434A (ko) 2016-01-20
KR102438831B1 (ko) 2022-09-01

Similar Documents

Publication Publication Date Title
US10402524B2 (en) Prediction of process-sensitive geometries with machine learning
TWI621957B (zh) 使用點擊最佳化的次解析度輔助特徵實現方式
JP5052620B2 (ja) 製造可能性プロセスのための閉ループを設計するための方法、およびコンピュータ・プログラム
US8015510B2 (en) Interconnection modeling for semiconductor fabrication process effects
US8136054B2 (en) Compact abbe's kernel generation using principal component analysis
US8473271B2 (en) Fast photolithography process simulation to predict remaining resist thickness
US11061318B2 (en) Lithography model calibration
TWI703404B (zh) 一種用於對一光阻的輪廓進行建模之方法、電腦可讀取儲存媒介以及系統
JP2005217431A (ja) 較正固有分解モデルを使用した製造信頼性検査及びリソグラフィ・プロセス検証方法
US20080066047A1 (en) System and method for employing patterning process statistics for ground rules waivers and optimization
JP2009530668A (ja) レチクル・レイアウトに関する計測学的ターゲット構造設計を生成するためのコンピュータ実施方法、キャリア・メディア及びシステム
TW201019152A (en) Method, system, and computer program product for implementing a compact manufacturing model in electronic design automation
TWI767340B (zh) 基於缺陷機率分佈和臨界尺寸變異的微影技術改進
WO2020154978A1 (zh) 一种Hessian-Free的光刻掩模优化方法、装置及电子设备
US20190087526A1 (en) Hotspot Detection Based On Litho-Aware Machine Learning
US11061373B1 (en) Method and system for calculating probability of success or failure for a lithographic process due to stochastic variations of the lithographic process
US20090013292A1 (en) Context dependent timing analysis and prediction
TW202235999A (zh) 用於遮罩合成之隨機感知微影模型
US8880382B2 (en) Analyzing a patterning process using a model of yield
US10852635B2 (en) Compact modeling for the negative tone development processes
US9798226B2 (en) Pattern optical similarity determination
Lam et al. Nebulous hotspot and algorithm variability in computation lithography
US20120198394A1 (en) Method For Improving Circuit Design Robustness
US9183330B2 (en) Estimation of power and thermal profiles
US11270054B1 (en) Method and system for calculating printed area metric indicative of stochastic variations of the lithographic process