TWI701684B - 用於製備具有交聯絕緣層之電纜之方法及藉由彼等方法製備之電纜 - Google Patents

用於製備具有交聯絕緣層之電纜之方法及藉由彼等方法製備之電纜 Download PDF

Info

Publication number
TWI701684B
TWI701684B TW105113325A TW105113325A TWI701684B TW I701684 B TWI701684 B TW I701684B TW 105113325 A TW105113325 A TW 105113325A TW 105113325 A TW105113325 A TW 105113325A TW I701684 B TWI701684 B TW I701684B
Authority
TW
Taiwan
Prior art keywords
cross
polymer composition
insulating layer
crosslinkable polymer
item
Prior art date
Application number
TW105113325A
Other languages
English (en)
Other versions
TW201642286A (zh
Inventor
孫亞斌
汀摩子J 波森
傑佛瑞M 柯根
Original Assignee
美商陶氏全球科技有限責任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商陶氏全球科技有限責任公司 filed Critical 美商陶氏全球科技有限責任公司
Publication of TW201642286A publication Critical patent/TW201642286A/zh
Application granted granted Critical
Publication of TWI701684B publication Critical patent/TWI701684B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/12Esters; Ether-esters of cyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34922Melamine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)
  • Conductive Materials (AREA)

Abstract

用於製備具有交聯絕緣層之電纜及電纜芯之方法。所述方法包括(a)提供初始電纜芯,其具有導體、第一半導體層、包括可交聯聚合組合物之初始絕緣層及第二半導體層;及(b)使所述初始電纜芯經歷交聯過程。所述可交聯聚合組合物包括基於乙烯之聚合物、有機過氧化物及聚烯丙基交聯助劑。所述聚烯丙基交聯助劑及所述有機過氧化物以足以提供小於1.2之烯丙基比活性氧莫耳比值之量存在。

Description

用於製備具有交聯絕緣層之電纜之方法及藉由彼等方法製備之電纜 【相關申請案之參考】
本申請案主張2015年5月22日申請之國際申請案第PCT/CN15/079610號之權益。
本發明之各種實施例係關於用於製備具有交聯絕緣層之電纜之方法。
中電壓(「MV」)、高電壓(「HV」)以及超高電壓(「EHV」)電纜典型地含有過氧化物交聯之基於乙烯之聚合物材料作為絕緣層。儘管交聯提供在材料熱機械特性方面之有價值改良,但用於交聯之過氧化物產生需要在形成於絕緣層中之後但在將護套層置放在絕緣層上方之前自材料中移除(例如,藉由脫氣)的副產物。在過氧化二異丙苯之情況下,此等副產物包含甲烷、苯乙酮、α甲基苯乙烯及異丙苯基異丙苯基醇。為減少副產物之量,已經研究使用交聯助劑,其可用以降低交聯所採用之過氧化物的量。雖然已在所述助劑中實現進步,但仍需要改良。
一個實施例為用於製備具有交聯絕緣層之電纜芯之方法,所述方法包括:(a)提供初始電纜芯,其包括:(i)導體;(ii)第一聚合半導體層;(iii)包括可交聯聚合組合物之初始絕緣層,所述可交聯聚合組合物包括基於乙烯之聚合物、有機過氧化物及聚烯丙基交聯助劑;(iv)第二聚合半導體層;及(b)使所述初始電纜芯經歷交聯過程,所述交聯過程足以使所述可交聯聚合組合物之至少一部分交聯,以藉此產生具有交聯絕緣層之所述電纜芯,其中所述聚烯丙基交聯助劑及所述有機過氧化物以按所述聚烯丙基交聯助劑之烯丙基含量及所述有機過氧化物之活性氧含量計,足以提供小於1.2之烯丙基比活性氧莫耳比值的量存在於所述可交聯聚合組合物中,其中當在70℃及標準壓力下使所述交聯絕緣層經歷脫氣過程時,所述交聯絕緣層相對於一參考交聯絕緣層在達到200ppm之甲烷含量的脫氣時間呈現至少50%之減少,所述參考交聯絕緣層除了參考交聯絕緣層不含聚烯丙基交聯助劑且相對於所述交聯絕緣層含有按重量計兩倍量的有機過氧化物之外具有與所述交聯絕緣層相同的組成。
參考隨附圖式,其中: 圖1為峰面積相較於甲烷百分比之圖,用作用於甲烷定量之校準曲線。
本發明之各種實施例係關於用於製備具有電纜芯之電纜之方法。電纜芯包括(a)導體、(b)第一聚合半導體層、(c)由可交聯聚合組合物製備之交聯絕緣層及(d)第二聚合半導體層。方法包括使初始電纜芯經歷交聯過程,以藉此使可交聯聚合組合物之至少一部分交聯。其後,可使含有交聯絕緣層之電纜芯經歷脫氣過程。本文中所使用之可交聯聚合組合物可提供相對於習知可交聯組合物經縮短的脫氣時間。其他實施例係關於藉由此等方法製備之電纜。
可交聯聚合組合物
如剛剛所指出,本文中所提供之電纜芯含有由可交聯聚合組合物製備之交聯絕緣層。可交聯聚合組合物包括基於乙烯之聚合物、有機過氧化物及聚烯丙基交聯助劑。
如本文中所使用,「基於乙烯之」聚合物為由乙烯單體作為主要(亦即大於50重量百分比(「wt%」))單體組分製備之聚合物,但亦可採用其他共聚單體。「聚合物」意謂藉由使相同或不同類型之單體反應(亦即聚合)而製備之大分子化合物,且包含均聚物及互聚物。「互聚物」意謂藉由使至少兩種不同單體類型聚合而製備之聚合物。此通用術語包含共聚物(通常用以指由兩種不同單體類型製備之聚合物)及由兩種以上不同單體類型製備之聚合物(例如,三元共聚物(三種不同單體類型)及四元共聚物(四種不同單體類型))。
在各種實施例中,基於乙烯之聚合物可為乙烯均聚物。如本文中所使用,「均聚物」表示包括衍生自單種單體類型之重複單元之聚合物,但不排除殘餘量之用於製備均聚物的其他組分,諸如鏈轉移劑。
在一實施例中,基於乙烯之聚合物可為按全部互聚物重量計,α-烯烴含量為至少1wt%、至少5wt%、至少10wt%、至少15wt%、至少20wt%或至少25wt%的乙烯/α-烯烴(「α-烯烴」)互聚物。此等互聚物之α-烯烴含量按互聚物之重量計可為小於50wt%,小於45wt%,小於40wt%或小於35wt%。當採用α-烯烴時,α-烯烴可為C3-20(亦即具有3至20個碳原子)直鏈、分支鏈或環狀α-烯烴。C3-20 α-烯烴之實例包含丙烯、1-丁烯、4-甲基-1-戊烯、1-己烯、1-辛烯、1-癸烯、1-十二烯、1-十四烯、1-十六烯及1-十八烯。α-烯烴亦可具有環狀結構,諸如環己烷或環戊烷,產生諸如3-環己基-1-丙烯(烯丙基環己烷)及乙烯基環己烷的α-烯烴。說明性乙烯/α-烯烴互聚物包含乙烯/丙烯、乙烯/丁烯、乙烯/1-己烯、乙烯/1-辛烯、乙烯/苯乙烯、乙烯/丙烯/1-辛烯、乙烯/丙烯/丁烯、乙烯/丁烯/1-辛烯及乙烯/丁烯/苯乙烯。
在各種實施例中,基於乙烯之聚合物可單獨或與一或多種其他類型的基於乙烯之聚合物組合(例如,兩種或兩種以上因單體組成及含量、製備之催化方法等而彼此不同之基於乙烯之聚合物的摻合物)使用。若採用基於乙烯之聚合物之摻合物,則聚合物可藉由任何反應器中或反應器後方法來摻合。
在各種實施例中,基於乙烯之聚合物可選自由以 下組成之群:低密度聚乙烯(「LDPE」)、線性低密度聚乙烯(「LLDPE」)、極低密度聚乙烯(「VLDPE」)及其兩者或兩者以上之組合。
在一實施例中,基於乙烯之聚合物可為LDPE。LDPE一般為高度分枝之乙烯均聚物,且可經由高壓方法來製備(亦即,HP-LDPE)。適用於本文中之LDPE之密度可在0.91至0.94範圍內。在各種實施例中,基於乙烯之聚合物為密度為至少0.915g/cm3,但小於0.94或小於0.93g/cm3之高壓LDPE。本文中所提供之聚合物密度根據美國材料試驗協會(American Society for Testing and Materials,「ASTM」)方法D792測定。適用於本文中之LDPE之熔融指數(I2)可小於20g/10min.,或在0.1至10g/10min.、0.5至5g/10min.、1至3g/10min.範圍內,或I2為2g/10min.。本文中所提供之熔融指數根據ASTM方法D1238測定。除非另外指出,否則在190℃及2.16Kg下測定熔融指數(亦稱為I2)。一般而言,LDPE具有寬分子量分佈(「MWD」),產生高的多分散指數(「PDI」;重量平均分子量與數目平均分子量之比值)。
在一實施例中,基於乙烯之聚合物可為LLDPE。LLDPE一般為具有共聚單體(例如α-烯烴單體)不均勻分佈之基於乙烯之聚合物,且其特徵為短鏈分枝。舉例而言,LLDPE可為乙烯與α-烯烴單體(諸如上文所描述之彼等α-烯烴單體)之共聚物。適用於本文中之LLDPE之密度可在0.916至0.925g/cm3範圍內。適用於本文中之LLDPE之熔融指數(I2)可在1至20g/10min.或3至8g/10min.範圍內。
在一實施例中,基於乙烯之聚合物可為VLDPE。 VLDPE亦可在此項技術中已知為超低密度聚乙烯或ULDPE。VLDPE一般為具有共聚單體(例如α-烯烴單體)不均勻分佈之基於乙烯之聚合物,且其特徵為短鏈分枝。舉例而言,VLDPE可為乙烯及α-烯烴單體(諸如上文所描述之彼等α-烯烴單體中之一或多者)之共聚物。適用於本文中之VLDPE之密度可在0.87至0.915g/cm3範圍內。適用於本文中之VLDPE之熔融指數(I2)可在0.1至20g/10min.或0.3至5g/10min.範圍內。
在一實施例中,基於乙烯之聚合物可包括任何兩種或兩種以上之上文所描述基於乙烯之聚合物的組合。
用於製備基於乙烯之聚合物之生產方法為廣泛、變化且此項技術中已知的。用於製備具有上文所描述特性之基於乙烯之聚合物的任何習知或下文發現之生產方法可用於製備本文中所描述的基於乙烯之聚合物。一般而言,聚合可在此項技術中已知用於齊格勒-納塔(Ziegler-Natta)或卡明斯基-辛(Kaminsky-Sinn)型聚合反應之條件下實現,亦即在0至250℃或30或200℃之溫度下,且在大氣壓至10,000大氣壓(1,013兆帕斯卡(megaPascal,「MPa」))之壓力下。在大多數聚合反應中,所採用之催化劑比可聚合化合物之莫耳比為10-12:1至10-1:1,或10-9:1至10-5:1。
如上所指出,有機過氧化物用作可交聯聚合組合物之組分。如本文中所使用,「有機過氧化物」表示具有以下結構之過氧化物:R1-O-O-R2或R1-O-O-R-O-O-R2,其中R1及R2中之每一者為烴基部分,且R為亞烴基部分。如本文所使用,術語「烴基」表示藉由自烴(例如乙基、苯基)移除 氫原子而形成之單價基團。如本文所使用,術語「亞烴基」表示藉由自烴移除兩個氫原子而形成之二價基團。有機過氧化物可為具有相同或不同烷基、芳基、烷芳基或芳烷基部分之任何二烷基、二芳基、二烷芳基或二芳烷基過氧化物。在一實施例中,R1及R2中之每一者獨立地為C1至C20或C1至C12烷基、芳基、烷芳基或芳烷基部分。在一實施例中,R可為C1至C20或C1至C12伸烷基、伸芳基、伸烷芳基或伸芳烷基部分。在各種實施例中,R、R1及R2可具有相同或不同數目之碳原子,或任何兩個R,R1及R2可具有相同數目之碳原子而第三者具有不同數目的碳原子。
適用於本文中之有機過氧化物包含單官能過氧化物及二官能過氧化物。如本文中所使用,「單官能過氧化物」表示具有單對共價鍵結氧原子(例如具有結構R-O-O-R)之過氧化物。如本文中所使用,「二官能過氧化物」表示具有兩對共價鍵結氧原子(例如具有結構R-O-O-R-O-O-R)之過氧化物。在一實施例中,有機過氧化物為單官能過氧化物。
例示性有機過氧化物包含過氧化二異丙苯(「DCP」);過氧基苯甲酸第三丁酯;二-第三戊基過氧化物(「DTAP」);雙(第三丁基-過氧基異丙基)苯(「BIPB」);異丙基異丙苯基第三丁基過氧化物;第三丁基異丙苯基過氧化物;二-第三丁基過氧化物;2,5-雙(第三丁基過氧基)-2,5-二甲基己烷;2,5-雙(第三丁基過氧基)-2,5-二甲基己-3-炔;1,1-雙(第三丁基過氧基)3,3,5-三甲基環己烷;異丙基異丙苯基異丙苯基過氧化物;4,4-二(第三丁基過氧基)戊酸丁酯;二(異丙基異丙苯基)過氧化物;二-第三戊基過氧化物及其兩者或兩者以 上之混合物。在一或多個實施例中,有機過氧化物可選自DCP、BIPB或其組合。在各種實施例中,僅採用單一類型之有機過氧化物。在一實施例中,有機過氧化物為DCP。在另一實施例中,有機過氧化物為BIPB。
如上所指出,可交聯聚合組合物進一步包含聚烯丙基交聯助劑。如本文中所使用,「聚烯丙基」表示具有至少兩個側位烯丙基官能基之化合物。在各種實施例中,交聯助劑為三烯丙基化合物。在某些實施例中,交聯助劑選自由以下組成之群:異氰尿酸三烯丙酯(「TAIC」)、氰尿酸三烯丙酯(「TAC」)、苯偏三酸三烯丙酯(「TATM」)及其兩者或兩者以上之混合物。在一實施例中,交聯助劑為TAIC。
在各種實施例中,聚烯丙基交聯助劑構成可交聯聚合組合物中所存在之所有或基本上所有交聯助劑。在一些實施例中,可交聯聚合組合物不含或基本上不含氮氧化物化合物(例如,(2,2,6,6-四甲基哌啶-1-基)氧基或「TEMPO」)。如本文中所使用,「基本上不含」表示按可交聯聚合組合物之全部重量計,以重量計小於10ppm之濃度。在一或多個實施例中,可交聯聚合組合物不含或基本上不含乙烯基官能酯。在各種實施例中,可交聯聚合組合物不含或基本上不含丙烯。酸酯化合物。在一或多個實施例中,可交聯聚合組合物不含或基本上不含二乙烯基苯化合物。在各種實施例中,可交聯聚合組合物不含或基本上不含鏈二烯、鏈三烯及/或鏈四烯化合物。
在各種實施例中,可交聯聚合組合物可包括基於乙烯之聚合物,其量按全部可交聯聚合組合物重量計在50至 98.9wt%、80至98.9wt%、90至98.9wt%或95至98.9wt%範圍內。在某些實施例中,基於乙烯之聚合物以按基於乙烯之聚合物、有機過氧化物及聚烯丙基交聯助劑之經合併重量計,在95.6至99.6wt%或97.5至98.5wt%範圍內之濃度存在。另外,可交聯聚合組合物可包括有機過氧化物,其量按全部可交聯聚合組合物重量計小於1.1wt%,或其量在0.1至小於1.1wt%、0.4至小於1.1wt%、0.4至1.0wt%、0.5至1.0wt%或0.7至小於1.0wt%範圍內。此外,可交聯聚合組合物可包括聚烯丙基交聯助劑,其量按全部可交聯聚合組合物重量計為至少0.3wt%,或其量在0.3至3wt%、0.3至2wt%、0.3至1wt%、0.3至0.7wt%或0.3至0.45wt%範圍內。
在各種實施例中,聚烯丙基交聯助劑及有機過氧化物可以小於1.0、小於0.8或在0.2至0.7或0.3至0.65範圍內之交聯助劑/有機過氧化物重量比值存在。
在各種實施例中,聚烯丙基交聯助劑及有機過氧化物可以足以達成小於1.2、小於1.1、1.0或小於1.0或在0.3至小於1.2、0.4至1.1或0.5至1.0範圍內之烯丙基比活性氧原子之莫耳比值的量存在。在測定此比率中,僅將以兩個共價鍵結氧原子之一的形式存在於有機過氧化物中之氧原子視為「活性氧原子」。舉例而言,單官能過氧化物具有兩個活性氧原子。存在於有機過氧化物或聚烯丙基交聯助劑中之不與另一氧原子共價鍵結之氧原子不視為活性氧原子。另外,僅將見於聚烯丙基交聯助劑上之側位烯丙基包含於烯丙基/活性氧原子之莫耳比值中。烯丙基比活性氧莫耳比值計算如下:
Figure 105113325-A0305-02-0012-1
雖然不希望受理論束縛,但本發明者發現當聚烯丙基助劑以比所列之彼等助劑高之濃度採用時,在更高速率下助劑傾向於排出(sweat out)可交聯聚合組合物。另外,似乎助劑之所述排出可增加諸如有機過氧化物及添加劑(例如抗氧化劑)之其他組分之遷移的量。因此,在各種實施例中,可交聯聚合組合物在23℃下儲存兩週後可顯示比相同的參考可交聯聚合組合物(除了所述可交聯聚合組合物具有1.2之烯丙基比活性氧莫耳比值之外)之助劑排出少至少25%、至少35%或至少50%之助劑排出。可交聯聚合組合物之排出使用粒化樣品根據下文測試方法部分中所提供之程序測定。類似地,可交聯聚合組合物在23℃下儲存兩週後可顯示比相同的參考可交聯聚合組合物(除了所述可交聯聚合組合物具有1.6之烯丙基比活性氧莫耳比值之外)之助劑排出少至少25%、至少35%或至少50%之助劑排出。另外,當採用抗氧化劑時,可交聯聚合組合物在23℃下儲存兩週後可顯示比相同的參考可交聯聚合組合物(除了所述可交聯聚合組合物具有1.2之烯丙基比活性氧莫耳比值之外)之抗氧化劑排出少至少5%、至少10%或至少15%之抗氧化劑排出。類似地,當採用抗氧化劑時,可交聯聚合組合物在23℃下儲存兩週後可顯示比相同的參考可交聯聚合組合物(除了所述可交聯聚合組合物具有1.6之烯丙基比活性氧莫耳比值之外)之抗氧化劑排出少至少5%、至少10%或至少15%之抗氧化劑排出。此外,可交聯聚合組合物在23℃下儲存兩週後可顯示比相同的參考可交聯聚合組合 物(除了所述可交聯聚合組合物具有1.2之烯丙基比活性氧莫耳比值之外)之有機過氧化物排出少至少10%、至少20%或至少40%之有機過氧化物排出。類似地,可交聯聚合組合物在23℃下儲存兩週後可顯示比相同的參考可交聯聚合組合物(除了所述可交聯聚合組合物具有1.6之烯丙基比活性氧莫耳比值之外)之有機過氧化物排出少至少10%、至少20%或至少40%之有機過氧化物排出。在前述實施例中之每一者中,可交聯聚合組合物之烯丙基比活性氧莫耳比值可為1.0或小於1.0,或0.5至1.0。
可交聯聚合組合物亦可含有其他添加劑,包含但不限於加工助劑、填充劑、碳黑、奈米粒子、偶合劑、紫外吸收劑或穩定劑、抗靜電劑、成核劑、助滑劑、塑化劑、潤滑劑、黏度控制劑、增黏劑、防黏劑、界面活性劑、增量油、除酸劑、阻燃劑及金屬去活化劑。不為填充劑之添加劑典型地以按總組合物重量計在0.01wt%或小於0.01wt%至10wt%或大於10wt%範圍內之量加以使用。填充劑一般以更大量添加,但所述量按總組合物重量計可在低至0.01wt%或小於0.01wt%至65wt%或大於65wt%範圍內。填充劑之說明性實例包含典型算術平均粒度大於15奈米之黏土、沈澱二氧化矽及矽酸鹽、煙霧狀二氧化矽、碳酸鈣、經研磨礦物、氫氧化鋁、氫氧化鎂及碳黑。
另外,抗氧化劑可用於可交聯聚合組合物。例示性抗氧化劑包含受阻酚(例如,肆[亞甲基(3,5-二-第三丁基-4-羥基氫化肉桂酸酯)]甲烷);亞磷酸酯及亞膦酸二酯(例如,磷酸參(2,4-二-第三丁基苯基)酯);硫代化合物(例如,硫代 二丙酸二月桂酯);各種矽氧烷;及各種胺(例如,聚合2,2,4-三甲基-1,2-二氫喹啉)。抗氧化劑可以按可交聯聚合組合物之總重量計0.01至5wt%的量加以使用。在下文論述之電線及電纜組合物之形成中,抗氧化劑在加工最終物品之前(亦即,擠壓及交聯之前)典型地添加至系統中。
在各種實施例中,可交聯聚合組合物可不含或基本上不含聚伸烷基二醇。在各種實施例中,可交聯聚合組合物可不含或基本上不含彈性聚合物。在各種實施例中,可交聯聚合組合物可不含或基本上不含羧酸/酯改質之聚合物(例如乙烯/丙烯酸乙酯共聚物)。
可交聯聚合組合物之製備可包括混配上文所描述的組分。舉例而言,混配可藉由以下進行:(1)將所有組分混配於基於乙烯之聚合物中或(2)混配除有機過氧化物以外之所有組分,所述有機過氧化物如下文所描述浸入。混配可交聯聚合組合物之組分可由熟習此項技術者已知之標準設備實現。混配設備之實例為內部分批混合器,諸如BrabenderTM、BanburyTM或BollingTM混合器。或者,可使用連續單螺桿或雙螺桿混合器,諸如FarrelTM連續混合器、沃納(Werner)及PfleidererTM雙螺桿混合器或BussTM捏合連續擠壓機。混配可在以下溫度下進行:大於基於乙烯之聚合物之熔融溫度直至高於其基於乙烯之聚合物開始降解之溫度。在各種實施例中,混配可在100至200℃或110至150℃範圍內之溫度下進行。在各種實施例中,將有機過氧化物浸於基於乙烯之聚合物中可在30至100℃、50至90℃或60至80℃範圍內之溫度下進行。
或者,在一或多個實施例中,有機過氧化物及聚烯丙基交聯助劑可同時或依序浸入基於乙烯之聚合物中。在一實施例中,可在高於有機過氧化物及聚烯丙基交聯助劑之熔融溫度(無論哪個更高)之溫度下,將有機過氧化物及聚烯丙基交聯助劑預混合,隨後在30至100℃、50至90℃或60至80℃範圍內之溫度下,將基於乙烯之聚合物浸於有機過氧化物及聚烯丙基交聯助劑之所得混合物中,持續1至168小時、1至24小時或3至12小時範圍內之時間段。在另一實施例中,可在30至100℃、50至90℃或60至80℃範圍內之溫度下,將基於乙烯之熱塑性聚合物浸於有機過氧化物中,持續1至168小時、1至24小時或3至12小時範圍內之時間段,隨後在30至100℃、50至90℃或60至80℃範圍內之溫度下,將基於乙烯之聚合物浸於聚烯丙基交聯助劑中,持續1至168小時、1至24小時或3至12小時範圍內之時間段。在再一實施例中,可在30至100℃、50至90℃或60至80℃範圍內之溫度下,將基於乙烯之聚合物浸於聚烯丙基交聯助劑中,持續在1至168小時、1至24小時或3至12小時範圍內之時間段,隨後在30至100℃、50至90℃或60至80℃範圍內之溫度下,將基於乙烯之聚合物浸於有機過氧化物中,持續1至168小時、1至24小時或3至12小時範圍內之時間段。在又一實施例中,可在30至100℃、50至90℃或60至80℃範圍內之溫度下,將基於乙烯之聚合物浸於無預混合情況下之有機過氧化物及聚烯丙基交聯助劑中,持續1至168小時、1至24小時或3至12小時範圍內之時間段。
半導體層
如上所指出,電纜芯包括第一及第二聚合半導體層。第一聚合半導體層典型地插在包括可交聯聚合組合物之絕緣層與導體之間,而第二聚合半導體層圍繞包括可交聯聚合組合物之絕緣層。第一及第二聚合半導體層可具有相同或不同組成。另外,各聚合半導體層可經交聯,且因而可最初包括可交聯聚合組合物。
聚合半導體材料在此項技術中熟知,且本文中可採用任何已知或下文發現之聚合半導體材料。然而一般而言,各聚合半導體層含有聚合物、導電填充劑及視情況選用之一或多種添加劑。適用於聚合半導體層中之一或兩者之聚合物包含但不限於基於乙烯之聚合物(諸如上文所描述之彼等聚合物)、乙烯丙烯酸乙酯共聚物(「EEA」)、乙烯丙烯酸丁酯共聚物(「EBA」)、乙烯乙酸乙烯酯共聚物(「EVA」)、聚烯烴彈性體及其兩者或兩者以上之組合。可以按各別半導體層之總重量計在1至50wt%範圍內的量存在之導電填充劑包含導電碳黑、導電碳(例如,碳纖維、碳奈米管、石墨烯、石墨及膨脹石墨小板)及金屬粒子。視情況選用之添加劑包含上文如適用於可交聯聚合組合物所列之任一彼等添加劑(例如,抗氧化劑、穩定劑及加工助劑)。添加劑可以習知濃度加以採用。
製備電纜芯
可使用各種類型之擠壓機(例如單螺桿類型或雙螺桿類型)製備含有內及外半導體及絕緣層之初始電纜芯。習知擠壓機之描述可見於USP 4,857,600中。共擠壓及因此擠壓機之實例可見於USP 5,575,965中。典型擠壓機在其上游端 具有漏斗且在其下游端下具有模具。漏斗饋入含有螺桿之機筒中。在下游端,在螺桿末端與模具之間,存在過濾網組合及斷路器板。擠壓機之螺桿部分視為分成三個部分,進料部分、壓縮部分及計量部分,及兩個區域,後加熱區及前加熱區,所述部分及區域自上游延伸至下游。在替代方案中,沿著自上游延伸至下游之軸可存在複數個加熱區域(兩個以上)。若其具有一個以上機筒,則機筒串聯連接。各機筒之長度比直徑比在約15:1至約30:1範圍內。
擠壓後,所得初始電纜芯可進行交聯過程,以使絕緣及兩個內及外半導體層交聯。舉例而言,可將初始電纜芯通入擠壓模具之加熱固化區下游。可將加熱固化區維持在約150至約350℃範圍內或約170至約250℃範圍內之溫度下。加熱固化區可藉由加壓蒸汽或感應加熱之加壓氮氣氣體來加熱。交聯過程後,可將具有交聯絕緣、內及外半導體層之電纜芯冷卻(例如,至室溫)。
脫氣
交聯方法可在交聯絕緣層中產生揮發性分解副產物。術語「揮發性分解產物」表示在固化步驟期間且可能在冷卻步驟期間藉由使自由基產生劑(例如過氧化二異丙苯)分解且反應來形成的分解產物。所述副產物可包括烷烴,諸如甲烷。其他副產物可包含醇。所述醇可包括上文所描述有機過氧化物之烷基、芳基、烷芳基或芳烷基部分。舉例而言,若過氧化二異丙苯用作交聯劑,則副產物醇為異丙苯基醇。其他分解產物可包含來自上文所描述有機過氧化物之酮副產物。舉例而言,苯乙酮為過氧化二異丙苯之分解副產物。
交聯後,可使交聯絕緣層經歷脫氣以移除揮發性分解副產物之至少一部分。脫氣可在脫氣溫度、脫氣壓力下進行,且持續脫氣時間段以產生經脫氣電纜芯。在各種實施例中,脫氣溫度可在50至150℃或60至80℃範圍內。在一實施例中,脫氣溫度為65至75℃。脫氣可在標準大氣壓(亦即101,325Pa)下進行。
採用聚烯丙基交聯助劑可在維持固化潛能的同時減少使交聯絕緣層脫氣所需的時間量。在各種實施例中,當在70℃及標準壓力下使交聯絕緣層經歷脫氣過程時,交聯絕緣層相對於一參考交聯絕緣層在達到200ppm之甲烷含量的脫氣時間可顯示至少50%、至少55%、至少60%或至少65%之減少,所述參考交聯絕緣層除了參考交聯絕緣層不含聚烯丙基交聯助劑且相對於所述交聯絕緣層含有按重量計兩倍量的有機過氧化物之外具有與所述交聯絕緣層相同的組成。另外,當在70℃及標準壓力下使交聯絕緣層經歷脫氣過程時,交聯絕緣層相對於參考交聯絕緣層在達到150ppm之甲烷含量的脫氣時間可顯示至少40%、至少45%或至少50%之減少。此外,當在70℃及標準壓力下使交聯絕緣層經歷脫氣過程時,交聯絕緣層相對於參考交聯絕緣層在達到93ppm之甲烷含量的脫氣時間可顯示至少30%、至少35%或至少40%之減少。
在一實施例中,交聯絕緣層之固化潛能(最大扭力,或MH)可為參考交聯絕緣層之固化潛能之至少70%、至少75%、至少80%、至少85%、至少90%或至少95%。
定義
如本文所使用,當用於兩個或兩個以上項目之清單中時,術語「及/或」意謂可採用所列項目中之任一者本身,或可採用所列項目中之兩者或兩者以上之任何組合。舉例而言,若將組合物描述為含有組分A、B及/或C,則組合物可僅含有A;僅含有B;僅含有C;含有A與B之組合;含有A與C之組合;含有B與C之組合;或含有A、B及C之組合。
「電線」意謂導電金屬(例如銅或鋁)之單股線,或光纖之單股線。
「電纜」及「電力電纜」意謂護套(例如絕緣套或保護性外夾套)內之至少一個電線或光纖。典型地,電纜為黏合在一起之兩個或兩個以上電線或光纖,典型地在共用絕緣套及/或保護性夾套中。護套內之個別電線或纖維可為裸露的、經覆蓋的或絕緣的。組合電纜可含有電線及光纖兩者。電纜可經設計用於低壓、中壓及/或高壓應用。典型電纜設計說明於USP 5,246,783、6,496,629及6,714,707中。
「導體」表示一或多個用於傳導熱、光及/或電之電線或纖維。導體可為單電線/纖維或多電線/纖維且可呈股線形式或呈管狀形式。適合導體之非限制性實例包含金屬,諸如銀、金、銅、碳及鋁。導體亦可為由玻璃或塑料製成之光纖。
當涉及單體時「殘基」意謂單體分子之部分,所述單體分子由於與另一單體或共聚單體分子聚合以製備聚合物分子而存在於聚合物分子中。
「烴基」表示藉由自烴(例如,乙基或苯基)移除氫原子而形成之單價基團。
測試方法
密度
根據ASTM D792測定密度。
熔融指數
根據ASTM D1238,條件190℃/2.16kg量測熔融指數或I2,且以每10分鐘洗脫之克數報導。根據ASTM D 1238,條件190℃/10kg量測I10,且以每10分鐘洗脫之克數報導。
動模流變儀
在180℃下根據ASTM D5289中所描述之方法在阿爾法科技(Alpha Technologies)MDR 2000上進行動模流變儀(「MDR」)測試。採用MDR來測定固化潛能(「MH」)及交聯密度(「MH-ML」)。
熱蠕變
根據國際電工委員會(International Electrotechnical Commission,「IEC」)標準60811-1-2及60811-2-1測定熱蠕變。自絕緣內層、中層及外層收集具有1mm厚度之啞鈴狀測試片。將20N/cm2負荷施加於各測試件上,隨後將所述各測試件置放於200℃下之烘箱中,持續15分鐘。隨後量測伸長率。
排出
根據以下方法測定排出。
1.儲存時間段(例如在23℃下2週)後,稱重3.000±0.001g球粒樣品且將其置放於40mL小瓶中。
2.將14.5mL乙腈(ACN)饋入40mL小瓶中。
3.密封40mL小瓶且由振盪器振盪5分鐘。
4.將液體自40mL小瓶收入2mL樣品小瓶中,以使用以下參數用於HPLC分析。
Figure 105113325-A0305-02-0021-2
甲烷含量分析
電纜樣品
製備兩個110kV/800mm2電纜芯(S1及CS1,在下文描述)。在脫氣室中在70℃及標準壓力下使兩個電纜芯脫氣。脫氣0、1、2、3及5天後,自電纜捲筒切割30cm電纜芯樣品。將各樣品立刻且真空密封於TEDLARTM PVF取樣袋中以用於甲烷量測。對400mm在70℃下之烘箱中加熱不同時間段之新製電纜量測重量損失。
使用多次頂空萃取及氣相層析在以下條件下測定電纜樣品之甲烷含量。
儀器
Figure 105113325-A0305-02-0022-4
校準曲線
在氣體圓柱體中收集標準甲烷之前,將1L氣體袋用純氮氣沖洗3次且隨後用自動氣泵澈底放氣。將橡膠管連接至甲烷氣體圓柱體之出口,而將管另一端置於通風櫥中。隨後打開圓柱體閥且用甲烷沖洗管大約15秒。此後,將橡膠管之另一端連接至氣體袋之入口,其中圓柱體閥為打開的。藉由打開氣體袋之入口閥,用來自圓柱體之純甲烷氣體使氣體袋充氣。
為製備具有不同甲烷濃度之氣體標準品,使用經洗滌且放氣之3L氣體袋及22mL安捷倫頂空小瓶。將大約500mL純氮氣氣體泵入3L氣體袋中,且藉由泵送時間及流動速率計算實際體積。用注射器精確抽取特定體積之純甲烷氣體且注入氣體袋及頂空小瓶中,以製備甲烷氣體標準品。校準曲線提供於圖1中。
程序
i)將空10L氣體袋用氮氣沖洗2或3次且隨後用氮氣填充。隨後在以下程序中將此氣體袋中之氮氣轉入具有電纜樣品之氣體袋中。
ii)接收氣體袋樣品(電纜於其中)後,將量測體積之氮氣氣體填充入氣體袋中。隨後藉由GC/FID在手動注射下直接分析氣體樣品,以用於定量在儲存及輸送期間釋放之甲烷濃度(第0天結果)。隨後用泵自氣體袋完全移除氣體,且記錄時間及流動速率以用於計算體積。
iii)將純氮氣氣體再次填入相同氣體袋中,且隨後在70℃下之烘箱中調節22小時。在將具有電纜樣品之氣體袋自烘箱取出且使其冷卻至室溫後,藉由GC/FID在手動注射下分析在70℃調節期間釋放之甲烷濃度(第1天結果)。隨後用泵自氣體袋完全移除氣體,且記錄時間及流動速率以用於計算體積。
iv)重複步驟(iii)三次,之後得到第2天、第3天及第4天之結果。
v)使用MHE模型計算電纜樣品中之總甲烷及初始甲烷濃度。
多次頂空萃取
此研究中所使用之方法為多次頂空萃取之組合,其中自氣體袋取樣。氣體袋用於樣品製備且MHE為用於定量之方法。MHE假設所有分析物在無限頂空萃取步驟後將自樣品澈底萃取。由下式計算總量之理論值: ln A n =-K(n-1)+ln A 1
Figure 105113325-A0305-02-0023-5
為由此式計算總值,僅需要兩個參數,A1及K。A1為第一萃取之峰面積或分析物量。K為在萃取序號與峰面積或分析物量之相應自然對數之間預測的線性關係之斜率。若樣品為用於應用多次頂空萃取之適合系統,則將在萃取數值與峰面積對數之間觀測到良好擬合。
定量電纜中之甲烷
22小時加熱後自電纜樣品釋放之甲烷體積(mL)用於第1天結果至第4天結果之MHE計算。由下式計算甲烷體積:V=(F*t)*濃度(甲烷)
「F」為由流量計記錄之平均流動速率(mL/min),且「t」為用於使氣體袋放氣之泵送時間(min)。「濃度(甲烷)」為由圖1中之校準曲線計算之甲烷的體積濃度(mL/mL)。第0天結果不包含於MHE計算中,因為其為在第一調節電纜樣品前釋放的甲烷,因此電纜中之甲烷總體積為:
Figure 105113325-A0305-02-0024-6
針對薄片樣品
使用如上文針對電纜樣品所描述之相同方法測定薄片樣品之甲烷含量,其中以下例外。
壓縮模製
如下藉由壓縮模製製備薄片樣品:
1.將約30g樣品放入兩個PET膜之間的1mm厚模具中。隨後將此經負載模具放入熱壓機器(萊伯泰科(LabTech))中。
2.在120℃下預加熱10分鐘。
3.通風8次且每次持續0.2s。
4.關閉壓板以將15MPa壓力施加至模具,持續20分鐘。同時在6.5分鐘內將溫度增加至182℃。
5.在模具上保持持續15MPa且將其冷卻至24℃。
6.自機器取出模具。
頂空GC取樣
1.自模具移除兩個PET膜黏著於兩側上之固化薄片。
2.快速剝落PET膜。
3.切割薄片中心區域(0.3g)之兩個薄片,且將其放入兩個頂空GC小瓶中,隨後立刻密封小瓶。自步驟2至3約30秒。
4.稱重經密封GC頂空小瓶,且可藉由空小瓶與具有樣品之小瓶之間的差計算樣品重量。
用於薄片分析之GC條件
儀器
Figure 105113325-A0305-02-0025-7
G1888頂空條件
Figure 105113325-A0305-02-0025-8
Figure 105113325-A0305-02-0026-9
6890 GC條件
Figure 105113325-A0305-02-0026-22
脫氣
將薄片放入60℃下之烘箱中以用於脫氣。5分鐘、10分鐘及20分鐘後收集樣品。隨後將其密封於小瓶中以用於頂空GC分析。
材料
在下文實例中採用以下材料。
所採用之低密度聚乙烯(「LDPE)」之密度為0.92g/cm3,熔融指數(I2)為2g/10min.,且由美國密歇根州米德蘭市陶氏化學公司(The Dow Chemical Company,Midland,MI,USA)製備。
BORLINKTM LE4201S為密度為0.92g/cm3、熔融指數(I2)為2g/10min之可交聯LDPE,且含有1.9wt%過氧化二異丙苯。其可購自奧地利維也納市(Vienna,Austria) Borealis AG。
過氧化二異丙苯(「DCP」)可購自方銳達化學品公司(Fang Rui Da Chemical Company),且按原樣使用。
雙(第三丁基-過氧基異丙基)苯(「BIPB」)可購自方銳達化學品公司,且按原樣使用。
異氰尿酸三烯丙酯(「TAIC」)可購自方銳達化學品公司,且按原樣使用。
苯偏三酸三烯丙酯(「TATM」)可購自方銳達化學品公司,且按原樣使用。
氰尿酸三烯丙酯(「TAC」)可購自方銳達化學品公司,且按原樣使用。
三羥甲基丙烷三甲基丙烯酸酯(「TMPTMA」)可購自沙多瑪(Sartomer),且按原樣使用。
LOWINOXTM TBM-6為具有化學名稱4,4'-硫雙(2-第三丁基-5-甲基酚)之可商購抗氧化劑,可購自科聚亞(Chemtura)。其按原樣使用。
IRGANOXTM 1010為具有化學名稱異戊四醇肆(3-(3,5-二-第三丁基-4-羥基苯基)丙酸酯)之可商購抗氧化劑,可購自巴斯夫(BASF)。其按原樣使用。
IRGANOXTM 1076為具有化學名稱十八烷基-3-(3,5-二-第三丁基-4-羥基苯基)-丙酸酯之可商購抗氧化劑,可購自巴斯夫。其按原樣使用。
IRGANOXTM 245為具有化學名稱三乙二醇雙(3-第三丁基-4-羥基-5-甲基苯基)丙酸酯之可商購抗氧化劑,可購自巴斯夫。其按原樣使用。
IRGANOXTM 1035為具有化學名稱雙[3-(3,5-二-第三丁基-4-羥基-苯基)丙酸]硫代二伸乙酯之可商購抗氧化劑,可購自巴斯夫。其按原樣使用。
IRGANOXTM PS802為具有化學名稱3,3'-硫代二丙酸二(十八烷基)酯之可商購抗氧化劑,可購自巴斯夫。其按原樣使用。
CYANOXTM 1790為具有化學名稱1,3,5-參(4-第三丁基-3-羥基-2,6-二甲基苯甲基)-1,3,5-三嗪-2,4,6-三酮之可商購抗氧化劑,可購自氰特工業(Cytec Industries)。其按原樣使用。
硫代二丙酸二硬脂酯(「DSTDP」)為可購自氰特之可商購抗氧化劑。其按原樣使用。
UVINULTM 4050為具有化學名稱1,6-六亞甲基雙[N-甲醯基-N-(2,2,6,6-四甲基哌啶-4-基)胺]之可商購UV穩定劑,可購自巴斯夫。其按原樣使用。
ENDURANCETM HFDA-0801 BK EC為密度為1.05g/cm3之基於聚乙烯-共聚物之可交聯半導體屏蔽化合物,其可購自陶氏化學公司。其按原樣使用。
ENDURANCETM HFDA-0587 BK S為密度為1.09g/cm3之可交聯半導體屏蔽化合物,其可購自陶氏化學公司。其按原樣使用。
實例
實例1
根據以下方法製備兩個電纜芯樣品(樣品1或「S1」,及比較樣品1或「CS1」)。S1之絕緣層為LDPE,所述 LDPE包括0.95wt% DCP、0.45wt% TAIC、0.13wt% DSTDP、0.09wt% Cyanox 1790及20ppm UVINULTM 4050。CS1之絕緣層為BORLINKTM LE4201S,其為包括1.9wt% DCP而無TAIC之LDPE。內半導體層由ENDURANCETM HFDA-0801 BK EC構成。外半導體層由ENDURANCETM HFDA-0587 BK S構成。所採用之導體具有800mm2橫截面。
在VCV線上製備電纜芯。將1mm厚導體護罩(內半導體層)、16mm厚絕緣層及1mm絕緣護罩(外半導體層)同時經由3個擠壓機(60mm、175mm及75mm)擠壓且塗佈於具有800mm2橫截面之導體上。在300℃下且在壓力為10巴之氮氣氛圍下使所獲得電纜芯經歷硫化管以用於固化。
根據上文所描述的測試方法,分析S1及CS1之甲烷含量、固化潛能及熱蠕變。結果提供於下文表1中。
Figure 105113325-A0305-02-0029-11
表1中所提供之結果展示在不犧牲固化潛能(亦即S1之固化潛能(MH)為CS1之固化潛能的幾乎95%)的情況下,關於甲烷含量S1之脫氣時間顯著減少。
實例2
根據下表2中所提供之配方製備六個樣品(S2-S7)及四個比較樣品(CS2-CS5)。藉由在布拉班德(Brabender)混合器中在125℃及30rpm轉子速度下首先摻合LDPE及抗氧化劑來製備S2-S7及CS2-CS5。經由單螺桿擠壓機在125℃下將所得化合物擠壓且粒化。在80℃下將球粒浸於過氧化物或過氧化物及助劑之組合中,持續8小時。
Figure 105113325-A0305-02-0030-12
根據上文所提供之測試方法分析S2-S7及CS2-CS5中之每一者。結果提供於下表3中。
Figure 105113325-A0305-02-0031-13
表3中所提供之結果展示相對於不含聚烯丙基助劑之CS5,含有聚烯丙基助劑之樣品之甲烷含量的較快速減少。另外,雖然CS2-CS4(其含有聚烯丙基助劑)展示相較於S2-S7類似的脫氣結果,但此等樣品展示顯著更高之助劑排出。另外且出人意料地,CS2-CS4展示顯著更高之過氧化物及抗氧化劑排出,即使此等組分以類似於S2-S7之濃度存在。因此,當聚烯丙基助劑以更低濃度(例如,小於約1.2之烯丙基/活性氧比值)存在時,觀測到所有組分在排出中之整體減少。
實例3
根據下表4中所提供之配方,使用上文實例2中所提供之相同製備方法來製備兩個額外樣品(S8-S9)及兩個額外比較樣品(CS6-CS7)。
Figure 105113325-A0305-02-0032-14
根據上文所提供之測試方法分析S8-S9及CS6-CS7中之每一者。結果提供於下表5中。
Figure 105113325-A0305-02-0032-15
表5中所提供之結果展示相對於不含聚烯丙基助劑之CS7,含有聚烯丙基助劑之樣品之甲烷含量的較快速減少。另外,雖然CS6(其含有聚烯丙基助劑)展示相較於S8-S9類似的脫氣結果,但此樣品展示顯著更高之助劑排出。另外, CS6展示顯著更高之抗氧化劑排出,即使抗氧化劑以與S8-S9相同之濃度存在。因此,當聚烯丙基助劑以更低濃度(例如,小於約1.2之烯丙基/活性氧比值)存在時,觀測到助劑及抗氧化劑在排出中之整體減少。
實例4
根據下表6中所提供之配方,使用上文在實例2中所提供之相同製備方法來製備七個額外樣品(S10-S16)及一個額外比較樣品(CS8)。
Figure 105113325-A0305-02-0033-16
根據上文所提供之測試方法分析S10-S16及CS8中之每一者。結果提供於下表7中。
Figure 105113325-A0305-02-0034-17
表7中所提供之結果展示樣品S10-S16實現了可接受之固化潛能(MH),而具有類似過氧化物含量但無聚烯丙基助劑之CS8未實現可接受之固化潛能。
實例5
根據下表8中所提供之配方,使用上文在實例2中所提供之相同製備方法來製備七個額外樣品(S17-S23)及一個額外比較樣品(CS9)。
Figure 105113325-A0305-02-0034-18
根據上文所提供之測試方法分析S17-S23及CS9中之每一者。結果提供於下表9中。
Figure 105113325-A0305-02-0035-19
表9中所提供之結果展示不為TAIC之助劑(具體言之,TAC及TATM)可實現與TAIC相當之固化潛能。相反,含有基於丙烯酸酯之助劑之CS9未實現充足的固化潛能。
實例6(比較)
根據下表10中所提供之配方,使用上文在實例2中所提供之相同製備方法來製備六個額外比較樣品(CS10-CS15)。
Figure 105113325-A0305-02-0035-20
根據上文所提供之測試方法分析CS10-CS15中 之每一者。結果提供於下表11中。
Figure 105113325-A0305-02-0036-21
表11中所提供之結果展示習知交聯聚乙烯化合物實現了充足之固化潛能;然而更高水準之過氧化物將產生增加之甲烷生成及因此延長的脫氣時間段。

Claims (9)

  1. 一種用於製備具有交聯絕緣層之電纜芯之方法,所述方法包括:(a)提供初始電纜芯,其包括:(i)導體;(ii)第一聚合半導體層;(iii)包括可交聯聚合組合物之初始絕緣層,所述可交聯聚合組合物包括基於乙烯之聚合物、有機過氧化物及聚烯丙基交聯助劑;(iv)第二聚合半導體層;及(b)使所述初始電纜芯經歷交聯過程,所述交聯過程足以使所述可交聯聚合組合物之至少一部分交聯,以藉此產生具有交聯絕緣層之所述電纜芯,其中按所述聚烯丙基交聯助劑之烯丙基含量及所述有機過氧化物之活性氧含量計,所述聚烯丙基交聯助劑及所述有機過氧化物以足以提供小於1.2之烯丙基比活性氧莫耳比值的量存在於所述可交聯聚合組合物中,其中當在70℃及標準壓力下使所述交聯絕緣層經歷脫氣過程時,所述交聯絕緣層相對於一參考交聯絕緣層在達到200ppm之甲烷含量的脫氣時間呈現至少50%之減少,所述參考交聯絕緣層除了所述參考交聯絕緣層不含聚烯丙基交聯助劑且相對於所述交聯絕緣層含有按重量計兩倍量的有機過氧化物之外具有與所述交聯絕緣層相同的組成。
  2. 如申請專利範圍第1項所述的方法,其中所述交聯絕緣層 之固化潛能(MH)為所述參考交聯絕緣層之固化潛能之至少75%。
  3. 如申請專利範圍第1項或第2項所述的方法,其中當在70℃及標準壓力下使所述交聯絕緣層經歷脫氣過程時,所述交聯絕緣層相對於所述參考交聯絕緣層在達到150ppm之甲烷含量的脫氣時間呈現至少40%之減少。
  4. 如申請專利範圍第1項或第2項所述的方法,其中當在70℃及標準壓力下使所述交聯絕緣層經歷脫氣過程時,所述交聯絕緣層相對於所述參考交聯絕緣層在達到93ppm之甲烷含量的脫氣時間呈現至少30%之減少。
  5. 如申請專利範圍第1項或第2項所述的方法,其中所述可交聯聚合組合物之烯丙基比活性氧莫耳比值為1.0或小於1.0,其中相對於一參考可交聯聚合組合物,所述可交聯聚合組合物在23℃下儲存兩週時間段時呈現少至少25%助劑排出,所述參考可交聯聚合組合物除了所述參考可交聯聚合組合物之烯丙基比活性氧莫耳比值為1.2之外具有與所述可交聯聚合組合物相同的組成。
  6. 如申請專利範圍第1項或第2項所述的方法,其中所述可交聯聚合組合物之烯丙基比活性氧莫耳比值為1.0或小於1.0,其中相對於一參考可交聯聚合組合物,所述可交聯聚合組合物在23℃下儲存兩週時間段時呈現少至少5%抗氧化劑排出及少至少10%有機過氧化物排出,所述參考可交聯聚合組合物除了所述參考可交聯聚合組合物之烯丙基比活性氧莫耳比值為1.2之外具有與所述可交聯聚合組合物相同的組成。
  7. 如申請專利範圍第1項或第2項所述的方法,其中所述有機過氧化物以按所述可交聯聚合組合物之總重量計,小於1.1重量百分比的量存在於所述可交聯聚合組合物中;其中所述聚烯丙基助劑以按所述可交聯聚合組合物之總重量計,至少0.3重量百分比的量存在於所述可交聯聚合組合物中;其中所述基於乙烯之聚合物以按所述可交聯聚合組合物之總重量計,50至98.9重量百分比範圍內的量存在於所述可交聯聚合組合物中。
  8. 如申請專利範圍第1項或第2項所述的方法,其中所述聚烯丙基交聯助劑為三烯丙基化合物;其中所述有機過氧化物為單官能過氧化物。
  9. 如申請專利範圍第1項或第2項所述的方法,其中所述聚烯丙基交聯助劑選自由以下組成之群:異氰尿酸三烯丙酯(「TAIC」)、氰尿酸三烯丙酯(「TAC」)、苯偏三酸三烯丙酯(「TATM」)及其兩者或兩者以上之混合物;其中所述有機過氧化物選自由以下組成之群:過氧化二異丙苯、雙(第三丁基-過氧基異丙基)苯及其組合;其中所述基於乙烯之聚合物為低密度聚乙烯(「LDPE」)。
TW105113325A 2015-05-22 2016-04-28 用於製備具有交聯絕緣層之電纜之方法及藉由彼等方法製備之電纜 TWI701684B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
WOPCT/CN2015/079610 2015-05-22
PCT/CN2015/079610 WO2016187755A1 (en) 2015-05-22 2015-05-22 Processes for preparing cables with crosslinked insulation layer and cables for same

Publications (2)

Publication Number Publication Date
TW201642286A TW201642286A (zh) 2016-12-01
TWI701684B true TWI701684B (zh) 2020-08-11

Family

ID=57393696

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105113325A TWI701684B (zh) 2015-05-22 2016-04-28 用於製備具有交聯絕緣層之電纜之方法及藉由彼等方法製備之電纜

Country Status (10)

Country Link
US (1) US10689502B2 (zh)
EP (1) EP3298075A4 (zh)
JP (1) JP6591564B2 (zh)
KR (1) KR102448281B1 (zh)
CN (1) CN107614594B (zh)
BR (1) BR112017024075A2 (zh)
CA (1) CA2986302C (zh)
MX (1) MX2017014325A (zh)
TW (1) TWI701684B (zh)
WO (1) WO2016187755A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10539540B2 (en) * 2016-06-10 2020-01-21 Hitachi High-Tech Science Corporation Liquid chromatograph and method for correcting detector output value fluctuation of liquid chromatograph
CN110770289B (zh) 2017-06-29 2022-09-02 陶氏环球技术有限责任公司 聚烯烃组合物
CN108593791A (zh) * 2018-04-11 2018-09-28 广州岭南电缆股份有限公司 一种交联电缆绝缘线芯副产物的检测方法
CN112067653B (zh) * 2020-09-08 2021-08-06 浙江大学 一种评估xlpe平板试样或电缆适宜脱气时间的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200640960A (en) * 2005-03-17 2006-12-01 Dow Global Technologies Inc Filled polymer compositions made from interpolymers of ethylene α -olefins and uses thereof
TW200848437A (en) * 2007-02-05 2008-12-16 Dow Global Technologies Inc A crosslinkable polyethylene composition, method of making the same, and articles made therefrom
CN102725344A (zh) * 2010-01-28 2012-10-10 株式会社维世佳 交联聚烯烃组合物、直流电力电缆和直流电力线路的施工方法
TW201418349A (zh) * 2012-09-12 2014-05-16 Dow Global Technologies Llc 可交聯聚合性組成物、其製造方法以及該組成物所製物件
TW201518367A (zh) * 2013-09-13 2015-05-16 Dow Global Technologies Llc 可與過氧化物交聯的組成物及其製造方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4857600A (en) 1988-05-23 1989-08-15 Union Carbide Corporation Process for grafting diacid anhydrides
US5246783A (en) 1991-08-15 1993-09-21 Exxon Chemical Patents Inc. Electrical devices comprising polymeric insulating or semiconducting members
US5346961A (en) 1993-04-07 1994-09-13 Union Carbide Chemicals & Plastics Technology Corporation Process for crosslinking
US5575965A (en) 1995-05-19 1996-11-19 Union Carbide Chemicals & Plastics Technology Corporation Process for extrusion
JP3602297B2 (ja) * 1997-06-25 2004-12-15 株式会社フジクラ 直流電力ケーブル
US6496629B2 (en) 1999-05-28 2002-12-17 Tycom (Us) Inc. Undersea telecommunications cable
US6086792A (en) * 1999-06-30 2000-07-11 Union Carbide Chemicals & Plastics Technology Corporation Cable semiconducting shields
US6191230B1 (en) * 1999-07-22 2001-02-20 Union Carbide Chemicals & Plastics Technology Corporation Polyethylene crosslinkable composition
JP2001325834A (ja) * 2000-05-15 2001-11-22 Furukawa Electric Co Ltd:The 直流電力ケーブル
US6714707B2 (en) 2002-01-24 2004-03-30 Alcatel Optical cable housing an optical unit surrounded by a plurality of gel layers
ATE456607T1 (de) * 2005-02-28 2010-02-15 Borealis Tech Oy Verfahren zur herstellung vernetzter polymere
DE602007012821D1 (de) 2007-01-09 2011-04-14 Borealis Tech Oy Vernetzungsmittel
EP2854139A1 (en) * 2007-03-15 2015-04-01 Union Carbide Chemicals & Plastics Technology LLC Cable insulation with reduced electrical treeing
EP2015314B1 (en) * 2007-07-12 2012-04-04 Borealis Technology Oy Process for preparing and crosslinking a cable comprising a polymer composition and a crosslinked cable
EP2014707B1 (en) * 2007-07-12 2014-04-23 Borealis Technology Oy Modified polymer compositions, modification process and free radical generating agents for i.a. wire and cable applications
EP2015315B1 (en) 2007-07-12 2012-12-12 Borealis Technology Oy Process for preparing and crosslinking a cable comprising a polymer composition and a crosslinked cable
KR20110039316A (ko) * 2008-07-02 2011-04-15 다우 글로벌 테크놀로지스 엘엘씨 개선된 케이블 탈기 방법
CN102099191B (zh) * 2008-07-10 2014-10-29 北欧化工股份公司 一种电缆的生产方法
EA022361B1 (ru) * 2009-11-11 2015-12-30 Бореалис Аг Сшитая полимерная композиция, кабель с улучшенными электрическими свойствами и способ его получения
RU2579146C2 (ru) 2010-03-17 2016-04-10 Бореалис Аг Полимерная композиция для изготовления проводов и кабелей, обладающая преимущественными электрическими свойствами
ES2461149T3 (es) 2010-10-21 2014-05-16 Borealis Ag Cable que comprende una capa formada por una composición que contiene grupos epoxi
FR2972560A1 (fr) 2011-03-08 2012-09-14 Nexans Cable electrique a moyenne ou haute tension
WO2013166683A1 (en) 2012-05-10 2013-11-14 Dow Global Technologies Llc Ethylene polymer conductor coatings prepared with polybutadiene cross-linking coagents
KR102231397B1 (ko) 2013-03-12 2021-03-25 다우 글로벌 테크놀로지스 엘엘씨 두꺼운 절연 층을 갖는 전력 케이블 및 그의 제조 방법
CN103756163B (zh) 2013-12-31 2016-10-12 上海至正道化高分子材料股份有限公司 Ap1000核电站用1e级k1类电缆绝缘料及制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200640960A (en) * 2005-03-17 2006-12-01 Dow Global Technologies Inc Filled polymer compositions made from interpolymers of ethylene α -olefins and uses thereof
TW200848437A (en) * 2007-02-05 2008-12-16 Dow Global Technologies Inc A crosslinkable polyethylene composition, method of making the same, and articles made therefrom
CN102725344A (zh) * 2010-01-28 2012-10-10 株式会社维世佳 交联聚烯烃组合物、直流电力电缆和直流电力线路的施工方法
TW201418349A (zh) * 2012-09-12 2014-05-16 Dow Global Technologies Llc 可交聯聚合性組成物、其製造方法以及該組成物所製物件
TW201518367A (zh) * 2013-09-13 2015-05-16 Dow Global Technologies Llc 可與過氧化物交聯的組成物及其製造方法

Also Published As

Publication number Publication date
CA2986302C (en) 2022-10-25
WO2016187755A1 (en) 2016-12-01
US10689502B2 (en) 2020-06-23
TW201642286A (zh) 2016-12-01
CN107614594A (zh) 2018-01-19
JP6591564B2 (ja) 2019-10-16
MX2017014325A (es) 2018-03-07
JP2018518804A (ja) 2018-07-12
EP3298075A4 (en) 2019-01-23
CN107614594B (zh) 2021-06-01
CA2986302A1 (en) 2016-12-01
KR20180011137A (ko) 2018-01-31
KR102448281B1 (ko) 2022-09-29
BR112017024075A2 (pt) 2018-07-24
EP3298075A1 (en) 2018-03-28
US20180142080A1 (en) 2018-05-24

Similar Documents

Publication Publication Date Title
US11390699B2 (en) Crosslinkable polymer composition and cable with advantageous electrical properties
US10138353B2 (en) Crosslinkable polymeric compositions with N,N,N′,N′,N″,N″-hexaallyl-1,3,5-triazine-2,4,6-triamine crosslinking coagent, methods for making the same, and articles made therefrom
EP2847266B1 (en) Ethylene polymer conductor coatings prepared with polybutadiene cross-linking coagents
TWI667278B (zh) 具有甲基自由基清除劑之可交聯聚合組合物及由其製得之製品
TWI701684B (zh) 用於製備具有交聯絕緣層之電纜之方法及藉由彼等方法製備之電纜
EP3143084B1 (en) Crosslinkable polymeric compositions with amine-functionalized interpolymers, methods for making the same, and articles made therefrom
CN118382667A (zh) 用于生产具有绝缘层的电缆的方法