TWI696312B - 雙極板、電池框架及電池堆、以及氧化還原液流電池 - Google Patents

雙極板、電池框架及電池堆、以及氧化還原液流電池 Download PDF

Info

Publication number
TWI696312B
TWI696312B TW105119757A TW105119757A TWI696312B TW I696312 B TWI696312 B TW I696312B TW 105119757 A TW105119757 A TW 105119757A TW 105119757 A TW105119757 A TW 105119757A TW I696312 B TWI696312 B TW I696312B
Authority
TW
Taiwan
Prior art keywords
battery
bipolar plate
discharge
flow path
electrolyte
Prior art date
Application number
TW105119757A
Other languages
English (en)
Other versions
TW201711262A (zh
Inventor
藤田勇人
山口英之
寒野毅
伊藤岳文
桑原雅裕
林清明
Original Assignee
日商住友電氣工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商住友電氣工業股份有限公司 filed Critical 日商住友電氣工業股份有限公司
Publication of TW201711262A publication Critical patent/TW201711262A/zh
Application granted granted Critical
Publication of TWI696312B publication Critical patent/TWI696312B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8626Porous electrodes characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/20Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2459Comprising electrode layers with interposed electrolyte compartment with possible electrolyte supply or circulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/10Fuel cells in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)

Abstract

雙極板,係在第1面側配置正極電極,在第2面側配置負極電極的電池用之雙極板,在上述第1面、上述第2面之至少一面具備流通電解液的流路;上述流路具備:上述電解液之導入口;上述電解液之排出口;及溝部,在上述導入口與上述排出口之間,將上述電解液導引至特定路徑;上述溝部具備:複數個縱溝部,當將該雙極板配置於電池之特定位置時,該複數個縱溝部係沿著鉛直方向之同時,並列於和該鉛直方向呈正交的方向。

Description

雙極板、電池框架及電池堆、以及氧化還原液流電池
本發明關於氧化還原液流電池之構成元件亦即雙極板、電池框架及電池堆、以及氧化還原液流電池。特別是關於可以減低電池片(cell)內之內部電阻的雙極板。
近年來伴隨著電力不足之深刻化,世界規模之風力發電或太陽光發電等自然能之急速導入或電力系統之穩定化(例如頻率或電壓之維持等)成為課題。作為該對策技術之一,設置大容量之蓄電池,據以達成輸出變動之平滑化,剩餘電力之貯蓄,負載平準化等被注目。
作為大容量之蓄電池之一有氧化還原液流電池(以下亦稱為RF電池)。RF電池係正極電解液及負極電解液使用含有藉由氧化還原來變化價數之金屬離子(活性物質)的電解液而進行充放電的電池。圖7表示正極電解液及負極電解液之活性物質使用含有V(釩)離子之釩電解液的釩系RF電池100之動作原理圖。圖7中之電池片100C內之實線箭頭表示充電反應,虛線箭頭表示放電 反應。
RF電池100具備電池片100C,該電池片100C藉由透過氫離子的隔膜101來分離正極片102與負極片103。於正極片102內建有正極電極104,而且透過導管108、110連接有對正極電解液進行貯存的正極電解液用槽106。同樣地,於負極片103內建有負極電極105,而且透過導管109、111連接有對負極電解液進行貯存的負極電解液用槽107。正極電解液用槽106、負極電解液用槽107所貯存的電解液在充放電時係藉由泵112、113被循環於正極片102、負極片103內。
上述電池片100C通常如圖8之下圖所示形成於稱為電池堆(cell stack)200的構造體之內部。如圖8之上圖所示,電池堆200係藉由具備與框緣狀之框體122成為一體化的雙極板121之電池框架(cell frame)120,將重疊正極電極104、隔膜101、負極電極105而成的電池片100C予以夾持而進行複數個積層之構成。亦即,在相鄰接的各電池框架120之雙極板121之間形成一個電池片100C,夾持雙極板121而在表背配置相鄰的電池片100C之正極電極104(正極片102)與負極電極105(負極片103)。該構成中,各電池框架120間之間隙藉由密封構造127進行密封。
電解液朝電池堆200中的電池片100C之流通,係藉由形成於框體122的供液用歧管123、124及排液用歧管125、126進行。正極電解液,係由供液用歧管 123經由形成於框體122之一面側(紙面表側)的溝,被供給至配置於雙極板121之第1面側的正極電極104。之後,該正極電解液經由形成於框體122之上部的溝被排出至排液用歧管125。同樣地,負極電解液係由供液用歧管124經由形成於框體122之另一面側(紙面背側)的溝,被供給至配置於雙極板121之第2面側的負極電極105。該負極電解液經由形成於框體122之上部的溝被排出至排液用歧管126。
正極電極104及負極電極105例如係利用所謂碳氈的多孔質導電材,雙極板121例如係利用所謂塑料碳的平板材(專利文獻1)。
[先行技術文獻] [專利文獻]
[專利文獻1]特開2002-367659號公報
要求更進一步提升氧化還原液流電池之電池性能,其一係要求減低電池之內部電阻。該內部電阻增大之要因之一在於電解液之流通狀態,例如在電極之廣範圍中電解液之流通之均一性。但是,習知上,針對在將電極之電解液之流通狀態充分納入考慮之情況下減低內部電阻 一事並未充分進行檢討。
本發明有鑑於上述事情,本發明之目的之一在於提供可以減低電池片內之內部電阻的雙極板。又,本發明之另一目的在於提供具備上述雙極板的電池框架及具備該電池框架的電池堆,以及具備該電池堆的氧化還原液流電池。
本發明之一態樣的雙極板,係在第1面側配置正極電極,在第2面側配置負極電極的電池用之雙極板,在上述第1面、上述第2面之至少一面具備流通電解液的流路。上述流路具備:上述電解液之導入口;上述電解液之排出口;及溝部,在上述導入口與上述排出口之間,將上述電解液導引至特定路徑。上述溝部具備:複數個縱溝部,當將該雙極板配置於電池之特定位置時,該複數個縱溝部係沿著鉛直方向之同時,並列於和該鉛直方向呈正交的方向。
本發明之一態樣的電池框架係具備:上述本發明之一態樣的雙極板;及框體,設於上述雙極板之外周。
本發明之一態樣的電池堆係將複數個積層體積層而成,該積層體係將上述本發明之一態樣的電池框架、正極電極、隔膜、負極電極依序積層而成者。
本發明之一態樣的氧化還原液流電池具備上 述本發明之一態樣的電池堆。
上述雙極板可以減低電池片內之內部電阻。上述電池框架及電池堆以及氧化還原液流電池可以減低電池片內之內部電阻。
1、2、3、4、5‧‧‧雙極板
10‧‧‧流路
11‧‧‧溝部
12‧‧‧導入側流路
12i‧‧‧導入口
12y‧‧‧導入側縱溝部
12x‧‧‧導入側橫溝部(供液整流部)
14‧‧‧排出側流路
14o‧‧‧排出口
14y‧‧‧排出側縱溝部
14x‧‧‧排出側橫溝部(排液整流部)
16‧‧‧脊部分
18y、19y‧‧‧縱溝部
18x、19x‧‧‧橫溝部
100‧‧‧氧化還原液流電池(RF電池)
100C‧‧‧電池片
101‧‧‧隔膜
102‧‧‧正極片
103‧‧‧負極片
104‧‧‧正極電極
105‧‧‧負極電極
106‧‧‧正極電解液用槽
107‧‧‧負極電解液用槽
108~111‧‧‧導管
112、113‧‧‧泵
200‧‧‧電池堆
120‧‧‧電池框架
121‧‧‧雙極板
122‧‧‧框體
123、124‧‧‧供液用歧管
125、126‧‧‧排液用歧管
127‧‧‧密封構造
[圖1]表示實施形態1的雙極板的概略平面圖。
[圖2]表示實施形態1的雙極板的概略斷面圖。
[圖3]表示實施形態2的雙極板的概略平面圖。
[圖4]表示實施形態3的雙極板的概略平面圖。
[圖5]表示實施形態4的雙極板的概略平面圖。
[圖6]表示實施形態5的雙極板的概略平面圖。
[圖7]氧化還原液流電池之概略原理圖。
[圖8]氧化還原液流電池具備的電池堆之概略構成圖。
[圖9]針對試驗例1的試料編號1-1,表示循環數與電池片電阻係數(cell resistivity)之關係的圖表。
[圖10]針對試驗例1的試料編號1-11,表示循環數與電池片電阻係數之關係的圖表。
[圖11]將電池框架、正極電極、隔膜、負極電極依序積層成為積層體,具備將複數個該積層體積層而成之電 池堆的氧化還原液流電池之概略構成圖。
[本發明之實施形態之說明]
本發明人為了減低內部電阻,而針對電極面內的電解液之流通狀態進行檢討。結果獲知,藉由在雙極板設置導引電解液的流路,使電解液容易浸透.擴散至電極,可以在電極之廣範圍均勻地進行電池反應,可以減低內部電阻。但是,如後述試驗例之詳述,基於設於雙極板的流路之形態,在內部電阻會產生誤差。該內部電阻之誤差主要在氧化還原液流電池(RF電池)之運轉開始之後至數循環~數十循環左右之間產生。尤其是,該內部電阻之誤差是在RF電池之運轉開始前針對電解液處於空狀態的電池片內進行電解液之填充後,使RF電池運轉時產生者。例如自RF電池之初期狀態,亦即自電池片未被填充電解液的空狀態對電池片進行電解液之供給後使RF電池運轉時,或自RF電池之待機狀態,亦即自停止泵,為了抑制自行放電之目的暫時將電解液由電池片排出之狀態,再度進行電解液之供給後使RF電池運轉時。
在RF電池之運轉開始前對處於空狀態的電池片供給電解液之後使RF電池運轉時,上述誤差產生的原因推測為對電池片進行電解液之填充時產生的氣泡。空狀態的電池片其內部充滿空氣。該空氣可以藉由對電池片內 之電解液循環予以排出。但是,電池片內之電解液之流速慢,因此氣泡之排出力弱,排出為止需要特定時間。因此基於設於雙極板的流路之形態,氣泡容易停留於電池片內、特別是電極。推測為當氣泡滯留於電極時,電極中的電池反應面積減少,內部電阻增加。於此,本發明人針對電解液之填充後RF電池之運轉開始時能抑制氣泡停留於電極,使電極中的電解液之流通均勻化更進一步進行檢討,而完成本發明。以下,將本發明之實施形態之內容列記進行說明。
(1)本發明之實施形態的雙極板,係在第1面側配置正極電極,在第2面側配置負極電極的電池用之雙極板,在上述第1面、上述第2面之至少一面具備流通電解液的流路。上述流路具備:上述電解液之導入口;上述電解液之排出口;及溝部,在上述導入口與上述排出口之間,將上述電解液導引至特定路徑。上述溝部具備:複數個縱溝部,當將該雙極板配置於電池之特定位置時,該複數個縱溝部係沿著鉛直方向之同時,被並列於和該鉛直方向呈正交的方向。
上述雙極板,因具備流路,沿著該流路可以促進電解液之流通,可以減低電池片內之電解液之流通電阻,可以減低電池片內之電解液之壓力損失。因此,可以減低電池之內部電阻。將上述雙極板配置於電池之特定位置時,將電解液導引至特定路徑的縱溝部係沿著鉛直方向配置,因此對RF電池之運轉開始前處於空狀態的電池片 供給電解液時氣泡容易朝上方排出,不容易殘留氣孔。又,即使電池片內產生氣泡,藉由浮力該氣泡容易沿著縱溝部流動、而被排出。因此電解液對電池片內之填充後RF電池之運轉開始時,氣泡難以停留於電極。因此,可以抑制電極中的電池反應面積之減少,可以抑制電池之內部電阻之增加。
(2)上述雙極板之一例的型態可以是,相鄰接的上述縱溝部彼此在並列方向重複的長度,係雙極板的鉛直方向之長度之45%以上。
縱溝部之長度越長越能增加沿著雙極板之鉛直方向的流路之長度。藉由將縱溝部彼此在並列方向重複的長度設為雙極板的鉛直方向之長度之45%以上,可使電池片內產生的氣泡沿著縱溝部容易由上方被排出,氣泡難以停留於電極。
(3)上述雙極板之一例的形態可以是,相鄰接的上述縱溝部之側緣間之溝間距離,係上述縱溝部的寬度之100%以上700%以下。
縱溝部之橫斷面積越大,越容易減低電池片內的電解液之流通電阻,減少壓力損失。又,相鄰接的縱溝部間之距離越大,雙極板與電極之接觸面積增加,容易在電極之廣範圍均勻地進行電池反應。藉由將相鄰接的縱溝部之側緣間之溝間距離設為縱溝部的寬度之100%以上,容易減低電池片內的電解液之流通電阻,設為700%以下,容易均勻地進行電極中的電池反應。
(4)上述雙極板之一例的形態可以是,上述縱溝部的寬度設為0.1mm以上10mm以下。
藉由將縱溝部的寬度設為0.1mm以上,容易減低電池片內的電解液之流通電阻。另外,藉由將縱溝部的寬度設為10mm以下,相對地可以確保縱溝部間之距離,因此容易均勻地進行電極中的電池反應。
(5)上述雙極板之一例的形態可以是,上述流路具備互相不連通的導入側流路與排出側流路。
上述雙極板係以電解液跨越導入側流路與排出側流路之間的方式來配置電極中的電池反應域。由導入口導入的電解液係跨越上述流路間由排出口被排出,因此可以減少未反應而被排出的電解液量。亦即,可以增加電極中的反應電流量。
(6)作為流路具備導入側流路及排出側流路的上述雙極板之一例的形態可以是,上述導入側流路與上述排出側流路分別具備互相咬合而呈對向配置的梳齒流路,上述梳齒流路具備上述縱溝部。
上述雙極板,基於導入側流路與排出側流路係互相咬合呈對向配置的並列狀態,因此在咬合的梳齒流路部分係以跨越梳齒間的方式配置電極中的電池反應域。和導入側流路與排出側流路不咬合時比較,可以增加在跨越該梳齒間的電池反應域流通的電解液量。亦即,更容易增加電極中的反應電流量。
(7)具備梳齒流路的上述雙極板之一例的形 態可以是,上述梳齒流路之咬合部分的長度設為上述縱溝部的長度之80%以上99%以下。
導入側流路與排出側流路互相咬合呈對向配置時,咬合部分的長度越長,和該長度呈比例地能確保更多電極中的電池反應域。藉由將梳齒流路之咬合部分的長度設為縱溝部的長度之80%以上,可以充分確保電極中的電池反應域,可以增大供給至該區域的電解液量。另外,藉由將梳齒流路之咬合部分的長度設為縱溝部的長度之99%以下,導入側流路與排出側流路不連通可以確實獨立。
(8)上述雙極板之一例的形態可以是,在上述雙極板之雙方之面具備上述流路,由平面透視圖觀察該雙極板時,上述正極電極側之縱溝部與上述負極電極側之縱溝部係至少一部分存在於不重複的位置。
藉由使正極電極側之縱溝部與負極電極側之縱溝部呈偏移,則在電池片內以一對雙極板夾持正負極之各電極及隔膜時,一方雙極板之縱溝部與另一方雙極板之縱溝部呈偏移配置。因此,和一對雙極板之各縱溝部呈對向配置時比較,可以增大機械強度,可以達成雙極板之薄型化。
(9)上述雙極板之一例的形態可以是,上述溝部具備供液整流部及排液整流部之至少一方,該供液整流部係將上述導入口與上述縱溝部之全部導入側端部進行連結者,該排液整流部係將上述排出口與上述縱溝部之全 部排出側端部進行連結者。
上述雙極板具備作為流路的供液整流部,據此由導入口導入的電解液可以均勻地分配至各縱溝部。又,上述雙極板具備作為流路的排液整流部,據此來自各縱溝部的電解液不會滯留而可以由排出口排出。
(10)本發明之實施形態的電池框架,係具備:上述(1)~(9)之任一記載之雙極板;及框體,設於上述雙極板之外周。
上述電池框架具備本發明之實施形態的雙極板,因此可以減低電池片內之電解液之流通電阻,而且可以抑制電極中的電池反應面積之減少,因此可以減低電池之內部電阻。
(11)本發明之實施形態的電池堆係將複數個積層體積層而成,該積層體係將上述(10)記載之電池框架、正極電極、隔膜、負極電極依序積層而成者。
上述電池堆具備本發明之實施形態的電池框架,因此可以減低電池片內之電解液之流通電阻,而且可以抑制電極中的電池反應面積之減少,因此可以減低電池之內部電阻。
(12)本發明之實施形態的氧化還原液流電池係具備上述(11)記載之電池堆。
上述氧化還原液流電池具備本發明之實施形態的電池堆,因此可以減低電池片內之電解液之流通電阻,而且可以抑制電極中的電池反應面積之減少,因此可 以減低電池之內部電阻。
[本發明之實施形態之詳細]
以下說明本發明之實施形態之詳細。又,本發明不限定於彼等例示,亦包含申請專利範圍所示,和申請專利範圍具均等意義及範圍內之全部變更。圖中之同一符號表示同一名稱物。
≪實施形態1≫
實施形態1中,依據圖1、2說明氧化還原液流電池(RF電池)使用的雙極板1。雙極板1以外之構成可以採用和圖7及圖8說明的習知RF電池100同樣之構成,因此省略其詳細說明。為了方便說明,而將圖2所示的雙極板121圖示為較正極電極104及負極電極105厚。
[雙極板]
雙極板1係配置於相鄰接的電池片100C(圖7)之間將各極之電解液予以區隔的導電性構件,代表性者係如圖1所示之長方形狀之平板。雙極板1之表背面分別被相鄰接的電池片100C之中的一方電池片100C之正極電極104與另一方電池片100C之負極電極105夾持。雙極板1之第1面(表面)係面對正極電極104之對向面,第2面(背面)係面對負極電極105之對向面。本實施形態1的雙極板1之主要特徵在於,雙極板1在正極電極104側及 負極電極105側之各面具備使正極電解液及負極電解液流通的流路10,該流路10具有縱溝構造。
.流路
流路10的設置,係為了在各電池片100C內,藉由泵112、113(圖7)對流通於正極電極104、負極電極105的電解液之流動進行調整。流路10係在雙極板1之正極電極104側及負極電極105側之各面,藉由雙極板1之表面之一部分亦即流路內面來形成。如圖2所示,流路內面係由在雙極板1之深度方向凹陷的底面;及由底面垂直延伸的兩側面構成。
流路10具備:電解液之導入口12i;電解液之排出口14o;及在導入口12i與排出口14o之間,用於將電解液導引至特定路徑的溝部11。導入口12i在雙極板1之一方端面(圖1之下側)具有開口,透過形成於電池框架之框體的縫隙連結於供液用歧管123(124)(圖8)。排出口14o在導入口12i之面對雙極板1的另一方端面(圖1之上側)具有開口,透過形成於電池框架之框體的縫隙連結於排液用歧管125(126)(圖8)。
各電池片100C內之電解液之流動之調整係藉由流路10之形狀或寸法等進行調整。本實施形態1的雙極板1之特徵之一在於,溝部11具備:當將雙極板1配置於RF電池100中的特定位置時,沿著鉛直方向之同時,被並列於和該鉛直方向呈正交的方向之複數個導入側 縱溝部12y、排出側縱溝部14y。將具有沿著鉛直方向配置的複數個導入側縱溝部12y、排出側縱溝部14y的流路10之形態稱為縱溝構造。以下說明流路10之形狀,之後說明流路10中的溝部11。
‥流路之形狀
如圖1所示,流路10具備:將電解液導入電極的導入側流路12;由電極排出電解液的排出側流路14。導入側流路12與排出側流路14互不連通而獨立。導入側流路12與排出側流路14分別具備互相咬合而呈對向配置的梳齒流路。導入側流路12之梳齒流路係具備複數個導入側縱溝部12y,排出側流路14之梳齒流路係具備複數個排出側縱溝部14y。亦即,本實施形態1的雙極板1之特徵之一可以是,流路10中,導入側縱溝部12y與排出側縱溝部14y係互相咬合而呈對向配置的咬合型之對向梳齒形狀。
導入側流路12具備:導入口12i;朝雙極板1之橫向(圖1中左右方向)延伸設置的一個導入側橫溝部12x;由導入側橫溝部12x朝雙極板1之縱向(圖1中上下方向)延伸設置,隔開特定間隔C並列配置的複數個導入側縱溝部12y。導入口12i、導入側橫溝部12x、導入側縱溝部12y呈連續。
排出側流路14係和導入側流路12同樣之形狀。排出側流路14具備:排出口14o;在雙極板1之橫 向被延伸設置的一個排出側橫溝部14x;及由排出側橫溝部14x朝雙極板1之縱向延伸設置,隔開特定間隔C並列配置的複數個排出側縱溝部14y。排出口14o、排出側橫溝部14x、排出側縱溝部14y係呈連續。
該例之流路10具備導入側流路12與排出側流路14,由導入口12i導入的電解液流通於導入側橫溝部12x、導入側縱溝部12y、排出側縱溝部14y、排出側橫溝部14x,由排出口14o被排出。亦即,流路10之中溝部11係藉由導入側橫溝部12x、導入側縱溝部12y、排出側縱溝部14y、排出側橫溝部14x構成。
導入側流路12與排出側流路14係將各導入側縱溝部12y、排出側縱溝部14y交互並列。具體言之,在導入側流路12之相鄰接的導入側縱溝部12y間配設有排出側流路14之排出側縱溝部14y。換言之,在排出側流路14之相鄰接的排出側縱溝部14y間配設有導入側流路12之導入側縱溝部12y。該雙極板1中,配置於RF電池100中的特定位置時,導入側縱溝部12y、排出側縱溝部14y係在雙極板1之一面上沿著鉛直方向(圖1之上下方向)配置之同時,沿著和該鉛直方向呈正交的方向相鄰而並列。
導入側流路12之導入側橫溝部12x具有供液整流部之功能,可將由導入口12i導入的電解液均勻地分配至各縱溝部12y。排出側流路14之排出側橫溝部14x具有排液整流部之功能,可使來自各排出側縱溝部14y的 電解液無滯留地由排出口14o排出。該導入側橫溝部12x可以省略排出側橫溝部14x,電解液之整流部係和習知同樣地可以設於電池框架之框體。導入側橫溝部12x省略排出側橫溝部14x時,導入側縱溝部12y中各別之導入側端部在雙極板1之一方端面(圖1之下側)具有開口,排出側縱溝部14y中各個排出側端部在雙極板1之另一方端面(圖1之上側)具有開口。朝雙極板1的電解液之導入口12i成為各導入側縱溝部12y之導入側端部之開口端,來自雙極板1的電解液之排出口14o則成為各排出側縱溝部14y之排出側端部之開口端。
圖1之例之導入口12i及排出口14o,係分別由導入側橫溝部12x、排出側橫溝部14x之橫向之端部,經由在上下方向延伸設置的短的縱溝部,而在雙極板1之端面各一個被形成。導入口12i與排出口14o被具備於長方形狀之雙極板1之大致對角位置。
縱溝構造之流路10時,由導入口12i導入的電解液係形成:沿著溝部11的通流(圖1所示實線箭頭之方向);及通過位於各導入側縱溝部12y、排出側縱溝部14y間的脊部分16而跨越導入側縱溝部12y、排出側縱溝部14y間的通流(圖1、2所示虛線箭頭之方向)。由導入口12i導入至到達排出口14o之間流通於溝部11的電解液,會朝與雙極板1呈對向配置的電極浸透擴散。朝電極內浸透.擴散的電解液會在電極內進行電池反應。特別是,正極電極104及負極電極105中與雙極板1之脊 部分16呈對向配置的區域,基於可以充分確保與電解液之接觸面積,因此可以良好進行電池反應(圖2)。導入的電解液渡過脊部分16被排出,因此可以減少未反應而直接被排出的電解液量。結果,可以增加電極中的反應電流量。又,可以減低RF電池之內部電阻。
‥溝部
如圖2所示,溝部11之斷面形狀為矩形狀。溝部11之斷面形狀可以設為任意之斷面形狀,例如可以是半圓狀或去角部的長方形狀等具有曲線的形狀等。
溝部11在遍及流路10之全體具備一樣的深度D,導入側流路12之導入側橫溝部12x的長度Lxi、導入側縱溝部12y的長度Lyi、導入側縱溝部12y的寬度Wyi與排出側流路14之排出側橫溝部14x的長度Lxo、排出側縱溝部14y的長度Lyo、排出側縱溝部14y的寬度Wyo分別相等。又,導入側流路12之導入側縱溝部12y之間隔Ci與排出側流路14之排出側縱溝部14y之間隔Co相等。如此般構成流路10的溝部11之形狀及尺寸大致相等時,可以使電解液之流動在遍及雙極板1及與雙極板1呈對向配置的電極之全域實質上均勻而較佳。以下,於該實施形態1中將導入側流路12之導入側橫溝部12x的長度Lxi與排出側流路14之排出側橫溝部14x的長度Lxo設為Lx,將導入側縱溝部12y的長度Lyi與排出側縱溝部14y的長度Lyo設為Ly,將導入側縱溝部12y的寬 度Wyi與排出側縱溝部14y的寬度Wyo設為Wy,將導入側縱溝部12y之間隔Ci與排出側縱溝部14y之間隔Co設為C。
溝部11之深度D例如可以是雙極板1的厚度之10%以上45%以下。因為可以充分確保溝部11之斷面積之同時,不會減低雙極板1之強度。在雙極板1之表背面具備溝部11時,溝之深度D過深時會造成機械強度之降低,因此溝之深度D可以考慮在雙極板1的厚度之20%以上40%以下為更佳。
相鄰接的導入側縱溝部12y、排出側縱溝部14y之側緣間之溝間距離R,例如可以是導入側縱溝部12y、排出側縱溝部14y的寬度Wy之100%以上700%以下。導入側縱溝部12y、排出側縱溝部14y之橫斷面積越大,越容易減低電池片100C內的電解液之流動電阻,容易減低壓力損失。另外,相鄰接的導入側縱溝部12y、排出側縱溝部14y間之距離越大,雙極板1與電極之接觸面積增加,容易在電極之廣範圍均勻地進行電池反應。為了可以減低電池片100C內的電解液之流動電阻,而且均勻地進行電極中的電池反應,上述溝間距離R可以考慮設為導入側縱溝部12y及排出側縱溝部14y的寬度Wy之100%以上500%以下為更佳。
導入側縱溝部12y的寬度、排出側縱溝部14y的寬度Wy,可以在和上述溝間距離R之對應關係下,以及橫斷面積成為充分大之情況下對應於上述深度D適宜選 擇。導入側縱溝部12y的寬度、排出側縱溝部14y的寬度Wy較好是0.1mm以上10mm以下,更好是0.7mm以上1.5mm以下。
導入側縱溝部12y的長度及排出側縱溝部14y的長度Ly越長,沿著雙極板1之鉛直方向的流路的長度可以增長。該導入側縱溝部12y、排出側縱溝部14y的長度Ly與雙極板1之鉛直方向的長度Lh間之比率(Ly/Lh)×100,較好是在50%以上90%以下,更好是60%以上80%以下。又,相鄰接的導入側縱溝部12y、排出側縱溝部14y彼此間重複的長度越長,則藉由渡過位於導入側縱溝部12y、排出側縱溝部14y間的脊部分16而可以良好地進行電極之電池反應。該相鄰接的導入側縱溝部12y、排出側縱溝部14y彼此之重複長度Lo與雙極板1之鉛直方向的長度Lh之比率(Lo/Lh)×100在45%以上85%以下為較佳,55%以上75%以下為更佳。
咬合型之對向梳齒形狀中,導入側流路12與排出側流路14之各梳齒流路之咬合部分的長度Lo越長,和該長度呈比例地可以充分確保更多電極中面對脊部分16配置的對向區域。伴隨此,可以增大供給至該區域的電解液量。該梳齒流路之咬合部分的長度Lo與導入側縱溝部12y、排出側縱溝部14y的長度Ly之比率(Lo/Ly)×100較好是在80%以上99%以下,更好是90%以上98%以下。
如圖2所示,該例中,在雙極板121之表背 面具備流路時,由平面透視圖觀察雙極板1時,導入側縱溝部12y、排出側縱溝部14y可以是至少一部分存在於不重複的位置。在雙極板121之表背面藉由使導入側縱溝部12y、排出側縱溝部14y偏移,如此則電池片100C中藉由一對雙極板121、121夾持正負極之各正極電極104、負極電極105及隔膜101時,在與各電極相接的面中一方雙極板之導入側縱溝部12y、排出側縱溝部14y與另一方雙極板之導入側縱溝部12y、排出側縱溝部14y呈偏移配置。和一對雙極板之各導入側縱溝部12y、排出側縱溝部14y呈對向配置時比較,藉由該偏移可以增大機械強度,雙極板之薄型化成為可能。在雙極板1之表背面具備流路10時,由平面透視圖觀察雙極板1時,導入側縱溝部12y、排出側縱溝部14y可以存在重複的位置。
‥構成材料
雙極板1之構成材料可以利用電阻較小的導電性材料,與電解液不起反應,對電解液具有耐性(耐藥品性,耐酸性等)者。另外,雙極板1之構成材料具有適度的剛性為較佳。構成流路10的溝部11之形狀或尺寸可以維持長期不容易變化,藉由具有流路10可以容易維持流通電阻之減低效果、壓力損失之減低效果。具體的構成材料可以是含有碳材及有機材的複合材料,更具體言之例如包含石墨等導電性無機材與聚烯烴系有機化合物或氯化有機化合物等有機材的導電性塑料。
碳材除石墨以外可以是碳黑、類鑽石碳(DLC)等。碳黑可以是乙炔黑或爐黑等。碳材以包含石墨者為較佳。碳材可以石墨為主體,一部分包含碳黑及DLC之至少一方。導電性無機材除碳材以外可以包含鋁等之金屬。導電性無機材可以是粉末或纖維。
聚烯烴系有機化合物例如為聚乙烯、聚丙烯、聚丁烯等。氯化有機化合物例如為氯乙烯、氯化聚乙烯、氯化石蠟等。
具備流路10的雙極板1,可以藉由射出成型、沖壓成型、真空成型等公知之方法將上述構成材料成形為板狀之同時,亦成形成為流路10的溝部11(導入側縱溝部12y、排出側縱溝部14y及導入側橫溝部12x、排出側橫溝部14x)來製造。同時成形溝部11具有雙極板1之製造性優點。亦可以藉由切削加工等形成不具有流路10的平板材,形成成為流路10的溝部11(導入側縱溝部12y、排出側縱溝部14y及導入側橫溝部12x、排出側橫溝部14x)。
[效果]
縱溝構造之流路10之情況下,導入側縱溝部12y、排出側縱溝部14y沿著鉛直方向配置,對RF電池之運轉開始前處於空狀態的電池片供給電解液時氣泡難以產生。又,即使電池片內產生氣泡該氣泡朝排出口14o被排出。因此在電解液對電池片之填充後的RF電池之運轉開始之 際,氣泡難以停留於電極。結果,可以抑制電極中的電池反應面積之減少,可以抑制RF電池之內部電阻之增加。
特別是,藉由流路10為具備導入側流路12與排出側流路14的咬合型之對向梳齒形狀,如此則在導入側流路12之導入側縱溝部12y與排出側流路14之排出側縱溝部14y之間以跨越脊部分16的方式形成電極中的電池反應域。藉由該電池反應域可以充分確保與電解液之接觸面積,因此可以良好地進行電池反應。
[雙極板以外之RF電池之構成]
上述雙極板1之說明中論及雙極板1以外之RF電池100(參照圖7、8)之構成可以採用和習知相同者。本實施形態1的RF電池具備:將正極電極、隔膜、負極電極重疊而成的電池片;及電池框架,其具有與框緣狀之框體被一體化的雙極板;以電池框架夾持電池片並積層複數個,雙極板採用具備上述本實施形態之流路10的雙極板1。亦即,在相鄰接的各電池框架之雙極板1之間形成一個電池片,夾持雙極板1而在表背配置相鄰接的電池片之正極電極與負極電極。
電解液係如圖7所示可以使用以釩離子作為各極活性物質的釩系電解液。其他,亦可以使用以鐵(Fe)離子作為正極活性物質,以鉻(Cr)離子作為負極活性物質的鐵(Fe2+/Fe3+)-鉻(Cr3+/Cr2+)系電解液,或以錳(Mn)離子作為正極電解液,以鈦(Ti)離子作為 負極電解液的錳(Mn2+/Mn3+)-鈦(Ti4+/Ti3+)系電解液。
≪實施形態2≫
實施形態2中說明具有圖3所示非咬合型之對向梳齒形狀之流路10的雙極板2。非咬合型之對向梳齒形狀係指,導入側流路12之梳齒流路與排出側流路14之梳齒流路互相不咬合而被對向配置之形狀。雙極板2之基本構成和實施形態1的雙極板1同樣,僅流路10之形態不同。
導入側流路12具備:導入口12i;在雙極板2之橫向(圖3之左右方向)延伸設置的一個導入側橫溝部12x;及由導入側橫溝部12x朝雙極板2之縱向(圖3中之上下方向)延伸設置,隔開特定間隔並列配置的複數個導入側縱溝部12y。雙極板2之導入側縱溝部12y,其個數較雙極板1之導入側縱溝部12y多,長度較短。導入口12i、導入側橫溝部12x、導入側縱溝部12y係連續。
排出側流路14係和導入側流路12同樣之形狀。排出側流路14具備:排出口14o;在雙極板2之橫向被延伸設置的一個排出側橫溝部14x;及由排出側橫溝部14x朝雙極板2之縱向延伸設置,隔開特定間隔並列配置的複數個排出側縱溝部14y。雙極板2之排出側縱溝部14y,亦較雙極板1之排出側縱溝部14y之個數多,長度較短。雙極板2中,排出側縱溝部14y之個數與導入側縱溝部12y之個數相同。又,排出側縱溝部14y的長度Lyo 與導入側縱溝部12y的長度Lyi相同。排出口14o、排出側橫溝部14x、排出側縱溝部14y呈連續。
雙極板2中,導入側縱溝部12y與排出側縱溝部14y在上下呈對稱配置。因此,相鄰接的縱溝部係導入側縱溝部12y、12y彼此,或排出側縱溝部14y、14y彼此。雙極板2,當配置於RF電池100中的特定位置時,導入側縱溝部12y、排出側縱溝部14y分別沿著鉛直方向(圖3中之上下方向)被配置之同時,導入側縱溝部12y彼此及排出側縱溝部14y彼此被並列於和該鉛直方向呈正交的方向。導入側縱溝部12y與排出側縱溝部14y呈上下對稱配置,導入側縱溝部12y的長度Lyi和排出側縱溝部14y的長度Lyo之合計長度(Lyi+Lyo),與雙極板2之鉛直方向的長度Lh間的比率[(Lyi+Lyo)/Lh)]×100可以是70%以上99%以下,更好是75%以上99%以下。
由導入口12i導入的電解液,係形成沿著溝部11的通流(圖3所示實線箭頭之方向);及通過位於各導入側縱溝部12y、12y間及排出側縱溝部14y、14y間的脊部分16之通流(圖3所示傾斜的虛線箭頭之方向);及通過位於導入側流路12之導入側縱溝部12y與排出側流路14之排出側縱溝部14y之間的脊部分16的通流(圖3所示朝縱向之虛線箭頭之方向)。即使是非咬合型之梳齒形狀,亦可以跨越相鄰接的導入側縱溝部12y、12y間、排出側縱溝部14y、14y間、及位於上下的導入側縱溝部12y、排出側縱溝部14y間的方式進行電極中的電池 反應,可以減少未反應而直接被排出的電解液量,可以增加電極中的反應電流量。又,可以減低RF電池之內部電阻。
又,即使是非咬合型之梳齒形狀,導入側縱溝部12y、排出側縱溝部14y亦沿著鉛直方向被配置,因此在電解液對電池片之填充後開始RF電池之運轉時,氣泡難以停留於電極,可以抑制電極中的電池反應面積之減少,可以抑制RF電池之內部電阻之增加。
≪實施形態3≫
實施形態3說明具有圖4所示一連串栅格形狀之流路10的雙極板3。栅格形狀係指導入側流路與排出側流路連通的形狀。雙極板3之基本構成係和實施形態1的雙極板1同樣,僅流路10之形態不同。
流路10之溝部11係具備:在雙極板3之縱向(圖4中之上下方向)被延伸設置,隔開特定間隔並列配置的複數個縱溝部18y;及將各縱溝部18y之導入側及排出側之各端部連結的一對橫溝部18x、18x。導入側之橫溝部18x(圖4之下側),係一端(圖4之右側)連結於導入口12i,另一端(圖4之左側)經由縱溝部18y連結於排出口14o。排出側之橫溝部18x(圖4之上側),係一端(圖4之左側)連結於排出口14o,另一端(圖4之右側)經由縱溝部18y連結於導入口12i。導入口12i、一對橫溝部18x、18x、各縱溝部18y及排出口14o呈連 續。
雙極板3中,由導入口12i導入的電解液亦形成以下通流:沿著溝部11的通流(圖4所示實線箭頭之方向);及通過位於各縱溝部18y、18y間的脊部分16而跨越縱溝部18y、18y間的通流(圖4所示虛線箭頭之方向)。藉由通過該脊部分16而以跨越縱溝部18y、18y間的方式進行電極中的電池反應,可以減少未反應而直接排出的電解液量,可以增加電極中的反應電流量。又,可以減低RF電池之內部電阻。
雙極板3中,縱溝部18y係由導入口12i連通至排出口14o,因此在電解液對電池片之填充後開始RF電池之運轉時,電池片內之氣泡容易被排出,氣泡難以停留於電極。因此,雙極板3中,更進一步容易抑制電極中的電池反應面積之減少,容易抑制RF電池之內部電阻之增加。
≪實施形態4≫
實施形態4中說明具有圖5所示斷續形狀之流路10的雙極板4。雙極板4係將實施形態1說明的雙極板1(圖1)中的各導入側縱溝部12y、排出側縱溝部14y以斷續方式(非連續式)形成的形態。藉由將導入側縱溝部12y、排出側縱溝部14y設為斷續形狀,電解液不僅經由寬度方向之脊部分16,亦經由縱向相鄰接的縱溝部間之脊部分16而以跨越各縱溝部間的方式進行電極中的電池 反應,因此可以增加電極中的反應電流量。
≪實施形態5≫
實施形態5中說明具有圖6所示一連串蛇行形狀之流路10的雙極板5。一連串蛇行形狀係指,由導入口12i至排出口14o以一連串溝部11形成的形狀。溝部11具備:並列的複數個縱溝部19y;及將複數個縱溝部19y之一端彼此或另一端彼此交互連結的複數個短的橫溝部19x。
雙極板5中,由導入口12i導入的電解液亦形成以下通流:沿著溝部11的通流(圖6所示實線箭頭之方向);及通過位於各縱溝部19y、19y間的脊部分16而跨越縱溝部19y、19y間的通流(圖6所示虛線箭頭之方向)。藉由通過該脊部分16而以跨越縱溝部19y、19y間的方式進行電極中的電池反應,可以減少未反應而直接排出的電解液量,可以增加電極中的反應電流量。
≪實施形態6≫
實施形態6中說明圖11中具備電池堆的氧化還原液流電池,該電池堆係將上述電池框架、正極電極、隔膜、負極電極依序積層成為積層體,將複數個積層體積層而成者。該氧化還原液流電池基於具備本發明實施形態的電池堆,因此可以減低電池片內之電解液之流動電阻,而且可以抑制電極中的電池反應面積之減少,因此可以減低電池之內部電阻。
≪試驗例1≫
試驗例1中,針對將具有咬合型梳齒形狀之流路的雙極板配置於特定位置的RF電池,實際製作電池片,對RF電池之內部電阻進行調查。試驗例1中,製作使用流路為縱溝構造之雙極板的試料編號1-1,及使用流路為橫溝構造之雙極板的試料編號1-11等2種類之RF電池。使用的RF電池之規格如以下所示。又,試驗例1中,係將重複正極電極-隔膜-負極電極而成的電池片,藉由具備雙極板的電池框架進行夾持而成為單一電池片(single cell)構造之RF電池。因此RF電池之內部電阻以電池片電阻係數來表示。
[試料編號1-1] .雙極板
尺寸:長度200mm,寬度198mm,厚度6.2mm
流路形狀:具備導入側流路與排出側流路的咬合型之對向梳齒形狀(圖1)
縱溝部
個數:導入側流路16個×排出側流路16個
長度Ly:150mm
重複長度Lo:142mm
寬度Wy:1.3mm
深度D:1.0mm
溝間距離R:3.9mm
斷面形狀:矩形形狀
橫溝部
長度Lx:170mm
構成材料:將石墨80%與作為基體樹脂(matrix resin)的聚丙烯20%進行壓粉成形為雙極板
.電極
尺寸:長度170mm,寬度150mm,厚度0.5mm
構成材料:包含碳纖維與黏合劑碳的碳氈SGL CARBON JAPAN Co.,Ltd.製 GDL10AA
.隔膜
構成材料:E.I.du Pont de Nemours and Company製 納菲薄膜(Nafion)(登錄商標)212
.電解液
組成:硫酸V水溶液(V濃度:1.7mol/L,硫酸濃度:4.3mol/L)
流量:5.4mL/min
[試料編號1-11] .雙極板
尺寸:長度200mm,寬度198mm,厚度6.2mm
流路形狀:具備導入側流路與排出側流路的咬合型之對向梳齒形狀
導入側流路:具備導入口;及在雙極板之縱 向(鉛直方向)被延伸設置的一個縱溝部;及由縱溝部朝雙極板之橫向(與鉛直方向呈正交的方向)延伸設置,隔開特定間隔並列配置的複數個橫溝部;排出側流路:具備排出口;及據此雙極板之縱向(鉛直方向)被延伸設置的一個縱溝部;及由縱溝部朝雙極板之橫向(與鉛直方向呈正交的方向)延伸設置,隔開特定間隔並列配置的複數個橫溝部;電解液之流動:導入口
Figure 105119757-A0202-12-0030-12
導入側縱溝部
Figure 105119757-A0202-12-0030-13
導入側橫溝部
Figure 105119757-A0202-12-0030-14
排出側橫溝部
Figure 105119757-A0202-12-0030-15
排出側縱溝部
Figure 105119757-A0202-12-0030-16
排出口
橫溝部
個數:導入側流路16個×排出側流路16個
長度Lx:150mm
重複長度Lo:142mm
寬度Wy:1.3mm
深度D:1.0mm
溝間距離R:3.9mm
斷面形狀:矩形形狀
縱溝部
長度Ly:170mm
構成材料:包含碳纖維與黏合劑碳的碳氈SGL CARBON JAPAN Co.,Ltd.製 GDL10AA
.電極、隔膜、電解液:和試料編號1-1相同
對製作的各試料之單一電池片構造之RF電池(電解液為空之狀態)進行電解液之供給、填充後,以電 流密度:0.2A/cm2之定電流進行充放電。試驗例1中,在到達事先設定的特定之切換電壓後,由充電切換為放電而進行複數循環之充放電。各循環之充放電後,針對各試料求出電池片電阻係數(Ω.cm2)。電池片電阻係數係求出各循環中充電時之通電電壓與放電時之通電電壓之差分及通電電流,而設為電壓/電流。
試料編號1-1之結果如圖9所示,試料編號1-11之結果如圖10所示。圖9及圖10中分別以橫軸表示充放電之循環數,縱軸表示電池片電阻係數(Ω.cm2)。
如圖9所示可知,使用流路為縱溝構造之雙極板的試料編號1-1,自RF電池之運轉開始初期未顯現電池片電阻係數之增加,可以進行穩定的運轉。此推測為,使用流路為縱溝構造之雙極板時,雙極板具有沿著鉛直方向並列的縱溝部,電解液之填充時產生的氣泡可以排出至上方。亦即,電解液之填充時氣泡可以被排出,因此RF電池之開始運轉之後,氣泡所造成電極之電池反應面積之減少實質上不存在。
另外,如圖10所示,使用流路為橫溝構造之雙極板的試料編號1-11,自RF電池之運轉開始之後至20循環左右之充放電之間會有電池片電阻係數之誤差產生。此推測為使用流路為橫溝構造之雙極板時,沿著和鉛直方向呈正交的方向被並列的橫溝部佔有雙極板之主要部分,電解液之填充時產生的氣泡基於浮力而上昇、碰撞橫溝部之壁面而滯留於電極。因為氣泡滯留於電極,造成電極中 的電池反應面積減少,未能進行充分的電池反應。又,流路為橫溝構造的試料編號1-11中,在20循環左右以上之充放電時,電池片電阻係數呈穩定之傾向。此推測為經由電池片內的電解液之循環,隨著時間而將氣泡排出。
1‧‧‧雙極板
10‧‧‧流路
11‧‧‧溝部
12‧‧‧導入側流路
12i‧‧‧導入口
12x‧‧‧導入側橫溝部(供液整流部)
12y‧‧‧導入側縱溝部
14‧‧‧排出側流路
14o‧‧‧排出口
14x‧‧‧排出側橫溝部(排液整流部)
14y‧‧‧排出側縱溝部
16‧‧‧脊部分
Lxi‧‧‧導入側橫溝部12x的長度
Lyi‧‧‧導入側縱溝部12y的長度
Lxo‧‧‧排出側橫溝部14x的長度
Lyo‧‧‧排出側縱溝部14y的長度
Ci‧‧‧導入側縱溝部12y之間隔
Co‧‧‧排出側縱溝部14y之間隔
Lh‧‧‧雙極板1之鉛直方向的長度
Lo‧‧‧排出側縱溝部14y彼此之重複長度
R‧‧‧溝間距離

Claims (8)

  1. 一種雙極板,係在第1面側配置正極電極,在第2面側配置負極電極的電池用之雙極板,在上述第1面、上述第2面之至少一面具備流通電解液的流路;上述流路具備:上述電解液之導入口;上述電解液之排出口;及溝部,在上述導入口與上述排出口之間,將上述電解液導引至特定路徑;上述溝部具備:複數個縱溝部,當將該雙極板配置於電池之特定位置時,該複數個縱溝部係沿著鉛直方向之同時,並列於和該鉛直方向呈正交的方向;相鄰接的上述縱溝部之側緣間之溝間距離,係上述縱溝部的寬度之100%以上700%以下;上述流路具備互相不連通的導入側流路及排出側流路;上述導入側流路與上述排出側流路分別具備互相咬合而呈對向配置的梳齒流路,上述梳齒流路具備上述縱溝部;上述梳齒流路之咬合部分的長度設為上述縱溝部的長度之80%以上且99%以下;上述溝部之深度為上述雙極板之厚度的10%以上且45%以下。
  2. 如申請專利範圍第1項之雙極板,其中相鄰接的上述縱溝部彼此在並列方向重複的長度,係雙極板的鉛直方向的長度之45%以上。
  3. 如申請專利範圍第1或2項之雙極板,其中上述縱溝部的寬度設為0.1mm以上10mm以下。
  4. 如申請專利範圍第1或2項之雙極板,其中在上述雙極板之雙方之面具備上述流路,由平面透視圖觀察該雙極板時,上述正極電極側之縱溝部與上述負極電極側之縱溝部,係至少一部分存在於不重複的位置。
  5. 如申請專利範圍第1或2項之雙極板,其中上述溝部具備供液整流部及排液整流部之至少一方,該供液整流部係將上述導入口與上述縱溝部之全部導入側端部進行連結者,該排液整流部係將上述排出口與上述縱溝部之全部排出側端部進行連結者。
  6. 一種電池框架,具備:如申請專利範圍第1至5項中任一項之雙極板;及框體,設於上述雙極板之外周。
  7. 一種電池堆,係將複數個積層體積層而成,該積層體係將如申請專利範圍第6項之電池框架、正極電極、隔膜、負極電極依序積層而成者。
  8. 一種氧化還原液流電池,具備如申請專利範圍第7項之電池堆。
TW105119757A 2015-06-23 2016-06-23 雙極板、電池框架及電池堆、以及氧化還原液流電池 TWI696312B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015125352 2015-06-23
JP2015-125352 2015-06-23

Publications (2)

Publication Number Publication Date
TW201711262A TW201711262A (zh) 2017-03-16
TWI696312B true TWI696312B (zh) 2020-06-11

Family

ID=57585118

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105119757A TWI696312B (zh) 2015-06-23 2016-06-23 雙極板、電池框架及電池堆、以及氧化還原液流電池

Country Status (8)

Country Link
US (1) US10593964B2 (zh)
EP (1) EP3316376B1 (zh)
JP (1) JP6819885B2 (zh)
KR (1) KR20180020165A (zh)
CN (1) CN107710487B (zh)
AU (1) AU2016284157B2 (zh)
TW (1) TWI696312B (zh)
WO (1) WO2016208482A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2016402258A1 (en) * 2016-12-22 2018-07-12 Sumitomo Electric Industries, Ltd. Cell frame, cell stack, and redox flow battery
AU2017393759B2 (en) * 2017-01-19 2022-10-13 Sumitomo Electric Industries, Ltd. Bipolar plate, cell frame, cell stack and redox flow battery
WO2019012984A1 (ja) * 2017-07-13 2019-01-17 住友電気工業株式会社 双極板、セルフレーム、電池セル、セルスタック、及びレドックスフロー電池
EP3680974A4 (en) * 2017-09-08 2020-09-09 Sumitomo Electric Industries, Ltd. REDOX FLOW BATTERY CELL, STACK OF REDOX FLOW BATTERY CELLS AND REDOX FLOW BATTERY
IT201800004325A1 (it) * 2018-04-09 2019-10-09 Batteria a flusso
CN111224144B (zh) * 2018-11-26 2024-04-16 中国科学院大连化学物理研究所 一种液流电池电堆结构及其应用
CN109860665B (zh) * 2019-01-21 2020-08-21 西安交通大学 一种低泵功液流电池及其工作方法
AU2020223584A1 (en) * 2019-02-14 2021-08-26 Sumitomo Electric Industries, Ltd. Bipolar plate, cell frame, cell stack, and redox flow battery
CN110690488A (zh) * 2019-11-13 2020-01-14 上海海事大学 一种液流电池
EP4224584A1 (en) * 2020-09-29 2023-08-09 Sumitomo Electric Industries, Ltd. Bipolar plate, cell frame, battery cell, cell stack, and redox flow battery
CN117374293B (zh) * 2023-12-07 2024-03-08 北京普能世纪科技有限公司 一体化电极和包含其的液流电池

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120244395A1 (en) * 2009-12-18 2012-09-27 Perry Michael L Flow battery with interdigitated flow field

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3642697B2 (ja) 1999-03-05 2005-04-27 住友電気工業株式会社 流体流通型電池用セル
JP3682244B2 (ja) 2001-06-12 2005-08-10 住友電気工業株式会社 レドックスフロー電池用セルフレーム及びレドックスフロー電池
WO2011089521A2 (en) * 2010-01-25 2011-07-28 Ramot At Tel-Aviv University Ltd. Method of manufacturing proton-conducting membranes
US9123962B2 (en) * 2011-02-07 2015-09-01 United Technologies Corporation Flow battery having electrodes with a plurality of different pore sizes and or different layers
US20130029196A1 (en) * 2011-07-29 2013-01-31 Pratt & Whitney Rocketdyne, Inc. Flow battery cells arranged between an inlet manifold and an outlet manifold
WO2013095378A1 (en) * 2011-12-20 2013-06-27 United Technologies Corporation Flow battery with mixed flow
CN103579658B (zh) * 2012-08-03 2016-01-06 上海神力科技有限公司 一种液流电池堆
US9685651B2 (en) * 2012-09-05 2017-06-20 Ess Tech, Inc. Internally manifolded flow cell for an all-iron hybrid flow battery
CN103094600B (zh) * 2013-01-31 2015-09-23 中国东方电气集团有限公司 一种液流半电池和具有其的液流电池堆
GB2515994A (en) * 2013-04-08 2015-01-14 Acal Energy Ltd Fuel cells
JP2014207122A (ja) 2013-04-12 2014-10-30 パナソニック株式会社 双極板及びその製造方法
WO2014205494A1 (en) * 2013-06-27 2014-12-31 Eden Research And Development Pty Ltd Laminar flow battery
JP6103386B2 (ja) * 2014-01-24 2017-03-29 住友電気工業株式会社 レドックスフロー電池
JP6201876B2 (ja) * 2014-04-23 2017-09-27 住友電気工業株式会社 双極板、レドックスフロー電池、及び双極板の製造方法
JP6108008B1 (ja) * 2016-05-30 2017-04-05 住友電気工業株式会社 双極板、セルフレーム及びセルスタック、並びにレドックスフロー電池
CN108370056A (zh) * 2016-10-12 2018-08-03 住友电气工业株式会社 双极板、单元框架、单元堆和氧化还原液流单元
EP3544103B1 (en) * 2016-11-16 2023-06-07 Sumitomo Electric Industries, Ltd. Cell frame, cell stack, and redox flow battery
JP6696696B2 (ja) * 2017-03-21 2020-05-20 株式会社東芝 電気化学反応装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120244395A1 (en) * 2009-12-18 2012-09-27 Perry Michael L Flow battery with interdigitated flow field

Also Published As

Publication number Publication date
EP3316376A1 (en) 2018-05-02
CN107710487A (zh) 2018-02-16
EP3316376B1 (en) 2020-07-22
AU2016284157A1 (en) 2018-01-18
KR20180020165A (ko) 2018-02-27
US10593964B2 (en) 2020-03-17
TW201711262A (zh) 2017-03-16
JPWO2016208482A1 (ja) 2018-04-12
WO2016208482A1 (ja) 2016-12-29
US20180190999A1 (en) 2018-07-05
AU2016284157B2 (en) 2020-11-19
CN107710487B (zh) 2021-03-16
JP6819885B2 (ja) 2021-01-27
EP3316376A4 (en) 2018-05-30

Similar Documents

Publication Publication Date Title
TWI696312B (zh) 雙極板、電池框架及電池堆、以及氧化還原液流電池
CN108352554B (zh) 双极板、电池框架、电池堆以及氧化还原液流电池
EP3136490B1 (en) Bipolar plate, redox flow battery, and method for producing bipolar plate
KR101667123B1 (ko) 혼류를 갖는 플로우 배터리
WO2016189970A1 (ja) レドックスフロー電池
JP6970389B2 (ja) 双極板、セルスタック、及びレドックスフロー電池
WO2014117379A1 (zh) 多孔电极组、液流半电池和液流电池堆
JPWO2018134956A1 (ja) 双極板、セルフレーム、セルスタック、及びレドックスフロー電池
KR20170034995A (ko) 플로우 프레임 및 그를 갖는 레독스 플로우 이차전지
US20220093942A1 (en) Battery cell, cell stack, and redox flow battery
JP7068613B2 (ja) レドックスフロー電池セル及びレドックスフロー電池
TW202036971A (zh) 電池單元、單元堆及氧化還原電池
US11811105B2 (en) Battery cell, cell stack, and redox flow battery
JPWO2019234867A1 (ja) 双極板、セルフレーム、セルスタック、及びレドックスフロー電池
KR20200116557A (ko) 셀 프레임, 전지 셀, 셀 스택, 및 레독스 플로우 전지