TWI696302B - Light emitting diode array package structure with high thermal conductivity - Google Patents

Light emitting diode array package structure with high thermal conductivity Download PDF

Info

Publication number
TWI696302B
TWI696302B TW108117755A TW108117755A TWI696302B TW I696302 B TWI696302 B TW I696302B TW 108117755 A TW108117755 A TW 108117755A TW 108117755 A TW108117755 A TW 108117755A TW I696302 B TWI696302 B TW I696302B
Authority
TW
Taiwan
Prior art keywords
emitting diode
transparent
high thermal
thermal conductivity
heat
Prior art date
Application number
TW108117755A
Other languages
Chinese (zh)
Other versions
TW202044626A (en
Inventor
蘇忠傑
Original Assignee
國立臺灣科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立臺灣科技大學 filed Critical 國立臺灣科技大學
Priority to TW108117755A priority Critical patent/TWI696302B/en
Priority to US16/508,537 priority patent/US20200028047A1/en
Application granted granted Critical
Publication of TWI696302B publication Critical patent/TWI696302B/en
Publication of TW202044626A publication Critical patent/TW202044626A/en

Links

Images

Landscapes

  • Led Device Packages (AREA)

Abstract

A light emitting diode (LED) array package structure with high thermal conductivity includes a package substrate, a light emitting diode array, a high thermal conductive color conversion layer and a transparent ceramic substrate. The high thermal conductive color conversion layer is made of a mixture of transparent optical resin, phosphor powder and transparent ceramic filler, and is directly dispensed on the LED array and the package substrate. The transparent ceramic substrate is in direct contact with the upper surface of the high thermal conductive color conversion layer. A portion of the transparent ceramic filler contacts the package substrate while another portion is in contact with the transparent ceramic substrate. The conduction and radiation heat generated by the high thermal conductive color conversion layer itself due to color conversion, and the conductive heating caused by the LED chips, both can be removed through either the package substrate or the transparent ceramic substrate, thereby improving the white light output power and being suitable for implementing with polymeric optical components to reduce glare and enhance luminous efficiency.

Description

具有高導熱效果的發光二極體陣列封裝結構Light-emitting diode array packaging structure with high heat conduction effect

本發明與一種發光二極體的封裝結構有關,特別是與一種能同時解決高溫與眩光問題的發光二極體陣列封裝結構有關。 The invention relates to a packaging structure of a light-emitting diode, in particular to a packaging structure of a light-emitting diode array capable of solving the problems of high temperature and glare at the same time.

習知的發光二極體照明裝置若要使用亮度大於1000流明之高亮度白光發光二極體光源,其光源部分通常需要使用以二維陣列的形式來進行封裝的藍光發光二極體陣列,並以黃色螢光層覆蓋該藍光發光二極體陣列,以供轉換發光顏色。 If the conventional light-emitting diode lighting device uses a high-brightness white light-emitting diode light source with a brightness greater than 1000 lumens, the light source part usually needs to use a blue light-emitting diode array packaged in the form of a two-dimensional array, and The blue light emitting diode array is covered with a yellow fluorescent layer for conversion of light emitting color.

如圖1所示,一習知的發光二極體陣列的晶片直接封裝結構100(chip on board,COB)設置於一散熱器(heat sink)300上。晶片直接封裝結構100包括一封裝基板110、多個藍光發光二極體晶片122及一黃色螢光層130。封裝基板110具有一電路層112及一絕緣層114,絕緣層114位於電路層112之上。每兩相鄰的藍光發光二極體晶片122之間以一焊線124連接或以覆晶焊接(flip-chip bonding)方式連接,並排列成一個二維的藍光發光二極體陣列120。藍光發光二極體陣列120直接安裝於封裝基板110的絕緣層114上,並且電性連接至電路層112。黃色螢光層130是含有分散螢光粉之矽膠層,直接覆蓋在每個 藍光發光二極體晶片122的上方及周圍。藍光發光二極體陣列120發光時的熱流路徑如圖1的箭號所示。一部分的熱直接向上傳導至黃色螢光層130;另一部分的熱向下通過封裝基板110再傳導至散熱器300被移除。 As shown in FIG. 1, a conventional chip on board (COB) structure 100 (chip on board, COB) of a light emitting diode array is disposed on a heat sink 300. The chip direct packaging structure 100 includes a packaging substrate 110, a plurality of blue light-emitting diode chips 122, and a yellow fluorescent layer 130. The packaging substrate 110 has a circuit layer 112 and an insulating layer 114. The insulating layer 114 is located above the circuit layer 112. Each two adjacent blue light-emitting diode chips 122 are connected by a bonding wire 124 or flip-chip bonding, and arranged into a two-dimensional blue light-emitting diode array 120. The blue light emitting diode array 120 is directly mounted on the insulating layer 114 of the packaging substrate 110 and electrically connected to the circuit layer 112. The yellow fluorescent layer 130 is a silicone layer containing dispersed fluorescent powder, directly covering each Above and around the blue light emitting diode chip 122. The heat flow path when the blue light emitting diode array 120 emits light is shown by arrows in FIG. 1. A part of the heat is directly conducted upward to the yellow fluorescent layer 130; the other part of the heat is conducted downward through the package substrate 110 and then conducted to the heat sink 300 to be removed.

在晶片直接封裝結構100中,藍光發光二極體晶片122所發射的藍光有一部分被黃色螢光層130轉換成波長較長的黃光,另一部分未經轉換的藍光穿過黃色螢光層130與黃光混合而成白光。白光的輸出一般會受到兩個因素影響:一是黃色螢光層130因轉換光波長所導致本身的溫度上升;二是藍光發光二極體晶片122對周圍黃色螢光層130加熱。 In the direct chip packaging structure 100, a part of the blue light emitted by the blue light-emitting diode chip 122 is converted into yellow light with a longer wavelength by the yellow fluorescent layer 130, and another part of the unconverted blue light passes through the yellow fluorescent layer 130 Mixed with yellow light to make white light. The output of white light is generally affected by two factors: one is that the temperature of the yellow fluorescent layer 130 rises due to the conversion of the wavelength of light; the second is that the blue light-emitting diode chip 122 heats the surrounding yellow fluorescent layer 130.

第一個因素是由於黃色螢光層130的顏色轉換效率並非100%,所以當藍光經由黃色螢光層130轉換成黃光時會產生發熱問題,當黃色螢光層130溫度越高時,其顏色轉換效率也越低。而此一發熱問題同時也影響藍光發光二極體晶片122的輸出光量。在習知的晶片直接封裝結構100中,黃色螢光層130在顏色轉換時所產生的熱也是傳導至散熱器300來移除。 The first factor is that the color conversion efficiency of the yellow fluorescent layer 130 is not 100%, so when the blue light is converted into yellow light through the yellow fluorescent layer 130, there will be a problem of heat generation. When the temperature of the yellow fluorescent layer 130 is higher, the color conversion The lower the efficiency. This heat generation problem also affects the light output of the blue light-emitting diode chip 122. In the conventional chip direct packaging structure 100, the heat generated by the yellow fluorescent layer 130 during color conversion is also conducted to the heat sink 300 for removal.

第二個因素是由於藍光發光二極體晶片122封裝於黃色螢光層130內部,而黃色螢光層130之厚度約在數百μm左右,但黃色螢光層130的材料其熱傳導率相當低,所以藍光發光二極體晶片122發熱時也容易導致黃色螢光層130本身的溫度上升與發光效率的降低。黃色螢光層130表面的溫度在輸入10W功率時即會大於150即,若要在其鄰近表面上裝設二次光學元件,需使用可以耐高溫的反射燈罩或玻璃透鏡,無法使用高分子光學材料所製作的二次光學元件。 The second factor is that the blue light emitting diode chip 122 is packaged inside the yellow fluorescent layer 130, and the thickness of the yellow fluorescent layer 130 is about hundreds of μm, but the material of the yellow fluorescent layer 130 has a relatively low thermal conductivity. Therefore, when the blue light-emitting diode chip 122 generates heat, the temperature of the yellow fluorescent layer 130 itself may easily increase and the luminous efficiency may decrease. The temperature of the surface of the yellow fluorescent layer 130 will be greater than 150 when inputting 10W of power. To install secondary optical elements on its adjacent surface, a reflective lampshade or glass lens that can withstand high temperatures must be used. Polymer optics cannot be used. Material made of secondary optical components.

有鑑於此,若能在維持小尺寸封裝結構的前提下,解決上述兩項影響白光輸出的因素,並採用原本無法使用的高分子二次光學元件,藉此提 高白光亮度並消除眩光,則可提升白光輸出的品質並具有低成本的優勢。 In view of this, if the small-sized package structure can be maintained, the above two factors affecting the white light output can be solved, and a polymer secondary optical element that could not be used can be used. High white light brightness and eliminating glare can improve the quality of white light output and have the advantage of low cost.

本發明之一目的在於提供一種具有高導熱效果的發光二極體陣列封裝結構,能同時滿足小尺寸、高亮度、抗眩光、散熱及降低成本等各方面的要求。 An object of the present invention is to provide a light-emitting diode array packaging structure with high thermal conductivity, which can simultaneously meet the requirements of small size, high brightness, anti-glare, heat dissipation and cost reduction.

為了達到上述目的,本發明提供一種具有高導熱效果的發光二極體陣列封裝結構,包括一封裝基板、一發光二極體陣列、一高導熱色轉換層及一透明導熱基板。封裝基板設置於一散熱器上,並且具有一電路層及一絕緣層,絕緣層位於電路層之上。發光二極體陣列包括排列成陣列形式的複數發光二極體晶片,其中每一發光二極體晶片皆是直接安裝於封裝基板的絕緣層上,並且電性連接於電路層。高導熱色轉換層直接填充於發光二極體陣列及其封裝基板之上,並包括透明膠材、螢光粉及透明陶瓷填充物,其中螢光粉及透明陶瓷填充物混入透明膠材中,並且一部分的透明陶瓷填充物接觸封裝基板,以形成一熱傳導路徑。透明導熱基板直接覆蓋並接觸於高導熱色轉換層的上表面,並與另一部分的透明陶瓷填充物接觸,以形成另一熱傳導路徑。 In order to achieve the above object, the present invention provides a light emitting diode array packaging structure with high thermal conductivity, including a packaging substrate, a light emitting diode array, a high thermal conductivity color conversion layer, and a transparent thermal conductive substrate. The packaging substrate is disposed on a heat sink, and has a circuit layer and an insulating layer, the insulating layer is located above the circuit layer. The light-emitting diode array includes a plurality of light-emitting diode chips arranged in an array, wherein each light-emitting diode chip is directly mounted on the insulating layer of the packaging substrate and electrically connected to the circuit layer. The high thermal conductivity color conversion layer is directly filled on the light-emitting diode array and its packaging substrate, and includes transparent adhesive material, phosphor powder and transparent ceramic filler, wherein the phosphor powder and transparent ceramic filler are mixed into the transparent adhesive material, And a part of the transparent ceramic filler contacts the packaging substrate to form a heat conduction path. The transparent thermal conductive substrate directly covers and contacts the upper surface of the high thermal conductivity color conversion layer, and contacts another part of the transparent ceramic filler to form another thermal conduction path.

在一實施例中,透明陶瓷填充物為粉末狀,其粒徑大小係為奈米級。奈米級透明陶瓷填充物相對於透明膠材的重量百分比,其範圍例如:大於0%,且小於或等於10%;或是大於0%,且小於或等於20%。奈米級透明陶瓷填充物及透明導熱基板的材料皆可選自氮化鋁(AlN)、氧化鋁(Al2O3)、鎂鋁尖晶石(MgAl2O4,spinel)、氮氧化鋁(AlON,aluminium oxynitride)、石英及玻璃所構成的族群。較佳地,奈米級透明陶瓷填充物與透明導熱基板兩者的材料相 同。 In one embodiment, the transparent ceramic filler is in powder form and its particle size is in the nanometer range. The weight percentage of the nano-grade transparent ceramic filler relative to the transparent adhesive material is, for example, greater than 0% and less than or equal to 10%; or greater than 0% and less than or equal to 20%. The materials of nano-scale transparent ceramic filler and transparent thermal conductive substrate can be selected from aluminum nitride (AlN), aluminum oxide (Al 2 O 3 ), magnesium aluminum spinel (MgAl 2 O 4 , spinel), aluminum oxynitride (AlON, aluminum oxynitride), quartz and glass. Preferably, the materials of both the nano-grade transparent ceramic filler and the transparent heat-conducting substrate are the same.

在一實施例中,上述的具有高導熱效果的發光二極體陣列封裝結構更包括:一第一導熱框、一反射式偏光片以及一第二導熱框。第一導熱框連接透明導熱基板之周緣與散熱器。反射式偏光片設置於透明導熱基板之上方,反射式偏光片與透明導熱基板之間具有一空氣隙。第二導熱框連接反射式偏光片的周緣與散熱器。第一導熱框及第二導熱框各自以一高導熱螺絲固定於散熱器。 In an embodiment, the above-mentioned LED array packaging structure with high thermal conductivity further includes: a first thermal conductive frame, a reflective polarizer, and a second thermal conductive frame. The first heat conducting frame connects the periphery of the transparent heat conducting substrate and the heat sink. The reflective polarizer is disposed above the transparent heat conductive substrate, and there is an air gap between the reflective polarizer and the transparent heat conductive substrate. The second heat conduction frame connects the periphery of the reflective polarizer and the heat sink. Each of the first heat conduction frame and the second heat conduction frame is fixed to the heat sink with a high heat conduction screw.

根據本發明的結構,無論是高導熱色轉換層本身在顏色轉換時所產生的輻射及傳導熱,或是高導熱色轉換層受發光二極體晶片產生的傳導熱,皆可經由其上方的透明導熱基板及其導熱框,或封裝基板傳導至散熱器而移除,可有效降低到達透明導熱基板上方空間的熱輻射及色轉換層的溫度。因此,本發明在透明導熱基板的上方除了可使用玻璃基板偏光片之外,也允許使用低熱導係數的高分子材料所製作的反射式偏光片,從而降低成本、提高白光輸出效率且減少眩光。 According to the structure of the present invention, both the radiation and conduction heat generated by the high thermal conductivity color conversion layer itself during color conversion, or the conduction heat generated by the high thermal conductivity color conversion layer by the light-emitting diode chip can be The transparent heat-conducting substrate and its heat-conducting frame, or the package substrate are transferred to the heat sink and removed, which can effectively reduce the temperature of the heat radiation and the color conversion layer reaching the space above the transparent heat-conducting substrate. Therefore, in addition to a glass substrate polarizer, a reflective polarizer made of a polymer material with a low thermal conductivity can be used above the transparent thermally conductive substrate of the present invention, thereby reducing costs, improving white light output efficiency, and reducing glare.

100:晶片直接封裝結構 100: chip direct packaging structure

110:封裝基板 110: package substrate

112:電路層 112: circuit layer

114:絕緣層 114: Insulation

120:藍光發光二極體陣列 120: Blue light emitting diode array

122:藍光發光二極體晶片 122: Blue light emitting diode chip

124:焊線 124: Bonding wire

130:黃色螢光層 130: yellow fluorescent layer

200:發光二極體陣列封裝結構 200: LED array packaging structure

210:封裝基板 210: package substrate

212:電路層 212: Circuit layer

214:絕緣層 214: Insulation

220:發光二極體陣列 220: LED array

222:發光二極體晶片 222: LED chip

224:焊線 224: Bonding wire

230:高導熱色轉換層 230: High thermal conductivity color conversion layer

232:透明陶瓷填充物 232: Transparent ceramic filler

234:螢光粉 234: phosphor powder

236:透明膠材 236: Transparent plastic

240:透明導熱基板 240: Transparent thermal conductive substrate

250:散熱膏層 250: Thermal paste layer

260:圍牆膠 260: Wall glue

270:第一導熱框 270: The first heat conduction frame

272:高導熱螺絲 272: High thermal conductivity screw

280:第二導熱框 280: Second heat conduction frame

290:反射式偏光片 290: reflective polarizer

292:空氣隙 292: Air gap

300:散熱器 300: radiator

C1:(有加透明導熱基板時的COB LED表面溫度)曲線 C1: (surface temperature of COB LED when transparent heat conductive substrate is added) curve

C2:(未加透明導熱基板時的COB LED表面溫度)曲線 C2: (COB LED surface temperature when no transparent heat conductive substrate is added) curve

圖1為傳統發光二極體陣列的晶片直接封裝結構示意圖。 FIG. 1 is a schematic diagram of a chip direct packaging structure of a conventional light emitting diode array.

圖2為本發明之一實施例,具有高導熱效果的發光二極體陣列封裝結構示意圖。 2 is a schematic diagram of a light emitting diode array package structure with high thermal conductivity effect according to an embodiment of the present invention.

圖2A為8W COB LED高導熱色轉換層上方有加及未加透明導熱基板時的光通量及表面溫度變化曲線。 Fig. 2A is the luminous flux and surface temperature change curve of the 8W COB LED high thermal conductivity color conversion layer with and without the addition of a transparent thermal conductive substrate.

圖3為本發明之一實施例,具有高導熱及低眩光效果的發光二極 體陣列封裝結構示意圖。 Figure 3 is an embodiment of the present invention, a light-emitting diode with high thermal conductivity and low glare effect Schematic diagram of the body array packaging structure.

圖4為本發明之一實施例的熱傳導方向示意圖。 4 is a schematic diagram of the heat conduction direction according to an embodiment of the invention.

有關本發明之前述及其他技術內容、特點與功效,在以下配合參考圖式之一較佳實施例的詳細說明中,將可清楚的呈現。以下實施例中所提到的方向用語,例如:上、下、左、右、前或後等,僅是用於參照隨附圖式的方向。因此,該等方向用語僅是用於說明並非是用於限制本發明。 The foregoing and other technical contents, features and effects of the present invention will be clearly presented in the following detailed description with reference to one of the preferred embodiments of the drawings. Directional terms mentioned in the following embodiments, for example: up, down, left, right, front or back, etc., are only used to refer to the directions of the accompanying drawings. Therefore, these directional terms are only used for illustration and not for limiting the present invention.

圖2為本發明之一實施例,具有高導熱效果的發光二極體陣列封裝結構200包括一封裝基板210、一發光二極體陣列220、一高導熱色轉換層230及一透明導熱基板240。發光二極體陣列220直接安裝在封裝基板210上。特別的是,本實施例是將透明陶瓷填充物(transparent ceramic filler)232及螢光粉234混入透明膠材236中形成一改質複合螢光膠材料。將此改質複合螢光膠材料塗佈在藍光發光二極體陣列220上形成高導熱色轉換層230。再於高導熱色轉換層230上方放置一透明導熱基板240以吸收與隔絕螢光粉234於色轉換過程所產生的輻射熱與傳導熱。需注意的是,本發明與習知的「遠距螢光粉塗佈技術」並不相同,「遠距螢光粉塗佈技術」是將螢光層與發光二極體陣列相隔離,但本發明是將含有螢光粉234的高導熱色轉換層230直接填充於發光二極體陣列220上。 2 is an embodiment of the present invention, a light emitting diode array packaging structure 200 with high thermal conductivity effect includes a packaging substrate 210, a light emitting diode array 220, a high thermal conductivity color conversion layer 230 and a transparent thermal conductive substrate 240 . The light emitting diode array 220 is directly mounted on the packaging substrate 210. In particular, in this embodiment, the transparent ceramic filler 232 and the fluorescent powder 234 are mixed into the transparent adhesive 236 to form a modified composite fluorescent adhesive material. The modified composite fluorescent glue material is coated on the blue light-emitting diode array 220 to form a high thermal conductivity color conversion layer 230. A transparent thermal conductive substrate 240 is placed above the high thermal conductivity color conversion layer 230 to absorb and isolate the radiant heat and conduction heat generated by the phosphor 234 during the color conversion process. It should be noted that the present invention is not the same as the conventional "distance phosphor coating technology". The "distance phosphor coating technology" isolates the phosphor layer from the LED array, but In the present invention, the high thermal conductivity color conversion layer 230 containing phosphor 234 is directly filled on the light emitting diode array 220.

封裝基板210的上表面設有一電路層212及一絕緣層214。電路層212連接至一電訊號來源。絕緣層214位於電路層212之上。發光二極體陣列220是由多個排列為陣列形式的發光二極體晶片222所組成,每兩相鄰的發光二極體晶片222之間以一焊線224連接。其中每一發光二極體晶片222直接安裝於封 裝基板210的絕緣層214上,並且電性連接於電路層212。高導熱色轉換層230直接覆蓋於發光二極體陣列220之上,使其中一部分的透明陶瓷填充物232接觸下方的封裝基板210,可加強向下導熱效果;另一部分的透明陶瓷填充物232則是接觸上方的透明導熱基板240,可加強向上導熱效果。透明導熱基板240是直接覆蓋並接觸於高導熱色轉換層230的上表面,以吸收並隔絕輻射熱與傳導熱。圍牆膠260設置於封裝基板210與透明導熱基板240之間,並圍繞於發光二極體陣列220的四周,用以保護發光二極體陣列220及固定高導熱色轉換層230。 A circuit layer 212 and an insulating layer 214 are provided on the upper surface of the package substrate 210. The circuit layer 212 is connected to a source of electrical signals. The insulating layer 214 is located above the circuit layer 212. The light-emitting diode array 220 is composed of a plurality of light-emitting diode chips 222 arranged in an array, and a bonding wire 224 is connected between every two adjacent light-emitting diode chips 222. Each LED chip 222 is directly mounted on the package The insulating layer 214 of the mounting substrate 210 is electrically connected to the circuit layer 212. The high thermal conductivity color conversion layer 230 directly covers the light emitting diode array 220, so that a part of the transparent ceramic filler 232 contacts the lower package substrate 210, which can enhance the downward heat conduction effect; the other part of the transparent ceramic filler 232 is It is in contact with the transparent heat conductive substrate 240 above, which can enhance the upward heat conduction effect. The transparent heat conductive substrate 240 directly covers and contacts the upper surface of the high thermal conductivity color conversion layer 230 to absorb and isolate radiant heat and conduction heat. The wall glue 260 is disposed between the packaging substrate 210 and the transparent heat conductive substrate 240 and surrounds the light emitting diode array 220 to protect the light emitting diode array 220 and fix the high thermal conductivity color conversion layer 230.

此外,發光二極體陣列封裝結構200設置於一散熱器300上。為增加封裝基板210和散熱器300之間的導熱效率,故在封裝基板210與散熱器300之間塗佈一散熱膏層250,以便快速將熱導出封裝基板210,以加強高導熱色轉換層230的下表面熱傳導至散熱器300的散熱效果。如此,透明陶瓷填充物232、封裝基板210、散熱膏層250及散熱器300連接成一向下的熱傳導路徑。 In addition, the LED array packaging structure 200 is disposed on a heat sink 300. In order to increase the heat conduction efficiency between the package substrate 210 and the heat sink 300, a heat dissipation paste layer 250 is coated between the package substrate 210 and the heat sink 300, so that the heat is quickly led out of the package substrate 210 to enhance the high thermal conductivity color conversion layer The heat conduction effect of the lower surface of 230 to the heat sink 300 is heat dissipation. In this way, the transparent ceramic filler 232, the package substrate 210, the heat dissipation paste layer 250 and the heat sink 300 are connected to form a downward heat conduction path.

透明導熱基板240之周緣以一高導熱材料製作的導熱框270固定,並通過導熱框270來與散熱器300連接而形成另一熱傳導路徑,用以將其所受之輻射熱直接傳導至散熱器300,藉此加強散熱效果。導熱框270可提供透明導熱基板240直接散熱至散熱器300而不經過發光二極體陣列220的封裝基版210。 The periphery of the transparent heat-conducting substrate 240 is fixed by a heat-conducting frame 270 made of a high-heat-conducting material, and is connected to the heat sink 300 through the heat-conducting frame 270 to form another heat conduction path for directly conducting the radiant heat received to the heat sink 300 To strengthen the heat dissipation effect. The heat conductive frame 270 may provide the transparent heat conductive substrate 240 to directly dissipate heat to the heat sink 300 without passing through the package substrate 210 of the light emitting diode array 220.

在一實施例中,發光二極體陣列220採用一藍光發光二極體晶片222所形成的陣列。高導熱色轉換層230採用一含有黃色螢光粉234及高導熱奈米級透明陶瓷填充物232之混合物的矽膠層。高導熱色轉換層230的特性及功效如下:(1)其折射率大於習知透明膠層,故可增加藍光出光效率,亦即 減少藍光發光二極體晶片222表面之全反射效應;(2)其熱導係數大於習知螢光膠層,故可減少黃色螢光粉234表面因吸收藍光產生轉換波長效應所產生的高溫,並降低藍光發光二極體晶片222之加熱效果,使其表面產生之高溫與熱輻射低於習知螢光膠層。 In one embodiment, the light-emitting diode array 220 uses an array formed by a blue light-emitting diode chip 222. The high thermal conductivity color conversion layer 230 uses a silicone layer containing a mixture of yellow phosphor 234 and high thermal conductivity nano-level transparent ceramic filler 232. The characteristics and functions of the high thermal conductivity color conversion layer 230 are as follows: (1) Its refractive index is greater than that of the conventional transparent adhesive layer, so it can increase the blue light extraction efficiency, that is Reduce the total reflection effect on the surface of the blue light-emitting diode chip 222; (2) Its thermal conductivity is greater than that of the conventional fluorescent glue layer, so it can reduce the high temperature generated by the wavelength conversion effect caused by the absorption of blue light on the surface of the yellow phosphor 234, And reduce the heating effect of the blue light-emitting diode chip 222, so that the high temperature and heat radiation generated on the surface is lower than the conventional fluorescent glue layer.

在高導熱色轉換層230中,奈米級透明陶瓷填充物232的材料可以選用氮化鋁(AlN)、氧化鋁(Al2O3)、鎂鋁尖晶石(MgAl2O4,spinel)、氮氧化鋁(AlON,aluminium oxynitride)、或是石英及玻璃等的粉末或顆粒,其中較佳者為氮化鋁粉或氮氧化鋁粉。奈米級透明陶瓷填充物232相對於透明膠材236的混合比例範圍例如是:大於0%,且小於或等於20%;較佳者為大於0%,且小於或等於10%的重量百分比,例如:2%、5%或7%。 In the high thermal conductivity color conversion layer 230, the material of the nano-grade transparent ceramic filler 232 may be aluminum nitride (AlN), aluminum oxide (Al 2 O 3 ), magnesium aluminum spinel (MgAl 2 O 4 , spinel) , Aluminum oxynitride (AlON, aluminum oxynitride), or powder and granules of quartz and glass, etc., preferably aluminum nitride powder or aluminum oxynitride powder. The mixing ratio of the nano-grade transparent ceramic filler 232 to the transparent adhesive 236 is, for example, greater than 0% and less than or equal to 20%; preferably, it is greater than 0% and less than or equal to 10% by weight. For example: 2%, 5% or 7%.

透明導熱基板240主要材質為具對光高度透明且具高導熱係數之陶瓷,例如:氮化鋁(AlN)、氧化鋁(Al2O3)、鎂鋁尖晶石(MgAl2O4,Spinel)、氮氧化鋁(AlON,Aluminium oxynitride)等,或是石英及玻璃,但不僅限於這些材料。在一實施例中,透明導熱基板240與高導熱色轉換層230中透明陶瓷填充物232可以採用相同的材料,例如:兩者皆採用氮化鋁材料,利用同材質的接觸可以加快導熱速度。 The main material of the transparent thermal conductive substrate 240 is a ceramic that is highly transparent to light and has a high thermal conductivity, such as aluminum nitride (AlN), aluminum oxide (Al 2 O 3 ), magnesium aluminum spinel (MgAl 2 O 4 , Spinel ), aluminum oxynitride (AlON, Aluminium oxynitride), etc., or quartz and glass, but not limited to these materials. In one embodiment, the transparent thermally conductive substrate 240 and the transparent ceramic filler 232 in the high thermal conductivity color conversion layer 230 may use the same material, for example, both use aluminum nitride material, and the contact with the same material can accelerate the thermal conductivity.

值得一提的是,本發明的結構可產生一種本領域技術人員難以預期的效果。一般而言,「降低發光二極體封裝結構的溫度」與「增加發光二極體封裝結構的亮度」二者是難以兼顧的。習知技術若要維持亮度,則需達成良好降低溫度的效果;通常採用高導熱散熱膏、冷卻板(cold plate)、熱導管(heat pipe)、高散熱封裝基板或強制對流冷卻散熱器等方式以大幅降低發光二極體封裝結構的溫度方式並可減少光衰(lumen depreciation)發生,如此則會使其增加 封裝成本、而其表面高溫仍無法使用高分子基材之二次光學元件封裝。然而,本發明不但可在低成本條件下大幅降低發光二極體陣列封裝結構200的溫度,還能使其亮度增加。 It is worth mentioning that the structure of the present invention can produce an effect that is difficult for those skilled in the art to anticipate. Generally speaking, "reducing the temperature of the light-emitting diode package structure" and "increasing the brightness of the light-emitting diode package structure" are difficult to balance. If the conventional technology is to maintain brightness, it is necessary to achieve a good temperature reduction effect; usually using high thermal conductivity thermal paste, cold plate (cold plate), heat pipe (heat pipe), high heat dissipation package substrate or forced convection cooling radiator, etc. It can greatly reduce the temperature of the light-emitting diode package structure and can reduce the occurrence of lumen depreciation, which will increase it Packaging cost, and the high temperature of the surface still cannot use the secondary optical element packaging of the polymer substrate. However, the present invention can not only greatly reduce the temperature of the light emitting diode array packaging structure 200 under low cost conditions, but also increase its brightness.

習知需在螢光層中加入其他經改質過之填充物(filler)的技術,大多是為了改變螢光層的發光特性,例如:加入透明樹脂(transparent resin)或聚甲基丙烯酸甲酯(polymethyl methacrylate,PMMA)使發光二極體發出之白光比較均勻,但是此一做法由於光散射關係通常會使發光二極體封裝結構的亮度變暗。此外,在光源上方放置透明基板有降低發光亮度疑慮。在有可能犧牲亮度的顧慮下,本領域技術人員通常不會想要將透明基板放置於混合有改質填充物之螢光粉層上方去增加散熱途徑。然而,本發明將透明陶瓷填充物232及透明膠材236兩者依特定比例混合,再配合透明導熱基板240,並沒有如同一般預期的會使發光二極體陣列封裝結構200亮度大幅降低,經量測後反而發現其亮度相較於未加上透明導熱基板240時增加,並且透明導熱基板240表面溫度更低。 It is known to add other modified filler technology to the fluorescent layer, mostly to change the luminescent characteristics of the fluorescent layer, for example: adding transparent resin or polymethyl methacrylate (Polymethyl methacrylate, PMMA) makes the white light emitted by the light emitting diode more uniform, but this method usually makes the brightness of the light emitting diode packaging structure darker due to the light scattering relationship. In addition, placing a transparent substrate above the light source has the concern of lowering the brightness of the light emission. In view of the possibility of sacrificing brightness, those skilled in the art generally do not want to place the transparent substrate on top of the phosphor layer mixed with the modified filler to increase the heat dissipation path. However, in the present invention, the transparent ceramic filler 232 and the transparent adhesive 236 are mixed in a specific ratio, and then combined with the transparent thermal conductive substrate 240, the brightness of the LED array packaging structure 200 is not significantly reduced as generally expected. After the measurement, the brightness is increased compared to when the transparent thermal conductive substrate 240 is not added, and the surface temperature of the transparent thermal conductive substrate 240 is lower.

參照圖2A的8W COB LED表面溫度隨時間量測資料,曲線C1顯示如圖2結構有加透明導熱基板240時的表面溫度變化曲線;曲線C2是將圖2結構去除透明導熱基板240後其高導熱色轉換層230表面溫度變化曲線。與未加透明導熱基板240的結構相比較,在經過相同發光時間時,有加透明導熱基板240的結構其表面溫度較低,但光通量卻較大。顯然,本發明的結構可以補償因透明陶瓷填充物232產生的光散射損失並更進一步降低溫度。 Referring to the measurement data of 8W COB LED surface temperature with time in FIG. 2A, curve C1 shows the surface temperature change curve when the structure of FIG. 2 is added with the transparent heat conductive substrate 240; curve C2 is the height of the structure of FIG. 2 after removing the transparent heat conductive substrate 240 The temperature change curve of the surface of the thermal conductive color conversion layer 230. Compared with the structure without the transparent heat conductive substrate 240, the surface temperature of the structure with the transparent heat conductive substrate 240 is lower, but the luminous flux is larger when the same light emitting time passes. Obviously, the structure of the present invention can compensate for the light scattering loss caused by the transparent ceramic filler 232 and further reduce the temperature.

究其原因在於,螢光粉234之熱消萃效應(thermal quenching effect)會導致高導熱色轉換層230在高溫時之顏色轉換效率衰減且藍光發光二極體晶片222的發光效率隨高導熱色轉換層230之溫度升高而降低。但本發明的 結構可快速將高導熱色轉換層230與藍光發光二極體晶片222所產生的熱排除,以提高藍光及黃光發光效率,因此可增加高導熱色轉換層230的出光量。對發光二極體陣列封裝結構200整體而言,在透明導熱基板240上方空氣隙292的亮度仍是增加的。 The reason is that the thermal quenching effect of the phosphor 234 will cause the color conversion efficiency of the high thermal conductivity color conversion layer 230 to be attenuated at high temperature and the luminous efficiency of the blue light emitting diode chip 222 will increase with the high thermal conductivity color. The temperature of the conversion layer 230 increases and decreases. But the invention The structure can quickly remove the heat generated by the high thermal conductivity color conversion layer 230 and the blue light-emitting diode chip 222 to improve the luminous efficiency of blue light and yellow light, so the light output of the high thermal conductivity color conversion layer 230 can be increased. For the whole LED array packaging structure 200, the brightness of the air gap 292 above the transparent heat conductive substrate 240 is still increased.

圖3係在圖2所示實施例的透明導熱基板240上方加裝一高分子光學元件,例如一高分子反射式偏光片290,兩者之間具有一空氣隙292。高分子反射式偏光片290例如是以三醋酸纖維素(Cellulose Triacetate,TAC)為基材製作的反射式奈米光柵偏光片(nano-wire grid polarizer)。高分子反射式偏光片290是用以形成偏極化白光,並反射一些未經轉換的藍光,使這些藍光向下穿過覆蓋有透明導熱基板240之高導熱色轉換層230,得以再次進行顏色轉換,以增加白光發光效率並減少藍光過多的現象,藉此增加白光輸出並提高偏極化比例的白光,並大幅減少眩光。 FIG. 3 is a polymer optical element, such as a polymer reflective polarizer 290, mounted on the transparent heat conductive substrate 240 of the embodiment shown in FIG. 2 with an air gap 292 between them. The polymer reflective polarizer 290 is, for example, a reflective nano-wire grid polarizer made of cellulose triacetate (TAC) as a base material. The polymer reflective polarizer 290 is used to form polarized white light and reflect some unconverted blue light, so that the blue light passes down through the high thermal conductivity color conversion layer 230 covered with the transparent thermally conductive substrate 240 to be re-colored Conversion to increase the luminous efficiency of white light and reduce the phenomenon of excessive blue light, thereby increasing white light output and increasing the polarization ratio of white light, and greatly reducing glare.

反射式偏光片290的周緣以導熱框280固定,並通過導熱框280來與散熱器300連接,而形成另一熱傳導路徑,將其所受之輻射熱直接傳導至散熱器300。以上兩導熱框270及280皆以高熱導係數的金屬材料製作,例如:紅銅(copper),並以高導熱螺絲272固定連接於散熱器300上。在此實施例中,由於高導熱色轉換層230表面產生之高溫與熱輻射低於習知螢光膠層,且利用透明導熱基板240提供熱傳導路徑,故可有效避免熱輻射由高導熱色轉換層230表面直接經空氣隙292損壞反射式偏光片290。 The periphery of the reflective polarizer 290 is fixed by the thermally conductive frame 280 and connected to the heat sink 300 through the thermally conductive frame 280 to form another heat conduction path to directly conduct the radiant heat received to the heat sink 300. The two heat conducting frames 270 and 280 are made of a metal material with a high thermal conductivity, such as copper, and are fixedly connected to the heat sink 300 with a high heat conducting screw 272. In this embodiment, since the high temperature and thermal radiation generated on the surface of the high thermal conductivity color conversion layer 230 are lower than that of the conventional fluorescent adhesive layer, and the transparent thermal conductive substrate 240 is used to provide the thermal conduction path, the thermal radiation can be effectively prevented from being converted by the high thermal conductivity color The surface of the layer 230 damages the reflective polarizer 290 directly through the air gap 292.

由於所使用低成本之高分子反射式偏光片290僅能耐熱<100℃,所以導熱框280以高導熱螺絲272固定於散熱器300上,可以將從透明導熱基 板240表面經由熱輻射傳遞至高分子反射式偏光片290的熱量再傳導至散熱器300,以降低高分子反射式偏光片290的溫度。 Since the low-cost polymer reflective polarizer 290 used can only be heat-resistant <100°C, the heat-conducting frame 280 is fixed to the heat sink 300 with high heat-conducting screws 272. The heat transferred from the surface of the plate 240 to the polymer reflective polarizer 290 via thermal radiation is then conducted to the heat sink 300 to reduce the temperature of the polymer reflective polarizer 290.

在一實施例中,封裝基板210和散熱器300的接觸面、導熱框270和透明導熱基板240的接觸面及導熱框280和反射式偏光片290的接觸面皆可均勻塗布適量的散熱膏,用以快速地將熱導出。 In an embodiment, the contact surface of the package substrate 210 and the heat sink 300, the contact surface of the heat conductive frame 270 and the transparent heat conductive substrate 240, and the contact surface of the heat conductive frame 280 and the reflective polarizer 290 can be uniformly coated with a proper amount of heat dissipating paste, Used to quickly remove heat.

圖4的箭號指示本發明之發光二極體陣列封裝結構200中的熱傳導方向。本實施例之發光二極體陣列封裝結構200中的發熱源有兩個:一是藍光發光二極體晶片222在發光過程中所產生的熱;二是黃色螢光粉234在將藍光波長轉換為黃光波長時因能量損失所產生的輻射與傳導熱。 The arrows in FIG. 4 indicate the direction of heat conduction in the light emitting diode array packaging structure 200 of the present invention. There are two heat sources in the LED array packaging structure 200 of this embodiment: one is the heat generated by the blue light-emitting diode chip 222 during the light-emitting process; the second is the yellow phosphor 234 converting the blue light wavelength Radiation and conduction heat due to energy loss at the yellow light wavelength.

關於第一個發熱源的熱傳導,藍光發光二極體晶片222在發光過程中所產生的熱,一部分透過封裝基板210向下傳導至散熱器300而移除,另一部分則向上傳導。 Regarding the heat conduction of the first heating source, part of the heat generated by the blue light-emitting diode chip 222 during the light-emitting process is conducted downward through the package substrate 210 to the heat sink 300 for removal, and the other part is conducted upward.

關於第二個發熱源的熱傳導,黃色螢光粉234轉換光波長過程中的能量損失所產生的輻射與傳導熱,直接經由透明導熱基板240傳導至導熱框270,再被導熱框270傳導至散熱器300。本實施例利用一部分的透明陶瓷填充物232與透明導熱基板240接觸,使熱從高導熱色轉換層230至透明導熱基板240的傳導速度加快。由於大部分的輻射熱在透明導熱基板240處被移除,故可避免熱從透明導熱基板240再向上輻射至反射式偏光片290。 Regarding the heat conduction of the second heat source, the radiation and conduction heat generated by the energy loss during the conversion of the light wavelength of the yellow phosphor 234 is directly conducted to the heat conduction frame 270 through the transparent heat conduction substrate 240, and then is conducted to the heat dissipation by the heat conduction frame 270器300. In this embodiment, a part of the transparent ceramic filler 232 is in contact with the transparent heat-conducting substrate 240 to accelerate the heat transfer speed from the high heat-conducting color conversion layer 230 to the transparent heat-conducting substrate 240. Since most of the radiant heat is removed at the transparent heat-conducting substrate 240, heat can be prevented from radiating upward from the transparent heat-conducting substrate 240 to the reflective polarizer 290.

接著,反射式偏光片290所受的熱再藉由導熱框280移除。如此,可將反射式偏光片290的溫度降至低於100℃,此為高分子塑膠材料所能耐受的溫度範圍,因此本實施例除了可使用玻璃基板偏光片之外,也允許使用低成本的高分子反射式偏光片290。 Then, the heat received by the reflective polarizer 290 is removed by the heat conduction frame 280. In this way, the temperature of the reflective polarizer 290 can be reduced to less than 100°C, which is a temperature range that the polymer plastic material can tolerate. Therefore, in addition to the glass substrate polarizer, this embodiment also allows the use of low Cost polymer reflective polarizer 290.

本實施例將高導熱色轉換層230、透明導熱基板240結合高分子反射式偏光片290,並以兩導熱框270及280分別固定透明導熱基板240及高分子反射式偏光片290,以將其所受之輻射熱直接傳導至散熱器300,達成具低眩光及低表面溫度特性之白光發光二極體陣列封裝結構200。 In this embodiment, the high thermal conductivity color conversion layer 230 and the transparent thermally conductive substrate 240 are combined with the polymer reflective polarizer 290, and the transparent thermally conductive substrate 240 and the polymer reflective polarizer 290 are fixed by two thermal conductive frames 270 and 280, respectively. The radiant heat received is directly transmitted to the heat sink 300 to achieve a white light emitting diode array package structure 200 with low glare and low surface temperature characteristics.

綜上所述,本發明的優點如下: In summary, the advantages of the present invention are as follows:

一、改質複合螢光膠層本身顏色轉換發熱或受藍光發光二極體加熱現象可直接經由自身表面上的透明導熱基板240結合導熱框270直接移除熱量至散熱器300,降低表面溫度以便使用低成本的高分子反射式偏光片290。 1. The heat of the modified composite fluorescent glue layer itself is heated by the color conversion or heated by the blue light-emitting diode. The heat can be directly removed to the heat sink 300 through the transparent thermally conductive substrate 240 on the surface of the body and the thermally conductive frame 270, so as to reduce the surface temperature. A low-cost polymer reflective polarizer 290 is used.

二、反射式偏光片290亦經由自身的導熱框280直接移除熱量至散熱器300,降低表面溫度以延長使用壽命。 2. The reflective polarizer 290 also directly removes heat to the heat sink 300 through its own heat conducting frame 280, reducing the surface temperature to extend the service life.

惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及發明說明內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。另外本發明的任一實施例或申請專利範圍不須達成本發明所揭露之全部目的或優點或特點。此外,摘要部分和標題僅是用來輔助專利文件搜尋之用,並非用來限制本發明之權利範圍。 However, the above are only the preferred embodiments of the present invention, which should not be used to limit the scope of the implementation of the present invention, that is, simple equivalent changes and modifications made according to the scope of the patent application of the present invention and the description of the invention, All of them are still covered by the patent of the present invention. In addition, any embodiment or scope of patent application of the present invention does not need to achieve all the objects, advantages, or features disclosed by the invention. In addition, the abstract part and title are only used to assist the search of patent documents, not to limit the scope of the present invention.

200:發光二極體陣列封裝結構 200: LED array packaging structure

210:封裝基板 210: package substrate

212:電路層 212: Circuit layer

214:絕緣層 214: Insulation

220:發光二極體陣列 220: LED array

222:發光二極體晶片 222: LED chip

224:焊線 224: Bonding wire

230:高導熱色轉換層 230: High thermal conductivity color conversion layer

232:透明陶瓷填充物 232: Transparent ceramic filler

234:螢光粉 234: phosphor powder

236:透明膠材 236: Transparent plastic

240:透明導熱基板 240: Transparent thermal conductive substrate

250:散熱膏層 250: Thermal paste layer

260:圍牆膠 260: Wall glue

270:第一導熱框 270: The first heat conduction frame

272:高導熱螺絲 272: High thermal conductivity screw

280:第二導熱框 280: Second heat conduction frame

300:散熱器 300: radiator

Claims (10)

一種具有高導熱效果的發光二極體陣列封裝結構,適於裝設在一散熱器上,包括: 一封裝基板,設置於該散熱器上,並且具有一電路層及一絕緣層,該絕緣層位於該電路層之上; 一發光二極體陣列,包括排列成陣列形式的複數發光二極體晶片,其中每一該發光二極體晶片皆是直接安裝於該封裝基板的該絕緣層上,並且電性連接於該電路層; 一高導熱色轉換層,直接填充於該發光二極體陣列及該封裝基板之上,該高導熱色轉換層包括透明膠材、螢光粉及透明陶瓷填充物,其中該螢光粉及透明陶瓷填充物混入該透明膠材中,並且一部分的透明陶瓷填充物接觸該封裝基板,以形成一熱傳導路徑;以及一透明導熱基板,直接覆蓋並接觸於該高導熱色轉換層的上表面,並與另一部分的透明陶瓷填充物接觸,以形成另一熱傳導路徑。 A light-emitting diode array packaging structure with high thermal conductivity effect, suitable for being mounted on a heat sink, includes: A packaging substrate, disposed on the heat sink, and having a circuit layer and an insulating layer, the insulating layer is located on the circuit layer; A light-emitting diode array, including a plurality of light-emitting diode chips arranged in an array, wherein each of the light-emitting diode chips is directly mounted on the insulating layer of the packaging substrate and electrically connected to the circuit Floor; A high thermal conductivity color conversion layer is directly filled on the light emitting diode array and the packaging substrate, the high thermal conductivity color conversion layer includes a transparent adhesive material, phosphor powder and transparent ceramic filler, wherein the phosphor powder and transparent The ceramic filler is mixed into the transparent adhesive material, and a part of the transparent ceramic filler contacts the packaging substrate to form a thermal conduction path; and a transparent thermal conductive substrate directly covers and contacts the upper surface of the high thermal conductivity color conversion layer, and Contact with another part of the transparent ceramic filler to form another thermal conduction path. 如申請專利範圍第1項所述的具有高導熱效果的發光二極體陣列封裝結構,其中透明陶瓷填充物為粉末狀,其粒徑大小係為奈米級。The light emitting diode array packaging structure with high thermal conductivity effect as described in item 1 of the patent application range, in which the transparent ceramic filler is in powder form and its particle size is in the nanometer range. 如申請專利範圍第2項所述的具有高導熱效果的發光二極體陣列封裝結構,其中該奈米級透明陶瓷填充物相對於該透明膠材的重量百分比為大於0%,且小於或等於10%。The light emitting diode array packaging structure with high thermal conductivity effect as described in Item 2 of the patent application scope, wherein the weight percentage of the nano-grade transparent ceramic filler relative to the transparent adhesive material is greater than 0% and less than or equal to 10%. 如申請專利範圍第2項所述的具有高導熱效果的發光二極體陣列封裝結構,其中該奈米級透明陶瓷粉末相對於該透明膠材的重量百分比為大於0%,且小於或等於20%。The light emitting diode array packaging structure with high thermal conductivity effect as described in Item 2 of the patent application scope, wherein the weight percentage of the nano-grade transparent ceramic powder relative to the transparent adhesive material is greater than 0% and less than or equal to 20 %. 如申請專利範圍第2項所述的具有高導熱效果的發光二極體陣列封裝結構,其中該奈米級透明陶瓷填充物及該透明導熱基板兩者的材料皆選自氮化鋁 (AlN)、氧化鋁(Al 2O 3)、鎂鋁尖晶石 (MgAl 2O 4, Spinel)、氮氧化鋁 (AlON)、石英及玻璃所構成的族群。 The light emitting diode array packaging structure with high thermal conductivity effect as described in item 2 of the patent application scope, wherein the material of both the nano-grade transparent ceramic filler and the transparent thermal conductive substrate are selected from aluminum nitride (AlN) , Alumina (Al 2 O 3 ), magnesium aluminum spinel (MgAl 2 O 4 , Spinel), aluminum oxynitride (AlON), quartz and glass. 如申請專利範圍第5項所述的具有高導熱效果的發光二極體陣列封裝結構,其中該奈米級透明陶瓷填充物與該透明導熱基板兩者的材料相同。The light emitting diode array packaging structure with high thermal conductivity effect as described in item 5 of the patent application range, wherein the material of the nano-level transparent ceramic filler and the transparent thermal conductive substrate are the same. 如申請專利範圍第1項所述的具有高導熱效果的發光二極體陣列封裝結構,更包括: 一第一導熱框,連接該透明導熱基板之周緣與該散熱器 。 The light emitting diode array packaging structure with high thermal conductivity as described in item 1 of the patent application scope further includes: A first heat-conducting frame connects the periphery of the transparent heat-conducting substrate to the heat sink. 如申請專利範圍第1項所述的具有高導熱效果的發光二極體陣列封裝結構,更包括: 一反射式偏光片,設置於該透明導熱基板之上方,該反射式偏光片與該透明導熱基板之間具有一空氣隙;以及 一第二導熱框,連接該反射式偏光片的周緣與該散熱器。 The light emitting diode array packaging structure with high thermal conductivity as described in item 1 of the patent application scope further includes: A reflective polarizer disposed above the transparent thermally conductive substrate, an air gap between the reflective polarizer and the transparent thermally conductive substrate; and A second heat conduction frame connects the peripheral edge of the reflective polarizer and the heat sink. 如申請專利範圍第8項所述的具有高導熱效果的發光二極體陣列封裝結構,其中該反射式偏光片係選自一玻璃基板偏光片及一高分子反射式偏光片之其一。The light emitting diode array packaging structure with high thermal conductivity effect as described in item 8 of the patent application range, wherein the reflective polarizer is selected from one of a glass substrate polarizer and a polymer reflective polarizer. 如申請專利範圍第1項所述的具有高導熱效果的發光二極體陣列封裝結構,其中該第一導熱框及該第二導熱框各自以一高導熱螺絲固定於該散熱器。The light emitting diode array packaging structure with high thermal conductivity effect as described in item 1 of the patent application scope, wherein the first thermal conductive frame and the second thermal conductive frame are each fixed to the heat sink with a high thermal conductive screw.
TW108117755A 2018-07-20 2019-05-22 Light emitting diode array package structure with high thermal conductivity TWI696302B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW108117755A TWI696302B (en) 2019-05-22 2019-05-22 Light emitting diode array package structure with high thermal conductivity
US16/508,537 US20200028047A1 (en) 2018-07-20 2019-07-11 Light emitting diode array package structure with high thermal conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108117755A TWI696302B (en) 2019-05-22 2019-05-22 Light emitting diode array package structure with high thermal conductivity

Publications (2)

Publication Number Publication Date
TWI696302B true TWI696302B (en) 2020-06-11
TW202044626A TW202044626A (en) 2020-12-01

Family

ID=72176283

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108117755A TWI696302B (en) 2018-07-20 2019-05-22 Light emitting diode array package structure with high thermal conductivity

Country Status (1)

Country Link
TW (1) TWI696302B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113937124A (en) * 2021-04-09 2022-01-14 友达光电股份有限公司 Display panel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM570533U (en) * 2018-07-20 2018-11-21 國立臺灣科技大學 Light emitting diode array package with enhanced heat dissipation effect

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM570533U (en) * 2018-07-20 2018-11-21 國立臺灣科技大學 Light emitting diode array package with enhanced heat dissipation effect

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113937124A (en) * 2021-04-09 2022-01-14 友达光电股份有限公司 Display panel
CN113937124B (en) * 2021-04-09 2024-05-28 友达光电股份有限公司 Display Panel

Also Published As

Publication number Publication date
TW202044626A (en) 2020-12-01

Similar Documents

Publication Publication Date Title
US7872277B2 (en) Light emitting diode device
TWI298208B (en) Light emitting device with a thermal insulating and refractive index matching material
US20200028047A1 (en) Light emitting diode array package structure with high thermal conductivity
US9500325B2 (en) LED lamp incorporating remote phosphor with heat dissipation features
US8210698B2 (en) Phosphor layer having enhanced thermal conduction and light sources utilizing the phosphor layer
JP5733743B2 (en) Optical semiconductor device
CN101364626B (en) LED device
Li et al. Study on the thermal and optical performance of quantum dot white light-emitting diodes using metal-based inverted packaging structure
KR20130062989A (en) Encapsulated radiation-emitting component comprising cooled wavelength converter and method for producing it
CN103003617A (en) LED lamp incorporating remote phosphor with heat dissipation features
WO2010123052A1 (en) Light-emitting device
TWI685131B (en) Light emitting diode device and manufacturing method thereof
WO2005029594A1 (en) A structure of light emitting diode
TW200806921A (en) Light emitting diode lighting module with improved heat dissipation structure
Luo et al. Chip packaging: Encapsulation of nitride LEDs
WO2008058446A1 (en) Light emitting system
KR20080017053A (en) Illumination system with leds
JPWO2017077739A1 (en) Luminescent body, light emitting apparatus, lighting apparatus, and method of manufacturing luminous body
JP2011171504A (en) Light-emitting device
TWI696302B (en) Light emitting diode array package structure with high thermal conductivity
TWM570533U (en) Light emitting diode array package with enhanced heat dissipation effect
TWI287300B (en) Semiconductor package structure
JP2011091126A (en) Light emitting device (cob module)
KR101843505B1 (en) Led lamp
WO2009000105A1 (en) A light-emitting diode lighting device