TWI695117B - 廠房控制裝置、廠房控制方法及發電廠 - Google Patents

廠房控制裝置、廠房控制方法及發電廠 Download PDF

Info

Publication number
TWI695117B
TWI695117B TW108106225A TW108106225A TWI695117B TW I695117 B TWI695117 B TW I695117B TW 108106225 A TW108106225 A TW 108106225A TW 108106225 A TW108106225 A TW 108106225A TW I695117 B TWI695117 B TW I695117B
Authority
TW
Taiwan
Prior art keywords
steam
turbine
gas turbine
warm
temperature
Prior art date
Application number
TW108106225A
Other languages
English (en)
Other versions
TW202007845A (zh
Inventor
永山香奈子
当房昌幸
岩田雄太
金子昇司
森高裕
Original Assignee
日商東芝股份有限公司
日商東芝能源系統股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商東芝股份有限公司, 日商東芝能源系統股份有限公司 filed Critical 日商東芝股份有限公司
Publication of TW202007845A publication Critical patent/TW202007845A/zh
Application granted granted Critical
Publication of TWI695117B publication Critical patent/TWI695117B/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/101Regulating means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
    • F01K7/24Control or safety means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D19/00Starting of machines or engines; Regulating, controlling, or safety means in connection therewith
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D19/00Starting of machines or engines; Regulating, controlling, or safety means in connection therewith
    • F01D19/02Starting of machines or engines; Regulating, controlling, or safety means in connection therewith dependent on temperature of component parts, e.g. of turbine-casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/10Heating, e.g. warming-up before starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K11/00Plants characterised by the engines being structurally combined with boilers or condensers
    • F01K11/02Plants characterised by the engines being structurally combined with boilers or condensers the engines being turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/12Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled
    • F01K23/16Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled all the engines being turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/165Controlling means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
    • F01K7/226Inter-stage steam injection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

若依據其中一個實施形態,則廠房控制裝置,係對發電廠進行控制,該發電廠,係具備有:氣體渦輪機;和發電機,係藉由氣體渦輪機而被驅動;和排熱回收鍋爐,係使用從氣體渦輪機而來之排氣之熱來產生第1蒸氣;和蒸氣渦輪機,係藉由第1蒸氣而被驅動;和離合器,係將被與氣體渦輪機以及發電機作了連接之第1軸和被與蒸氣渦輪機作了連接的第2軸作結合。該裝置,係具備有:啟動部,係當離合器為脫離時,在使蒸氣渦輪機維持於停止的狀態下而啟動氣體渦輪機以及發電機。該裝置,係更進而具備有:暖機部,係在離合器為脫離時,與氣體渦輪機以及發電機之啟動並行地,而將從與排熱回收鍋爐相異之設備而來的第2蒸氣供給至蒸氣渦輪機處而將蒸氣渦輪機暖機。

Description

廠房控制裝置、廠房控制方法及發電廠
本發明之實施形態,係有關於廠房控制裝置(plant control apparatus)、廠房控制方法以及發電廠(power generation plant)。
將氣體渦輪機(gas turbine)和排熱回收鍋爐(boiler)以及蒸氣渦輪機(steam turbine)作組合所構成的複循環(combined cycle)發電廠係為周知。排熱回收鍋爐,係從氣體渦輪機之排氣而回收熱並產生蒸氣。蒸氣渦輪機,係藉由排熱回收鍋爐所產生的蒸氣而被驅動。 作為此種構成,係存在有日本公開特許公報、特開平4-148002號公報(以下,稱作專利文獻1)以及同樣的日本公開特許公報、特開平2-308903號公報(以下,稱作專利文獻2)。
[發明所欲解決之課題]
一般而言,若是進行蒸氣渦輪機之冷啟動(cold start),則由於蒸氣渦輪機之轉子(rotor)係身為極低溫,相對於此,將此作驅動之蒸氣係為高溫,因此,係產生有大的溫度差,起因於此,在啟動中係會產生大的熱應力。作為將此熱應力減輕的手法,係周知有預暖機(prewarming)。傳統的預暖機,係在啟動蒸氣渦輪機之前之轉動(turning)運轉中,藉由高壓渦輪機排氣部來將輔助蒸氣送入並將高壓轉子暖機。啟動時之熱應力,對於大容量而構成構件之壁厚為厚的大型蒸氣渦輪機而言,由於係更為嚴苛,因此,預暖機主要係對於在熱力發電廠或多軸型複合(combined)發電廠等之中所被使用的大容量蒸氣渦輪機作適用。但是,伴隨著現今之氣體渦輪機之大型化、高性能化,單軸型複合發電廠之蒸氣渦輪機亦係被大容量化,並成為被適用有預暖機。
原本預暖機係身為需要3小時~5小時之長時間者,從廠房啟動之早期化的觀點來看,長時間之預暖機係會成為問題。相對於較為容許啟動時間之緩慢的熱力發電廠,複循環發電廠由於係以高效率以及啟動時間之快速作為優點,因此,若是起因於預暖機而使啟動時間變慢,則並不理想。雖然進行有各種之將預暖機時間縮短的嘗試,但是其縮短係存在有極限。
另一方面,離合器結合型(clutch coupling type)之單軸型複合發電廠亦成為於現今而被有所導入。在離合器結合型之廠房中,當氣體渦輪機(gas turbine)和蒸氣渦輪機(steam turbine)被驅動時,由於係將其中一方之渦輪機之從另外一方之渦輪機所受到的推力(thrust power)(作用於軸方向上之力)藉由離合器來作紓緩,因此,在設計面上係被指出有像是能夠將負載減輕等之各種的優點。因此,離合器結合型之廠房,係亦被注意到會成為今後之單軸型複合發電廠的主流,可以想見,對於亦能夠對離合器結合型之廠房而合適地作適用的預暖機之需求(needs)係會提高。
因此,本發明之實施形態,係以提供一種能夠同時達成具備有氣體渦輪機和蒸氣渦輪機之發電廠的預暖機和早期啟動之廠房控制裝置、廠房控制方法及發電廠一事,作為課題。 [用以解決課題之手段]
若依據其中一個實施形態,則廠房控制裝置,係對發電廠進行控制,該發電廠,係具備有:氣體渦輪機;和發電機,係藉由前述氣體渦輪機而被驅動;和排熱回收鍋爐,係使用從前述氣體渦輪機而來之排氣之熱來產生第1蒸氣;和蒸氣渦輪機,係藉由前述第1蒸氣而被驅動;和離合器,係將被與前述氣體渦輪機以及前述發電機作了連接之第1軸和被與前述蒸氣渦輪機作了連接的第2軸作結合。前述裝置,係具備有:啟動部,係當前述離合器為脫離時,在使前述蒸氣渦輪機維持於停止的狀態下而啟動前述氣體渦輪機以及前述發電機。前述裝置,係更進而具備有:暖機部,係在前述離合器為脫離時,與前述氣體渦輪機以及前述發電機之啟動並行地,而將從與前述排熱回收鍋爐相異之設備而來的第2蒸氣供給至前述蒸氣渦輪機處而將前述蒸氣渦輪機暖機。
以下,參考圖面,對本發明之實施形態作說明。在圖1~圖9b中,對於相同或相類似之構成,係附加相同之元件符號,並省略重複之說明。
(第1實施形態) 以下,針對第1實施形態作說明。在本實施形態之說明中,亦針對第1~第3比較例作說明。
(1)第1比較例之廠房構成 圖8,係為對於第1比較例之發電廠100的構成作展示之示意圖。圖8之發電廠100,係為單軸型複循環 (combined cycle) (C/C)發電廠。
圖8之發電廠100,係具備有對於發電廠100之動作作控制的廠房控制裝置101,並進而具備有:氣體渦輪機(GT)102、和蒸氣渦輪機(ST)103、和排熱回收鍋爐104、和MCV閥(高壓增減閥)105、和燃料調節閥106、和壓縮機107、和燃燒器108、和蒸發器109、和滾筒(drum) 110、和過熱器111、和再熱器112、和冷凝器113、和循環水幫浦(pump)114、和海水115之導入部以及排出部、和燃料116之供給部、和發電機117、和ICV閥(再熱調節(intercept)閥)118、和高壓渦輪機旁通調節閥119、和LPCV閥(低壓增減閥)120、和低溫再熱管121、和高溫再熱管122、和送氣配管123、和輔助鍋爐124、和暖機閥125、和高壓渦輪機排氣管126、和檢測用齒輪127、和再熱排放閥(drain valve)128以及129、和殼體排放閥(casing drain valve)130。
蒸氣渦輪機103,係具備有高壓渦輪機103a、和中壓/低壓渦輪機103b、和高壓轉子103c。發電廠100,係更進而具備有第1段內面金屬(metal)溫度感測器(sensor)TS1、和ST旋轉數檢測器SP1、和火焰檢測器FD1。
燃料調節閥106,係被設置於燃料配管處。若是將燃料調節閥106開閥,則燃料116係被從燃料配管而供給至燃燒器108處。壓縮機107,係從其之入口而將空氣導入,並對於燃燒器108供給壓縮空氣。燃燒器108,係將燃料116與壓縮空氣中之氧一同燃燒,並產生高溫、高壓之燃燒氣體。火焰檢測器FD1,係檢測出燃燒器108內之火焰,並將火焰之檢測結果輸出至廠房控制裝置101處。
在本比較例中,氣體渦輪機102、蒸氣渦輪機103以及與發電機117,係被固定在相同之旋轉軸(轉子)處。氣體渦輪機102,係藉由被燃燒氣體作旋轉驅動,而使旋轉軸旋轉。發電機117,係被與旋轉軸作連接,並利用旋轉軸之旋轉來進行發電。如此這般,發電機117,係藉由氣體渦輪機102而被驅動。從氣體渦輪機102所排出的氣體渦輪機排氣A1,係被送至排熱回收鍋爐104處。排熱回收鍋爐104,係如同後述一般地,使用氣體渦輪機排氣A1之熱而產生主蒸氣A2。
蒸發器109、滾筒110、過熱器111以及再熱器112,係被設置在排熱回收鍋爐104內,並構成排熱回收鍋爐104之一部分。滾筒110內之水,係被送至蒸發器109處,並在蒸發器109內藉由氣體渦輪機排氣A1而被加熱,藉由此而成為飽和蒸氣。飽和蒸氣,係被送至過熱器111處,並在過熱器111內藉由氣體渦輪機排氣A1而被過熱,藉由此而成為過熱蒸氣。藉由排熱回收鍋爐104所產生的過熱蒸氣,係作為主蒸氣A2而被排出至蒸氣配管處。
蒸氣配管,係被分歧為主配管和旁通配管。主配管,係被與高壓渦輪機103a作連接,旁通配管,係被與冷凝器113作連接。MCV閥105,係被設置於主配管處。高壓渦輪機旁通調節閥119,係被設置在旁通配管處。
若是將MCV閥105開閥,則從主配管而來之主蒸氣A2係被供給至高壓渦輪機103a處。高壓渦輪機103a,係藉由被主蒸氣A2作旋轉驅動,而與氣體渦輪機102一同地使旋轉軸旋轉。其結果,發電機117,係藉由氣體渦輪機102和高壓渦輪機103a而被驅動。高壓轉子103c,係為在旋轉軸處之高壓渦輪機103a內之部分。從高壓渦輪機103a之排氣口(高壓渦輪機排氣部)所排出的主蒸氣A2(排氣蒸氣),係經由高壓渦輪機排氣管126和低溫再熱管121而被供給至再熱器(reheater)112處。第1段內面金屬溫度感測器TS1,係檢測出高壓渦輪機103a之第1段內面的金屬溫度,並將金屬溫度之檢測結果輸出至廠房控制裝置101處。殼體排放閥130,係被設置在被與高壓渦輪機103a作了連接的配管處,並用以使用來將在高壓渦輪機103a內所產生的排放(drain)水(water)排出。
另一方面,若是將高壓渦輪機旁通調節閥119開閥,則從旁通(bypass)配管而來之主蒸氣A2係旁通過高壓渦輪機103a和中壓/低壓渦輪機103b而被送至冷凝器113處。
再熱器112之其中一端(以下,稱作「第1端」)係被與低溫再熱管121作連接,再熱器112之另外一端(以下,稱作「第2端」)係被與高溫再熱管122作連接。本比較例之再熱器112,係將從高壓渦輪機103a而來的主蒸氣A2(排氣蒸氣)從第1端而導入,並將此主蒸氣A2從第2端而排出。
例如,再熱器112,係將從高壓渦輪機103a而來的主蒸氣A2從第1端而導入,並將主蒸氣A2藉由氣體渦輪機排氣A1來作加熱而產生再熱蒸氣A4。亦即是,主蒸氣A2係被加熱並成為再熱蒸氣A4。再熱器112,係將此再熱蒸氣A4從第2端來朝向高溫再熱管122排出。再熱排放閥128,係被設置於在第1端附近處而從低溫再熱管121所分歧出的管處,並用以使用來將在再熱器112處所產生的排放水排出。另一方面,再熱排放閥129,係被設置於在第2端附近處而從高溫再熱管122所分歧出的管處,並用以使用來將在再熱器112處所產生的排放水排出。
高溫再熱管122,係被連接於ICV閥118處。若是將ICV閥118開閥,則從高溫再熱管122而來之再熱蒸氣A4係被供給至中壓/低壓渦輪機103b處。中壓/低壓渦輪機103b,係包含有中壓渦輪機和低壓渦輪機,並藉由被再熱蒸氣A4作旋轉驅動,而與氣體渦輪機102和高壓渦輪機103a一同地使旋轉軸旋轉。其結果,發電機117,係藉由氣體渦輪機102、高壓渦輪機103a以及中壓/低壓渦輪機103b而被驅動。從中壓/低壓渦輪機103b所排出的再熱蒸氣A4(排氣蒸氣),係被送至冷凝器113處。
冷凝器113,係將再熱蒸氣A4藉由海水115來冷卻,並使再熱蒸氣A4回復為海水115。循環水幫浦114,係從海而導入海水115,並供給至冷凝器113處。
檢測用齒輪127,係在高壓渦輪機103a和中壓/低壓渦輪機103b之間而被設置於旋轉軸處。ST旋轉數檢測器SP1,係藉由利用檢測用齒輪127來檢測出旋轉軸之旋轉數(旋轉速度),並將旋轉數之檢測結果輸出至廠房控制裝置101處。
輔助(auxiliary)鍋爐(boiler)124,係為了並不使用排熱回收鍋爐104地而產生蒸氣(輔助蒸氣A3),而被設置在發電廠100內。藉由輔助鍋爐124所產生的輔助蒸氣A3,係藉由將暖機閥(warming valve)125開閥,而能夠經由高壓渦輪機排氣管126來供給至高壓渦輪機103a處。藉由此,係能夠藉由輔助蒸氣A3來將高壓渦輪機103a暖機。此暖機,係作為高壓渦輪機103a之預暖機而被實施。
送氣配管123,係被設置在中壓/低壓渦輪機103b與輔助鍋爐124之間。LPCV閥120,係被設置在送氣配管123處。本實施形態之輔助蒸氣A3,係藉由將LPCV閥120開閥,而能夠供給至中壓/低壓渦輪機103b處。
廠房控制裝置101,係對於發電廠100之各種動作作控制。例如,廠房控制裝置101,係對於MCV閥105、燃料調節閥106、ICV閥118、高壓渦輪機旁通調節閥119、LPCV閥120、暖機閥125、再熱排放閥128以及129、殼體排放閥130之開閉,和排熱回收鍋爐104、壓縮機107、燃燒器108、冷凝器113、循環水幫浦114、輔助鍋爐124之動作等作控制。
在本比較例之發電廠100中,氣體渦輪機102和蒸氣渦輪機103係被固定在相同之軸處。將此種型態之發電廠,稱作「剛性(rigid)結合(coupling)之單軸型複循環發電廠」,或者是簡稱為「剛性結合C/C」。以下,針對本比較例之發電廠100(剛性結合C/C)之廠房啟動進行說明。
(2)第1比較例之預暖機 圖8,係對於正在實施剛性結合C/C之發電廠100的預暖機時之狀態作展示。本圖中所示之各閥之開閉狀態,係將全體被塗黑者作為「全閉」,並將全體留白者作為「全開」,並且將半黑半白者作為「中間開度」。
剛性結合C/C之發電廠100的預暖機,係為在氣體渦輪機102和蒸氣渦輪機103均為停止中時,將輔助蒸氣A3送氣至高壓渦輪機103a處而將高壓轉子103c暖機至特定之溫度之操作。此時,輔助蒸氣A3係除了被送氣至高壓渦輪機103a處之外,亦被送氣至再熱器112處,而亦實施再熱器112之暖機。換言之,高壓渦輪機103a之預暖機和再熱器112之預暖機係同時進行。以下,將此事與高壓渦輪機旁通調節閥119之系統相關連地來作記載。
在發電廠100處之渦輪機旁通系統和再熱器之配置,係並非為串接(cascade)旁通系統。在發電廠100處,高壓渦輪機旁通調節閥119係被與冷凝器113作連接,藉由滾筒110所產生的主蒸氣A2,係經由高壓渦輪機旁通調節閥119而並不流入至再熱器112處地來直接被排出至冷凝器113處。於後,將此種構成之渦輪機旁通系統,稱作「平行旁通(parallel bypass)系統(system)」。此稱呼之由來,係因為高壓渦輪機旁通調節閥119和未圖示之中壓渦輪機旁通調節閥(和與滾筒(drum)110相異之其他的未圖示之中壓(medium pressure)滾筒(drum)作連接),對於冷凝器113而言係以平行(parallel)而被作連接之故。平行旁通系統,係並不僅是被使用在複循環發電廠中,而亦被使用於滾筒型熱力發電廠等之中。
以下,針對從預暖機的觀點來看的兩旁通系統之差異作統整說明。
串接旁通系統,係為在後述之第3實施形態中亦被作採用者,於低溫再熱管121尚係存在有防止主蒸氣A2之逆流的逆止閥133。而,藉由將逆止閥133強制性地閉閥(強制關閉),係成為能夠將高壓渦輪機103a和再熱器112之預暖機分離。又,係成為能夠以最初為進行高壓渦輪機103a之單獨的暖機而之後再將高壓渦輪機103a和再熱器112之暖機同時進行(並行暖機)的方式來作切換。
另一方面,在平行旁通系統中,係並未設置有此種逆止閥。故而,如同上述一般,高壓渦輪機103a和再熱器112之預暖機係恆常成為同時進行(並行暖機)。在第1實施形態中,係針對此種平行旁通系統作說明。
發電廠100由於係為剛性結合C/C,因此,蒸氣渦輪機103係與氣體渦輪機102之啟動同時地而作旋轉上升,此時,在低壓渦輪機103b之動翼(move vane)處係會產生風損。因此,係有必要將低壓渦輪機103b冷卻,故而,係從輔助鍋爐124之出口而分歧出送氣配管123,並將送氣配管123與低壓渦輪機103b作連接。而,在送氣配管123處,係被設置有LPCV閥120,藉由將此LPCV閥120開閥,來將輔助蒸氣A3送氣至低壓渦輪機103b處,而將低壓渦輪機103b冷卻(cooling)。以下,將此冷卻操作稱作「低壓冷卻」。
(3)第1比較例之啟動流程圖 圖9a和圖9b,係為對於第1比較例之發電廠100的動作作展示之流程圖。實現本流程圖者,係為被收容於廠房控制裝置101之內部的軟體(software)。另外,在以下之說明中所使用的具體性之數值,係僅為為了易於理解所記載的其中一例。
發電廠100之啟動準備,首先係藉由蒸氣渦輪機103之轉動(turning)運轉(operation)而被開始(步驟(step)S101)。蒸氣渦輪機103,係藉由轉動運轉而被維持於約4RPM~10RPM程度之極低旋轉,在此運轉狀態下,接下來的冷凝器真空上升係成為可能。
若是被進行有冷凝器113之真空上升(步驟S102),則冷凝器113內係成為略真空狀態。進而,平行旁通系統之再熱器112,係經由再熱排放閥128以及129而被與冷凝器113作連接。殘留於再熱器112內之非冷凝性氣體(代表性而言,係為空氣,或者是在被進行有氮封入的情況時之氮氣),係隨著冷凝器113內成為真空而被排出至冷凝器113處,再熱器112之內部亦係成為略真空。藉由保持此真空狀態,在之後輔助蒸氣A3為了預暖機而被作了送氣時,在高壓渦輪機103a或再熱器112之內部所產生的排放水係從各別之排放閥而被適當地排水至冷凝器113處。
接著,實施預暖機。在預暖機中,首先係將暖機閥125開閥(步驟S103),並將輔助鍋爐124所供給的輔助蒸氣A3送氣至高壓渦輪機103a和再熱器112處(步驟S104)。藉由此,高壓渦輪機103a之暖機(warming)(暖氣)係被開始,轉子(rotor)103c係逐漸被暖機。
在高壓渦輪機103a內,輔助蒸氣A3之一部分係冷凝並成為排放(drain)水(water)。此排放水,係藉由殼體排放閥(casing drain valve)130而被排水至冷凝器113處。與此工程並行地,再熱器112之暖機係被開始,同樣的,在再熱器112之內部,輔助蒸氣A3之一部分係冷凝並成為排放水,此排放水係藉由再熱排放閥128以及129而被排水至冷凝器113處。另外,在圖8中,作為排放閥,雖係僅代表性地記載有高壓渦輪機103a內之殼體排放閥130和再熱器112周邊之再熱排放閥128以及129,但是,實際上係被設置有未圖示之多數的排放閥。
溫度感測器TS1,係對於身為轉子103c之構成要素的第1段殼(shell)內面金屬(metal)之溫度作計測(步驟S105)。此第1段殼內面金屬溫度,係為代表轉子103c之溫度之指標,並成為對於轉子103c是身為冷機狀態或者是暖機狀態一事作判斷的指標。被作了送氣的輔助蒸氣A3,最初係冷凝並成為排放水,進而,轉子103c係具備有非常大的熱容量,因此,第1段殼內面金屬溫度係緩慢地上升。
而,廠房控制裝置101,係判定第1段殼內面金屬溫度是否成為了150℃以上(步驟S106),在第1段殼內面金屬溫度成為了150℃以上時,係將暖機閥125閉閥(步驟S107)並結束預暖機。另外,為了便於說明,第1實施形態和第1比較例,係設為在從將暖機閥125開閥起直到第1段殼內面金屬溫度成為150℃以上為止為需要約3小時程度之暖機的啟動例。如此這般地而一旦被暖機至了150℃的第1段殼內面金屬,之後也並不會冷卻,並在直到蒸氣渦輪機103之通氣開始(步驟S125)為止而被保持於150℃或其之近旁的溫度。
在預暖機結束後,進行排熱回收鍋爐104之服務開始(步驟S108)。在此排熱回收鍋爐104之服務開始中,係藉由啟動附屬於排熱回收鍋爐104之供水幫浦(未圖示),來從供水幫浦而對於滾筒110進行供水,並將滾筒110之水位確立為特定之值。如此這般,而進行使排熱回收鍋爐104接收氣體渦輪機排氣A1之準備。
此供水幫浦,由於係為對於高壓之滾筒110而供給多量之供水的幫浦,因此,在用以驅動此供水幫浦之輔助機器動力中,係需要大的電力。故而,係盡可能使並不進行商用發電之排熱回收鍋爐104的服務開始(service in)在短時間內結束。例如,在為了維修(maintenance)或者是清掃而進行了排熱回收鍋爐104之全鍋爐噴出(blow)的情況時,於進入至發電廠100之啟動準備之前,係進行有先將罐水滿佈水操作結束等的處置。第1比較例和第1實施形態等,係設為在排熱回收鍋爐104之服務開始中需要耗費10分鐘的啟動例。
若是排熱回收鍋爐之服務開始工程結束,則係啟動氣體渦輪機102(步驟S109)。若是啟動氣體渦輪機102,則首先係進行10分鐘的清洗運轉(步驟S111),之後,將燃料調節閥106開閥,並經過著火以及升速之過程(步驟S112)而到達額定速度之3000RPM,並且到達FSNL(無負載額定旋轉)(步驟S113)。
蒸氣渦輪機103,係與氣體渦輪機102之啟動(步驟S109)同時地而開始旋轉上升(步驟S121)。廠房控制裝置101,係對於從ST旋轉數檢測器SP1而來之訊號作計測(步驟S122),若是判斷蒸氣渦輪機103之旋轉數成為了1500RPM以上(步驟S123 YES),則係將LPCV閥120開閥並開始低壓冷卻(步驟S124)。藉由此,輔助蒸氣A3係被送氣至低壓渦輪機103b處,低壓渦輪機103b之冷卻係被進行。此低壓冷卻係被繼續進行,直到之後的蒸氣渦輪機103之通氣開始(步驟S125)被進行為止,在通氣之後,係將LPCV閥120閉閥(步驟S127)。
若是發電機117之並聯許可條件成立(步驟S114 YES),則發電機117係被並聯(步驟S115)。作為並聯許可條件之其中一例,係存在有像是用以將在氣體渦輪機排氣A1中所包含的NOx(氮氧化物)藉由氨(anmonium or anmonia)注入來還原的觸媒之溫度條件等。
在將發電機117作了並聯之後,使氣體渦輪機102之輸出上升至20%負載(步驟S116)。若是氣體渦輪機102之輸出到達20%負載(步驟S117 YES),則此時氣體渦輪機102係進入至負載保持運轉。另外,氣體渦輪機102之20%負載,係為在蒸氣渦輪機103之通氣被開始之前所能夠容許的最大輸出之其中一例。例如,此最大輸出,係為作為能夠進行不會使身為冷凝器113之冷卻水的海水之進出口溫度差超過7℃的運轉之最大輸出,而被賦予者。
當在步驟S112中而進行了氣體渦輪機102之著火之後,氣體渦輪機排氣A1係流入至排熱回收鍋爐104中,在蒸發器109處,蒸發係開始,並產生主蒸氣A2。隨著氣體渦輪機102之輸出上升至20%負載,氣體渦輪機排氣A1之熱量(溫度、流量)亦係增加,蒸氣渦輪機103之通氣許可條件係成立(步驟S118 YES)。此通氣條件之主要的構成要素,係為主蒸氣A2之壓力條件、流量條件以及溫度條件,當此些全部到達了特定之值時,通氣條件係成立。特定之值之例,係為主蒸氣A2能夠驅動高壓渦輪機103a之值。另外,為了便於說明,第1比較例和第1實施形態,係設為從氣體渦輪機102之啟動開始起直到蒸氣渦輪機103之通氣許可條件成立為止為需要40分鐘的啟動例。
廠房控制裝置101,係判斷蒸氣渦輪機103之通氣許可條件已成立(步驟S118 YES),並開始蒸氣渦輪機103之通氣(步驟S125),MCV閥105和ICV閥118係開始開閥。主蒸氣A2,係經由MCV閥105而流入至高壓渦輪機103a中,並驅動高壓渦輪機103a。主蒸氣A2,之後係從高壓渦輪機103a而被排氣並從高壓渦輪機排氣管126經由低溫再熱管121而流入至再熱器112中,並再度被加熱而成為再熱蒸氣A4,並經由ICV閥118而流入至中壓渦輪機103b處,並驅動中壓渦輪機103b。另外,在平行旁通系統中,於通氣之後,蒸氣係流入至再熱器112中,但是,由於再熱器112係已與高壓渦輪機103a一同地而結束預暖機,因此係並不會有在再熱器112處而產生多量之排放水的問題。
蒸氣渦輪機103,在通氣開始之時間點處係為以額定速度之3000RPM而進行旋轉中,而並不需要進行升速。因此,廠房控制裝置101,在通氣開始後係將MCV閥105和ICV閥118之開度增加,並開始初負載熱浸(heat soak)運轉(步驟S126)。在初負載熱浸運轉中,例如係對於壓縮器107之入口導引翼作控制。之後,進行初負載熱浸(heat soak)結束後之啟動工程。
(4)第1實施形態之廠房構成 圖1,係為對於第1實施形態之發電廠100a的構成作展示之示意圖。圖1之發電廠100a,係為單軸型C/C發電廠。
圖1之發電廠100a,係具備有對於發電廠100a之動作作控制的廠房控制裝置101b,進而,除了圖8中所示之構成要素之外,亦具備有離合器131、和間隙感測器(gap sensor)(離合器(clutch)嵌合檢測器)GS1。
廠房控制裝置101a,係具備有與上述之廠房控制裝置101相同的功能,但是,係亦具備有與廠房控制裝置101相異之功能。例如,廠房控制裝置101a,係能夠對於離合器131之動作作控制,並且能夠從間隙感測器GS1而受訊離合器131之嵌合的檢測結果。關於廠房控制裝置101a之其他的功能,係於後再述。
在本實施形態之發電廠100a中,氣體渦輪機102和蒸氣渦輪機103係藉由離合器131而被作結合。將此種型態之發電廠,稱作「離合器結合之單軸型複循環發電廠」,或者是簡稱為「離合器結合C/C」。離合器131,係能夠將被與氣體渦輪機102以及發電機117作了連接的第1旋轉軸和被與高壓蒸氣渦輪機103a以及中壓/低壓渦輪機103b作了連接的第2旋轉軸作結合,或者是將第1旋轉軸和第2旋轉軸切離。檢測用齒輪127,係在高壓渦輪機103a和中壓/低壓渦輪機103b之間而被設置於第2旋轉軸處,ST旋轉數檢測器SP1,係藉由利用檢測用齒輪127而檢測出第2旋轉軸之旋轉數。
圖1之發電廠100a和圖8之發電廠100,係在此離合器131之有無一點上為相異。離合器131之實際的構造係為複雜,圖1係將此作示意化圖示。在發電廠100a開始了啟動的時間點處,離合器131係身為脫離狀態,氣體渦輪機102和發電機117係進行有先行啟動。此時,蒸氣渦輪機103係身為停止狀態。之後,當蒸氣渦輪機103之通氣許可條件成立時,蒸氣渦輪機103係以自力來進行升速啟動,在一直升速至了額定旋轉數之近旁處時,離合器131係藉由離心力之作用而自動性地嵌合。在如此這般地而離合器131作了嵌合之後,亦即是在廠房啟動工程之剩餘的後半和通常運轉中,係藉由氣體渦輪機102和蒸氣渦輪機103而驅動發電機117並進行發電。此係為與身為剛性(rigid)結合C/C之圖8之發電廠100的情況相同之發電態樣。
係可如同下述一般地而推測到離合器結合C/C的優點。在離合器結合C/C中,當離合器131為脫離時,氣體渦輪機102和發電機117係先行啟動,此時,蒸氣渦輪機103係為停止或者是極低旋轉之狀態,因此,氣體渦輪機102之啟動中的預暖機係成為可能。若是對此點作活用,則係能夠實現有效率且合適的預暖機。又,由於蒸氣渦輪機103係為自力升速,因此係並不存在有如同剛性結合C/C一般之低壓渦輪機的風損(windage or wind loss)之發生,而亦成為不需要進行低壓冷卻。故而,在預暖機時,係能夠對於在輔助蒸氣A3之使用上而受到拘束之不便作抑制。
如此這般,在離合器結合C/C中,於氣體渦輪機102之啟動後,亦能夠進行預暖機。因此,在第1實施形態中,係於需要耗費長時間之預暖機的途中,並不等待預暖機之結束地而開始氣體渦輪機102之啟動,而謀求發電廠100a之啟動的早期化。具體而言,係因應於第1段殼內面金屬溫度而開始氣體渦輪機102之啟動。此時,係以會使預暖機之結束的時序和蒸氣渦輪機103之通氣條件成立的時序相互一致的方式,來選擇第1段殼內面金屬溫度,並將氣體渦輪機102啟動。廠房控制裝置101a之對於預暖機作控制之功能,係身為暖機部之其中一例。又,廠房控制裝置101a之對於氣體渦輪機102等之啟動作控制之功能,係身為啟動部之其中一例。
基本上,預暖機,係身為僅在高壓渦輪機103a停止或者是極低旋轉狀態時才被容許之操作。但是,在離合器結合C/C中,就算是在氣體渦輪機102之啟動後,亦能夠進行預暖機。此係起因於在氣體渦輪機102之先行啟動時蒸氣渦輪機103係身為停止狀態的啟動工程所致者。
之後,當蒸氣渦輪機103之通氣許可條件成立時,蒸氣渦輪機103係以自力來進行升速啟動,在一直升速至了額定旋轉數之近旁處時,離合器131係藉由離心力之作用而自動性地嵌合。如此這般,由於蒸氣渦輪機103係通氣並自力升速,因此係並不存在有如同剛性結合C/C一般之低壓渦輪機103b的風損問題,而亦成為不需要進行低壓冷卻。故而,為了進行低壓冷卻而在圖8之發電廠100處所被設置的送氣配管123,在圖1之發電廠100a中係並不存在。又,LPCV閥120,由於與本實施形態係並沒有直接關連,因此係從圖1而省略。除此之外之構成,亦包含有身為平行旁通之系統上的特徵地,圖1之發電廠100a,係與圖8之發電廠100相同。
(5)第1實施形態之啟動時間 第1實施形態和第1比較例,係身為在預暖機中需要約3小時的啟動例。而,第1實施形態,係並不等待預暖機之結束地而先行開始氣體渦輪機103之啟動,並使預暖機和氣體渦輪機103之啟動並行地進行。而,在此並行進行中,係以會使預暖機之結束和蒸氣渦輪機103之通氣許可條件之成立的2個時序(timing)相互一致的方式,來選擇氣體渦輪機103之啟動開始的時間點。
在進入此詳細說明之前,對於(i)在蒸氣渦輪機之通氣條件成立中所需要的時間和(ii)第1段殼內面金屬溫度之升溫速率,如同下述一般地來作整理。
首先,關於(i),與比較例1相同的,係設為從氣體渦輪機102之啟動起直到蒸氣渦輪機103之通氣許可條件成立為止為需要40分鐘的啟動例。於此,本實施形態之通氣許可條件,係為主蒸氣A2之壓力、流量以及溫度之全部均到達特定之值的條件。
接著,關於(ii),轉子103c係具備有非常大的熱容量。故而,輔助蒸氣A3係將轉子103c之表面作暖機,但是,其之熱係會被熱傳導至轉子103c之內部。因此,預暖機中之第1段殼內面金屬溫度之升溫速率係為緩慢。為了便於說明,第1實施形態,係設為此升溫速率為0.2℃/分鐘,而第1段殼內面金屬溫度係以此升溫速率來進行溫度上升的啟動例。另外,此0.2℃/分鐘,係為該金屬溫度為在130℃~150℃近旁之區域中的升溫速率。例如,在較此而更低的溫度區域中,由於輔助蒸氣A3之溫度和該金屬溫度之間之溫度差(ΔT)係為大,因此此升溫速率係變快。又,在剛開始預暖機等的更冷之冷機狀態下,輔助蒸氣A3由於係冷凝為多量的排放水,因此此升溫速率係極端地變慢。
如此這般,藉由推測(ii)之升溫速率,係成為能夠以使第1段殼內面金屬溫度之上升成為與時間之經過相同的方式來作處理。例如,係成為能夠將從氣體渦輪機102之啟動起直到蒸氣渦輪機103之通氣許可條件成立為止之40分鐘,換算成第1段殼內面金屬溫度。
對此作利用,而如同下述一般地來選擇氣體渦輪機102之啟動開始的時間點。另外,在本實施形態中,當第1段殼內面金屬溫度上升至了142℃時,係將氣體渦輪機102啟動(142℃=150℃-40分鐘×0.2℃/分鐘)。若是設為此種構成,則係能夠使第1段殼內面金屬溫度升溫至150℃並成為結束預暖機的時間點和蒸氣渦輪機103之通氣許可條件成立的時間點相互一致。又,為了使氣體渦輪機102在該金屬溫度142℃處而啟動,排熱回收鍋爐104之服務開始亦係先行於第1段殼內面金屬溫度上升至了140℃時而開始。
(6)第1實施形態之啟動流程圖 圖2a和圖2b,係為對於第1實施形態之發電廠100a的動作作展示之流程圖。實現本流程圖者,係為被收容於廠房控制裝置101a之內部的軟體。在以下之說明中所使用的具體性之數值,係為為了易於理解所記載的其中一例。
發電廠100a之啟動準備,首先係藉由蒸氣渦輪機103之轉動運轉而被開始(步驟S101)。蒸氣渦輪機103,係藉由轉動運轉而被維持於約4RPM(Revolutions Per Minute)~10RPM程度之極低旋轉,在此運轉狀態下,冷凝器113之真空上升係成為可能。
若是被進行有冷凝器113之真空上升(步驟S102),則冷凝器113內係成為略真空狀態。進而,平行旁通系統之再熱器112,係經由再熱排放閥128以及129而被與冷凝器113作連接。殘留於再熱器112內之非冷凝性氣體,係隨著冷凝器113內成為真空而被排出至冷凝器113處,再熱器112之內部亦係成為真空。藉由保持此真空狀態,在之後輔助蒸氣A3為了預暖機而被作了送氣時,在高壓渦輪機103a或再熱器112之內部所產生的排放水係從各別之排放閥而被適當地排水至冷凝器113處。另外,由於若是此事不結束則無法進行預暖機,因此,與後述之排熱回收鍋爐104之服務開始相異,冷凝器113之真空上升係並無法成為與預暖機之間之並行操作、進行。至此為止之啟動工程,係與第1比較例相同。
接著,實施預暖機。在預暖機中,首先係將暖機閥125開閥(步驟S103),並將輔助鍋爐124所供給的輔助蒸氣A3送氣至高壓渦輪機103a和再熱器112之雙方處(步驟S104)。藉由此,高壓渦輪機103a之暖機(暖氣)係被開始,轉子103c係逐漸被暖機。高壓渦輪機103a,係為蒸氣渦輪機之其中一例,中壓/低壓渦輪機103b,係為再熱渦輪機之其中一例,輔助鍋爐124,係為與排熱回收鍋爐104相異之設備的其中一例。又,主蒸氣A2和輔助蒸氣A3,係分別為第1蒸氣和第2蒸氣之例。
在高壓渦輪機103a內,輔助蒸氣A3之一部分係冷凝並成為排放水。此排放水,係藉由殼體排放閥130而被排水至冷凝器113處。與此工程並行地,再熱器112之暖機係被開始,在再熱器112之內部,輔助蒸氣A3之一部分係冷凝並成為排放水,此排放水係藉由再熱排放閥128以及129而被排水至冷凝器113處。另外,本實施形態,雖係設為作為輔助蒸氣源而使用輔助鍋爐124之例,但是,在除了發電廠100a以外亦另外鄰接設置有其他之發電廠的情況時,係亦會有發電廠100a接收該其他之發電廠所產生的蒸氣之一部分並將其作為輔助蒸氣源的情況。
溫度感測器TS1,係對於身為轉子103c之構成要素的第1段殼內面金屬之溫度作計測(步驟S105)。廠房控制裝置101a,係判定所計測到的第1段殼內面金屬溫度是否成為了140℃以上,在第1段殼內面金屬溫度成為了140℃以上時(步驟S201 YES),係進行排熱回收鍋爐104之服務開始(步驟S108)。在此服務開始中,係藉由啟動附屬於排熱回收鍋爐104之供水幫浦,來從供水幫浦而對於滾筒110進行供水,並將滾筒110之水位確立為特定之值。如此這般,而進行使排熱回收鍋爐104接收氣體渦輪機排氣A1之準備。排熱回收鍋爐104之服務開始工程,係為需要耗費10分鐘的啟動工程。
在第1實施形態中,如同前述一般,係並不等待預暖機之結束地而先行開始氣體渦輪機102之啟動。進而,排熱回收鍋爐104之服務開始亦係並不等待預暖機之結束地而開始。此係因為,氣體渦輪機102之啟動,由於若是排熱回收鍋爐104之服務開始工程尚未結束則不會被容許,因此若是並不先行進行,則也無法實現氣體渦輪機102之先行啟動之故。又,成為能夠進行此事的原因,係因為排熱回收鍋爐104之服務開始之啟動工程自身並不會消耗輔助蒸氣A3,因此係並不會受到在輔助蒸氣A3之使用的觀點上之拘束,而成為能夠進行與預暖機之間之並行操作之故。
氣體渦輪機102之啟動,係成為在第1段殼內面金屬溫度一直上升至了142℃時會開始的預定。若是進而對於身為在排熱回收鍋爐104之服務開始工程中所需要的時間之10分鐘作考慮,則係只要在第1段殼內面金屬溫度成為了140℃時,而開始排熱回收鍋爐104之服務開始即可(140℃=142℃-10分鐘×0.2℃/分鐘)。藉由此,相對於在第1比較例中係於第1段殼內面金屬溫度成為了150℃時(預暖機結束時)而開始服務開始工程,本實施形態之服務開始工程係提早50分鐘地而被開始。後述之圖5,係對於在本實施形態和第1比較例之排熱回收鍋爐104之服務開始中存在有50分鐘的啟動時刻之差一事作圖示。
之後,若是經過10分鐘,則排熱回收鍋爐104之服務開始工程係結束。與此同時地,第1段殼內面金屬溫度係到達142℃。廠房控制裝置101a,係對於第1段殼內面金屬溫度成為了142℃以上一事作確認(步驟S202 YES),並且為了安全起見而亦藉由AND閘處理(步驟S203)來對於排熱回收鍋爐104之服務開始工程亦結束一事作確認,而將氣體渦輪機102啟動(步驟S109)。此142℃之溫度,係為特定溫度之其中一例。
若是啟動氣體渦輪機102,則首先係進行10分鐘的清洗(purge)運轉(步驟S111)。之後,將燃料調節閥106開閥,並經過著火以及升速之過程(步驟S112)而到達額定速度之3000RPM,並且到達FSNL(無負載額定旋轉)(步驟S113)。在此一連串的啟動工程中,由於離合器131係身為脫離狀態,因此,在氣體渦輪機102以及發電機117之啟動後,蒸氣渦輪機103亦係身為停止狀態。
在第1比較例中,由於蒸氣渦輪機103係與氣體渦輪機102之啟動同時地而開始旋轉上升,因此,係在使預暖機之結束並將暖機閥125作了全閉之後,再進行氣體渦輪機102之啟動。另一方面,在本實施形態中,如同上述一般,係能夠一面繼續進行預暖機,一面進行氣體渦輪機102之啟動。圖5,係對於藉由此氣體渦輪機啟動和預暖機之並行進行,而本實施形態之氣體渦輪機102為相對於第1比較例之氣體渦輪機102之啟動而實現有50分鐘之早期化一事作展示。又,在第1比較例中會伴隨著蒸氣渦輪機103之旋轉上升而成為需要的低壓冷卻(消耗多量之輔助蒸氣A3),在本實施形態中亦係成為不必要。此事,亦係身為在本實施形態中從輔助鍋爐124之負擔的觀點來看係能夠容易地實現氣體渦輪機啟動和預暖機之並行進行的重要因素。
另一方面,請注意到,蒸氣渦輪機103,係發生有起因於「伴隨旋轉(rotation with)」所致的100RPM~300RPM程度之空轉現象。以下,針對此「伴隨旋轉」作說明。
於氣體渦輪機102之啟動時,離合器131係身為脫離狀態,此時,蒸氣渦輪機103係身為停止狀態,關於此事,係已作了說明。但是,若是嚴密地描述蒸氣渦輪機103之舉動,則就算是身為停止狀態(並未被通氣之狀態),起因於在氣體渦輪機102側處而被作了驅動的潤滑油流入至離合器131中一事,係會對於蒸氣渦輪機103側而傳導轉矩(torque)。故而,若是氣體渦輪機102進行升速啟動,則伴隨於此,蒸氣渦輪機103也會以100RPM~300RPM之旋轉數而作空轉。將此現象稱作伴隨旋轉。預暖機,係身為僅在高壓渦輪機103a停止或者是低旋轉狀態時才被容許之操作,但是,從此觀點來看,就算是於100RPM~300RPM之旋轉中而輔助蒸氣A3被送氣,也不會產生會造成問題之程度的嚴重之摩擦熱。換言之,由於300RPM程度之旋轉數係身為可容許預暖機的充分低旋轉之範圍,因此,就算是在伴隨旋轉的狀態下而進行預暖機,也不會產生問題。
但是,對應於有時會起因於某些的原因而導致蒸氣渦輪機103之旋轉數成為了超過所想定之300RPM的旋轉數一事,廠房控制裝置101a,係對於從ST旋轉數檢測器SP1而來之訊號作計測(步驟S122)。而,廠房控制裝置101a,當判斷所計測到的蒸氣渦輪機103之旋轉數係為350RPM以上的情況時(步驟S204 YES),係將暖機閥125閉閥(步驟S205),並將預暖機中斷。此一所謂350RPM之旋轉數,係為相對於上述之300RPM而賦予有50RPM之餘裕者,而身為特定之旋轉數的其中一例。
之後,若是發電機117之並聯許可條件成立(步驟S114 YES),則發電機117係被並聯(步驟S115)。作為並聯許可條件之例,係存在有像是用以將在氣體渦輪機排氣A1中所包含的NOx(氮氧化物)藉由氨注入來還原的觸媒之溫度條件等。
在將發電機117作了並聯之後,使氣體渦輪機102之輸出上升至20%負載(步驟S116)。若是氣體渦輪機102之輸出到達20%負載(步驟S117 YES),則氣體渦輪機102係進入至負載保持運轉。氣體渦輪機102之20%負載,係為在蒸氣渦輪機103之通氣被開始之前所能夠容許的最大輸出之其中一例,例如係為作為能夠進行不會使身為冷凝器113之冷卻水的海水之進出口溫度差超過7℃的運轉之最大輸出,而被賦予者。另外,雖然亦可考慮將離合器結合C/C之氣體渦輪機102先行啟動,之後在將氣體渦輪機102設為額定輸出(100%負載)之狀態下而使蒸氣渦輪機103作後續啟動,但是,從環境保護的觀點來看,在對於冷凝器113之進出口海水溫度差設置有規範的發電廠100a中,一般而言係難以採用此種啟動法。
當在步驟S109處而啟動了氣體渦輪機102之後,於經過了40分鐘後的時間點處,蒸氣渦輪機103之通氣許可條件係成立(步驟S118 YES)。本實施形態之通氣條件之主要的構成要素,係為主蒸氣A2之壓力條件、流量條件以及溫度條件,當此些全部到達了特定之值時,通氣條件係成立。特定之值之例,係為主蒸氣A2能夠驅動高壓渦輪機103a之值。另外,本實施形態之通氣條件,係亦可考慮設定為當主蒸氣A2之壓力條件、流量條件以及溫度條件之一部分為到達了特定之值時會成立。
與此同時地,在啟動了氣體渦輪機102時乃身為142℃之第1段殼內面金屬溫度,係在經過了40分鐘的時間點處到達150℃。廠房控制裝置101a,係確認第1段殼內面金屬溫度成為了150℃以上(步驟S106 YES),並將暖機閥125閉閥(步驟S107),而結束預暖機。此150℃之溫度,係為特定溫度之其中一例。
亦即是,在本實施形態中,預暖機結束的時序和蒸氣渦輪機103之通氣條件成立並成為能夠進行對於蒸氣渦輪機103之通氣的時序,係相互一致。故而,蒸氣渦輪機103之通氣(步驟S125),係成為在此時間點處而迅速地被開始。
另外,依存於發電廠100a,也會有為了保證有更確實的暖機而在第1段殼內面金屬溫度成為了150℃以上之後而經過了特定時間的時間點處再結束預暖機的情況。後述之第2實施形態,係為對於此種情況作處理之啟動法。
廠房控制裝置101a,係藉由AND閘處理(步驟S207),而判斷蒸氣渦輪機103之通氣許可條件成立(步驟S118 YES)和暖機閥125作了全閉(步驟S206 YES)的雙方均成立。之後,廠房控制裝置101a,在此些之雙方均成立的情況時,係開始蒸氣渦輪機103之通氣(步驟S125),並將MCV閥105和ICV閥118開閥。如此這般,蒸氣渦輪機103係被啟動。若是對照圖5,則可以得知,相對於第1比較例之蒸氣渦輪機通氣開始,本實施形態之通氣開始係實現有50分鐘的早期化。
若是通氣被開始,則主蒸氣A2係經由MCV閥105而流入至高壓渦輪機103a處,並驅動高壓渦輪機103a。主蒸氣A2,之後係從高壓渦輪機103a而被排氣並從高壓渦輪機排氣管126經由低溫再熱管121而流入至再熱器112中,並再度被加熱而成為再熱蒸氣A4,並經由ICV閥118而流入至中壓渦輪機103b處,並驅動中壓渦輪機103b。廠房控制裝置101a,在通氣開始後,係對於MCV閥105和ICV閥118之開度作控制而將蒸氣渦輪機103升速(步驟S211),蒸氣渦輪機103之旋轉數係朝向額定速度(3000RPM)而上升。
當蒸氣渦輪機103之旋轉數一直上升至了此額定速度之近旁時(步驟S212 YES),離合器131係藉由離心力之作用而自動性地嵌合(步驟S213)。此嵌合,係僅為藉由離合器131自身所具有的機械性(mechanical)之機制而進行者,而並非由廠房控制裝置101a所致之控制作用。在離合器131作了嵌合之後,係藉由氣體渦輪機102和蒸氣渦輪機103之而驅動發電機117並進行發電,此之後係成為與剛性結合C/C相同之發電態樣。
間隙感測器(gap sensor)GS1,係為偵測出離合器131是否有作嵌合一事之嵌合檢測器。廠房控制裝置101a,若是輸入從間隙感測器GS1而來之訊號並判斷離合器131係作了嵌合(步驟S214 YES),則係將MCV閥105和ICV閥118之開度增加,並開始蒸氣渦輪機103之初負載熱浸運轉(步驟S126)。在初負載熱浸運轉中,例如係對於壓縮器107之入口導引翼作控制。之後,進行初負載熱浸(heat soak)結束後之啟動工程。
(7)第1實施形態之效果其之1 在第1實施形態中,係將排熱回收鍋爐104之服務開始(步驟S108)、氣體渦輪機102之啟動(步驟S109)、蒸氣渦輪機103之通氣開始(步驟S125),分別在第1段殼內面金屬溫度之測定值到達了140℃、142℃、150℃的時間點處而開始。藉由此,在第1實施形態中,相對於第1比較例係均實現有50分鐘的早期化。而,此些之3個的早期化之中,排熱回收鍋爐104之服務開始和氣體渦輪機102之啟動的早期化,可以說是為了將蒸氣渦輪機103之通氣開始早期化所必須的要件。因此,從廠房啟動早期化之觀點來看,本實施形態之效果係可歸結於蒸氣渦輪機103之通氣開始的早期化。
圖5,係為用以對於第1實施形態和第1比較例作比較之表(chart),並為為了將以上所記載的蒸氣渦輪機103之通氣開始之早期化更為直接(直觀)地可視化所準備的圖。
在圖5中,為了幫助理解,請注意到係以預暖機(PW)作為基準而對於時間有所整理(參考符號S1)。具體而言,在第1比較例和第1實施形態中,預暖機之開始時刻以及結束時刻係為相同的時刻,因此,係成為能夠進行基於蒸氣渦輪機103之通氣開始為相對於預暖機結束而作了多少的延遲之觀點所致的比較(參考符號S4)。
若依據圖5,則在第1比較例中,於預暖機結束之50分鐘之後,蒸氣渦輪機103之通氣係被開始,相對於此,在第1實施形態中,與預暖機結束同時地,蒸氣渦輪機103之通氣係被開始。亦即是,在第1實施形態中,相對於第1比較例係達成有50分鐘的廠房啟動早期化。此事成為可能的原因,係在於在本實施形態中,係活用有離合器結合C/C之優點,而與預暖機並行地來進行氣體渦輪機102之啟動和排熱回收鍋爐104之服務開始之工程之故(參考符號S2、S3)。
進而,應注意到,所謂相對於第1比較例之50分鐘的廠房啟動早期化,係與將在第1比較例中需要耗費180分鐘(3小時)的預暖機縮短為130分鐘的情況時之效果相等。如同前述一般,雖然係對於各種之將預暖機時間縮短的嘗試有所檢討,但是現實上而言係為困難。實際上,在圖5中,亦同樣的,第1比較例和第1實施形態之預暖機係同樣需要3小時,預暖機自身係在兩者處而被同樣地實行。但是,若依據本實施形態,則藉由與預暖機並行地來進行氣體渦輪機102之啟動和排熱回收渦輪機104之服務開始之工程,事實上係能夠將關連於預暖機之時間縮短至72%(72[%]=130分鐘÷180分鐘)。
(8)第1實施形態之效果其之2 進而,在第1實施形態中,當使預暖機和氣體渦輪機102之啟動並行地進行時,係以會使預暖機結束之時序和蒸氣渦輪機103之通氣許可條件成立之時序相互一致的方式,來選擇氣體渦輪機102之啟動開始的時間點。以下,對於藉由此所能夠得到的效果作考察。
作為其之考察方向,將進行與本實施形態相同之並行進行但是卻並不使上述之2個時序相互一致之2個的啟動法(第2以及第3比較例)與本實施形態作比較。另外,在圖5中,係使預暖機之開始時刻和結束時刻在本實施形態與第1比較例之間而相互一致,與此同樣的,第2以及第3比較例之預暖機的開始時刻和結束時刻亦係設為與本實施形態相同。故而,係成為能夠基於蒸氣渦輪機103之通氣開始為相對於預暖機結束而作了多少的提早或延遲之觀點,來對於第1實施形態和第2以及第3比較例作比較。例如,第1實施形態,係可記述為與預暖機結束同時地而蒸氣渦輪機103之通氣被進行。
(9)第2比較例 第2比較例,係為設為較預暖機之結束而使蒸氣渦輪機103之通氣許可條件之成立(通氣許可成立)變得更慢的啟動法。為了便於說明,第2比較例,係設為在步驟S202中,將第1段殼內面金屬溫度之臨限值從第1實施形態之142℃而替換為更高之溫度(例如145℃)的啟動例。故而,在第2比較例中,當該金屬溫度成為了145℃時,氣體渦輪機102之啟動(步驟S109)係被開始。
藉由此,在第2比較例中,相對於第1實施形態,由於氣體渦輪機102之啟動係延遲了15分鐘地而被開始,因此通氣許可成立亦係延遲15分鐘(15分鐘=[145℃-142℃]÷0.2℃/分鐘)。故而,在第2比較例中,於預暖機結束的15分鐘後,蒸氣渦輪機103之通氣開始係被進行。此係相對於第1實施形態而使廠房啟動延遲15分鐘,並代表著在第2比較例中,廠房啟動早期化之效益係減少15分鐘。
(10)第3比較例 第3比較例,係為設為較預暖機之結束而使蒸氣渦輪機103之通氣許可條件之成立(通氣許可成立)變得更快的啟動法。為了便於說明,第3比較例,係設為在步驟S202中,將第1段殼內面金屬溫度之臨限值(threshold value)從第1實施形態之142℃而替換為更低之溫度(例如139℃)的啟動例。故而,在第3比較例中,當該金屬溫度成為了139℃時,氣體渦輪機102之啟動(步驟S109)係被開始。
藉由此,在第3比較例中,相對於第1實施形態,由於氣體渦輪機102之啟動係提早了15分鐘地而被開始,因此通氣許可成立亦係提早15分鐘(15分鐘=[142℃-139℃]÷0.2℃/分鐘)。但是,由於若是預暖機並未結束則蒸氣渦輪機103之通氣開始係不會成為可能,因此,其結果,在第3比較例中,係與預暖機之結束同時地而蒸氣渦輪機103之通氣開始被進行。此係為與第1實施形態相同之廠房啟動,作為廠房啟動早期化之效益,係與第1實施形態相同。
但是,從作為商用發電廠之經濟性的觀點來看,第3比較例係並非為被推薦的啟動法。此係因為,在通氣許可成立之後,會成為在15分鐘之間而一面將氣體渦輪機102之輸出保持為20%負載一面等待預暖機結束之故。此係代表著會被強迫將廠房熱效率為差之部分負載(氣體渦輪機部分負載運轉)多餘地延長15分鐘。
根據上述內容,蒸氣渦輪機103之通氣許可條件之成立和預暖機之結束,不論是使何者提早或者是延遲均不會成為最適當的啟動法。第1實施形態,從廠房啟動早期化和對於商用機器所要求之經濟性之觀點來看,可以說係身為能夠藉由使此些之時序相互一致而對於由以離合器結合C/C所致之並行進行所帶來的優點(merit)作最大限度之享受的啟動法。
(11)能夠適用第1實施形態之廠房 第1實施形態之發電廠100a,係身為具備有平行旁通之離合器結合C/C之單軸型複合發電廠,但是,本實施形態係亦可對於其他方式之複循環發電廠作適用。如同前述一般,預暖機,係身為僅在高壓渦輪機103a停止或者是不會使起因於輔助蒸氣A3而導致之摩擦熱造成問題的低旋轉狀態時才被容許之操作。
另一方面,多軸型複循環發電廠,係具備有相互被設置於互為相異之旋轉軸處的複數台之氣體渦輪機、和被設置在與此些之旋轉軸相異之旋轉軸處之1台的蒸氣渦輪機。基於此種構成,在此些之氣體渦輪機之啟動後,亦能夠將蒸氣渦輪機設為停止中。故而,本實施形態之啟動處理,係亦可對於多軸型複循環發電廠作適用。
又,係亦周知有具備有相互被設置於互為相異之旋轉軸處的1台之氣體渦輪機和1台之蒸氣渦輪機的發電廠。在此發電廠中,係亦可在氣體渦輪機之啟動後,將蒸氣渦輪機設為停止中。故而,本實施形態之啟動處理,係亦可對於此發電廠作適用。
又,本實施形態之啟動處理,係亦可考慮對於剛性結合C/C作適用。例如,係可考慮與預暖機並行地而僅進行排熱回收鍋爐之服務開始的啟動法。而,係以會使預暖機之結束和氣體渦輪機啟動開始之時序相互一致的方式,來選擇開始排熱回收鍋爐之服務開始的時間點。但是,由於在排熱回收鍋爐之服務開始工程中所需要的時間係為10分鐘程度,因此,透過此啟動法所能夠得到的廠房啟動早期化之利益,係為10分鐘程度。故而,在就算是僅為10分鐘程度也期望能夠達成廠房啟動早期化的情況時,較理想,係將本實施形態之啟動處理對於剛性結合C/C作適用。
(12)第1實施形態和BOP設備 在第1實施形態中,係將排熱回收鍋爐104之服務開始和氣體渦輪機102之啟動,分別在第1段殼內面金屬溫度之測定值到達了140℃以及142℃時間點處而開始,並使預暖機和此些之2個工程並行性地進行。在本實施形態中,係亦可更進而於其他的情況中而適用此種並行進行。以下,針對此種並行進行之例作說明。
圖1中所示之氣體渦輪機102和排熱回收鍋爐104,係身為發電廠100a之代表性的構成要素。然而,實際的複循環發電廠,多係更進而具備有被稱作BOP (Balance of Plant)設備之繁雜的機器或設備。而,廠房控制裝置101a,係有必要在氣體渦輪機102之啟動前和啟動後而亦進行BOP設備之啟動(或者是操作)。
例如,煙道風門(stack damper),係為了使煙囪和排熱回收鍋爐104相通連,而被進行開操作。又,發電機117之斷路器,係為了準備將發電機117所產生的電力作送電之送電線(power trasmission line)而被作閉路。通常,此些之BOP設備,係與氣體渦輪機102之啟動和排熱回收鍋爐104之服務開始工程相互連動地而被啟動。例如,廠房控制裝置101a係判斷相當於母機之氣體渦輪機102作了啟動,並使子機之BOP設備與母機相連鎖(interlock)地而啟動。
代替此,在本實施形態中,係亦可因應於第1段殼內面金屬溫度來將此些之BOP設備啟動。於此,作為其中一例,列舉出EHC(Electric Hydraulic Control)控制油幫浦。
例如,廠房控制裝置101a,係判斷第1段殼內面金屬溫度到達了138℃,並啟動EHC控制油幫浦。於此情況,在氣體渦輪機102之啟動開始的20分鐘之前,EHC控制油幫浦係被啟動(20分鐘=[142℃-138℃]÷0.2℃/分鐘)。於此20分鐘之間,EHC控制油幫浦,係藉由在槽內攪拌控制油,來將控制油之溫度一直升溫至適當之溫度,而能夠一面確保合適之黏度一面迎接氣體渦輪機102之啟動。由於為了對控制油之溫度和黏度作處理(treatment)係僅需要20分鐘之幫浦運轉便已充分,因此,就算是進行20分鐘以上的運轉,該油幫浦之馬達動力也會被浪費,並且僅會導致機器壽命的損耗。因此,若是將本實施形態之啟動處理對於EHC控制油幫浦之啟動作適用,則由於係能夠以金屬溫度作為指標來對於未來之啟動工程(於此,係為氣體渦輪機102之啟動會在何時被開始)作預測,因此係成為能夠將EHC控制油之啟動時序最適化。
(13)第1實施形態之效果和課題 如同上述一般,在本實施形態中,係在將高壓渦輪機103a等藉由預暖機來進行暖機的期間中,開始氣體渦輪機102等之啟動。故而,若依據本實施形態,則係成為能夠同時達成具備有氣體渦輪機102和高壓渦輪機103a之發電廠100a的預暖機和早期啟動。
又,在本實施形態中,藉由想定第1段殼內面金屬溫度之升溫速率(例如0.2℃/分鐘),係成為能夠因應於第1段殼內面金屬溫度來將發電廠100a之諸設備以最適當的時序來啟動。
在第1實施形態中,係期望將此升溫速率之精確度提高。例如,當實際之升溫速率為較所想定之0.2℃/分鐘而更快的情況時,如同第2比較例一般地,通氣許可成立係成為較預暖機結束而更慢。另一方面,當實際之升溫速率為較所想定之0.2℃/分鐘而更慢的情況時,如同第3比較例一般地,通氣許可條件成立係成為較預暖機結束而更快。對於此課題之對應,例如係藉由後述之第2實施形態而成為可能。
(第2實施形態) 以下,針對第2實施形態作說明。在本實施形態之說明中,亦針對第4比較例作說明。
(1)第2實施形態之預暖機 第1實施形態和第1比較例之預暖機,係在第1段殼內面金屬溫度成為了150℃以上時而結束。另一方面,第2實施形態之預暖機,係在第1段殼內面金屬溫度成為了150℃以上,並且該金屬溫度為150℃以上之狀態係持續了特定時間的時間點處而結束。
在本實施形態中於經過了特定時間之等待時間之後才將預暖機結束的原因,係基於以下之理由。第1段殼內面金屬溫度,係為藉由溫度感測器TS1所計測出的溫度,但是,溫度感測器TS1所計測者,係為與輔助蒸氣A3作接觸的轉子103c之表面之溫度,在預暖機中係較為快速地升溫。另一方面,並不與輔助蒸氣A3直接作接觸的轉子103c之內部,由於係藉由從表面而來之熱傳導而緩慢地升溫,因此,就算是第1段殼內面金屬溫度(轉子表面)到達150℃,轉子內部亦仍為未滿150℃之低溫狀態。
而,上述之等待時間,係為為了等待直到轉子內部地而到達150℃之時間。此等待時間,係與廠房早期啟動身為相互矛盾的關係,但是,係多會有更加重視直到轉子內部地而充分進行暖機並期待萬全的高壓渦輪機103a之啟動的情況。故而,相較於如同第1實施形態一般地而並不存在有等待時間地來將預暖機結束,多係如同第2實施形態一般地來具備有等待時間地而將預暖機結束。
此等待時間,係因應於高壓渦輪機103a之大小(容量)或素材而有所相異,但是,一般而言多係在1小時~3小時之間來作選擇。為了便於說明,在第2實施形態中,係設為在第1段殼內面金屬溫度成為了150℃以上,並且該金屬溫度為150℃以上之狀態係持續了1小時(60分鐘)的時間點處,而結束預暖機。
(2)第2實施形態之啟動時間 第2實施形態,係被適用於圖1之發電廠100a處。故而,在廠房啟動中所需要的時間,係與第1實施形態相同,而設為從氣體渦輪機102之啟動起直到蒸氣渦輪機103之通氣許可條件成立為止為需要40分鐘的啟動例。
但是,第2實施形態,係為在預暖機中需要4小時的啟動例。其詳細內容,係為在從暖機開始起直到第1段殼內面金屬溫度到達150℃為止為需要3小時,並從該處起而等待身為上述之等待時間的1小時,而成為合計4小時。
(3)第2實施形態之概要 從第1實施形態而至第2實施形態之變更點,係如同下述一般。
第1實施形態之氣體渦輪機102,係若是第1段殼內面金屬溫度成為142℃以上則會被啟動。另一方面,第2實施形態之氣體渦輪機102,係在第1段殼內面金屬溫度成為150℃以上,並且該金屬溫度為150℃以上之狀態係持續了特定時間(例如20分鐘)的時間點處而被啟動。
第2實施形態之預暖機,係在此之40分鐘之後而結束(60分鐘-20分鐘)。因此,若是在此時序處而啟動氣體渦輪機102,則預暖機結束之時序和蒸氣渦輪機103之通氣許可條件成立(在從氣體渦輪機102之啟動起的40分鐘之後而成立)之時序係相互一致。
又,第1實施形態之排熱回收鍋爐104之服務開始,係若是第1段殼內面金屬溫度成為140℃以上則會被開始。另一方面,第2實施形態之排熱回收鍋爐104之服務開始,係在第1段殼內面金屬溫度成為150℃以上,並且該金屬溫度為150℃以上之狀態係持續了特定時間(例如10分鐘)的時間點處而被開始。
(4)第2實施形態之啟動流程圖 圖3a和圖3b,係為對於第2實施形態之發電廠100a的動作作展示之流程圖。實現本流程圖者,係為被收容於廠房控制裝置101a之內部的軟體。在以下之說明中所使用的具體性之數值,係為為了易於理解所記載的其中一例。
圖2a之步驟S201、S202以及S106,係分別被變更為圖3a之步驟S301、S302以及S303。圖3a和圖3b,相對於圖2a和圖2b係在此3個步驟處為相異,其他之步驟係為相同。故而,以下係以步驟S301、S302、S303作為中心來作說明。
在進行了冷凝器113之真空上升之後(步驟S102),預暖機係被開始。在預暖機中,係將暖機閥125開閥(步驟S103),並將輔助鍋爐124所供給的輔助蒸氣A3送氣至高壓渦輪機103a和再熱器112處(步驟S104)。溫度感測器TS1,係對於身為轉子103c之構成要素的第1段殼內面金屬之溫度作計測(步驟S105)。
從預暖機開始起之3小時後,第1段殼內面金屬溫度係到達150℃。在本實施形態中,於第1段殼內面金屬溫度到達了150℃之後,由於輔助蒸氣A3亦係繼續被送氣至高壓渦輪機103a處,因此,該金屬溫度係以0.2℃/分鐘程度之升溫速率而逐漸升溫,在從到達150℃起而經過了1小時之後的時間點處,係成為162℃近旁。又,並不與輔助蒸氣A3直接作接觸的轉子103c之內部,亦係藉由從表面而來之熱傳導而升溫,轉子103c係亦包含內部地而逐漸成為更均勻之溫度。
在本實施形態中,與第1實施形態相同的,係並不等待預暖機結束地而開始排熱回收鍋爐104之服務開始。但是,本實施形態之氣體渦輪機102之啟動,係成為預定在從第1段殼內面金屬溫度成為了150℃以上起而經過了20分鐘時會開始。若是進而對於身為在排熱回收鍋爐104之服務開始工程中所需要的時間之10分鐘作考慮,則係只要在從第1段殼內面金屬溫度成為了150℃以上起而經過了10分鐘時,開始排熱回收鍋爐104之服務開始即可。
廠房控制裝置101a,係當第1段殼內面金屬溫度係成為150℃以上並且從第1段殼內面金屬溫度成為了150℃以上起而經過了10分鐘時(步驟S301 YES),進行排熱回收鍋爐104之服務開始(步驟S108)。在此服務開始中,係啟動附屬於排熱回收鍋爐104之供水幫浦,來將滾筒110之水位確立為特定之值。如此這般,而進行使排熱回收鍋爐104接收氣體渦輪機排氣A1之準備。排熱回收鍋爐104之服務開始工程,係為需要耗費10分鐘的啟動工程。
若是經過此10分鐘,則排熱回收鍋爐104之服務開始工程係結束。廠房控制裝置101a,係對於從第1段殼內面金屬溫度成為了150℃以上起而經過了20分鐘一事作確認(步驟S302 YES),並且為了安全起見而亦藉由AND閘處理(步驟S203)來對於排熱回收鍋爐104之服務開始工程亦結束一事作確認,而將氣體渦輪機102啟動(步驟S109)。
當在步驟S109處而啟動了氣體渦輪機102之後,於經過了40分鐘後的時間點處,蒸氣渦輪機103之通氣許可條件係成立(步驟S118 YES)。本實施形態之通氣條件之主要的構成要素,係為主蒸氣A2之壓力條件、流量條件以及溫度條件,當此些全部到達了特定之值時,通氣條件係成立。
與此同時地,廠房控制裝置101a,係確認從第1段殼內面金屬溫度成為了150℃以上起而經過了60分鐘(步驟S303 YES),並將暖機閥125閉閥(步驟S107),而結束預暖機。故而,在本實施形態中,亦同樣的,預暖機結束的時序和蒸氣渦輪機103之通氣條件成立的時序係相互一致,以下之蒸氣渦輪機103之通氣(步驟S125)係在此時間點處而迅速地被開始。
廠房控制裝置101a,係藉由AND閘處理(步驟S207),而判斷蒸氣渦輪機103之通氣許可條件成立(步驟S118 YES)和暖機閥125作了全閉(步驟S206 YES)的雙方均成立,並開始蒸氣渦輪機103之通氣(步驟S125)。之後的啟動工程,係與第1實施形態相同,而省略其說明。
(5)第2實施形態之效果 圖6,係為用以對於第2實施形態和第4比較例作比較之表,並為用以將第2實施形態之效果直觀性地可視化之圖。
第4比較例,係與第1比較例相同的而關連於剛性結合C/C之啟動處理,但是,第1比較例之預暖機時間係為3小時,相對於此,第4比較例之預暖機時間係亦包含上述之等待時間之1小時地而為4小時。與圖5相同的,第2實施形態和第4比較例之預暖機的開始時刻和結束時刻係為相同。故而,係成為能夠基於蒸氣渦輪機103之通氣開始為相對於預暖機結束而作了多少的延遲之觀點,來對於第2實施形態和第4比較例作比較。
若依據圖6,則在第4比較例中,於預暖機結束之50分鐘之後,蒸氣渦輪機103之通氣係被開始,相對於此,在第2實施形態中,與預暖機結束同時地,蒸氣渦輪機103之通氣係被開始。亦即是,第2實施形態,相對於第4比較例係達成有50分鐘的廠房啟動早期化。
又,所謂相對於第4比較例之50分鐘的廠房啟動早期化,係與將在第4比較例中需要耗費240分鐘(4小時)的預暖機縮短為190分鐘的情況時之效果相等。亦即是,若依據本實施形態,則事實上係能夠將關連於預暖機之時間縮短至79%(79[%]=190分鐘÷240分鐘)。
作為縮短時間,係較第1實施形態之72%而更少。但是,作為其之回報,係能夠將第1實施形態所具有的依存於第1段殼內面金屬溫度之想定升溫速率(例如0.2℃/分鐘)之精確度的誤差降低,並成為更容易使結束預暖機的時間點和蒸氣渦輪機103之通氣許可條件成立的時間點相互一致。
作為此事成立之要件,係存在有等待時間(1小時)之長度和廠房啟動時間之長度之間的關係。在本實施形態中,從氣體渦輪機之啟動起直到蒸氣渦輪機103之通氣許可條件成立為止之時間,係為40分鐘,而較等待時間之1小時更短,因此,上述構成係成為能夠成立。幸好,由於實際上的預暖機之等待時間一般係在1小時~3小時之間來作選擇,因此,通常係以等待時間會成為更具有餘裕的較長時間。針對此點,可以說第2實施形態之實用性係被有所擔保。
但是,針對在例外性的BOP設備等處而會在遠早於前述之EHC控制油幫浦等的初期階段之時刻處便進行啟動的設備,係也會有等待時間有所不足而無法藉由第2實施形態來作對應的事例。係亦可構成為:對於此種BOP設備,係適用第1實施形態並例如若是第1段殼內面金屬溫度到達了130℃則啟動,另一方面,在之後的氣體渦輪機102和排熱回收鍋爐103之服務開始中,則係適用第2實施形態。
(第3實施形態) 以下,針對第3實施形態作說明。在本實施形態之說明中,亦針對第5比較例作說明。
(1)第3實施形態之廠房構成 圖4,係為對於第3實施形態之發電廠100b的構成作展示之示意圖。圖4之發電廠100b,係為單軸型C/C發電廠。
圖4之發電廠100b,係具備有對於發電廠100b之動作作控制的廠房控制裝置101b,進而,除了圖1中所示之構成要素之外,亦具備有中壓渦輪機旁通調節閥132、和逆止閥133。
廠房控制裝置101b,係具備有與上述之廠房控制裝置101a相同的功能,但是,係亦具備有與廠房控制裝置101a相異之功能。例如,廠房控制裝置101b,係能夠對於中壓渦輪機調節閥132和逆止閥133之開閉作控制。關於廠房控制裝置101b之其他的功能,係於後再述。
藉由排熱回收鍋爐104所產生的過熱蒸氣,係作為主蒸氣A2而被排出至蒸氣配管處。蒸氣配管,係被分歧為主配管和旁通配管。主配管,係被與高壓渦輪機103a作連接,旁通配管,於此係被與低溫再熱管121作連接。MCV閥105,係被設置於主配管處。高壓渦輪機旁通調節閥119,係被設置在旁通配管和低溫再熱管121之間之連接部處。
若是將MCV閥105開閥,則從主配管而來之主蒸氣A2係被供給至高壓渦輪機103a處。另一方面,若是將高壓渦輪機旁通調節閥119開閥,則從旁通配管而來之主蒸氣A2係旁通過高壓渦輪機103a而被送至低溫再熱管121處。從旁通配管而來之主蒸氣A2,係經由低溫再熱管121而被供給至再熱器112處。
逆止閥133,係如同圖4中所示一般地而被設置在低溫再熱管121處。逆止閥133,在開閥狀態下,係容許從高壓渦輪機103a起而至再熱器112之主蒸氣A2(排氣蒸氣)之流動,但是,係將從再熱器112或高壓渦輪機旁通調節閥119起而至高壓渦輪機103a之主蒸氣A2的流動遮斷。另一方面,逆止閥133,在閉閥狀態下,係將雙方之主蒸氣A2之流動均遮斷。
在如同上述一般地而將MCV閥105開閥的情況時,逆止閥133亦係被開閥。藉由此,從高壓渦輪機103a而來之主蒸氣A2(排氣蒸氣),係通過逆止閥133而被供給至再熱器112處。另一方面,在如同上述一般地而將高壓渦輪機旁通調節閥119開閥的情況時,不論逆止閥133係為開閥或者是閉閥,從旁通配管而來之主蒸氣A2均係藉由逆止閥133而被作遮斷,而並不會被供給至高壓渦輪機103a處。於此情況,從旁通配管而來之主蒸氣A2,係被供給至再熱器112處。
再熱器112之第1端係被與低溫再熱管121作連接,再熱器112之第2端係被與高溫再熱管122作連接。本實施形態之再熱器112,係將從高壓渦輪機103a或高壓渦輪機旁通調節閥119而來的主蒸氣A2從第1端而導入,並將此主蒸氣A2從第2端而排出。
例如,再熱器112,係將從高壓渦輪機103a而來的主蒸氣A2(排氣蒸氣)從第1端而導入,並將主蒸氣A2藉由氣體渦輪機排氣A1來作加熱而產生再熱蒸氣A4。亦即是,主蒸氣A2係被加熱並成為再熱蒸氣A4。再熱器112,係將此再熱蒸氣A4從第2端來朝向高溫再熱管122排出。
高溫再熱管122,係被分歧為第1配管和第2配管。第1配管係被與ICV閥118作連接,第2配管係被與中壓渦輪機旁通調節閥120作連接。若是將ICV閥118開閥,則從第1配管而來之再熱蒸氣A4係被供給至中壓/低壓渦輪機103b處。另一方面,若是將中壓渦輪機旁通調節閥120開閥,則從第2配管而來之再熱蒸氣A4係旁通過中壓/低壓渦輪機103b而被送至冷凝器113處。
第3實施形態,係如同圖4中所示一般,以串接旁通系統之複循環發電廠作為對象。在圖9中,高壓渦輪機旁通調節閥119,係被與相當於再熱器112之上游部的低溫再熱管121作連接,中壓渦輪機旁通調節閥132,係被與相當於再熱器112之下游部的高溫再熱管122作連接。在此串接旁通系統之發電廠100b中,係成為需要設置逆止閥133。
(2)第5比較例 圖7,係為用以對於第3實施形態和第5比較例作比較之表,並為用以將第3實施形態之效果直觀性地可視化之圖。
第5比較例,係關連於串接旁通系統之離合器結合C/C的廠房啟動法。在圖5或圖6中,係針對離合器結合C/C(第1以及第2實施形態)和剛性結合C/C(第1以及第4比較例)作比較,但是,在圖7中,係對於離合器結合C/C彼此作比較。第5比較例之廠房構成,係如同圖4中所示一般,與第3實施形態之廠房構成相同。
以下,針對在圖7中之第5比較例之廠房啟動法簡單地作說明。在圖7中,除了第1預暖機和第2預暖機(參考符號S1和S5)以外,係亦對於與此些密切地相關之逆止閥133之狀態有所圖示。在本比較例和第3以及第4實施形態中,第1預暖機,係為在廠房啟動處理中於第1次而被開始之預暖機,另一方面,第2預暖機,係為在廠房啟動處理中於第2次而被開始之預暖機,並在較第1預暖機更之後而被開始。
在第1預暖機中,係將暖機閥125開閥並將輔助蒸氣A3僅送氣至高壓渦輪機103a處,而將高壓渦輪機103a暖機。此時,由於逆止閥133係設為強制關閉(無激磁),因此,在再熱器112處係並未被送氣有輔助蒸氣A3。伴隨著第1預暖機之開始,第1段殼內面金屬溫度係升溫,在第1預暖機之開始起的3小時後,第1段殼內面金屬溫度係到達150℃。在此時間點處,將暖機閥125閉閥,第1預暖機係結束。
之後,在排熱回收鍋爐104之服務開始工程中係需要10分鐘,若是此結束,則氣體渦輪機102之啟動係被開始。在從氣體渦輪機102之啟動起的10分鐘後,氣體渦輪機102係著火。在氣體渦輪機著火的時間點處,將逆止閥133激磁並將強制關閉解除,並且將暖機閥125再度開閥。如此這般,係與氣體渦輪機102之啟動工程並行操作地而開始第2預暖機。由於係身為離合器結合C/C,因此此事係成為可能。
在第2預暖機中,輔助蒸氣A3係除了被送氣至高壓渦輪機103a處之外亦被送氣至再熱器112處,再熱器112之暖機和非冷凝性氣體之清洗係開始。此時,再熱器112由於係藉由氣體渦輪機排氣A1之熱而被從外表面來被暖機,因此係成為能夠進行有效的暖機。在從氣體渦輪機102之著火起的30分鐘之後,高壓渦輪機旁通調節閥119係開閥為10%,在此時間點處,將暖機閥125閉閥,第2預暖機係結束。亦即是,第2預暖機係被進行30分鐘。
之後,在從氣體渦輪機102之啟動開始起的50分鐘後,蒸氣渦輪機103之通氣許可條件(具體而言,係為主蒸氣A2之壓力、流量以及溫度之全部均到達特定之值的條件)係成立,蒸氣渦輪機103係開始通氣。
(3)第3實施形態之概要 在第5比較例中,係利用離合器結合C/C之特性,而採用有氣體渦輪機102之啟動和第2預暖機之並行操作。相對於此,在第3實施形態中,係以廠房啟動之早期化作為目的,而進行氣體渦輪機102之啟動和第1預暖機與第2預暖機之並行操作。本實施形態之第1預暖機以及第2預暖機,係分別身為第1以及第2暖機之例。
但是,於此情況,第2預暖機,係在氣體渦輪機102之著火時(氣體渦輪機102之啟動的10分鐘後)而被開始,並在高壓渦輪機旁通調節閥119之10%開閥時(氣體渦輪機102之啟動的40分鐘後)而結束。此事,係代表著,第2預暖機,係被氣體渦輪機102之啟動工程所拘束,而並不存在有可在任意之時序處開始以及結束的自由度。例如,係並不容許採用因應於第1段殼內面金屬溫度來開始第2預暖機等的廠房啟動法。故而,在本實施形態中,雖然氣體渦輪機102之啟動、第1預暖機以及第2預暖機係身為並行操作之對象,但是,實質上,係與第1實施形態相同的,氣體渦輪機102之啟動和第1預暖機係成為並行操作之對象。
而,在本實施形態中,若是構成為使第1預暖機結束的時序和蒸氣渦輪機103之通氣許可條件成立之時序相互一致,則係能夠實現最適當的廠房啟動。但是,由於第1預暖機和第2預暖機係在30分鐘的期間中而並行性地進行,因此,係需要對於此30分鐘的期間而慎重地進行處理。
例如,與第1預暖機並行地進行之啟動工程,係身為排熱回收鍋爐104之服務開始工程和並不存在有低壓冷卻之氣體渦輪機102的啟動。此些之啟動工程,係由於工程自身並不會消耗輔助蒸氣A3,因此係成為能夠進行與第1預暖機之間之並行操作。但是,由於第2預暖機係會消耗輔助蒸氣A3,因此,在此觀點上,係與第1預暖機存在有競爭關係,而成為需要進行以下之啟動時間的整理。
(4)第3實施形態之啟動時間 在進入第3實施形態之詳細說明之前,對於(i)在蒸氣渦輪機103之通氣條件成立中所需要的時間和(ii)第1段殼內面金屬溫度之升溫速率以及(iii)在第1預暖機中所需要的時間,如同下述一般地來作整理。
首先,關連於(i),係與第5比較例相同的,設為在從氣體渦輪機102之啟動開始直到蒸氣渦輪機103之通氣許可條件(具體而言,係為主蒸氣A2之壓力、流量以及溫度之全部均到達特定之值的條件)成立為止,為需要50分鐘的啟動例。
接著,關連於(ii),為了便於說明,將在第1預暖機中之第1段殼內面金屬溫度之升溫速率,想定為0.25℃/分鐘。但是,第1預暖機和第2預暖機被並行性地進行之30分鐘間的升溫速率,係基於以下之理由而設為0.2℃/分鐘。第1預暖機,由於係僅對於高壓渦輪機103a送氣輔助蒸氣A3而進行暖機,因此,輔助蒸氣A3之熱量係並不會被再熱器112所奪取,第1段殼內面金屬溫度係較第1實施形態而更快地升溫。但是,於第1預暖機和第2預暖機被並行性地進行的30分鐘間,由於輔助蒸氣A3之熱量係被使用於高壓渦輪機103a和再熱器112之雙方的暖機中,因此,第1段殼內面金屬溫度之升溫速率係變得較該30分鐘間以外的期間而更慢。故而,該30分鐘之間之升溫速率,係與第1實施形態同樣的而想定為0.2℃/分鐘。
接著,關連於(iii),在第5比較例中,於第1預暖機中係需要3小時。另一方面,在第3實施形態中,第1預暖機係需要較此而更延長6分鐘之3小時6分鐘。此理由係在於,於在上述之(ii)中所敘述之第1預暖機和第2預暖機被並行性地進行的30分鐘間,第1段殼內面金屬溫度之升溫係為慢之故。而,此6分鐘的延遲,係如同下述一般地而被算出。在該30分鐘之間所產生的第1段殼內面金屬溫度之升溫之延遲,係為1.5℃(1.5℃=30分鐘×[0.25℃/分鐘-0.2℃/分鐘])。而,在第2預暖機結束之後,升溫速率係再度回復至0.25℃/分鐘。為了將此延遲量之1.5℃以0.25℃/分鐘之升溫速率來進行溫度上升,係成為需要6分鐘(6分鐘=1.5℃÷0.25℃/分鐘)。
在如同上述一般地而對於啟動時間作了整理之後,使第1預暖機和氣體渦輪機102之啟動並行地進行,並構成為會使第1預暖機結束之時序和蒸氣渦輪機103之通氣許可條件成立之時序相互一致。因此,在本實施形態中,係在第1預暖機中,當第1段殼內面金屬溫度上升至了139℃時,將氣體渦輪機102啟動(139℃=150℃-[50分鐘-30分鐘]×0.25℃/分鐘-30分鐘×0.2℃/分鐘)。藉由此,係能夠使第1段殼內面金屬溫度升溫至150℃並結束第1預暖機的時間點和蒸氣渦輪機103之通氣許可條件成立的時間點相互一致。又,係以能夠趕上此的方式,來在第1段殼內面金屬溫度成為了136.5℃時,開始排熱回收鍋爐104之服務開始工程(136.5℃=139℃-10分鐘×0.25℃/分鐘)。
以下,對圖7中之第3實施形態作詳細說明。
在第1預暖機中,係將暖機閥125開閥並將輔助蒸氣A3僅送氣至高壓渦輪機103a處,而將高壓渦輪機103a暖機。此時,由於逆止閥133係設為強制關閉(無激磁),因此,在再熱器112處係並未被送氣有輔助蒸氣A3。
若是第1預暖機開始,則第1段殼內面金屬溫度係升溫(此時,升溫速率係為0.25℃/分鐘)。在該金屬溫度到達了136.5℃時,開始排熱回收鍋爐104之服務開始工程。之後,若是經過10分鐘,則排熱回收鍋爐104之服務開始工程係結束。與此同時地,第1段殼內面金屬溫度係到達139℃。對於第1段殼內面金屬溫度係成為了139℃一事作確認,並開始氣體渦輪機102之啟動。
在從氣體渦輪機102之啟動起的10分鐘後,氣體渦輪機102係著火。在氣體渦輪機102著火的時間點處,將逆止閥133激磁並將強制關閉解除。此時,由於暖機閥125係已開閥,因此,輔助蒸氣A3係除了至今為止之高壓渦輪機103a之外亦被送氣至再熱器112處,第2預暖機係開始。藉由此,第1預暖機和第2預暖機係被並行性地進行(此時,升溫速率係變慢為0.2℃/分鐘)。藉由第2預暖機,再熱器112之暖機和非冷凝性氣體之清洗係開始。
之後,在從氣體渦輪機102之啟動起的40分鐘之後(從氣體渦輪機102之著火起的30分鐘之後),高壓渦輪機旁通調節閥119係開閥為10%,在此時間點處,第2預暖機係結束。此時,在本實施形態中,係將逆止閥133設為強制關閉(無激磁),而將對於再熱器112之輔助蒸氣A3之送氣遮斷,並使第2預暖機結束。如同上述一般,在第5比較例中,係藉由將暖機閥125閉閥,來將第2預暖機結束。另一方面,在本實施形態中,為了在第2預暖機之結束後亦繼續進行高壓渦輪機103a之暖機,係需要保持暖機閥125之開閥,代替此,係將逆止閥133強制關閉。
在結束第2預暖機之後,第1段殼內面金屬溫度亦係繼續升溫(此時,升溫速率係回復至0.25℃/分鐘)。而,在從氣體渦輪機102之啟動起的50分鐘之後,第1段殼內面金屬溫度係到達150℃,並將暖機閥125閉閥,第1預暖機係結束。與此同時地,蒸氣渦輪機之通氣許可條件(具體而言,係為主蒸氣A2之壓力、流量以及溫度之全部均到達特定之值的條件)係成立,蒸氣渦輪機103係開始通氣。另外,為了在通氣後將從高壓渦輪機103a所排出的排氣蒸氣送氣至再熱器112處,逆止閥133係緊接於通氣開始之前地而再度激磁。
(5)第3實施形態之效果 在圖7之第3實施形態和第5比較例中,第1預暖機的開始係身為相同時刻(但是,其之結束時刻係為相異)。因此,在對於第3實施形態和第5比較例作比較時,係以第1預暖機的開始時刻作為基準來進行比較。
在第5比較例中,於從第1預暖機開始起的240分鐘(4小時)後,蒸氣渦輪機103之通氣係被開始。相對於此,在第3實施形態中,於從第1預暖機開始起的186分鐘(3小時6分鐘)後,蒸氣渦輪機103之通氣係被開始。亦即是,第3實施形態,相對於第5比較例係達成有54分鐘的廠房啟動早期化。
又,所謂相對於第5比較例之54分鐘的廠房啟動早期化,係與將在第5比較例中需要耗費180分鐘(3小時)的第1預暖機縮短為126分鐘的情況時之效果相等。亦即是,若依據本實施形態,則事實上係能夠將關連於第1預暖機之時間縮短至70%(70[%]=126分鐘÷180分鐘)。
(6)第3實施形態和並行暖機 在第3實施形態中,係進行第1預暖機和第2預暖機之並行操作,但是,此時,係進行有將高壓渦輪機103a和再熱器112之雙方並行性地暖機之並行暖機。針對此並行暖機作補充說明。
在先前技術之使用有串接旁通之剛性結合C/C的廠房啟動中,係在預暖機之前將逆止閥設為無激磁並設為強制關閉,而將對於再熱器之輔助蒸氣的流入遮斷,藉由此,來避免並行暖機。其目的,係為了將高壓渦輪機之預暖機有效率地在短時間內結束。但是,第3實施形態,係為採用至今為止被避免的並行暖機而謀求廠房啟動之早期化的啟動法。
第3實施形態之效果,係如同前述一般,相對於第5比較例係達成有54分鐘的廠房啟動早期化。此54分鐘的利益,係由於為了進行並行暖機而在第1預暖機中需要多餘的6分鐘,而成為從60分鐘之利益所減少的利益。故而,若是並不存在有此並行暖機,則作為可期待之效果,係可期待有60分鐘之廠房啟動早期化。但是,第3實施形態,在能夠將利益之減少抑制於6分鐘之短時間內的觀點上,可以說係為合適。關連於此,本實施形態,係具備有將並行暖機之缺點作排除或紓緩的下述之特性。
第1,在第1預暖機中所需要的3小時6分鐘中,被進行並行暖機(第2預暖機)之期間,係僅為30分鐘之短時間,就算是藉由此短時間,也能夠進行再熱器112之充分的暖機。而,關於為何能夠藉由此短時間來進行再熱器112之充分之暖機的理由,係因為亦利用有氣體渦輪機排氣A1之熱源地來將再熱器112有效率地暖機之故。進而,成為能夠進行此一由排氣熱源所致之暖機的原因,係因為第3實施形態亦採用有離合器結合之故。
第2,並行暖機(第2預暖機),係在第1預暖機已進行了140分鐘之後才被開始,此時,第1段殼內面金屬溫度係已被暖機至了140℃左右。在此時間點處,係已不會有在高壓渦輪機103a處而產生多量之排放水的情況。若是進行第2預暖機,則第1段殼內面金屬溫度之升溫速率係會從0.25℃/分鐘而變慢為0.2℃/分鐘,但是,其之減少量係為0.05℃/分鐘,而為輕微。由於此輕微的減少係僅會持續30分鐘之短時間,因此,在第3實施形態之第1預暖機的結束時,係僅產生有極少之6分鐘的延遲。
另一方面,想定為將並行暖機提早開始並在第1段殼內面金屬溫度仍為低並且也不存在有氣體渦輪機排氣A1之熱源的狀態下而實施了並行暖機的情況。於此情況,被送氣的輔助蒸氣A3係與低溫之金屬相接觸而冷凝,並產生多量的排放水。其結果,第1段殼內面金屬溫度之升溫係大幅度地延遲,第1預暖機結束係會產生例如1小時甚至2小時的延遲。
如同上述一般,若依據本實施形態,則係成為能夠合適地並行實施第1以及第2預暖機。
(第4實施形態) 以下,針對第2實施形態作說明。在本實施形態之說明中,亦針對第4比較例作說明。
第3實施形態之第1預暖機,係在第1段殼內面金屬溫度成為了150℃以上時而結束。另一方面,第4實施形態之第1預暖機,係與第2實施形態之預暖機相同的,在第1段殼內面金屬溫度成為了150℃以上,並且該金屬溫度為150℃以上之狀態係持續了特定時間的時間點處而結束。第4實施形態之啟動法,係可在圖4中所示之發電廠100b處而實行。
在第2實施形態中,係想定為在第1段殼內面金屬溫度成為了150℃以上,並且該金屬溫度為150℃以上之狀態係持續了1小時(60分鐘)的時間點處,而結束預暖機的情形。另一方面,在第4實施形態中,係想定為在第1段殼內面金屬溫度成為了150℃以上,並且該金屬溫度為150℃以上之狀態係持續了90分鐘的時間點處,而結束第1預暖機的情形。
從第3實施形態而至第4實施形態之變更點,係如同下述一般。
第3實施形態之氣體渦輪機102,係若是第1段殼內面金屬溫度成為139℃以上則會被啟動。另一方面,第4實施形態之氣體渦輪機102,係在第1段殼內面金屬溫度成為150℃以上,並且該金屬溫度為150℃以上之狀態係持續了特定時間(例如40分鐘)的時間點處而被啟動。
第4實施形態之第1預暖機,係在此之50分鐘之後而結束(90分鐘-40分鐘)。因此,若是在此時序處而啟動氣體渦輪機102,則第1預暖機結束之時序和蒸氣渦輪機103之通氣許可條件成立之時序係相互一致。
又,第3實施形態之排熱回收鍋爐104之服務開始,係若是第1段殼內面金屬溫度成為136.5℃以上則會被開始。另一方面,第4實施形態之排熱回收鍋爐104之服務開始,係在第1段殼內面金屬溫度成為150℃以上,並且該金屬溫度為150℃以上之狀態係持續了特定時間(例如30分鐘)的時間點處而被開始。
若是設為此種構成,則在第4實施形態中,係能夠實現使第1預暖機結束的時序和蒸氣渦輪機103之通氣許可條件成立之時序相互一致之廠房啟動處理。
如同上述一般,在第1~第4實施形態中,當離合器131為脫離時,係容許氣體渦輪機102和發電機117之先行啟動。此時,由於蒸氣渦輪機103係為停止或者是極低旋轉之狀態,因此,氣體渦輪機102之啟動中的預暖機或第1預暖機係成為可能。在第1~第4實施形態中,由於係在預暖機或第1預暖機之結束前,因應於第1段殼內面金屬溫度來開始氣體渦輪機102之啟動,因此,係成為能夠達成像是與預暖機或第1預暖機之結束同時地而對於蒸氣渦輪機103進行通氣一般之廠房啟動早期化。若依據第1~第4實施形態,則例如係成為能夠在採用既存之預暖機方法的同時亦實現與將預暖機時間作了縮短的情況同等之廠房啟動早期化。
以上,雖係針對數個實施形態作了說明,但是,此些之實施形態係僅為作為例子所提示者,而並非為對於發明之範圍作限定。在本說明書中所作了說明的新穎之裝置、方法以及廠房,係能夠以其他之各種形態來實施。又,對於在本說明書中所作了說明的裝置、方法以及廠房之形態,在不脫離發明之要旨的範圍內,係可進行各種之省略、置換、變更。在發明之範圍或要旨中所包含之此種形態及變形例,係亦被包含於所添附的申請專利範圍及其均等範圍內。
100、100a、100b、100c:複循環發電廠 101、101a、101b:廠房控制裝置 102:氣體渦輪機 103:蒸汽渦輪機 103a:高壓渦輪機 103b:中壓/低壓渦輪機 103c:高壓轉子 104:排熱回收鍋爐 105:MCV閥(高壓增減閥) 106:燃料調節閥 107:壓縮機 108:燃燒器 109:蒸發器 110:滾筒 111:過熱器 112:再熱器 113:冷凝器 114:循環水幫浦 115:海水 116:燃料 117:發電機 118:ICV閥(再熱調節閥) 119:高壓渦輪機旁通調節閥 120:LPCV閥(低壓增減閥) 121:低溫再熱管 122:高溫再熱管 123:送氣配管 124:輔助鍋爐 125:暖機閥 126:高壓渦輪機排氣管 127:檢測用齒輪 128:再熱排放閥 129:再熱排放閥 130:殼體排放閥 131:離合器 132:中壓渦輪機旁通調節閥 133:逆止閥 A1:氣體渦輪機排氣 A2:主蒸氣 A3:輔助蒸氣 A4:再熱蒸氣 TS1:第1段內面金屬溫度感測器 SP1:ST旋轉數檢測器 GS1:間隙感測器(離合器嵌合檢測器) FD1:火焰檢測器
[圖1]係為對於第1實施形態之發電廠的構成作展示之示意圖。 [圖2a]係為對於第1實施形態之發電廠的動作作展示之流程圖(flowchart)(1/2)。 [圖2b]係為對於第1實施形態之發電廠的動作作展示之流程圖(2/2)。 [圖3a]係為對於第2實施形態之發電廠的動作作展示之流程圖(1/2)。 [圖3b]係為對於第2實施形態之發電廠的動作作展示之流程圖(2/2)。 [圖4]係為對於第3實施形態之發電廠的構成作展示之示意圖。 [圖5]係為用以對於第1實施形態和第1比較例作比較之表。 [圖6]係為用以對於第2實施形態和第4比較例作比較之表。 [圖7]係為用以對於第3實施形態和第5比較例作比較之表。 [圖8]係為對於第1比較例之發電廠的構成作展示之示意圖。 [圖9a]係為對於第1比較例之發電廠的動作作展示之流程圖(1/2)。 [圖9b]係為對於第1比較例之發電廠的動作作展示之流程圖(2/2)。
100a:複循環發電廠 101a:廠房控制裝置 102:氣體渦輪機 103:蒸汽渦輪機 103a:高壓渦輪機 103b:中壓/低壓渦輪機 103c:高壓轉子 104:排熱回收鍋爐 105:MCV閥(高壓增減閥) 106:燃料調節閥 107:壓縮機 108:燃燒器 109:蒸發器 110:滾筒 111:過熱器 112:再熱器 113:冷凝器 114:循環水幫浦 115:海水 116:燃料 117:發電機 118:ICV閥(再熱調節閥) 119:高壓渦輪機旁通調節閥 121:低溫再熱管 122:高溫再熱管 124:輔助鍋爐 125:暖機閥 126:高壓渦輪機排氣管 127:檢測用齒輪 128:再熱排放閥 129:再熱排放閥 130:殼體排放閥 131:離合器 A1:氣體渦輪機排氣 A2:主蒸氣 A3:輔助蒸氣 A4:再熱蒸氣 TS1:第1段內面金屬溫度感測器 SP1:ST旋轉數檢測器 GS1:間隙感測器(離合器嵌合檢測器) FD1:火焰檢測器

Claims (14)

  1. 一種廠房控制裝置,係為對發電廠進行控制之廠房控制裝置,該發電廠,係具備有:氣體渦輪機;和發電機,係藉由前述氣體渦輪機而被驅動;和排熱回收鍋爐,係使用從前述氣體渦輪機而來之排氣之熱來產生第1蒸氣;和蒸氣渦輪機,係藉由前述第1蒸氣而被驅動;和離合器,係將被與前述氣體渦輪機以及前述發電機作了連接之第1軸和被與前述蒸氣渦輪機作了連接的第2軸作結合,該廠房控制裝置,其特徵為,係具備有:啟動部,係當前述離合器為脫離時,在使前述蒸氣渦輪機維持於停止的狀態下而啟動前述氣體渦輪機以及前述發電機;和暖機部,係在前述離合器為脫離時,與前述氣體渦輪機以及前述發電機之啟動並行地,而將從與前述排熱回收鍋爐相異之設備而來的第2蒸氣供給至前述蒸氣渦輪機處而將前述蒸氣渦輪機暖機。
  2. 如申請專利範圍第1項所記載之廠房控制裝置,其中,前述暖機部,係基於前述蒸氣渦輪機之金屬溫度,來 結束前述蒸氣渦輪機之暖機,前述啟動部,係基於前述金屬溫度,而開始前述氣體渦輪機之啟動。
  3. 如申請專利範圍第2項所記載之廠房控制裝置,其中,前述暖機部,係當前述金屬溫度到達了特定溫度的情況時、或者是當從到達前述特定溫度起而經過了特定時間的情況時,結束前述蒸氣渦輪機之暖機,前述啟動部,係當前述金屬溫度到達了特定溫度的情況時、或者是當從到達前述特定溫度起而經過了前述特定時間的情況時,開始前述氣體渦輪機之啟動。
  4. 如申請專利範圍第2項或第3項所記載之廠房控制裝置,其中,前述金屬溫度,係為前述蒸氣渦輪機之第1段殼內面金屬之溫度。
  5. 如申請專利範圍第2項或第3項所記載之廠房控制裝置,其中,前述排熱回收鍋爐,係具備有:蒸發器,係由從滾筒所供給之水來使蒸氣產生;和幫浦,係對於前述滾筒而供給前述水,前述啟動部,係在藉由前述第2蒸氣而將前述蒸氣渦 輪機作暖機的期間中,啟動前述幫浦,並使前述滾筒之水位到達特定值。
  6. 如申請專利範圍第2項或第3項所記載之廠房控制裝置,其中,前述啟動部,係以使前述蒸氣渦輪機之暖機結束的時間點和在能夠進行對於前述蒸氣渦輪機之通氣的狀態下而前述第1蒸氣所到達的時間點相互一致的方式,來啟動前述氣體渦輪機。
  7. 如申請專利範圍第6項所記載之廠房控制裝置,其中,所謂在能夠進行對於前述蒸氣渦輪機之通氣的狀態下而前述第1蒸氣所到達的時間點,係為前述第1蒸氣之溫度、壓力以及流量之全部或一部分到達能夠驅動前述蒸氣渦輪機之狀態的時間點。
  8. 如申請專利範圍第2項或第3項所記載之廠房控制裝置,其中,前述暖機部,係當前述氣體渦輪機以及前述發電機被啟動而停止中之前述蒸氣渦輪機正以空轉來進行旋轉時,藉由前述第2蒸氣來將前述蒸氣渦輪機作暖機。
  9. 如申請專利範圍第2項或第3項所記載之廠房控制裝 置,其中,前述暖機部,係當前述蒸氣渦輪機之旋轉數為特定之旋轉數以上時,將由前述第2蒸氣所致之前述蒸氣渦輪機之暖機中斷。
  10. 如申請專利範圍第9項所記載之廠房控制裝置,其中,前述特定之旋轉數,係為基於當前述第2蒸氣流入至了前述蒸氣渦輪機中時於前述蒸氣渦輪機處所產生的摩擦熱而設定之旋轉數。
  11. 如申請專利範圍第2項或第3項所記載之廠房控制裝置,其中,前述發電廠,係更進而具備有:再熱器,係被設置在前述排熱回收鍋爐處,並將從前述蒸氣渦輪機而來之排氣蒸氣藉由前述排氣而加熱以產生再熱蒸氣;和再熱渦輪機,係藉由前述再熱蒸氣而被驅動,前述暖機部,係實行藉由前述第2蒸氣來將前述蒸氣渦輪機作暖機之第1預暖機、和藉由前述第2蒸氣來將前述再熱器作暖機之第2預暖機,在前述第1預暖機之實行中而開始前述氣體渦輪機之啟動,並在前述氣體渦輪機作了著火的情況時,開始前述第2預暖機。
  12. 如申請專利範圍第11項所記載之廠房控制裝置,其中,前述暖機部,係基於前述蒸氣渦輪機之金屬溫度,來結束前述第1預暖機,前述啟動部,係基於前述金屬溫度,而開始前述氣體渦輪機之啟動。
  13. 一種廠房控制方法,係為對發電廠進行控制之廠房控制方法,該發電廠,係具備有:氣體渦輪機;和發電機,係藉由前述氣體渦輪機而被驅動;和排熱回收鍋爐,係使用從前述氣體渦輪機而來之排氣之熱來產生第1蒸氣;和蒸氣渦輪機,係藉由前述第1蒸氣而被驅動;和離合器,係將被與前述氣體渦輪機以及前述發電機作了連接之第1軸和被與前述蒸氣渦輪機作了連接的第2軸作結合,該廠房控制方法,其特徵為,係包含有:當前述離合器為脫離時,在使前述蒸氣渦輪機維持於停止的狀態下而啟動前述氣體渦輪機以及前述發電機之步驟;和在前述離合器為脫離時,與前述氣體渦輪機以及前述發電機之啟動並行地,而將從與前述排熱回收鍋爐相異之設備而來的第2蒸氣供給至前述蒸氣渦輪機處而將前述蒸 氣渦輪機暖機之步驟。
  14. 一種發電廠,其特徵為,係具備有:氣體渦輪機;和發電機,係藉由前述氣體渦輪機而被驅動;和排熱回收鍋爐,係使用從前述氣體渦輪機而來之排氣之熱來產生第1蒸氣;和蒸氣渦輪機,係藉由前述第1蒸氣而被驅動;和離合器,係將被與前述氣體渦輪機以及前述發電機作了連接之第1軸和被與前述蒸氣渦輪機作了連接的第2軸作結合;和啟動部,係當前述離合器為脫離時,在使前述蒸氣渦輪機維持於停止的狀態下而啟動前述氣體渦輪機以及前述發電機;和暖機部,係在前述離合器為脫離時,與前述氣體渦輪機以及前述發電機之啟動並行地,而將從與前述排熱回收鍋爐相異之設備而來的第2蒸氣供給至前述蒸氣渦輪機處而將前述蒸氣渦輪機暖機。
TW108106225A 2018-08-01 2019-02-25 廠房控制裝置、廠房控制方法及發電廠 TWI695117B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018145385A JP7075306B2 (ja) 2018-08-01 2018-08-01 プラント制御装置、プラント制御方法、および発電プラント
JP2018-145385 2018-08-01

Publications (2)

Publication Number Publication Date
TW202007845A TW202007845A (zh) 2020-02-16
TWI695117B true TWI695117B (zh) 2020-06-01

Family

ID=69229593

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108106225A TWI695117B (zh) 2018-08-01 2019-02-25 廠房控制裝置、廠房控制方法及發電廠

Country Status (4)

Country Link
US (1) US10920623B2 (zh)
JP (1) JP7075306B2 (zh)
KR (1) KR102173416B1 (zh)
TW (1) TWI695117B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7278141B2 (ja) * 2019-04-23 2023-05-19 三菱重工業株式会社 蒸気タービンプラントおよびコンバインドサイクルプラント
CN111810256A (zh) * 2020-06-30 2020-10-23 国电宿州第二热电有限公司 汽轮机冷态启动预警***、方法、存储介质及电子设备
CN112012803B (zh) * 2020-07-29 2023-08-18 陕西北元化工集团股份有限公司 一种汽轮机优化启动的操作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI558961B (zh) * 2010-04-29 2016-11-21 馬加帝工業公司 高效率的儲存及運送裝置及系統
CN107152317A (zh) * 2017-07-14 2017-09-12 上海电气电站设备有限公司 联合循环汽轮机快速启动暖机***及方法
WO2017202400A1 (de) * 2016-05-21 2017-11-30 Dürr Systems Ag Turbinengehäuse und turbine mit einem solchen turbinengehäuse
TW201819752A (zh) * 2016-11-01 2018-06-01 瑞士商通用電器技術有限公司 用於提供超臨界蒸氣之系統及方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2911789A (en) * 1958-08-27 1959-11-10 Gen Electric Regulating system for steam-gas turbine powerplant
JPH0772491B2 (ja) * 1989-05-22 1995-08-02 株式会社東芝 蒸気タービンのプレウォーミング装置
JP2633720B2 (ja) 1990-10-12 1997-07-23 株式会社東芝 蒸気タービンのプレウォーミング方法
JP2593578B2 (ja) * 1990-10-18 1997-03-26 株式会社東芝 コンバインドサイクル発電プラント
JPH0772491A (ja) 1993-07-02 1995-03-17 Hitachi Ltd 単純マトリクス型液晶表示装置
JP3559574B2 (ja) * 1993-08-27 2004-09-02 株式会社東芝 一軸型コンバインドサイクル発電設備の起動方法
JP3776564B2 (ja) * 1997-05-30 2006-05-17 株式会社東芝 コンバインドサイクル発電システム
JP4229579B2 (ja) * 2000-08-31 2009-02-25 株式会社東芝 コンバインドサイクル発電プラントおよびコンバインドサイクル発電プラントの暖・冷用蒸気供給方法
DE10056231B4 (de) 2000-11-13 2012-02-23 Alstom Technology Ltd. Verfahren zum Betrieb eines Kombikraftwerks
WO2002081870A1 (de) * 2001-04-06 2002-10-17 Alstom (Switzerland) Ltd Verfahren zur bereitschaftshaltung eines kombikraftwerkes
JP2003013709A (ja) 2001-06-28 2003-01-15 Mitsubishi Heavy Ind Ltd クラッチ嵌合検出装置及びこれを備えた一軸コンバインドプラント
EP1911939A1 (de) * 2006-10-09 2008-04-16 Siemens Aktiengesellschaft Zielwinkelgeregelter Einkuppelvorgang
CA2667144C (en) * 2008-05-28 2016-04-12 John Kipping Combined cycle powered railway locomotive
US20140331686A1 (en) * 2013-05-08 2014-11-13 Bechtel Power Corporation Gas turbine combined cycle system
JP6122775B2 (ja) 2013-12-26 2017-04-26 株式会社東芝 制御装置、及び起動方法
EP2930320A1 (de) * 2014-04-07 2015-10-14 Siemens Aktiengesellschaft Verfahren zum Betreiben einer Dampfturbine
JP6613176B2 (ja) 2016-03-04 2019-11-27 三菱日立パワーシステムズ株式会社 発電システム
JP6768379B2 (ja) 2016-07-12 2020-10-14 三菱パワー株式会社 コンバインドサイクルプラント及びその制御装置、蒸気タービンの起動方法
KR102103324B1 (ko) 2017-07-21 2020-04-22 가부시끼가이샤 도시바 플랜트 제어 장치, 플랜트 제어 방법, 및 발전 플랜트
JP7003000B2 (ja) 2017-07-21 2022-01-20 株式会社東芝 プラント制御装置、プラント制御方法、および発電プラント
JP6884721B2 (ja) 2018-03-16 2021-06-09 株式会社東芝 プラント制御装置、プラント制御方法、および発電プラント

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI558961B (zh) * 2010-04-29 2016-11-21 馬加帝工業公司 高效率的儲存及運送裝置及系統
WO2017202400A1 (de) * 2016-05-21 2017-11-30 Dürr Systems Ag Turbinengehäuse und turbine mit einem solchen turbinengehäuse
TW201819752A (zh) * 2016-11-01 2018-06-01 瑞士商通用電器技術有限公司 用於提供超臨界蒸氣之系統及方法
CN107152317A (zh) * 2017-07-14 2017-09-12 上海电气电站设备有限公司 联合循环汽轮机快速启动暖机***及方法

Also Published As

Publication number Publication date
JP2020020304A (ja) 2020-02-06
KR20200014677A (ko) 2020-02-11
US20200040770A1 (en) 2020-02-06
TW202007845A (zh) 2020-02-16
KR102173416B1 (ko) 2020-11-03
US10920623B2 (en) 2021-02-16
JP7075306B2 (ja) 2022-05-25

Similar Documents

Publication Publication Date Title
TWI692576B (zh) 廠房控制裝置、廠房控制方法及發電廠
US8739509B2 (en) Single shaft combined cycle power plant start-up method and single shaft combined cycle power plant
TWI695117B (zh) 廠房控制裝置、廠房控制方法及發電廠
JP2593578B2 (ja) コンバインドサイクル発電プラント
EP2423460B1 (en) Systems and methods for pre-warming a heat recovery steam generator and associated steam lines
JP2006183666A (ja) 蒸気タービンスラスト圧力制御方法
EP3153675B1 (en) Steam turbine system
JP6264128B2 (ja) コンバインドサイクルプラント、その制御方法、及びその制御装置
CN107152317A (zh) 联合循环汽轮机快速启动暖机***及方法
CN107227979B (zh) 一种联合循环汽轮机快速启动暖机***及方法
JP2012167571A (ja) 一軸型複合サイクル発電プラントおよびその運転方法
WO2016194742A1 (ja) コンバインドサイクルプラント、その制御装置及び起動方法
JP2008248730A (ja) コンバインド発電プラント
CN108425707A (zh) 一种联合循环汽轮机快速启动预暖***及其暖机方法
JP2020084947A (ja) 蒸気タービン設備、蒸気タービン設備の始動方法およびコンバインドサイクルプラント
JP2004245184A (ja) 再熱蒸気タービンプラントとその起動方法
US8635876B2 (en) Gas turbine for a thermal power plant, and method for operating such a gas turbine
JP3559573B2 (ja) 一軸型コンバインドサイクル発電設備の起動方法
JP7247071B2 (ja) プラント制御装置、プラント制御方法、および発電プラント
WO2021086989A1 (en) Methods and systems for starting and stopping a closed-cycle turbomachine
JP2019173696A (ja) コンバインドサイクル発電プラント、およびその運転方法
JPS5926765B2 (ja) タ−ビンバイパスラインを有するタ−ビンプラントの制御方法およびその装置
JP2019173697A (ja) コンバインドサイクル発電プラント及びその運転方法
JP2766370B2 (ja) コンバインドサイクル発電ユニットの起動装置
JP2012255345A (ja) 二軸型蒸気タービン