TWI694532B - 保持裝置 - Google Patents

保持裝置 Download PDF

Info

Publication number
TWI694532B
TWI694532B TW107112230A TW107112230A TWI694532B TW I694532 B TWI694532 B TW I694532B TW 107112230 A TW107112230 A TW 107112230A TW 107112230 A TW107112230 A TW 107112230A TW I694532 B TWI694532 B TW I694532B
Authority
TW
Taiwan
Prior art keywords
resistor
power supply
temperature measuring
pair
temperature
Prior art date
Application number
TW107112230A
Other languages
English (en)
Other versions
TW201903935A (zh
Inventor
三輪要
Original Assignee
日商日本特殊陶業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日本特殊陶業股份有限公司 filed Critical 日商日本特殊陶業股份有限公司
Publication of TW201903935A publication Critical patent/TW201903935A/zh
Application granted granted Critical
Publication of TWI694532B publication Critical patent/TWI694532B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/023Industrial applications
    • H05B1/0233Industrial applications for semiconductors manufacturing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/28Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material
    • H05B3/283Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material the insulating material being an inorganic material, e.g. ceramic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/68Heating arrangements specially adapted for cooking plates or analogous hot-plates
    • H05B3/74Non-metallic plates, e.g. vitroceramic, ceramic or glassceramic hobs, also including power or control circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/002Heaters using a particular layout for the resistive material or resistive elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/07Heating plates with temperature control means

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Resistance Heating (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

藉由提升板狀構件各區段的溫度量測精度,使板狀構件之吸附面的溫度分布均一性提升。
保持裝置為具備:板狀構件,具有大致正交於第1方向的第1表面;發熱用電阻體及測溫用電阻體,配置在將板狀構件之至少一部分假想式分割成朝正交於第1方向之方向排列的複數個區段時的各區段;及供電部,構成對發熱用電阻體及測溫用電阻體的供電路徑,且將對象物保持在板狀構件之第1表面上的裝置。測溫用電阻體在第1方向的位置係不同於發熱用電阻體。特定測溫用電阻體具有在第1方向的位置彼此相異,且互相串聯連接的複數層電阻體要素,該特定測溫用電阻體為至少1個測溫用電阻體。

Description

保持裝置
本說明書所揭示的技術係關於保持對象物的保持裝置。
例如製造半導體時,係使用靜電夾盤作為保持晶圓的保持裝置。靜電夾盤具備陶瓷板及設於陶瓷板之內部的夾盤電極,並利用藉由電壓施加於夾盤電極所產生的靜電吸引力,將晶圓吸附保持在陶瓷板之表面(以下稱「吸附面」)。
保持在靜電夾盤之吸附面的晶圓的溫度分布變得不均一時,由於對晶圓實施的各種處理(成膜、蝕刻等)之精確度即有降低之虞,故要求靜電夾盤要具備儘可能使晶圓之溫度分布達成均一的性能。因此,例如,在陶瓷板的內部設有發熱用電阻體。電壓施加於發熱用電阻體時,因發熱用電阻體的發熱,陶瓷板會受到加熱,保持在陶瓷板之吸附面的晶圓也受到加熱。藉由利用設在陶瓷板內部之溫度感測器(例如,熱電偶)量測的溫度來控制向發熱用電阻體施加的電壓,即得以進行陶瓷板之吸附面的溫度控制(亦即,晶圓的溫度控制)。
為了使晶圓的溫度分布之均一性進一步提 升,乃有採用使陶瓷板之全部或一部分分割成複數個假想區域(以下,稱為「區段(segment)」),且在各區段配置發熱用電阻體之構成的情形。若依據這種構成,藉由將向配置在陶瓷板各區段之發熱用電阻體施加的電壓各別進行控制,各區段的溫度就能各別進行控制,結果,陶瓷板之吸附面的溫度分布均一性(亦即,晶圓的溫度分布均一性)即可進一步提升。
在這種陶瓷板被假想式分割成複數個區段的構成中,要在各區段配置專用的溫度感測器有其困難。因此,在陶瓷板之各區段另行配置有別於發熱用電阻體之測溫用電阻體的技術已為眾所周知(參照例如專利文獻1)。測溫用電阻體中,溫度有變化時,電阻值會發生變化,故藉由量測各測溫用電阻體的電阻值,就能量測配置有各測溫用電阻體之區段的溫度。
[先前技術文獻] [專利文獻]
專利文獻1:特開2008-243990號公報
但,測溫用電阻體配置於陶瓷板之各區段的上述習知技術中,因為根據測溫用電阻體之電阻值進行的溫度量測解析能力(靈敏度)不充分等理由,在各區段的溫度量測精確度方面尚有提升的餘地,進而在陶瓷板吸附面的溫度分布均一性(晶圓的溫度分布均一性)方面 亦有提升的餘地。
另外,這種課題並不限於利用靜電吸引力保持晶圓的靜電夾盤,具備板狀構件且將對象物保持在板狀構件之表面上的保持裝置一般皆有共通的課題。
本說明書中,將揭示可解決上述課題的技術。
本說明書所揭示的技術可以例如下述的形態來實現。
(1)本說明書所揭示的保持裝置具備:板狀構件,具有大致正交於第1方向的第1表面;發熱用電阻體,配置在將前述板狀構件之至少一部分假想式分割成朝正交於前述第1方向之方向排列的複數個區段時的各前述區段;測溫用電阻體,配置在各前述區段,前述第1方向的位置係與前述發熱用電阻體不同;及供電部,構成對前述發熱用電阻體及前述測溫用電阻體的供電路徑;且將對象物保持在前述板狀構件之前述第1表面上,其特徵為:特定測溫用電阻體具有在前述第1方向的位置彼此相異,且互相串聯連接的複數層電阻體要素,該特定測溫用電阻體係至少1個前述測溫用電阻體的。若依據本保持裝置,有關於屬於至少1個測溫用電阻體的特定測溫用電阻體,相較於特定測溫用電阻體為單層構成的形態,可將特定測溫用電阻體彙收於1個區段,同時提高其電阻值。特定測溫用電阻體的電阻值升高時,根據特定測溫用電阻體之電阻值執行的溫度量測 解析度(靈敏度)即可提升。從而,若依據本保持裝置,可藉由使根據特定測溫用電阻體之電阻值進行的溫度量測解析度提升,而使配置有特定測溫用電阻體之區段的溫度量測精確度獲得提升,且令使用配置於該區段之發熱用電阻體的該區段的溫度控制精確度得以提升,結果,可使板狀構件之第1表面的溫度分布均一性(亦即,保持於第1表面之對象物的溫度分布均一性)獲得提升。
(2)上述保持裝置中,構成為前述供電部具備:驅動部,具有由第1導電線與第2導電線構成的線對;一對供電端子;供電側通路對,具有:將構成前述線對的前述第1導電線電連接於一方的前述供電端子的第1供電側通路;及將構成前述線對的前述第2導電線電連接於另一方的前述供電端子的第2供電側通路;及電阻體側通路對,具有:將一個前述測溫用電阻體之一端電連接於構成前述線對之前述第1導電線的第1電阻體側通路、及將前述一個測溫用電阻體的另一端電連接於構成前述線對之前述第2導電線的第2電阻體側通路;電連接於前述特定測溫用電阻體之構成前述線對的前述第1導電線及前述第2導電線的至少一者具有前述第1方向的位置互異,且彼此並聯連接的複數層導電線要素。若依據本保持裝置,構成驅動部所包含的線對之各導電線的電阻值可相對降低,特定測溫用電阻體之電阻值可相對增高。從而,若依據本保持裝置,可藉由使根據特定測溫用電阻體之電阻值進行的溫度量測解析度提升,讓配置有特定測溫用電阻體之區段的溫度量測精 確度獲得提升,結果,板狀構件之第1表面的溫度分布均一性(亦即,保持在第1表面之對象物的溫度分布均一性)得以提升。再者,若依據本保持裝置,由於構成驅動部所包含的線對之各導電線的電阻值可相對降低,故線對之電阻值在包含特定測溫用電阻體及線對之電路的電阻值中所占(受其他區段溫度的影響)的比例得以降低。從而,若依據本保持裝置,使用特定測溫用電阻體之區段的溫度量測精確度可有效提升,結果,板狀構件之第1表面的溫度分布均一性(亦即,保持於第1表面之對象物的溫度分布均一性)亦能有效提升。
(3)上述保持裝置中,構成為前述供電部具備:驅動部,具有複數條第1導電線及複數條第2導電線;至少一對供電端子;供電側通路對,具有:將前述複數條第1導電線電連接於構成一對前述供電端子之一方的供電端子的第1供電側通路、及將前述複數條第2導電線電連接於構成前述一對供電端子之另一方的供電端子的第2供電側通路;及電阻體側通路對,將各前述測溫用電阻體電連接於前述第1導電線及前述第2導電線;各前述第1導電線及各前述第2導電線均電連接於複數個前述測溫用電阻體,電連接於各前述測溫用電阻體之前述第1導電線與前述第2導電線的組合係按每個前述測溫用電阻體而不同。若依據本保持裝置,可藉由較少數的導電線構成對各測溫用電阻體的各別供電路徑。結果,藉由使各導電線的線寬較粗而使各導電線之電阻值相對降低,測溫用電阻體之電阻值可相對增高。 從而,若依據本保持裝置,藉由使根據測溫用電阻體之電阻值進行的溫度量測解析度提升,板狀構件之各區段的溫度量測精確度可獲得提升,結果,板狀構件之第1表面的溫度分布均一性(亦即,保持於第1表面之對象物的溫度分布均一性)得以提升。再者,若依據本保持裝置,由於構成驅動部所包含之線對的各導電線之電阻值可相對降低,故線對之電阻值在包含測溫用電阻體及線對的電路之電阻值中所占(受其他區段之溫度的影響)的比例得以降低。從而,若依據本保持裝置,使用測溫用電阻體之各區段的溫度量測精確度可有效提升,板狀構件之第1表面的溫度分布均一性(亦即,保持於第1表面之對象物的溫度分布均一性)亦能有效提升。
(4)上述保持裝置中,構成為進一步具備底座構件,該底座構件係配置成和前述板狀構件之前述第1表面相反側的表面相對,且內部形成有冷媒流路,相較於配置在同一個前述區段的前述發熱用電阻體,前述特定測溫用電阻體係配置在接近前述底座構件的位置。若依據本保持裝置,在第1方向中,由於用以加熱的發熱用電阻體與用以冷却的冷媒流路之間的位置配置有特定測溫用電阻體,故使用特定測溫用電阻體之區段的溫度量測精確度能夠進一步提升,結果,可使板狀構件之第1表面的溫度分布均一性(亦即,保持於第1表面之對象物的溫度分布均一性)進一步提升。
(5)上述保持裝置中,構成為前述供電部具備:驅動部,具有由第1導電線及第2導電線構成的線 對;一對供電端子;供電側通路對,具有:將構成前述線對之前述第1導電線電連接於一方之前述供電端子的第1供電側通路、及將構成前述線對之前述第2導電線電連接於另一方之前述供電端子的第2供電側通路;及電阻體側通路對,具有:將一個前述測溫用電阻體之一端電連接於構成前述線對之前述第1導電線的第1電阻體側通路、及將前述一個測溫用電阻體之另一端電連接於構成前述線對之前述第2導電線的第2電阻體側通路;電連接於前述特定測溫用電阻體之構成前述線對的前述第1導電線與前述第2導電線之至少一者的線寬係較前述特定測溫用電阻體的線寬更粗。若依據本保持裝置,線對之電阻值可相對降低,特定測溫用電阻體之電阻值可相對提高。依此方式,若依據本保持裝置,由於可將特定測溫用電阻體之電阻值相對增高,故藉由使根據特定測溫用電阻體之電阻值的溫度量測解析度(靈敏度)提升,即可使配置有特定測溫用電阻體之區段的溫度量測精確度獲得提升,結果,陶瓷板之第1表面的溫度分布均一性(亦即,第1表面所保持的對象物的溫度分布均一性)能夠提升。再者,若依據本保持裝置,由於可將驅動部所包含的線對的電阻值相對降低,故線對之電阻值在包含特定測溫用電阻體及線對之電路的電阻值中所占(受其他區段之溫度的影響)的比例得以降低。從而,若依據本保持裝置,使用特定測溫用電阻體之區段的溫度量測精確度得以提升,結果,可使陶瓷板之第1表面的溫度分布均一性(亦即,保持於第1表面之對象物的溫 度分布均一性)提升。
(6)上述保持裝置中,構成為前述驅動部包含:沿著延伸方向的長度為L1、線寬為W1的前述導電線;及沿著延伸方向的長度為L2(其中,L2>L1)、線寬為W2(其中,W2>W1)的前述導電線。若依據本保持裝置,可使驅動部所包含的各導電線之電阻值互相靠近,導電線之電阻值在包含測溫用電阻體及導電線之電路的電阻值中所占的參差度得以減低。從而,若依據本保持裝置,使用測溫用電阻體之區段的溫度量測精確度得以有效提升,結果,可使陶瓷板之第1表面的溫度分布均一性(亦即,第1表面所保持的對象物的溫度分布均一性)有效提升。
(7)上述保持裝置中,其構成可設成:將前述特定測溫用電阻體及配置在和前述特定測溫用電阻體同一個前述區段的前述發熱用電阻體投影在平行於前述第1方向的任意假想平面時,在平行於前述假想平面且正交於前述第1方向的第2方向中,前述特定測溫用電阻體之投影兩端的位置為前述發熱用電阻體之投影兩端間的位置。本保持裝置中,在第1方向視圖上,和配置於與該特定測溫用電阻體同一個區段的發熱用電阻體相比較,可將特定測溫用電阻體配置於區段中更內側的位置(更遠離區段交界的位置)。從而,若依據本保持裝置,由於可將配置在某區段的特定測溫用電阻體之溫度(電阻值)受其他區段之溫度影響的情形加以抑制,故使用特定測溫用電阻體之區段的溫度量測精確度可獲得提升, 結果,可使陶瓷板之第1表面的溫度分布均一性(亦即,保持於第1表面之對象物的溫度分布均一性)提升。
(8)上述保持裝置中,構成為:在前述板狀構件的內部,前述特定測溫用電阻體與其他前述測溫用電阻體之間,可設有熱傳導率較前述板狀構件更低的隔熱層。若依據本保持裝置,可有效抑制配置於某區段之特定測溫用電阻體的溫度(電阻值)受其他區段之溫度影響的情形。從而,若依據本保持裝置,使用特定測溫用電阻體之區段的溫度量測精確度可有效提升,使陶瓷板之第1表面的溫度分布均一性(亦即,保持在第1表面之對象物的溫度分布均一性)得以有效提升。
另外,揭示於本說明書之技術可以各種形態來實現,例如,以保持裝置、靜電夾盤、CVD加熱器等加熱器裝置、真空夾盤、及這些裝備的製造方法等形態來實現。
10‧‧‧陶瓷板
11‧‧‧隔熱層
12‧‧‧供電端子
20‧‧‧底座構件
21‧‧‧冷媒流路
22‧‧‧端子用孔
30‧‧‧黏接層
40‧‧‧夾盤電極
50‧‧‧發熱用電阻體層
51‧‧‧發熱電阻體用驅動部
53‧‧‧通路對
60‧‧‧測溫用電阻體層
61‧‧‧第1電阻體層
62‧‧‧第2電阻體層
63‧‧‧第3電阻體層
64、65‧‧‧通路
70‧‧‧測溫電阻體用驅動部
71‧‧‧第1測溫電阻體用驅動部層
72‧‧‧第2測溫電阻體用驅動部層
73‧‧‧電阻體側通路對
75‧‧‧供電側通路對
77‧‧‧電極墊對
80‧‧‧供電部
100‧‧‧靜電夾盤
500‧‧‧發熱用電阻體
501、601‧‧‧投影
502、612‧‧‧電阻線部
504、614‧‧‧墊部
510‧‧‧線對
511‧‧‧第1導電線
512‧‧‧第2導電線
531、532‧‧‧通路
600‧‧‧測溫用電阻體
610‧‧‧第1電阻體要素
620‧‧‧第2電阻體要素
630‧‧‧第3電阻體要素
710‧‧‧線對
711‧‧‧第1導電線
712‧‧‧第2導電線
731、732‧‧‧電阻體側通路
751、752‧‧‧供電側通路
771、772‧‧‧電極墊
781‧‧‧第1導電線要素
782‧‧‧第2導電線要素
791‧‧‧第1導電線要素
792‧‧‧第2導電線要素
L1至L6‧‧‧沿延伸方向的線長度
P11、P12‧‧‧端部
P21、P22‧‧‧端部
P31、P32‧‧‧端部
S1‧‧‧上面(吸附面)
SE‧‧‧區段
W1至W6‧‧‧線寬
圖1為概略顯示第1實施形態中之靜電夾盤100之外觀構成的立體圖。
圖2為概略顯示第1實施形態中之靜電夾盤100之XZ剖面構成的說明圖。
圖3為概略顯示第1實施形態中之靜電夾盤100之XY平面構成的說明圖。
圖4為示意性顯示第1實施形態中之靜電夾盤100的發熱用電阻體層50、發熱電阻體用驅動部51、測溫用 電阻體層60、及測溫電阻體用驅動部70之構成的說明圖。
圖5為示意性顯示配置於1個區段SE之1個發熱用電阻體500的XY剖面構成的說明圖。
圖6為示意性顯示構成配置於1個區段SE之1個測溫用電阻體600的第1電阻體要素610之XY剖面構成的說明圖。
圖7為示意性顯示第1實施形態之變化例中的靜電夾盤100之發熱用電阻體層50、發熱電阻體用驅動部51、測溫用電阻體層60、及測溫電阻體用驅動部70之構成的說明圖。
圖8為示意性顯示第2實施形態中的靜電夾盤100a之發熱用電阻體層50、發熱電阻體用驅動部51、測溫用電阻體層60、及測溫電阻體用驅動部70之構成的說明圖。
圖9為概略顯示第3實施形態中的靜電夾盤100b之XZ剖面構成的說明圖。
圖10為示意性顯示第3實施形態中的靜電夾盤100b之發熱用電阻體層50、發熱電阻體用驅動部51、測溫用電阻體層60、及測溫電阻體用驅動部70之構成的說明圖。
圖11為概略顯示第4實施形態中的靜電夾盤100c之XZ剖面構成的說明圖。
圖12為示意性顯示第4實施形態中的靜電夾盤100c之測溫電阻體用驅動部70之XY平面構成的說明圖。
[實施發明之形態] [A.第1實施形態] (A-1.靜電夾盤100的構成)
圖1為概略顯示第1實施形態中之靜電夾盤100的外觀構成的立體圖,圖2為概略顯示第1實施形態中之靜電夾盤100的XZ剖面構成的說明圖,圖3為概略顯示第1實施形態中之靜電夾盤100的XY平面(上面)構成的說明圖。各圖中顯示了用以特別指定方向且彼此正交的XYZ軸。本說明書中,雖權宜性地將Z軸正方向稱為上方向,將Z軸負方向稱為下方向,但實際上靜電夾盤100也可朝著異於這種朝向的方向設置。
靜電夾盤100為藉由靜電吸引力將對象物(例如晶圓W)吸附並保持的裝置,其係使用在例如半導體製造裝置的真空室內用以固定晶圓W。靜電夾盤100具備排列配置於預定配列方向(本實施形態中為上下方向(Z軸方向))的陶瓷板10及底座構件20。陶瓷板10及底座構件20係配置成陶瓷板10之下面S2(參照圖2)及底座構件20之上面S3和上述配列方向相對。
陶瓷板10為具有大致正交於上述配列方向(Z軸方向)的大致圓形平面狀之上面(以下稱為「吸附面」)S1的板狀構件,其係利用陶瓷(例如,氧化鋁或氮化鋁等)形成。陶瓷板10的直徑為例如50mm至500mm左右(通常為200mm至350mm左右),陶瓷板10的厚度 為例如1mm至10mm左右。陶瓷板10的吸附面S1係相當於申請專利範圍中的第1表面,Z軸方向則相當於申請專利範圍中的第1方向。此外,本說明書中,正交於Z軸方向的方向係稱為「面方向」。
如圖2所示,陶瓷板10之內部配置有利用導電性材料(例如鎢、鉬、白金等)形成的夾盤電極40。在Z軸方向視圖上,夾盤電極40的形狀為例如大致圓形。電壓自電源(未圖示)施加於夾盤電極40時,會產生靜電吸引力,並藉該靜電吸引力使晶圓W吸附固定在陶瓷板10的吸附面S1。
陶瓷板10之內部還配置有分別藉導電性材料(例如鎢、鉬、白金等)形成的發熱用電阻體層50、發熱電阻體用驅動部51、測溫用電阻體層60、測溫電阻體用驅動部70、及各種通路。本實施形態中,發熱用電阻體層50係配置在較夾盤電極40更下側,發熱電阻體用驅動部51則配置在較發熱用電阻體層50更下側,測溫用電阻體層60為配置在較發熱電阻體用驅動部51更下側,而測溫電阻體用驅動部70則配置於較測溫用電阻體層60更下側。關於這些構成,容後詳述。另外,這種構成的陶瓷板10可藉由例如製作複數片陶瓷胚材,對預定的陶瓷胚材施行通路孔形成或金屬化膏劑之印刷等加工,將這些陶瓷胚材實施熱壓接、切斷等加工後進行燒成而製得。
底座構件20為和例如陶瓷板10相同直徑或較陶瓷板10更大徑的圓形平面板狀構件,且藉例如金屬 (鋁或鋁合金等)形成。底座構件20的直徑為例如220mm至550mm左右(通常為220mm至350mm),底座構件20的厚度為例如20mm至40mm左右。
底座構件20係藉由配置於陶瓷板10的下面S2與底座構件20的上面S3之間的黏接層30而接合於陶瓷板10。黏接層30係利用例如矽酮系樹脂或丙烯酸系樹脂、環氧系樹脂等黏接劑所構成。黏接層30的厚度為例如0.1mm至1mm左右。
底座構件20的內部形成有冷媒流路21。冷媒(例如,氟系非活性液體或水等)流動於冷媒流路21時,底座構件20會被冷却,且藉由介存有黏接層30的底座構件20與陶瓷板10之間的傳熱(抽熱)使陶瓷板10被冷却,使保持在陶瓷板10之吸附面S1的晶圓W受到冷却。藉此作用,即可實現晶圓W的溫度控制。
(A-2.發熱用電阻體層50及發熱電阻體用驅動部51的構成)
如上所述,陶瓷板10的內部配置有發熱用電阻體層50及發熱電阻體用驅動部51(參照圖2)。圖4為示意性顯示發熱用電阻體層50及發熱電阻體用驅動部51之構成(及測溫用電阻體層60、測溫電阻體用驅動部70之構成)的說明圖。圖4的上段示意性顯示了發熱用電阻體層50之一部分的XZ剖面構成,圖4的中段示意性顯示了發熱電阻體用驅動部51之一部分的XY平面構成。
此處,如圖3所示,本實施形態之靜電夾盤 100中,陶瓷板10係被假想式分割成朝面方向(正交於Z軸方向的方向)排列的複數個區段SE。更具體而言,在Z軸方向視圖上,陶瓷板10係藉以吸附面S1之中心點P1為中心的同心圓狀複數條第1交界線BL1分割成複數個假想式環狀區域(其中,僅包含中心点P1之區域為圓狀區域),而且,各環狀區域又藉延伸於吸附面S1之徑方向的複數個第二交界線BL2分割成朝吸附面S1之圓周方向排列的複數個屬於假想式區域的區段SE。
如圖4所示,發熱用電阻體層50包含複數個發熱用電阻體500。複數個發熱用電阻體500的各個係配置於設定在陶瓷板10的複數個區段SE之1個區段。亦即,本實施形態的靜電夾盤100中,複數個區段SE的各區段中配置有1個發熱用電阻體500。
圖5為示意性顯示配置在1個區段SE的1個發熱用電阻體500之XY剖面構成的說明圖。如圖5所示,發熱用電阻體500具備:構成發熱用電阻體500之兩端的一對墊部504;及將一對墊部504之間連結的線狀電阻線部502。本實施形態中,電阻線部502在Z軸方向視圖上係設成儘量無偏倚地通過區段SE內各位置的形狀。配置在其他區段SE的發熱用電阻體500的構成亦相同。
此外,靜電夾盤100具備用以向各發熱用電阻體500供電的構成。具體而言,靜電夾盤100形成有一對端子用孔(未圖示),各端子用孔收容有供電端子(未圖示)。
此外,上述發熱電阻體用驅動部51亦為用以向各發熱用電阻體500供電之構成的一部分。如圖4所示,發熱電阻體用驅動部51係包含由第1導電線511及第2導電線512構成的複數個線對510。另外,圖4所示的例子中,第2導電線512係為複數個線對510所共有。也可按每個線對510準備各別的第2導電線512。第1導電線511及第2導電線512之各條係經由通路或電極墊(均未圖示)等而電連接於互不相同的供電端子。
再者,如圖4及圖5所示,構成1個線對510的第1導電線511係經由構成通路對53之其中一通路531而電連接於發熱用電阻體500的一端(墊部504),構成該線對510的第2導電線512則經由構成該通路對53之其中另一通路532而電連接於該發熱用電阻體500的另一端(墊部504)。
使電壓從電源(未圖示)經由供電端子、電極墊、通路、線對510、及通路對53施加於發熱用電阻體500時,發熱用電阻體500會發熱。藉此作用,配置有發熱用電阻體500的區段SE會被加熱。藉由對配置於陶瓷板10之各區段SE的發熱用電阻體500施加的電壓進行各別控制,即可各別控制各區段SE的溫度。
(A-3.測溫用電阻體層60及測溫電阻體用驅動部70的構成)
如上所述,陶瓷板10的內部配置有測溫用電阻體層60及測溫電阻體用驅動部70(參照圖2)。圖4的上段示 意性顯示了測溫用電阻體層60之一部分的XZ剖面構成,圖4的下段則示意性顯示了測溫電阻體用驅動部70之一部分的XY平面構成。另外,測溫電阻體用驅動部70係相當於申請專利範圍中的驅動部。
如圖2及圖4所示,測溫用電阻體層60係由Z軸方向之位置互不相同的3個層(由上側依序為第1電阻體層61、第2電阻體層62、第3電阻體層63)所構成。如圖4所示,這種由3個層構成的測溫用電阻體層60包含了複數個測溫用電阻體600。複數個測溫用電阻體600之各個係配置於設定在陶瓷板10的複數個區段SE之1區段。亦即,本實施形態的靜電夾盤100中,複數個區段SE之各個區段中配置有1個測溫用電阻體600。另外,如上所述,本實施形態之靜電夾盤100中,由於測溫用電阻體層60係較發熱用電阻體層50位於更下側,故各區段SE中,測溫用電阻體600係較發熱用電阻體500位於更下側(亦即,較發熱用電阻體500接近底座構件20側)。
如圖4所示,各測溫用電阻體600包含:包含於第1電阻體層61的第1電阻體要素610、包含於第2電阻體層62的第2電阻體要素620、及包含於第3電阻體層63的第3電阻體要素630。圖6為示意性顯示構成配置於1個區段SE之1個測溫用電阻體600的第1電阻體要素610之XY剖面構成的說明圖。圖6中以虛線顯示有配置在同一區段SE的發熱用電阻體500之面方向的位置作為參考。如圖6所示,第1電阻體要素610 具有:構成第1電阻體要素610之兩端的一對墊部614、及將一對墊部614之間連結的線狀電阻線部612。另外,構成測溫用電阻體600之其他電阻體要素(第2電阻體要素620及第3電阻體要素630)的構成係和圖6所示的第1電阻體要素610之構成相同。亦即,第2電阻體要素620及第3電阻體要素630之各者具備一對墊部、及將一對墊部之間連結的線狀電阻線部。另外,第2電阻體要素620及第3電阻體要素630之墊部或電阻線部之位置或形狀也可不必和第1電阻體要素610之墊部或電阻線部之位置或形狀相同。
如圖4所示,第1電阻體要素610的一端部P12(具體而言為上述的墊部614)係經由通路64電連接於第2電阻體要素620的一端部P22。此外,第2電阻體要素620的另一端部P21係經由另一通路65電連接於第3電阻體要素630的一端部P31。亦即,構成測溫用電阻體600的3個電阻體要素(第1電阻體要素610、第2電阻體要素620、第3電阻體要素630)係彼此串聯連接。
再者,靜電夾盤100具備有用以向各測溫用電阻體600供電的構成。具體而言,如圖2所示,靜電夾盤100中形成有自底座構件20之下面S4到達陶瓷板10之內部的一對端子用孔22,各端子用孔22中收容有供電端子12。
此外,上述測溫電阻體用驅動部70亦為用以向各測溫用電阻體600供電之構成的一部分。如圖4所示,測溫電阻體用驅動部70包含了由第1導電線711及 第2導電線712構成的複數個線對710。如圖2及圖4所示,構成線對710的第1導電線711係經由構成供電側通路對75之一供電側通路751、及構成電極墊對77之一電極墊771而電連接於一供電端子12,構成該線對710之第2導電線712則經由構成該供電側通路對75之另一供電側通路752、及構成該電極墊對77之另一電極墊772而電連接於另一供電端子12。另外,圖4中代表性圖示了針對1個線對710之供電側通路對75,針對另一個線對710之供電側通路對75的圖示則予省略。供電側通路751係相當於申請專利範圍中的第1供電側通路,供電側通路752則相當於申請專利範圍中的第2供電側通路。
再者,如圖2、圖4及圖6所示,構成線對710的第1導電線711係經由構成電阻體側通路對73之一電阻體側通路731而電連接於測溫用電阻體600之一端(更詳細而言,為構成測溫用電阻體600的第1電阻體要素610之1個端部P11的墊部614),構成該線對710的第2導電線712則經由構成該電阻體側通路對73之另一電阻體側通路732而電連接於該測溫用電阻體600之另一端(更詳細而言,為屬於構成測溫用電阻體600之第3電阻體要素630的1個端部P32的墊部)。電阻體側通路731係相當於申請專利範圍中的第1電阻體側通路,電阻體側通路732則相當於申請專利範圍中的第2電阻體側通路。
電壓從電源(未圖示)經由一對供電端子12、 電極墊對77、供電側通路對75、線對710、及電阻體側通路對73而施加於測溫用電阻體600時,電流會流到測溫用電阻體600。測溫用電阻體600係藉由若溫度變化時電阻值會變化的導電性材料(例如,鎢、鉬、白金等)所形成。具體而言,測溫用電阻體600係溫度越高則電阻值越高。再者,靜電夾盤100具有用以量測施加在測溫用電阻體600之電壓及流到測溫用電阻體600之電流的構成(例如,電壓計或電流計(均未圖示))。因此,本實施形態的靜電夾盤100中,可根據測溫用電阻體600之電壓量測值及測溫用電阻體600之電流量測值來量測(特定)測溫用電阻體600的溫度。
藉由利用上述方法各別量測配置於陶瓷板10之各測溫用電阻體600的溫度,就可以即時各別量測陶瓷板10之各區段SE的溫度。因此,本實施形態之靜電夾盤100中,藉由根據陶瓷板10之各區段SE的溫度量測結果各別地控制對配置於各區段SE之發熱用電阻體500的施加電壓,即可以優異精確度控制各區段SE的溫度。從而,若依據本實施形態之靜電夾盤100,可使陶瓷板10之吸附面S1的溫度分布均一性(亦即,晶圓W的溫度分布均一性)提升。另外,將用以形成對上述發熱用電阻體500及測溫用電阻體600供電之路徑的構成統稱為供電部80(參照圖2)。
此處,圖6中顯示了將構成測溫用電阻體600的第1電阻體要素610及配置在和該測溫用電阻體600同一個區段SE之發熱用電阻體500投影在平行於Z軸 方向之假想平面VS(更具體而言,為平行於X軸的假想平面VS)時的第1電阻體要素610之投影601及發熱用電阻體500之投影501。如圖6所示,第1電阻體要素610之投影601兩端EP11、EP12的位置即為發熱用電阻體500之投影501兩端EP21、EP22間的位置。依此方式,本實施形態之靜電夾盤100中,將第1電阻體要素610及配置在和該測溫用電阻體600同一個區段SE的發熱用電阻體500投影在平行於Z軸方向的任意假想平面VS時,在平行於假想平面VS且正交於Z軸方向的方向(圖6的例子中為X軸方向)中,第1電阻體要素610之投影兩端的位置即為發熱用電阻體500之投影兩端間的位置。
此外,有關第2電阻體要素620及第3電阻體要素630也是同樣,第2電阻體要素620(或第3電阻體要素630)之投影兩端的位置即為發熱用電阻體500之投影兩端間的位置。從而,有關由3個電阻體要素(第1電阻體要素610、第2電阻體要素620、第3電阻體要素630)構成的測溫用電阻體600,將測溫用電阻體600及配置在和該測溫用電阻體600同一個區段SE內的發熱用電阻體500投影在平行於Z軸方向的任意假想平面時,在平行於假想平面且正交於Z軸方向的方向中,測溫用電阻體600之投影兩端的位置即為發熱用電阻體500之投影兩端間的位置。另外,這種特徵係意指:在Z軸方向視圖上,相較於配置在和該測溫用電阻體600同一個區段SE的發熱用電阻體500,測溫用電阻體600係配置於 區段SE中更內側的位置(更遠離區段SE的交界的位置)。
此外,如圖4所示,本實施形態的靜電夾盤100中,測溫電阻體用驅動部70所包含的各導電線(第1導電線711或第2導電線712)的線寬並非彼此相同。更詳細而言,導電線711、712的長度L越長,導電線711、712的線寬W越粗。例如,圖4所示之測溫電阻體用驅動部70所包含的6條導電線711、712的長度,自圖的上側依序設為L1、L2、L3、L4、L5、L6,這些導電線的線寬同樣依序設為W1、W2、W3、W4、W5、W6時,以下的關係(1)及(2)即可成立。因此,包含於測溫電阻體用驅動部70的各導電線711、712之電阻值即成為彼此接近的值。另外,所謂導電線711、712的長度L係意指:從用以和該導電線711、712中之一個導電構件(例如,測溫用電阻體600)連接的通路中心(存在有複數條通路的情況中,以複數條通路之中心點為頂點之多角形的圖心)到用以和該導電線711、712中之另一導電構件(例如,電極墊771)連接的通路之中心(同)為止而且沿著延伸方向之尺寸(大小)。此外,所謂導電線711、712之線寬W,係意指順沿著和該導電線711、712之延伸方向正交之方向的尺寸(大小)。
L1<L2<L3<L4<L5<L6......(1)
W1<W2<W3<W4<W5<W6......(2)
而且,如圖4所示,本實施形態之靜電夾盤100中,構成測溫電阻體用驅動部70所包含之線對710的第1導電線711及第2導電線712的線寬係較電連接 於該線對710之測溫用電阻體600的線寬(具體而言,構成測溫用電阻體600之第1電阻體要素610、第2電阻體要素620、第3電阻體要素630的電阻線部的線寬)更粗。例如,圖4所示的3個區段SE中,電連接於配置在位於最左側之區段SE的測溫用電阻體600之構成線對710的第1導電線711之線寬W5及第2導電線712之線寬W6皆較該測溫用電阻體600的線寬更粗。
另外,發熱用電阻體500、測溫用電阻體600、發熱電阻體用驅動部51、及測溫電阻體用驅動部70,在下述觀點的至少1個觀點上係彼此相異。
(1)關於材料的電阻係數(Ω.m)
發熱電阻體用驅動部51之材料的電阻係數為發熱用電阻體500之材料的電阻係數的95%以下。
測溫電阻體用驅動部70之材料的電阻係數為測溫用電阻體600之材料的電阻係數的95%以下。
(2)關於材料的電阻溫度係數(ppm/℃)
測溫用電阻體600之材料的電阻溫度係數係在發熱用電阻體500之材料的電阻溫度係數的110%以上。
測溫用電阻體600之材料的電阻溫度係數係在測溫電阻體用驅動部70之材料的電阻溫度係數的110%以上。
(3)關於圖案(pattern)形狀
發熱用電阻體500係以均一的間距配線在整個區段SE,且為了溫度平滑化,其一部分係經圖案寬度調整,以使溫度特異點消除。而且,為了提高電阻,發熱用電阻體500也可為排列於上下方向的複數層要素為串聯連 接的構成。
測溫用電阻體600係以區段SE之欲量測溫度的點為中心施行配線。在區段SE間的交界,因為有鄰接的區段SE之溫度的影響,故測溫用電阻體600在配線時要儘量避開該交界。測溫用電阻體600因為沒必要對溫度特異點作圖案調整,故和發熱用電阻體500的線寬相比,測溫用電阻體600的線寬較細且經均一化。為了提高電阻,測溫用電阻體600也可為排列於上下方向的複數層要素經串聯連接的構成。
發熱電阻體用驅動部51從和發熱用電阻體500連接的部位(通路)至和供電端子連接的部位(通路)係以儘量最短途徑且粗線寬實施配線,且不存在返折部位等。為了降低電阻,發熱電阻體用驅動部51也可為排列於上下方向的複數層要素經並聯連接的構成。另外,從和發熱用電阻體500連接的部位(通路)至和供電端子連接的部位(通路)間有障礙物時,發熱電阻體用驅動部51也可為排列於上下方向的複數層要素經串聯連接的構成。
測溫電阻體用驅動部70係和發熱電阻體用驅動部51同樣,從和測溫用電阻體600連接的部位(通路)至和供電端子連接的部位(通路),係以儘量最短的途徑且粗線寬實施配線,且不存在返折部位等。為了降低電阻,測溫電阻體用驅動部70也可為排列於上下方向的複數層要素經並聯連接的構成。另外,從和測溫用電阻體600連接的部位(通路)至和供電端子連接部位(通路)之間有障礙物時,測溫電阻體用驅動部70也可為排列於上下方 向的複數層要素經串聯連接的構成。
(A-4.本實施形態的功效)
如以上所說明,第1實施形態的靜電夾盤100係為具備具有大致正交於Z軸方向之大致平面狀吸附面S1的陶瓷板10,用以將對象物(例如晶圓W)保持在陶瓷板10之吸附面S1上的保持裝置。靜電夾盤100具備:發熱用電阻體500及測溫用電阻體600,配置於將陶瓷板10假想式分割成朝面方向排列的複數個區段SE時的各區段SE內;及供電部80,構成對發熱用電阻體500及測溫用電阻體600的供電路徑。在各區段SE中,測溫用電阻體600在Z軸方向的位置係和發熱用電阻體500的位置不同。再者,第1實施形態之靜電夾盤100中,各測溫用電阻體600具有在Z軸方向的位置互不相同,且彼此串聯連接的3層電阻體要素(第1電阻體要素610、第2電阻體要素620、第3電阻體要素630)。因此,第1實施形態的靜電夾盤100中,相較於測溫用電阻體600為單層構成的形態,可將測溫用電阻體600彙納在1個區段SE內,同時增高其電阻值。當測溫用電阻體600的電阻值增高時,根據測溫用電阻體600之電阻值進行的溫度量測解析度(靈敏度)會提升。從而,若依據第1實施形態之靜電夾盤100,藉由使根據測溫用電阻體600之電阻值進行的溫度量測解析度提升,可使陶瓷板10之各區段SE的溫度量測精確度提升,且可讓使用配置於各區段SE之發熱用電阻體500進行的各區段SE的溫度控 制精確度提升,結果,陶瓷板10之吸附面S1的溫度分布均一性(亦即,晶圓W的溫度分布均一性)可獲得提升。
再者,第1實施形態之靜電夾盤100更具備底座構件20,其係配置成和陶瓷板10之吸附面S1相反側的表面S2相對。底座構件20的內部形成有冷媒流路21。和配置在同一個區段SE內的發熱用電阻體500相比較,各測溫用電阻體600係配置在接近底座構件20的位置。如上所述,第1實施形態之靜電夾盤100中,除了藉發熱用電阻體500所進行的加熱外,亦利用向底座構件20之冷媒流路21供給的冷媒所進行的冷却(熱抽除),來進行陶瓷板10的溫度控制。第1實施形態之靜電夾盤100中,在Z軸方向上,由於在用以加熱的發熱用電阻體500與用以冷却的冷媒流路21間的位置配置有各測溫用電阻體600,故使用測溫用電阻體600進行的各區段SE之溫度量測精確度能夠更為提升,結果,可使陶瓷板10之吸附面S1的溫度分布均一性(亦即,晶圓W的溫度分布均一性)進一步提升。
再者,第1實施形態之靜電夾盤100中,構成對發熱用電阻體500及測溫用電阻體600之供電路徑的供電部80具備:測溫電阻體用驅動部70、一對供電端子12、供電側通路對75、及電阻體側通路對73。測溫電阻體用驅動部70具有由第1導電線711及第2導電線712構成的線對710。供電側通路對75具有:供電側通路751,用以將構成測溫電阻體用驅動部70所包含之線對710的第1導電線711電連接於一方的供電端子 12;供電側通路752,用以將構成上述線對710的第2導電線712電連接於另一方的供電端子12。電阻體側通路對73具有:電阻體側通路731,將測溫用電阻體600之一端電連接於構成上述線對710的第1導電線711;及電阻體側通路732,將該測溫用電阻體600的另一端電連接於構成上述線對710的第2導電線712。而且,第1實施形態之靜電夾盤100中,構成電連接於測溫用電阻體600之線對710的第1導電線711及第2導電線712的線寬係較上述測溫用電阻體600之線寬更粗。因此,若依據第1實施形態之靜電夾盤100,可使構成測溫電阻體用驅動部70所包含之線對710的各導電線711、712之電阻值相對減低,可使測溫用電阻體600之電阻值相對增高。
另外,各導電線711、712或測溫用電阻體600的電阻溫度係數係大致上依據其形成材料的種類來決定。可用於形成各導電線711、712或測溫用電阻體600的材料係限於某程度的材料(可和陶瓷同時燒成的材料,例如,鎢、鉬、白金等),由於這些材料的電阻溫度係數幾乎沒有差異,故要用形成材料的選擇來相對提高測溫用電阻體600之電阻值有其困難。因此,本實施形態中,係藉由調整各導電線711、712或測溫用電阻體600的粗度來實現測溫用電阻體600之電阻值的相對提高。此外,有關於電阻係數,由於可藉混合絕緣體(例如,氧化鋁)的手法來提高,故可在相對提高上述測溫用電阻體600之電阻值的手段中併用改變此類電阻係數的手 段。
依此方式,若依據第1實施形態之靜電夾盤100,由於可將測溫用電阻體600之電阻值相對增高,故可藉由根據測溫用電阻體600之電阻值提升溫度量測解析度的手段使陶瓷板10之各區段SE的溫度量測精確度提升,結果,可使陶瓷板10之吸附面S1的溫度分布均一性(亦即,晶圓W的溫度分布均一性)獲得提升。再者,由於各測溫用電阻體600係收容在區段SE內,故測溫用電阻體600之電阻值受其他區段SE之溫度影響之虞甚少,但構成測溫電阻體用驅動部70所包含之線對710的各導電線711、712不會彙納在收容電連接於該導電線711、712之測溫用電阻體600的區段SE內,而是配置成通過其他區段SE內(參照圖4),故各導電線711、712之電阻值仍會受其他區段SE之溫度的影響。如上所述,若依據第1實施形態之靜電夾盤100,由於可使構成測溫電阻體用驅動部70所包含之線對710的各導電線711、712之電阻值相對減低,故可使(受其他區段SE之溫度的影響的)線對710之電阻值在包含測溫用電阻體600及線對710之電路的電阻值中所占的比例降低。從而,若依據第1實施形態之靜電夾盤100,使用測溫用電阻體600之各區段SE的溫度量測精確度可有效提升,且陶瓷板10之吸附面S1的溫度分布均一性(亦即,晶圓W的溫度分布均一性)亦能有效提升。
此外,本實施形態之靜電夾盤100中,有關測溫電阻體用驅動部70所包含的各導電線(第1導電線 711及第2導電線712),係導電線711、712的長度L越長,導電線711、712的線寬W越粗。因此,若依據本實施形態之靜電夾盤100,可使測溫電阻體用驅動部70所包含之各導電線711、712的電阻值互相接近,導電線711、712之電阻值在包含測溫用電阻體600及導電線711、712的電路之電阻值所占的參差得以減低。從而,若依據本實施形態之靜電夾盤100,使用測溫用電阻體600之各區段SE的溫度量測精確度可有效提升,且使陶瓷板10之吸附面S1的溫度分布均一性(亦即,晶圓W之溫度分布均一性)能有效提升。
此外,本實施形態之靜電夾盤100中,將測溫用電阻體600及配置於和上述測溫用電阻體600同一個區段SE內的發熱用電阻體500投影在平行於Z軸方向的任意假想平面VS時,在平行於假想平面VS且正交於Z軸方向的方向中,測溫用電阻體600的投影601之兩端EP11、EP12的位置即為發熱用電阻體500的投影501之兩端EP21,EP22間的位置。因此,本實施形態之靜電夾盤100中,在Z軸方向視圖上,相較於配置在和該測溫用電阻體600同一個區段SE的發熱用電阻體500,可將測溫用電阻體600配置在區段SE中更內側的位置(更遠離區段SE之交界的位置)。從而,若依據本實施形態之靜電夾盤100,由於可抑制配置在某區段SE的測溫用電阻體600之溫度(電阻值)受到其他區段SE之溫度影響的情形,故可令使用測溫用電阻體600之各區段SE的溫度量測精確度提升,結果,陶瓷板10之吸附面 S1的溫度分布均一性(亦即,晶圓W的溫度分布均一性)可獲得提升。
(A-5.第1實施形態的變化例)
圖7為示意性顯示第1實施形態之變化例中靜電夾盤100的發熱用電阻體層50、發熱電阻體用驅動部51、測溫用電阻體層60、及測溫電阻體用驅動部70之構成的說明圖。相較於上述第1實施形態之靜電夾盤100的構成,圖7所示第1實施形態之靜電夾盤100的變化例的構成中,連接於發熱用電阻體500之2條導電線中的一者,係和配置於和該發熱用電阻體500同一個區段SE的測溫用電阻體600所連接的2條導電線中的一者為共通之點上不相同。例如,圖7所示的3個區段SE中,位在最右側之區段SE中所配置的發熱用電阻體500之一端係電連接於發熱電阻體用驅動部51所包含的第1導電線511,但發熱用電阻體500之另一端則電連接於構成線對710的第2導電線712,而線對710為電連接於該區段SE所配置的測溫用電阻體600(因此,構成通路對53的通路532和構成電阻體側通路對73的電阻體側通路732已構成為共通)。即使是這種構成,對發熱用電阻體500及測溫用電阻體600的電壓施加仍可各別控制,且可根據使用測溫用電阻體600之各區段SE的溫度量測結果,實現使用發熱用電阻體500之各區段SE的溫度控制。
[B.第2實施形態]
圖8為示意性顯示第2實施形態之靜電夾盤100a的發熱用電阻體層50、發熱電阻體用驅動部51、測溫用電阻體層60、及測溫電阻體用驅動部70之構成說明圖。下文中,係就第2實施形態之靜電夾盤100a構成中,藉由對和上述第1實施形態之靜電夾盤100的構成相同的構成附註相同的符號,並適當省略其說明。
如圖8所示,相較於上述第1實施形態之靜電夾盤100的構成,第2實施形態之靜電夾盤100a之構成的不同點在陶瓷板10內部之測溫用電阻體600與其他測溫用電阻體600之間設有隔熱層11。隔熱層11係為熱傳導率低於構成陶瓷板10之材料的部分,例如為孔洞。或者,隔熱層11係為在陶瓷板10之內部孔洞中充填有熱傳導率比構成陶瓷板10之材料還低的材料之構成。在Z軸方向視圖上,隔熱層11係配置成間斷式或連續式包圍各測溫用電阻體600。另外,這種構成的陶瓷板10可藉由例如在上述第1實施形態之陶瓷板10的製作方法中,在和陶瓷胚材上之隔熱層11相當的位置進行形成孔洞的加工,或在此種孔洞中充填熱傳導率較低的材料而製得。
如以上所說明,第2實施形態之靜電夾盤100a中,係在陶瓷板10的內部,在測溫用電阻體600與其他測溫用電阻體600之間設有熱傳導率低於陶瓷板10的隔熱層11。因此,若依據第2實施形態之靜電夾盤100a,可有效抑制某區段SE中所配置的測溫用電阻體600的溫度(電阻值)受到其他區段SE之溫度影響的情 形。從而,若依據第2實施形態之靜電夾盤100a,使用測溫用電阻體600的各區段SE之溫度量測精確度可有效提升,且陶瓷板10之吸附面S1的溫度分布均一性(亦即,晶圓W的溫度分布均一性)能夠有效提升。
[C.第3實施形態]
圖9係概略顯示第3實施形態之靜電夾盤100b的XZ剖面構成的說明圖,圖10為示意性顯示第3實施形態之靜電夾盤100b的發熱用電阻體層50、發熱電阻體用驅動部51、測溫用電阻體層60、及測溫電阻體用驅動部70之構成的說明圖。下文中,第3實施形態之靜電夾盤100b之構成中,有關和上述第1實施形態之靜電夾盤100的構成相同的構成,係藉由附註相同的符號而適當省略其說明。
如圖9所示,第3實施形態之靜電夾盤100b的構成中,相較於上述第1實施形態之靜電夾盤100的構成,不同點係在測溫電阻體用驅動部70為第1測溫電阻體用驅動部層71及第2測溫電阻體用驅動部層72的2層構成。
此外,如圖10所示,第3實施形態之靜電夾盤100b中,在測溫電阻體用驅動部70中,構成電連接於各測溫用電阻體600之線對710的第1導電線711具有:第1測溫電阻體用驅動部層71所包含的第1導電線要素781;及第2測溫電阻體用驅動部層72所包含的第2導電線要素782。第1導電線要素781及第2導電線要 素782在Z軸方向的位置互不相同,且彼此並聯連接。
同樣地,第3實施形態之靜電夾盤100b中,在測溫電阻體用驅動部70中,構成電連接於各測溫用電阻體600之線對710的第2導電線712具有:第1測溫電阻體用驅動部層71所包含的第1導電線要素791;及第2測溫電阻體用驅動部層72所包含的第2導電線要素792。第1導電線要素791及第2導電線要素792在Z軸方向的位置互不相同,且彼此並聯連接。
如以上所說明,第3實施形態之靜電夾盤100b中,構成電連接於各測溫用電阻體600之線對710的第1導電線711及第2導電線712具有在Z軸方向的位置互不相同且彼此並聯連接的2層導電線要素(第1導電線要素781、791及第2導電線要素782,792)。因此,若依據第3實施形態之靜電夾盤100b,可使構成測溫電阻體用驅動部70所包含之線對710的各導電線711、712的電阻值相對降低,可使測溫用電阻體600之電阻值相對增高。從而,若依據第3實施形態之靜電夾盤100b,藉由使根據測溫用電阻體600之電阻值進行的溫度量測解析度提升,能夠使陶瓷板10之各區段SE的溫度量測精確度提升,結果,陶瓷板10之吸附面S1的溫度分布均一性(亦即,晶圓W的溫度分布均一性)可獲得提升。再者,若依據第3實施形態之靜電夾盤100b,由於可將構成測溫電阻體用驅動部70所包含之線對710的各導電線711、712的電阻值相對降低,故線對710之電阻值在包含測溫用電阻體600及線對710之電路的電阻值中(受 到其他區段SE之溫度影響)所佔的比例可降低。從而,若依據第3實施形態之靜電夾盤100b,使用測溫用電阻體600之各區段SE的溫度量測精確度得以有效提升,結果,陶瓷板10之吸附面S1的溫度分布均一性(亦即,晶圓W之溫度分布均一性)能夠有效提升。
[D.第4實施形態]
圖11為概略顯示第4實施形態之靜電夾盤100c之XZ剖面構成的說明圖,圖12為示意性顯示第4實施形態之靜電夾盤100c的測溫電阻體用驅動部70的XY平面構成的說明圖。下文中,在第4實施形態之靜電夾盤100c的構成中,有關於和上述第1實施形態之靜電夾盤100之構成相同的構成,均附註相同的符號並適當省略其說明。
如圖11所示,相較於上述第1實施形態之靜電夾盤100的構成,第4實施形態之靜電夾盤100c的構成是在測溫電阻體用驅動部70為第1測溫電阻體用驅動部層71與第2測溫電阻體用驅動部層72的2層構成這點有所不同。
再者,如圖12所示,第4實施形態之靜電夾盤100c中,係採用所謂交聯(crosslink)形式的驅動部作為測溫電阻體用驅動部70。亦即,測溫電阻體用驅動部70具備複數條第1導電線711、及複數條第2導電線712。本實施形態中,各第1導電線711係配置成和X軸方向大致平行地延伸,各第2導電線712則配置成和 Y軸方向大致平行延伸。複數條第1導電線711係包含在第1測溫電阻體用驅動部層71,複數條第2導電線712則包含在第2測溫電阻體用驅動部層72。另外,圖12中,雖為了圖示的方便而顯示第1導電線711及第2導電線712雙方,實際上第1導電線711及第2導電線712在Z軸方向中的位置係彼此不同。
各第1導電線711係經由構成供電側通路對75之一方供電側通路751、及構成電極墊對77(圖11)之一方的電極墊771而電連接於一方供電端子12;各第2導電線712則經由構成供電側通路對75之另一方供電側通路752及構成電極墊對77之另一方電極墊772而電連接於另一方供電端子12。另外,圖12中,代表性地圖示了有關1條第1導電線711及1條第2導電線712的供電側通路對75,有關其他的導電線711、712的供電側通路對75的圖示則予省略。供電側通路751係相當於申請專利範圍中的第1供電側通路,供電側通路752則相當於申請專利範圍中的第2供電側通路。
再者,配置於陶瓷板10之各區段SE的測溫用電阻體600係經由構成電阻體側通路對73之一方電阻體側通路731而電連接於1條第1導電線711,而且,經由構成電阻體側通路對73之另一方電阻體側通路732而電連接於1條第2導電線712。而且,各第1導電線711及各第2導電線712皆電連接於複數個測溫用電阻體600。此時,電連接於測溫用電阻體600的第1導電線711與第2導電線712的組合係按每個測溫用電阻體 600而不同。例如,圖12所示的9個測溫用電阻體600中,位於最左上側的測溫用電阻體600係連接於圖12所示的4個第1導電線711中顯示於最上方的第1導電線711、及4條第2導電線712中顯示於最左方的第2導電線712的組合。再者,圖12所示的9個測溫用電阻體600中,位於最右上側的測溫用電阻體600係連接於4條第1導電線711中顯示於最上方之第1導電線711、及4條第2導電線712中顯示於左起第3條第2導電線712的組合。電阻體側通路731係相當於申請專利範圍中的第1電阻體側通路,電阻體側通路732則相當於申請專利範圍中的第2電阻體側通路。
第4實施形態之靜電夾盤100c中,配置於陶瓷板10之各區段SE的測溫用電阻體600係依序加以選擇,且經由一對供電端子12、電極墊對77、供電側通路對75、導電線711、712從電源(未圖示)對所選擇的測溫用電阻體600施加電壓。亦即,在測溫電阻體用驅動部70所包含的複數條第1導電線711中,使依序選擇的1條第1導電線711設為ON狀態(導通狀態),而且,在測溫電阻體用驅動部70所包含的複數條第2導電線712中,使依序選擇的1條第2導電線712設為ON狀態(導通狀態)。使電源電壓施加於連接在皆已成ON狀態的第1導電線711及第2導電線712之組合的測溫用電阻體600。藉以使電流流至測溫用電阻體600,並根據施加於測溫用電阻體600之電壓及流至測溫用電阻體600的電流量測測溫用電阻體600的溫度(配置有測溫用電阻體 600之區段SE的溫度)。藉由反複進行第1導電線711之選擇及第2導電線712之選擇,使配置於陶瓷板10之各區段SE的測溫用電阻體600即依序成為電壓施加對象,並依序量測陶瓷板10之各區段SE的溫度。因此,在本實施形態之靜電夾盤100c中,藉由根據陶瓷板10之各區段SE的溫度量測結果各別控制施加於各區段SE所配置之發熱用電阻體500的電壓,即可各別控制各區段SE的溫度,結果,可使陶瓷板10之吸附面S1的溫度分布均一性(亦即,晶圓W的溫度分布均一性)提升。
如以上所說明,第4實施形態之靜電夾盤100c中,供電部80具備:測溫電阻體用驅動部70、一對供電端子12、供電側通路對75、及電阻體側通路對73。測溫電阻體用驅動部70具有複數條第1導電線711及複數條第2導電線712。供電側通路對75具有:將複數條第1導電線711電連接於構成一對供電端子12之一方供電端子12的第1供電側通路751;及將複數條第2導電線712電連接於構成一對供電端子12之另一方供電端子12的第2供電側通路752。電阻體側通路對73係將各測溫用電阻體600電連接於第1導電線711及第2導電線712。電連接於測溫用電阻體600的第1導電線711及第2導電線712的組合係按每個測溫用電阻體600而有不同。依此方式,第4實施形態之靜電夾盤100c中,係採用所謂交聯形式的驅動部作為測溫電阻體用驅動部70。因此,第4實施形態之靜電夾盤100c中,可藉由較少數量的導電線711、712構成向各測溫用電阻體600的 各別供電路徑。結果,藉由將各導電線711、712的線寬設成較寬,即可使測溫電阻體用驅動部70所包含的各導電線711、712之電阻值相對降低,且使測溫用電阻體600之電阻值相對升高。從而,若依據第4實施形態之靜電夾盤100c,可藉由使根據測溫用電阻體600之電阻值進行的溫度量測解析度提升,而提升陶瓷板10之各區段SE的溫度量測精確度,結果,可使陶瓷板10之吸附面S1的溫度分布均一性(亦即,晶圓W的溫度分布均一性)提升。再者,若依據第4實施形態之靜電夾盤100c,因可將構成測溫電阻體用驅動部70所包含之線對710的各導電線711、712的電阻值相對降低,故可將線對710之電阻值在包含測溫用電阻體600及線對710之電路的電阻值(受到其他區段SE的溫度影響)中所佔的比例降低。從而,若依據第4實施形態之靜電夾盤100c,使用測溫用電阻體600之各區段SE的溫度量測精確度可有效提升,陶瓷板10之吸附面S1的溫度分布均一性(亦即,晶圓W的溫度分布均一性)亦可獲得有效提升。
[E.其他變化例]
本說明書所揭示的技術並不限於上述的實施形態,也可在不逸離本發明要旨的範圍內改變成各種形態,例如,也可為下述的各種變形。
上述實施形態中的靜電夾盤100的構成畢竟僅為一個例子,其中仍可作各種改變。例如,上述實施形態中,各測溫用電阻體600係由Z軸方向的位置互不 相同,且彼此串聯連接的3個電阻體要素(第1電阻體要素610、第2電阻體要素620、第3電阻體要素630)所構成,各測溫用電阻體600也可由Z軸方向的位置互不相同,且彼此串聯連接的2個或4個以上電阻體要素所構成。雖是這種構成,也可藉由提高測溫用電阻體600的電阻來使根據測溫用電阻體600之電阻值進行的溫度量測解析度提升,且使利用測溫用電阻體600所得的陶瓷板10之區段SE的溫度量測精確度提升。另外,各測溫用電阻體600不必全部都由複數層電阻體要素構成,也可一部分由單層電阻體要素構成。
此外,上述實施形態中,構成測溫電阻體用驅動部70所包含之線對710的第1導電線711及第2導電線712的線寬雖設成較電連接於該線對710之測溫用電阻體600的線寬更粗,但也可設成僅使第1導電線及第2導電線之一者的線寬較測溫用電阻體600之線寬更粗。在這種構成中,也可藉由相對增高測溫用電阻體600之電阻值,使根據測溫用電阻體600之電阻值進行的溫度量測解析度提升,且使依據測溫用電阻體600執行的陶瓷板10之區段SE的溫度量測精確度能夠提升,並且,可藉由將導電線(第1導電線711或第2導電線712)之電阻值相對降低,使線對710之電阻值在包含測溫用電阻體600及線對710之電路的電阻值中所佔的比例降低,讓使用測溫用電阻體600的各區段SE之溫度量測精確度得以有效提升。另外,構成測溫電阻體用驅動部70所包含之線對710的第1導電線711及/或第2導電線712的 線寬不必比電連接於該線對710的測溫用電阻體600的線寬更粗,第1導電線711及第2導電線712的線寬也可設在該測溫用電阻體600的線寬以下。
而且,上述實施形態中,雖測溫電阻體用驅動部70所包含的各導電線711、712的長度L越長,導電線711、712的線寬W越粗,但並不一定要針對測溫電阻體用驅動部70所包含的全部導電線711、712成立上述關係,只要至少針對2條導電線711、712成立上述關係即可。亦即,測溫電阻體用驅動部70只要包含:順沿著延伸方向之長度為L2、線寬為W1的導電線711、712;及沿著延伸方向的長度為L2(其中,L2>L1)、線寬為W2(其中,W2>W1)的導電線711、712即可。這種構成中,藉由至少使2條導電線711、712的電阻值互相接近,導電線711、712之電阻值參差的情形就可降低,進而有效提升使用測溫用電阻體600之各區段SE的溫度量測精確度。另外,測溫電阻體用驅動部70不必包含長度為L2而線寬為W1的導電線、及長度為L2(其中,L2>L1)而線寬為W2(其中,W2>W1)的導電線。例如,測溫電阻體用驅動部70所包含的各導電線711、712的線寬也可全部設成大致相同。
又,上述實施形態中,係將測溫用電阻體600、及配置於和上述測溫用電阻體600同一個區段SE內的發熱用電阻體500投影在平行於Z軸方向的任意假想平面VS上時,在平行於假想平面VS且和Z軸方向正交的方向中,測溫用電阻體600的投影601之兩端 EP11、EP12的位置為發熱用電阻體500的投影501之兩端EP21、EP22間的位置,但不必一定要採取這種構成。
此外,上述第3實施形態中,構成電連接於各測溫用電阻體600之線對710的第1導電線711及第2導電線712雖具有在Z軸方向的位置互不相同,且彼此並聯連接的2層式導電線要素(第1導電線要素781、791及第2導電線要素782、792),但第1導電線711及第2導電線712也可具有在Z軸方向的位置互不相同,且彼此並聯連接的3層以上導電線要素。而且,亦可僅第1導電線711及第2導電線712之一者具有在Z軸方向的位置互不相同,且彼此並聯連接的2層(或3層以上)式導電線要素。這種構成中,也可藉由將測溫用電阻體600之電阻值相對增高,使根據測溫用電阻體600之電阻值進行的溫度量測解析度提升,並使利用測溫用電阻體600所得的陶瓷板10之區段SE的溫度量測精確度提升,同時藉由將導電線711、712之電阻值相對降低而使線對710之電阻值在包含測溫用電阻體600及線對710之電路的電阻值中所佔的比例降低,讓使用測溫用電阻體600所得的各區段SE之溫度量測精確度能夠效提升。另外,構成電連接於各測溫用電阻體600之線對710的第1導電線711及/或第2導電線712不必一定要具有Z軸方向的位置互不相同且彼此並聯連接的2層(或3層以上)的導電線要素。
而且,上述實施形態中,雖在配置於靜電夾盤100內部的各導電性構件之Z軸方向位置上,係從上 側(接近吸附面S1之側)依序以夾盤電極40、發熱用電阻體層50、發熱電阻體用驅動部51、測溫用電阻體層60、測溫電阻體用驅動部70的順序配置,但這些單元中至少2層的位置關係也可相反。例如,上述實施形態中,測溫用電阻體層60雖位於較發熱用電阻體層50更下側(結果,各區段SE中,測溫用電阻體600係位於較發熱用電阻體500更下側),但測溫用電阻體層60也可位於較發熱用電阻體層50更上側(結果,各區段SE中,測溫用電阻體600係位於較發熱用電阻體500更上側)。此外,發熱用電阻體層50等也可不配置於陶瓷板10之內部,而是配置於表面。
再者,上述實施形態中,各測溫用電阻體600係經由測溫電阻體用驅動部70而電連接於一對供電端子12,但各測溫用電阻體600也可不經由測溫電阻體用驅動部70而電連接於一對供電端子12。此外,靜電夾盤100也可具備複數個測溫電阻體用驅動部70,並使設於靜電夾盤100的複數個測溫用電阻體600中的一部分導通至一個測溫電阻體用驅動部70,複數個測溫用電阻體600中的其他部分則導通至其他測溫電阻體用驅動部70。
又,上述實施形態中,用以對測溫用電阻體600供電之構成的一部分(例如,供電端子、通路、導電線等)也可利用在用以對發熱用電阻體500供電,相反的,用以對發熱用電阻體500供電之構成的一部分(例如,供電端子、通路、導電線等)也可利用在用以對測溫 用電阻體600供電。而且,上述實施形態中,各通路可藉單數的通路構成,也可藉複數個通路的群組構成。
再者,上述實施形態的區段SE之設定態樣可任意變更。例如,上述實施形態中,雖以各區段SE排列於吸附面S1之圓周方向的方式設定複數個區段SE,但也可以各區段SE排列成格子狀的方式設定複數個區段SE。此外,例如,上述實施形態中,雖係將靜電夾盤100的整體假想式分割成複數個區段SE,但靜電夾盤100的一部分也可假想式分割成複數個區段SE。
而且,上述測溫用電阻體600的各構成(各特徵)不必在靜電夾盤100所具備的全部測溫用電阻體600中實現,只要在至少1個測溫用電阻體600中實現即可。另外,靜電夾盤100所具備的測溫用電阻體600中,具備上述測溫用電阻體600之各構成(各特徵)的測溫用電阻體600係相當於申請專利範圍中的特定測溫用電阻體。
此外,上述實施形態中,雖採用了在陶瓷板10內部設有1個夾盤電極40的單極方式,但也可採用在陶瓷板10內部設置一對夾盤電極40的雙極方式。另外,形成上述實施形態之靜電夾盤100的各構件之材料充其量只是例示性,各構件也可利用其他材料形成。例如,上述實施形態中,靜電夾盤100雖具備板狀的陶瓷板10,但靜電夾盤100(或後述的其他保持裝置)也可具備由其他材料(例如,樹脂)形成的板狀構件來取代陶瓷板10。
又,本發明並不限於利用靜電吸引力來保持晶圓W的靜電夾盤100,也可適用於將對象物保持在陶瓷板之表面上的其他保持裝置(例如,CVD加熱器等加熱器裝置或真空夾盤等)。另外,將本發明應用在加熱器裝置時,若將特定測溫用電阻體600配置在較同一個區段SE內所配置的發熱用電阻體500更下側(亦即,接近供電端子拉出面之側),從供電端子朝向測溫用電阻體600的配線就不會在Z軸方向貫通發熱用電阻體層50(發熱用電阻體500),可避免發熱用電阻體層50(發熱用電阻體500)之設計限制增加的情形,是較佳的。
10‧‧‧陶瓷板
50‧‧‧發熱用電阻體層
51‧‧‧發熱電阻體用驅動部
53‧‧‧通路對
60‧‧‧測溫用電阻體層
61‧‧‧第1電阻體層
62‧‧‧第2電阻體層
63‧‧‧第3電阻體層
64、65‧‧‧通路
70‧‧‧測溫電阻體用驅動部
73‧‧‧電阻體側通路對
75‧‧‧供電側通路對
77‧‧‧電極墊對
100‧‧‧靜電夾盤
500‧‧‧發熱用電阻體
510、710‧‧‧線對
511‧‧‧第1導電線
512‧‧‧第2導電線
531、532‧‧‧通路
600‧‧‧測溫用電阻體
610‧‧‧第1電阻體要素
620‧‧‧第2電阻體要素
630‧‧‧第3電阻體要素
711‧‧‧第1導電線
712‧‧‧第2導電線
731、732‧‧‧電阻體側通路
751、752‧‧‧供電側通路
771、772‧‧‧電極墊
L1至L6‧‧‧沿延伸方向的線長
P11、P12‧‧‧端部
P21、P22‧‧‧端部
P31、P32‧‧‧端部
S1‧‧‧上面(吸附面)
SE‧‧‧區段
W1至W6‧‧‧線寬

Claims (8)

  1. 一種保持裝置,具備:板狀構件,具有大致正交於第1方向的第1表面;發熱用電阻體,配置在將前述板狀構件之至少一部分假想式分割成朝正交於前述第1方向之方向排列的複數個區段時的各前述區段;測溫用電阻體,配置在各前述區段,前述第1方向的位置係與前述發熱用電阻體不同;及供電部,構成對前述發熱用電阻體及前述測溫用電阻體的供電路徑,將對象物保持在前述板狀構件之前述第1表面上,其特徵為:特定測溫用電阻體具有在前述第1方向的位置彼此相異,且互相串聯連接的複數層電阻體要素,該特定測溫用電阻體係至少1個前述測溫用電阻體。
  2. 如請求項1之保持裝置,其中前述供電部具備:驅動部,具有由第1導電線與第2導電線構成的線對;一對供電端子;供電側通路對,具有第1供電側通路和第2供電側通路,該第1供電側通路將構成前述線對的前述第1導電線電連接於一方的前述供電端子,該第2供電側通路將構成前述線對的前述第2導電線電連接於另一方的前述供電端子;及 電阻體側通路對,具有:將一個前述測溫用電阻體之一端電連接於構成前述線對之前述第1導電線的第1電阻體側通路、及將前述一個測溫用電阻體的另一端電連接於構成前述線對之前述第2導電線的第2電阻體側通路;電連接於前述特定測溫用電阻體之構成前述線對的前述第1導電線及前述第2導電線的至少一者具有前述第1方向的位置彼此相異,且互相並聯連接的複數層導電線要素。
  3. 如請求項1之保持裝置,其中前述供電部具備:驅動部,具有複數條第1導電線及複數條第2導電線;至少一對供電端子;供電側通路對,具有第1供電側通路和第2供電側通路,該第1供電側通路將前述複數條第1導電線電連接於構成一對前述供電端子之一方的供電端子,該第2供電側通路將前述複數條第2導電線電連接於構成前述一對供電端子之另一方的供電端子;及電阻體側通路對,將各前述測溫用電阻體電連接於前述第1導電線及前述第2導電線;各前述第1導電線及各前述第2導電線均電連接於複數個前述測溫用電阻體,電連接於各前述測溫用電阻體的前述第1導電線與前述第2導電線的組合係按每個前述測溫用電阻體 而不同。
  4. 如請求項1之保持裝置,其中進一步具備底座構件,其係配置成和前述板狀構件之前述第1表面相反側的表面相對,且內部形成有冷媒流路,相較於配置在同一前述區段的前述發熱用電阻體,前述特定測溫用電阻體係配置在接近前述底座構件的位置。
  5. 如請求項1之保持裝置,其中前述供電部具備:驅動部,具有由第1導電線及第2導電線構成的線對;一對供電端子;供電側通路對,具有第1供電側通路和第2供電側通路,該第1供電側通路將構成前述線對之前述第1導電線電連接於一方的前述供電端子,該第2供電側通路將構成前述線對之前述第2導電線電連接於另一方的前述供電端子;及電阻體側通路對,具有:將一個前述測溫用電阻體之一端電連接於構成前述線對之前述第1導電線的第1電阻體側通路、及將前述一個測溫用電阻體之另一端電連接於構成前述線對之前述第2導電線的第2電阻體側通路;電連接於前述特定測溫用電阻體之構成前述線對的前述第1導電線與前述第2導電線之至少一者的線 寬係較前述特定測溫用電阻體的線寬更粗。
  6. 如請求項5之保持裝置,其中前述驅動部包含:沿著延伸方向的長度為L1且線寬為W1的前述第1導電線;及沿著延伸方向的長度為L2(其中,L2>L1)且線寬為W2(其中,W2>W1)的前述第2導電線。
  7. 如請求項1至6中任一項之保持裝置,其中將前述特定測溫用電阻體及配置在與前述特定測溫用電阻體同一個前述區段的前述發熱用電阻體投影在平行於前述第1方向的任意假想平面時,在平行於前述假想平面且正交於前述第1方向的第2方向中,前述特定測溫用電阻體之投影兩端的位置為前述發熱用電阻體之投影兩端間的位置。
  8. 如請求項7之保持裝置,其中,在前述板狀構件的內部,於前述特定測溫用電阻體與其他前述測溫用電阻體之間設有熱傳導率較前述板狀構件更低的隔熱層。
TW107112230A 2017-04-10 2018-04-10 保持裝置 TWI694532B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017077401 2017-04-10
JP2017-077401 2017-04-10

Publications (2)

Publication Number Publication Date
TW201903935A TW201903935A (zh) 2019-01-16
TWI694532B true TWI694532B (zh) 2020-05-21

Family

ID=63793416

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107112230A TWI694532B (zh) 2017-04-10 2018-04-10 保持裝置

Country Status (6)

Country Link
US (1) US11508600B2 (zh)
JP (1) JP6571880B2 (zh)
KR (1) KR102303306B1 (zh)
CN (1) CN110494970B (zh)
TW (1) TWI694532B (zh)
WO (1) WO2018190257A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200105717A (ko) * 2018-02-16 2020-09-08 니뽄 도쿠슈 도교 가부시키가이샤 유지 장치
JP7198635B2 (ja) * 2018-11-05 2023-01-04 日本特殊陶業株式会社 保持装置
JP2021132190A (ja) * 2020-02-21 2021-09-09 東京エレクトロン株式会社 基板処理装置および載置台
US11756820B2 (en) * 2020-09-28 2023-09-12 Toto Ltd. Electrostatic chuck and semiconductor manufacturing apparatus
US11776836B2 (en) * 2020-09-28 2023-10-03 Toto Ltd. Electrostatic chuck and semiconductor manufacturing apparatus
TW202412165A (zh) * 2022-05-26 2024-03-16 日商東京威力科創股份有限公司 基板處理裝置
CN116403943A (zh) * 2023-04-21 2023-07-07 江苏微导纳米科技股份有限公司 一种加热盘及其制造方法、一种半导体设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347612A (ja) * 2004-06-04 2005-12-15 Matsushita Electric Ind Co Ltd ウェハトレイ及びウェハバーンインユニット、それを用いたウェハレベルバーンイン装置並びに半導体ウェハの温度制御方法
JP2008243990A (ja) * 2007-03-26 2008-10-09 Ngk Insulators Ltd 基板加熱装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012195A (ja) * 1998-06-29 2000-01-14 Ibiden Co Ltd セラミックヒータ
JP3455473B2 (ja) * 1999-07-14 2003-10-14 三菱電機株式会社 感熱式流量センサ
JP2002016072A (ja) * 2000-06-28 2002-01-18 Toshiba Ceramics Co Ltd 半導体加熱用セラミックヒーターおよびその製造方法
JP5210491B2 (ja) * 2006-02-03 2013-06-12 日立オートモティブシステムズ株式会社 熱式流量センサ
JP2010153730A (ja) 2008-12-26 2010-07-08 Omron Corp 配線構造、ヒータ駆動装置、計測装置および制御システム
WO2013033402A1 (en) 2011-08-30 2013-03-07 Watlow Electric Manufacturing Company Method of manufacturing a high definition heater system
EP2834839A4 (en) * 2012-02-29 2016-03-30 Oasis Materials Corp TRANSIENT LIQUID PHASE, NON-PRESSURE ASSEMBLY OF ALUMINUM NITRIDE COMPONENTS
JP6077258B2 (ja) 2012-10-05 2017-02-08 日本特殊陶業株式会社 積層発熱体、静電チャック、及びセラミックヒータ
US9538583B2 (en) * 2013-01-16 2017-01-03 Applied Materials, Inc. Substrate support with switchable multizone heater
CN103874243B (zh) * 2014-03-27 2016-06-01 福建闽航电子有限公司 一种带温控的陶瓷发热片
JP6424010B2 (ja) * 2014-03-31 2018-11-14 株式会社美鈴工業 ヒータとそれを備える定着装置、画像形成装置及び加熱装置、並びにヒータの製造方法
US10186437B2 (en) * 2015-10-05 2019-01-22 Lam Research Corporation Substrate holder having integrated temperature measurement electrical devices
JP6622052B2 (ja) * 2015-10-14 2019-12-18 日本特殊陶業株式会社 セラミックヒータ及び静電チャック
US9826574B2 (en) * 2015-10-28 2017-11-21 Watlow Electric Manufacturing Company Integrated heater and sensor system
US10582570B2 (en) * 2016-01-22 2020-03-03 Applied Materials, Inc. Sensor system for multi-zone electrostatic chuck
JP6725677B2 (ja) * 2017-02-01 2020-07-22 日本特殊陶業株式会社 保持装置
JP6979279B2 (ja) * 2017-04-10 2021-12-08 日本特殊陶業株式会社 保持装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347612A (ja) * 2004-06-04 2005-12-15 Matsushita Electric Ind Co Ltd ウェハトレイ及びウェハバーンインユニット、それを用いたウェハレベルバーンイン装置並びに半導体ウェハの温度制御方法
JP2008243990A (ja) * 2007-03-26 2008-10-09 Ngk Insulators Ltd 基板加熱装置

Also Published As

Publication number Publication date
KR20190120366A (ko) 2019-10-23
US11508600B2 (en) 2022-11-22
TW201903935A (zh) 2019-01-16
US20210090930A1 (en) 2021-03-25
JPWO2018190257A1 (ja) 2019-04-18
WO2018190257A1 (ja) 2018-10-18
CN110494970B (zh) 2023-03-07
JP6571880B2 (ja) 2019-09-04
KR102303306B1 (ko) 2021-09-16
CN110494970A (zh) 2019-11-22

Similar Documents

Publication Publication Date Title
TWI694532B (zh) 保持裝置
TWI725288B (zh) 保持裝置
JP7030420B2 (ja) 保持装置
JP2017103325A (ja) 静電チャック
JP6979279B2 (ja) 保持装置
JP7213656B2 (ja) 保持装置
KR102636178B1 (ko) 유지 장치
JP7126398B2 (ja) 保持装置
JP7030557B2 (ja) 保持装置
JP2019054041A (ja) 保持装置
JP7139165B2 (ja) 保持装置
JP6994953B2 (ja) 保持装置
JP7198635B2 (ja) 保持装置
JP7299756B2 (ja) 保持装置
JP2021022630A (ja) 保持装置の製造方法および保持装置
JP7182910B2 (ja) 保持装置
TWI807226B (zh) 加熱裝置
JP3608998B2 (ja) 回路装置、パッケージ部材、回路試験方法および装置
JP2020009932A (ja) 保持装置
JP7278049B2 (ja) 保持装置
JP6943774B2 (ja) 保持装置
JP2024081850A (ja) 保持装置
JP2019216201A (ja) 保持装置
JP2019054040A (ja) 保持装置
JP2017163019A (ja) 保持装置