TWI671652B - 模型建置裝置與負載解析系統 - Google Patents

模型建置裝置與負載解析系統 Download PDF

Info

Publication number
TWI671652B
TWI671652B TW107142078A TW107142078A TWI671652B TW I671652 B TWI671652 B TW I671652B TW 107142078 A TW107142078 A TW 107142078A TW 107142078 A TW107142078 A TW 107142078A TW I671652 B TWI671652 B TW I671652B
Authority
TW
Taiwan
Prior art keywords
data
module
electrical
total
meter
Prior art date
Application number
TW107142078A
Other languages
English (en)
Other versions
TW202020697A (zh
Inventor
林書緯
Shu-Wei Lin
張芳懿
Fang-Yi Chang
洪永杰
Yung-Chieh Hung
Original Assignee
財團法人資訊工業策進會
Institute For Information Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人資訊工業策進會, Institute For Information Industry filed Critical 財團法人資訊工業策進會
Priority to TW107142078A priority Critical patent/TWI671652B/zh
Priority to CN201811502675.0A priority patent/CN111222078B/zh
Priority to US16/217,332 priority patent/US11854095B2/en
Application granted granted Critical
Publication of TWI671652B publication Critical patent/TWI671652B/zh
Publication of TW202020697A publication Critical patent/TW202020697A/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R22/00Arrangements for measuring time integral of electric power or current, e.g. electricity meters
    • G01R22/06Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods
    • G01R22/10Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods using digital techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/15Correlation function computation including computation of convolution operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level
    • G06F30/367Design verification, e.g. using simulation, simulation program with integrated circuit emphasis [SPICE], direct methods or relaxation methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/044Recurrent networks, e.g. Hopfield networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/049Temporal neural networks, e.g. delay elements, oscillating neurons or pulsed inputs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/04Power grid distribution networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Evolutionary Computation (AREA)
  • Health & Medical Sciences (AREA)
  • Software Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Business, Economics & Management (AREA)
  • Computer Hardware Design (AREA)
  • Economics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Geometry (AREA)
  • Human Resources & Organizations (AREA)
  • Water Supply & Treatment (AREA)
  • Tourism & Hospitality (AREA)
  • Strategic Management (AREA)
  • Primary Health Care (AREA)
  • Marketing (AREA)
  • Databases & Information Systems (AREA)
  • Algebra (AREA)
  • Public Health (AREA)
  • General Business, Economics & Management (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)

Abstract

本發明係為一種模型建置裝置與負載解析系統。模型建置裝置用以解析單位資料處理期間之總電表聚合資料。模型建置裝置包含:特性分析模組、資訊映射模組,以及時序分析模組。特性分析模組接收總電表聚合資料,依據檢測條件而檢測總電表聚合資料,並依據檢測的結果而產生特性分析資訊。資訊映射模組將特性分析資訊映射為編碼結果。時序分析模組分析編碼結果的時間關聯性,進而產生仿電器特性合成資料。

Description

模型建置裝置與負載解析系統
本發明是有關於一種模型建置裝置與負載解析系統,且特別是有關於一種分析用戶的用電模式之模型建置裝置與負載解析系統。
隨著科技的發展,人類對於電能使用的依賴度也跟著增加。為減少資源的消耗,節約能源是一個相當重要的議題。對一般民眾而言,通常僅能從電費獲知家中整體的用電總量。若民眾想要得知個別電器的耗電量,需分別在每個電器上安裝智慧型電表(Smart meter)。然而,費用高昂的智慧型電表並不適合一般民眾在家中安裝。
本發明係有關於一種模型建置裝置與負載解析系統。負載解析系統包含資料處理裝置、模型建置裝置,以及模型評估裝置。負載解析系統先後運作於模型建置模式M1與模型應用模式M2。在模型建置模式M1下,模型建置裝置反覆對解析模型進行訓練與測試,待模型評估裝置驗證並確認模型建置裝置內部 的參數設定適當後,負載解析系統進入模型應用模式M2。於模型應用模式M2中,模型建置裝置可針對用戶的總電表用電資料進行解析,進而產生與用戶的個別電器相對應的個別電器解析結果。
根據本發明之第一方面,提出一種用以解析單位資料處理期間之總電表聚合資料的模型建置裝置。
根據本發明之第二方面,提出一種負載解析系統。
為了對本發明之上述及其他方面有更佳的瞭解,下文特舉實施例,並配合所附圖式詳細說明如下:
10‧‧‧負載解析系統
101‧‧‧資料處理裝置
103‧‧‧模型建置裝置
105‧‧‧模型評估裝置
11‧‧‧網路
13‧‧‧原型用戶
14‧‧‧一般用戶
15‧‧‧用電資料彙整與分析裝置
S111、S113、S121、S123、S125、S131、S141、S301、S302、S303、S305、S307、S308、S309、S311、S312、S314、S315、S317‧‧‧步驟
Wm‧‧‧總電表量測波形
1011‧‧‧數據處理模組
1011a‧‧‧數據取樣模組
1011b‧‧‧預處理模組
1013‧‧‧資料平衡化模組
1015‧‧‧資料增強模組
smpDAT‧‧‧取樣資料
ppDAT‧‧‧預處理資料
blDAT‧‧‧平衡化資料
augDAT‧‧‧增強資料
trnDSET‧‧‧訓練資料集
tstDSET‧‧‧測試資料集
nmDSET‧‧‧一般資料集
1017‧‧‧數據接收模組
1031a‧‧‧結構參數調整模組
1031b‧‧‧附屬參數調整模組
1033‧‧‧訓練梯次決定模組
1035‧‧‧特性分析模組
1037‧‧‧資訊映射模組
1038‧‧‧編碼結果分組模組
1039‧‧‧時序分析模組
ainPm‧‧‧總電表聚合資料
dvrPa、dvrPb、dvrPc、dvrPc‧‧‧電器驗證資料
1051‧‧‧解析結果評估模組
ppDATm‧‧‧總電表預處理資料
augDATm‧‧‧總電表增強資料
1035a‧‧‧頻譜檢測模組
1035b‧‧‧邊緣檢測模組
1039b‧‧‧關聯性分析模組
1039c‧‧‧基底波形產生模組
1039d‧‧‧資料合成模組
doutPa、doutPb、doutPc、doutPd‧‧‧仿電器特性合成資料
augDATa、augDATb、augDATc、augDATd‧‧‧電器增強資料
cmp(doutPa,dvrPa)、cmp(doutPb,dvrPb)、cmp(doutPc,dvrPc)、cmp(doutPd,dvrPd)‧‧‧比較結果
1034a、1034b、1034c、1034d、FLTa[1]~FLTa[x1]、FLTb[1]~FLTb[x2]、FLTc[1]~FLTc[x3]、FLTd[1]~FLTd[x4]‧‧‧頻譜檢測器
DTa1、DTax1、DTb1、DTbx2、DTc1、DTcx3、DTd1、DTdx4‧‧‧特性分析資訊
1036‧‧‧邊緣檢測器
DEp‧‧‧正緣觸發
DEn‧‧‧負緣觸發
DEs‧‧‧穩態
t1、t2、t3、t4、t59、t60‧‧‧時間戳
Tunit‧‧‧單位資料處理期間
Pth‧‧‧功率門檻
41a‧‧‧輸入神經元
41b‧‧‧輸出神經元
71b‧‧‧編碼結果
81‧‧‧時間戳編碼組合
901p‧‧‧第一層過去時間序列
901f‧‧‧第一層未來時間序列
90p、90f‧‧‧長短期記憶神經元
LSTM1p(t1)、LSTM1p(t2)、LSTM1p(t3)、LSTM1p(t60)‧‧‧第一層過去時間長短期記憶神經元
LSTM1f(t1)、LSTM1f(t2)、LSTM1f(t3)、LSTM1f(t60)‧‧‧第一層未來時間長短期記憶神經元
921、922、923、92x‧‧‧過去時序關聯性分組
931、932、933、93x‧‧‧未來時序關聯性分組
91p‧‧‧過去時序關聯性分析結果
91f‧‧‧未來時序關聯性分析結果
94p‧‧‧過去時間關聯性序列
94f‧‧‧未來時間關聯性序列
941、942、943、94x‧‧‧時序關聯性分組
991、992、993、994、995、996‧‧‧共用基底波形
1038a、1038b、1038c、1038d‧‧‧成分波形選擇模組
1036a、1036b、1036c、1036d‧‧‧成分波形合成模組
第1A圖,其係負載解析系統處於模型建置模式之示意圖。
第1B圖,其係負載解析系統處於模型應用模式之示意圖。
第2圖,其係本發明實施例的負載解析系統的操作流程圖。
第3圖,其係用戶使用總電表量測原始數據之示意圖。
第4圖,其係資料處理裝置依據階段的不同,對原始數據進行不同處理之示意圖。
第5圖,其係負載解析系統的架構圖。
第6圖,其係模型建置裝置的內部結構之方塊圖。
第7圖,其係負載解析系統在訓練階段的資料流向。
第8圖,其係負載解析系統在訓練階段的流程圖。
第9圖,其係特性分析模組的架構圖。
第10圖,其係頻譜檢測器的示意圖。
第11圖,其係邊緣檢測器之示意圖。
第12圖,其係一種資訊映射模組映射資料之示意圖。
第13圖,其係關聯性分析模組將與時間戳對應的時間戳編碼組合,轉換為過去時間關聯性序列以及未來時間關聯性序列之示意圖。
第14圖,其係基底波形產生模組將過去時間關聯性序列以及未來時間關聯性序列,轉換為過去時序波形與未來時序波形後,資料合成模組進一步將基底波形進行成分選擇與波形重組後,形成與個別電器對應的仿電器特性合成資料之示意圖。
為能掌握用戶家中的電器用電情形,本發明提出一種解析模型,此種解析模型能利用總電表量測得出的原始數據(raw data)推估預選電器(以下稱為電器(Appliances))的用電模式。本發明實施例所提出的負載解析系統,屬於非侵入式電力負載監控技術(Nonintrusive load monitoring,簡稱為NILM)。解析模型更可以被套用至數量眾多的用戶,以低成本的方式對電器使用模式進行分析。
在本發明中,負載解析系統先後處於兩種操作模式:模型建置模式M1與模型應用模式M2。模型建置模式M1下的用戶被定義為原型用戶;模型應用模式下M2的用戶被定義為一般用戶。其中,於模型建置模式M1下,負載解析系統利用從原型用戶接收的原始數據,設定解析模型內部的參數;於模型應用模式M2下,負載解析系統根據完成參數設定的解析模型,對來自一般用戶的原始數據進行用電模式 解析。為便於說明,本文假設解析模型用於解析四個電器(電器A、B、C、D)的用電模式。為便於說明,本文將與電器A、B、C、D相關的參數分別加上"a、b、c、d"的下標。
實際應用時,電器的數量與選擇,並不需要被限定。對一般用戶而言,因為僅需利用總電表對用電量進行量測(包含:時間和瓦數)的緣故,成本相對低廉且作法相對便利。為便於說明,本文將與總電表相關的參數加上"m"的下標。此外,電力業者也可以直接使用相同的解析模型,對數量龐大的各地用戶提供用電模式分析的服務。
以下,利用第1A、1B圖說明負載解析系統分別處於模型建置模式M1與模型應用模式M2的情形。首先簡要說明負載解析系統10的架構。負載解析系統10包含資料處理裝置101、模型建置裝置103以及模型評估裝置105。用戶13、14的總電表及/或量測電器A、B、C、D的個別電表信號連接於網路11,用於將量測得到的原始數據rDAT傳送至網路11。其中,資料處理裝置101信號連接於網路11,並同時電連接於模型建置裝置103與模型評估裝置105。模型建置裝置103與模型評估裝置105電連接於彼此。
請參見第1A圖,其係負載解析系統處於模型建置模式M1之示意圖。當負載解析系統10處於模型建置模式M1時,電力業者在原型用戶的家中安裝多個智慧型電表(包含電器A、B、C、D的電表與總電表)。因此,在模型建置模式M1下,負載解析系統10從原型用戶13取得總電表原始數據rDATm與電器原始數據rDATa、rDATb、rDATc、rDATd。
請參見第1B圖,其係負載解析系統處於模型應用模式之示意圖。在模型應用模式M2下,負載解析系統10僅從一般用戶14取得總電表原始數據rDATm,毋須從一般用戶14取得電器原始數據rDATa、rDATb、rDATc、rDATd。在模型應用模式M2下,電力業者直接利用解析模型,對一般用戶14的總電表原始數據rDATm進行解析,進而以解析模型的輸出推估得一般用戶14家中的電器A、B、C、D的使用情形。
在模型建置模式M1時,負載解析系統10同時啟用資料處理裝置101、模型建置裝置103與模型評估裝置105。在模型應用模式M2時,負載解析系統10僅啟用資料處理裝置101與模型建置裝置103,並停用模型評估裝置105。須留意的是,負載解析系統10在設定解析模型的參數時,必須透過模型建置裝置103的反覆設定,模型評估裝置105的反覆比較、模型建置裝置103的反覆調整等循環,才能找出適當的參數設定。為此,此處將負載解析系統10操作該模型建置模式M1的情況,進一步區分為訓練階段STG1與測試階段STG2。須留意的是,負載解析系統10可能交替處於訓練階段STG1或測試階段STG2。
解析模型的相關參數可分為兩類,結構參數(structure parameters)與附屬參數(auxiliary parameters)。其中,結構參數是解析模型中,針對資料處理的根本(fundamental)設定的參數,又可稱為超參數(hyper parameter)。而附屬參數是解析模型中,針對資料所採用的係數(weight)。
當負載解析系統10處於訓練階段STG1時,模型建置裝置103根據模型評估裝置105的評估結果而以反向傳遞(backward propagation)的方式調整附屬參數。或者,當模型評估裝置105的評估結果顯示解析模型無法趨於收斂時,模型建置裝置103將調整結構參數中的學習率(learning rate)參數。另一方面,當負載解析系統10處於測試階段STG2時,模型建置裝置103根據模型評估裝置105的評估結果而調整結構參數。關於結構參數與附屬參數的種類與說明,將於下文說明。
隨著負載解析系統10所處階段的不同,負載解析系統10進一步將原型用戶的原始數據rDAT區分為兩個部分,一部分為訓練用原始數據,一部分為測試用原始數據。其中,訓練用原始數據用於訓練階段STG1,其目的主要是調整在解析模型中的附屬參數;測試用原始數據用於測試階段STG2,其目的是則是在解析模型趨於穩定後,檢測解析模型所使用的結構參數與附屬參數,是否能套用至測試資料集tstDSET。
實際應用時,訓練用原始數據與測試用原始數據可能來自相同的原型用戶在不同用電量測期間Tdet的用電情形。或者,訓練用原始數據與測試用原始數據可能來自不同原型用戶在相同用電量測期間Tdet的用電情形。此種關於如何定義原型用戶的範圍,以及如何定義訓練用原始數據與測試用原始數據的作法,可由本案所屬技術領域的習知技藝者自由代換,並不需要加以限定。
請參見第2圖,其係本發明實施例的負載解析系統的操作流程圖。此流程圖簡要說明負載解析系統10的整體流程,下文將會更詳細說明負載解析系統10在不同模式與階段下的操作。
首先,負載解析系統10處於訓練階段STG1。此時,模型建置裝置103先初始化負載解析系統10中的結構參數與附屬參數(步驟S111)。其次,負載解析系統10利用訓練用原始數據對解析模型進行訓練與評估,直至評估結果顯示解析模型所產生的解析結果能滿足收斂條件(步驟S113)。在這個過程中,模型建置裝置103調整附屬參數,及/或調整結構參數中的學習率參數(learning rate)。其後,負載解析系統10結束訓練階段STG1並進入測試階段STG2。
在測試階段STG2中,負載解析系統10利用測試用原始數據對解析模型進行測試,模型評估裝置105判斷模型建置裝置103所輸出的仿電器特性合成資料doutPa、doutPb、doutPc、doutPd的準確率(步驟S121)。得出仿電器特性合成資料doutPa、doutPb、doutPc、doutPd的準確率後,負載解析系統10判斷準確率是否符合預設的準確率門檻(步驟S123)。
當步驟S123的判斷結果為否定時,代表模型建置裝置103先前對附屬參數的設定,仍無法讓解析模型能準確解析測試用的原始數據。在這種情況下,負載解析系統10重設解析模型的結構參數並重建解析模型(步驟S125)。此外,負載解析系統10將依據被重設的結構參數再度進入訓練階段STG1。因此,負載解析系統10將重複執行步驟S113。
另一方面,當步驟S123的判斷結果為肯定時,代表負載解析系統10處於測試階段STG2,且模型評估裝置105判斷比較結果符 合準確率門檻。因此,負載解析系統10離開模型建置模式M1並進入模型應用模式M2。
接著,負載解析系統10接收一般用戶14的原始總電表數據,並根據一般用戶14的原始總電表數據產生與一般用戶14之電器A、B、C、D對應的仿電器特性合成資料doutPa、doutPb、doutPc、doutPd(步驟S131)。其後,負載解析系統10將與一般用戶14之電器A、B、C、D對應的仿電器特性合成資料doutPa、doutPb、doutPc、doutPd傳送至用電資料彙整與分析裝置15,再由用電資料彙整與分析裝置15對一般用戶14的電器A、B、C、D的仿電器特性合成資料doutPa、doutPb、doutPc、doutPd進行彙整與分析(步驟S141)。
儘管隨著負載解析系統10所處的階段與模式不同,從用戶取得的原始數據也會有是否包含電器之原始數據rDATa、rDATb、rDATc、rDATd的差異。但就資料處理裝置101而言,取得與處理這些原始數據的方式仍大致類似。
請參見第3圖,其係用戶使用總電表量測原始數據之示意圖。此處假設量測期間Tdet為一年,但不需要加以限定。第3圖為總電表量測到之總電表量測波形Wm。在量測期間Tdet使用個別電表量測電器A、B、C、D也可得出類似的波形(Wa、Wb、Wc、Wd)。由第3圖可以看出,電表在量測期間Tdet量測到的原始數據屬於連續時間。對原型用戶而言,須以總電表和個別的電表量測。若是對一般用戶,則僅需以總電表量測。
請參見第4圖,其係資料處理裝置依據階段的不同,對原始數據進行不同處理之示意圖。資料處理裝置101包含數據處理模組 1011、資料平衡化模組1013與資料增強模組(data augmentation module)1015。其中,數據處理模組1011進一步包含數據取樣模組1011a與預處理模組1011b。
如前所述,負載解析系統10可能處於模型建置模式M1下的訓練階段STG1、模型建置模式M1下的測試階段STG2或是模型應用模式M2。以下,針對這三類情形,以三組箭頭方向表示資料處理裝置101對原始數據rDAT的處理過程。
首先,第一組箭頭方向對應於模型建置模式M1下的訓練階段STG1,此組箭頭方向代表資料處理裝置101在接收訓練用戶的量測波形後,資料處理裝置101對訓練用戶的量測波形的處理。訓練用戶的總電表量測波形Wm與電器量測波形Wa、Wb、Wc、Wd經過數據處理模組1011、資料平衡化模組1013與資料增強模組1015的處理而產生作為訓練資料集trnDSET使用的增強資料augDAT。
其次,第二組箭頭方向對應於模型建置模式M1下的測試階段STG2。資料處理裝置101在接收測試用戶的總電表量測波形Wm與電器量測波形Wa、Wb、Wc、Wd後,僅經過數據處理模組1011處理,即可產生作為測試資料集tstDSET使用的預處理資料ppDAT。
最後,第三組箭頭方向對應於模型應用模式M2。資料處理裝置101僅接收一般用戶的總電表量測波形Wm。數據處理模組1011對總電表量測波形Wm進行資料處理後,產生作為一般資料集nmDSET使用的預處理資料ppDAT。
與訓練階段STG1相較,在測試階段STG2與模型應用模式M2下,用電資料不需要經過資料平衡化模組1013與資料增強模組 1015的處理。另一方面,數據處理模組1011的處理流程並不會因為階段或模式的不同而改變。因此,以下僅說明當負載解析系統10處於訓練階段STG1時,資料處理裝置101對量測波形的處理過程。
首先,數據取樣模組1011a定義取樣週期Tsmp(例如:一分鐘)。以取樣週期Tsmp為間隔,對量測波形進行取樣。其中,每個進行取樣的時點(time point)被定義為一個時間戳(timestamp)。因此,以一名用戶的總電表量測波形Wm為例,一年的量測期間Tdet相當於可得出60*24*365=525,600個總電表取樣資料smpDATm以及525,600個電器取樣資料smpDATa、smpDATb、smpDATc、smpDATd。
因為一年的量測期間Tdet相當長,數據取樣模組1011a將一年的量測期間Tdet拆分為許多個長度相等的時間段(單位資料處理期間Tunit)。在此實施例中,假設單位資料處理期間Tunit為一個小時。因此,為期一年的量測期間Tdet共包含24*365=8,760個單位資料處理期間Tunit。據此,每個單位資料處理期間Tunit包含60個時間戳,且這60個時間戳分別對應於60筆取樣資料smpDAT。
此外,預處理模組1011還可對各個單位資料處理期間Tunit內的取樣資料smpDAT進行正規化或濾除雜訊等預處理,進而產生總電表預處理資料ppDATm與電器預處理資料ppDATa、ppDATb、ppDATc、ppDATd。
更進一步地,本發明的實施例將同一個用戶在相同單位資料處理期間Tunit的總電表量測結果、電器A、B、C、D的量測結果定義為同一組。對一個用戶而言,假設量測期間Tdet為一年且單位資料處理期間Tunit為一小時的情況下,總電表量測波形Wm與電器量測 波形Wa、Wb、Wc、Wd可對應於24*365=8,760組原始數據rDAT。經過數據取樣模組1011a的取樣處理後,8,760組原始數據rDAT將轉換為8,760組取樣資料smpDAT。經過預處理模組1011b的處理後,8,760組取樣資料smpDAT將轉換為8,760組預處理資料ppDAT。
數據取樣模組1011a與預處理模組1011b是以個別的單位資料處理期間Tunit為單位,對原始數據rDAT進行數據取樣與資料預處理。因此,對數據取樣模組1011a與預處理模組1011b而言,其輸入資料的筆數等於輸出資料的筆數。
為便於說明,本文假設訓練階段STG1有1000名訓練用戶、測試階段STG2有1000名測試用戶,且一般模式下有50,000名一般用戶,並且延續前例子,假設以一年作為量測期間Tdet、以一個小時作為單位資料處理期間Tunit,並以一分鐘作為取樣週期Tsmp。則,在此假設下,訓練資料集trnDSET、測試資料集tstDSET與一般資料集nmDSET所對應的用電資料與筆數將具有以下關係。
在訓練階段STG1下,預處理模組1011b將輸出8,760*1000=8,760,000組(包含總電表與電器A、B、C、D)預處理資料ppDAT。這些預處理資料ppDAT須經過資料平衡化模組1013與資料增強模組1015的進一步處理,方能作為訓練資料集trnDSET使用。
在測試階段STG2下,預處理模組1011b將輸出8,760*1000=8,760,000組(包含總電表與電器A、B、C、D)預處理資料ppDAT,這些預處理資料ppDAT,將作為測試資料集tstDSET使用。在模型應用模式M2下,預處理模組1011b將輸出 8,760*50,000=438,000,000組(僅包含總電表)預處理資料ppDAT,這些總電表預處理資料ppDATm將作為一般資料集nmDSET使用。
更進一步來說,在訓練階段STG1下,預處理資料ppDAT必須再經過資料平衡化模組1013與資料增強模組1015的處理。資料平衡化模組1013參考電器A、B、C、D在單位資料處理期間Tunit的使用情形後,對總電表預處理資料ppDATm、電器預處理資料ppDATa、ppDATb、ppDATc、ppDATd進行自助取樣(bootstrap),進而產生總電表平衡化資料blDATm、電器平衡化資料blDATa、blDATb、blDATc、blDATd。資料增強模組1015依據至少一個資料增強規則而對總電表平衡化資料blDATm、電器平衡化資料blDATa、blDATb、blDATc、blDATd進行資料增強,進而得出總電表增強資料augDATm、電器增強資料augDATa、augDATb、augDATc、augDATd。之後,由資料增強模組1015產生的總電表增強資料augDATm、電器增強資料augDATa、augDATb、augDATc、augDATd,方被作為訓練資料集trnDSET使用。
簡言之,資料平衡化模組1013與資料增強模組1015的設置,是為了讓模型建置裝置103在訓練階段STG1能夠接收更多元的輸入,進而達到讓解析模型能夠泛化的效果。因此,總電表平衡化資料blDATm的筆數多於總電表預處理資料ppDATm的筆數,且總電表增強資料augDATm的筆數多於總電表平衡化資料blDATm的筆數。
附帶一提的是,資料平衡化模組1013進行資料平衡化處理,以及資料增強模組1015進行資料增強時,仍然是以單位資料處理期間Tunit為單位,同時對總電表平衡化資料blDATm與電器平衡化資 料blDATa、blDATb、blDATc、blDATd進行處理。因此,經過資料平衡化後,總電表平衡化資料blDATm的筆數等於電器平衡化資料blDATa、blDATb、blDATc、blDATd的筆數;且經過資料增強後,總電表增強資料augDATm的筆數仍等於與電器A、B、C、D相對應之電器增強資料augDATa、augDATb、augDATc、augDATd的筆數。
接著舉例說明資料平衡化模組1013與資料增強模組1015如何增加訓練資料集trnDSET所包含的資料量。實際應用時,資料平衡化模組1013與資料增強模組1015所採用之增加訓練資料集trnDSET的作法,並不以此處所舉的例子為限。
根據本發明的實施例,資料平衡化模組1013可以"天"作為分析電器A、B、C、D之使用頻率的判斷使用。其後,資料平衡化模組1013再依據電器A、B、C、D的使用頻率的高低而刻意增加其中頻率較低者在訓練資料集trnDSET所佔的比例。
基於各種因素,例如:不同用戶使用同一種電器的習慣、使用頻率不同、同一個用戶在不同季節使用同一個電器的習慣、使用頻率也不會完全相同,本發明會進一步判斷各個電器的使用頻率,並就其中使用頻率較低者,增加其處於使用狀態對應的資料量。例如,針對不同的電器A、B、C、D定義功率門檻Pth與時間門檻後,對電器A、B、C、D的量測結果進行判斷。當各電器A、B、C、D滿足各自的功率門檻Pth與時間門檻時,視為該電器在單位資料處理期間Tunit確實被啟用,並據以判斷電器A、B、C、D的使用頻率。之後,再針對較少使用的電器,刻意增加與其相關的用電資料在訓練資料集的出現機會(比例)。由於刻意增加的用電資料的緣故,資料平衡化模組 1013所產生之平衡化資料blDAT,其組數必然較預處理資料ppDAT的組數多。
根據本發明的實施例,資料增強模組1015可依據一個或多個資料增強規則,同時套用至全部的總電表平衡化資料blDATm,以及全部的電器平衡化資料blDATa、blDATb、blDATc、blDATd。舉例而言,資料增強模組1015可能採用的資料增強規則可以透過對平衡化資料blDAT進行截斷、加入雜訊、信號合成、平移(shift)等方式進行。惟,資料增強模組1015進行資料增強的方式,並不以此為限。
資料增強規則會同時套用至全部的平衡化資料blDAT,所以經過資料增強後的資料筆數將以比例方式增加。例如,原本經過平衡化資料blDAT為X組,且假設採用5種資料增強規則各增加一倍用電資料。則,透過資料增強將額外增加5X組用電資料。也就是說,資料增強模組1015輸出的增強資料augDAT的組數,將達到6X組。
實際應用時,可經由資料增強模組1015而大幅增加在訓練資料集trnDSET的增強資料augDAT的組數。即使是同一種資料增強的方式,也可以經由調整相關參數而產生不同的增強資料。例如,設定各種不同截斷時間、在不同期間加入幅度不等的雜訊、設定多種信號合成的規則、以不同的平移期間改變用電資料等。
如前所述,資料處理裝置101所產生之用電資料,會以單位資料處理期間Tunit為單位分組。因此,此處將資料處理裝置101所產生之各組用電資料中,與總電表相關並作為模型建置裝置103之輸入的用電資料定義為該組用電資料中的總電表聚合資料ainPm;以及,將資料處理裝置101所產生之用電資料中,與電器A、B、C、D相關並 作為模型評估裝置105之輸入的用電資料定義為該組用電資料中的電器驗證資料dvrPa、dvrPb、dvrPc、dvrPd。
如前所述,本發明實施例的負載解析系統10會根據模式不同而進行不同的操作。在模型建置模式M1下,負載解析系統10藉由模型建置裝置103反覆進行參數的調整。待模型評估裝置105在測試階段STG2下,確認解析系統的準確率符合預設準確率門檻後,負載解析系統10將進入單純使用解析模型,模型建置裝置103無須再調整參數的模型應用模式M2。
請參見第5圖,其係負載解析系統的架構圖。在此圖式中,以較粗的箭頭方向代表資料流向,以較細的箭頭方向代表控制信號的方向。
首先說明資料處理裝置101的內部元件與其連接關係。資料處理裝置101包含:數據處理模組1011、資料平衡化模組1013與資料增強模組1015,以及數據接收模組1017。數據接收模組1017信號連接於網路11,並透過網路11接收來自用戶的原始數據rDAT。在資料處理裝置101中,數據接收模組1017電連接於數據取樣模組1011a。預處理模組1011b電連接於數據取樣模組1011a、資料平衡化模組1013、模型建置裝置103與模型評估裝置105。資料增強模組1015電連接於資料平衡化模組1013、模型建置裝置103與模型評估裝置105。
接著說明模型建置裝置103的內部元件與其連接關係。模型建置裝置103包含:訓練梯次決定模組1033、特性分析模組1035、資訊映射模組1037、編碼結果分組模組1038、時序分析模組1039、結構參數調整模組1031a與附屬參數調整模組1031b。
訓練梯次決定模組1033電連接於資料增強模組1015、特性分析模組1035與模型評估裝置105。訓練梯次決定模組1033將經過資料增強後的多組增強資料augDAT分為多個梯次(其中,每組增強資料augDAT包含總電表增強資料augDATm,以及電器增強資料augDATa、augDATb、augDATc、augDATd)。訓練梯次決定模組1033對增強資料augDAT採用的梯次劃分方式(梯次多寡、各梯次包含的組數等),並不會影響增強資料augDAT的組數。
特性分析模組1035電連接於訓練梯次決定模組1033與預處理模組1011b。資訊映射模組1037電連接於特性分析模組1035與編碼結果分組模組1038,時序分模組1039電連接於編碼結果分組模組1038與模型評估裝置105。關於對特性分析模組1035、資訊映射模組1037與時序分析模組1039對用電資料的處理細節,將於第9~14圖進一步說明。
簡言之,特性分析模組1035接收總電表聚合資料ainPm,依據檢測條件而檢測總電表聚合資料ainPm,並依據檢測的結果而產生特性分析資訊(usage pattern information)(例如:頻譜特性分析資訊、邊緣特性分析資訊)。資訊映射模組1037將特性分析資訊映射至分屬於多個映射維度的多個編碼結果。時序分析模組1039依照各時間戳而分析編碼結果的關聯性(correlation),進而產生長度與單位資料處理期間Tunit對應之仿電器特性合成資料doutPa、doutPb、doutPc、doutPd。對特性分析模組1035、資訊映射模組1037與時序分析模組1039而言,其運作方式並不會因為負載解析系統10所處的模式或階段不同而異。
如前所述,負載解析系統10內部的控制參數可分為兩類:結構參數與附屬參數。結構參數例如,取樣週期Tsmp(例如,一分鐘)、單位資料處理期間Tunit(例如,一小時),頻譜檢測器的頻譜範圍(即CNN感知域大小,與電器使用期間長短有關),定義電器使用狀態的功率門檻Pth、時間門檻,資料量測期間Tdet、用戶的戶數、訓練解析模型時的資料批次(batch size)等。附屬參數例如,特性分析模組1035、資訊映射模組1037、編碼結果分組模組1038以及時序分析模組1039內部的一些權重參數。結構參數調整模組1031a用於設定結構參數調整;附屬參數調整模組1031b用於設定附屬參數。在負載解析系統10中,附屬參數會在訓練階段STG1下反覆的更新,而結構參數僅於測試階段STG2判斷模型準確率尚不符合預設準確率門檻時更新。因此,結構參數的更新頻率較附屬參數少。
在訓練階段STG1下,附屬參數調整模組1031b從模型評估裝105接收驗證結果(即,仿電器特性合成資料doutPa、doutPb、doutPc、doutPd與電器驗證資料dvrPa、dvrPb、dvrPc、dvrPd的相似度比較結果),並根據驗證結果對特性分析模組1035、資訊映射模組1037、編碼結果分組模組1038、時序分析模組1039發出控制信號,作為調整附屬參數使用。此外,結構參數調整模組1031a亦會於訓練階段STG1下,調整結構參數中的學習率參數。
在測試階段STG2下,結構參數調整模組1031a從模型評估裝置105接收驗證結果。若驗證結果不符合預設準確率門檻時,代表仿電器特性合成資料doutPa、doutPb、doutPc、doutPd與電器驗證資料dvrPa、dvrPb、dvrPc、dvrPd的相似度比較結果仍不理想,所以模型建置裝置103需要調整結構參數並重新建立/訓練解析模型。此 時,結構參數調整模組1031a將調整數據取樣模組1011a、預處理模組1011b、資料平衡化模組1013、資料增強模組1015、訓練梯次決定模組1033、特性分析模組1035、資訊映射模組1037、編碼結果分組模組1038、時序分析模組1039的結構參數。反之,若驗證結果符合預設準確率門檻時,代表仿電器特性合成資料doutPa、doutPb、doutPc、doutPd與電器驗證資料dvrPa、dvrPb、dvrPc、dvrPd相當相似,故模型建置裝置103完成解析模型的參數設定。
模型評估裝置105包含電連接於時序分析模組1039與資料處理裝置101的多個解析結果評估模組1051。與電器A對應的解析結果評估模組1051自時序分析模組1039接收仿電器特性合成資料doutPa,以及自資料處理裝置101接收電器驗證資料dvrPa後,比較兩者的相似度。之後,再將與電器A對應的相似度比較結果傳送至附屬參數調整模組1031b。其餘與電器B、C、D對應的解析結果評估模組1051的運作方式可類推得出,此處不再重述。
當負載解析系統10處於訓練階段STG1時,解析結果評估模組1051從訓練梯次決定模組1033接收電器增強資料augDATa、augDATb、augDATc、augDATd,以及從時序分析模組1039接收仿電器特性合成資料doutPa、doutPb、doutPc、doutPd。其後,解析結果評估模組1051比較從訓練梯次決定模組1033接收的電器增強資料augDATa、augDATb、augDATc、augDATd,以及從時序分析模組1039接收仿電器特性合成資料doutPa、doutPb、doutPc、doutPd並計算損失函數。
當負載解析系統10處於測試階段STG2時,解析結果評估模組1051從預處理模組1011b接收電器預處理資料ppDATa、 ppDATb、ppDATc、ppDATd,以及從時序分析模組1039接收仿電器特性合成資料doutPa、doutPb、doutPc、doutPd。其後,解析結果評估模組1051對從預處理模組1011b接收的電器預處理資料ppDATa、ppDATb、ppDATc、ppDATd,以及從時序分析模組1039接收的仿電器特性合成資料doutPa、doutPb、doutPc、doutPd進行比較並計算準確率。解析結果評估模組1051判斷相似度的方式,可根據不同需求與應用而定義。
請參見第6圖,其係模型建置裝置的內部結構之方塊圖。由此圖式可以看出,特性分析模組1035進一步包含頻譜檢測模組1035a與邊緣檢測模組1035b;時序分析模組1039進一步包含關聯性分析模組1039b、基底波形產生模組1039c,以及資料合成模組1039d。頻譜檢測模組1035a與邊緣檢測模組1035b電連接於訓練梯次決定模組1033、資訊映射模組1037、結構參數調整模組1031a,以及附屬參數調整模組1031b。關聯性分析模組1039b電連接於結構參數調整模組1031a、附屬參數調整模組1031b、編碼結果分組模組1038以及基底波形產生模組1039c。基底波形產生模組1039c與資料合成模組1039d彼此電連接,且同時電連接於結構參數調整模組1031a與附屬參數調整模組1031b。
請參見第7圖,其係負載解析系統在訓練階段的資料流向。此圖式中的虛線方框代表訓練資料集trnDSET中的一組增強資料augDAT(包含總電表增強資料augDATm和電器增強資料augDATa、augDATb、augDATc、augDATd)的處理方式。在訓練階段STG1下,資料處理裝置101根據訓練用的總電表原始數據rDATm,以及各個電器的原始數據rDATa、rDATb、rDATc、rDATd,產生訓練資料集 trnDSET。之後,將訓練資料集trnDSET中的各組增強資料augDAT,輪流送入模型建置裝置103與模型評估裝置105。其中,屬於同一組增強資料augDAT的總電表增強資料augDATm與電器增強資料augDATa、augDATb、augDATc、augDATd,均對應於同一個單位資料處理期間Tunit。負載解析系統10以總電表增強資料augDATm作為傳送至模型建置裝置103的總電表聚合資料ainPm;以及以電器增強資料augDATa、augDATb、augDATc、augDATd作為傳送至模型評估裝置105的電器驗證資料dvrPa、dvrPb、dvrPc、dvrPd。
模型建置裝置103以總電表聚合資料ainPm作為輸入,產生與總電表聚合資料ainPm對應的仿電器特性合成資料doutPa、doutPb、doutPc、doutPd後,將仿電器特性合成資料doutPa、doutPb、doutPc、doutPd傳送至模型評估裝置105。模型評估裝置105分別比較仿電器特性合成資料doutPa與電器驗證資料dvrPa、比較仿電器特性合成資料doutPb與驗證資料dvrPb、比較仿電器特性合成資料doutPc與驗證資料dvrPc,以及比較仿電器特性合成資料doutPd與驗證資料dvrPd後,再將代表相似度的比較結果cmp(doutPa,dvrPa)、cmp(doutPb,dvrPb)、cmp(doutPc,dvrPc)、cmp(doutPd,dvrPd)傳回模型建置裝置103,供模型建置裝置103調整參數。
請參見第8圖,其係負載解析系統在訓練階段的流程圖。首先,資料處理模組101產生訓練資料集trnDSET(步驟S301)。步驟S301的細節可參看第4圖的第一列箭頭方向,此處不再詳述。其次,訓練梯次決定模組1033將訓練資料集trnDSET的增強資料augDAT分為I個梯次,且每一梯次包含J組增強資料augDAT(步驟S302)。初始化梯次計數器(i=1)與個別計數器(j=1)(步驟S303)。接著,模型建置裝置 103以訓練資料集trnDSET中,第i梯次內的第j組的總電表增強資料augDATm作為解析模型所輸入的總電表聚合資料ainPm,且解析模型針對總電表聚合資料ainPm產生與其對應的仿電器特性合成資料doutPa、doutPb、doutPc、doutPd(步驟S305)。
待模型建置裝置103根據總電表聚合資料ainPm產生仿電器特性合成資料doutPa、doutPb、doutPc、doutPd後,模型評估裝置105以訓練資料集trnDSET中,第i梯次內的第j組的電器增強資料augDATa,augDATb,augDATc,augDATd作為電器驗證資料dvrPa、dvrPb、dvrPc、dvrPd,與根據總電表聚合資料ainPm所產生之仿電器特性合成資料doutPa、doutPb、doutPc、doutPd進行比較並計算損失函數(步驟S307)。接著,判斷j是否等於J。即,判斷是否屬於同一個梯次的電器驗證資料dvrPa、dvrPb、dvrPc、dvrPd與仿電器特性合成資料doutPa、doutPb、doutPc、doutPd均經過比較(步驟S308)。若步驟S308的判斷結果為否定,累加個別計數器(步驟S315)。
若步驟S308的判斷結果為肯定,代表同一梯次的J組資料都已經經過驗證。此時,附屬參數調整模組1031b根據第i梯次內的20組損失函數計算結果調整附屬參數(步驟S309)。接著,判斷i是否等於I。即,判斷是否全部梯次的電器驗證資料dvrPa、dvrPb、dvrPc、dvrPd與仿電器特性合成資料doutPa、doutPb、doutPc、doutPd都已經經過比較(步驟S311)。
若步驟S311的判斷結果為否定,累加梯次計數器並重設個別計數器(步驟S317),並重複執行步驟S305。若步驟S311的判斷結果為肯定,判斷比較結果是否收斂(步驟S312)。當流程由步驟S303執 行至步驟S312時,代表訓練資料集trnDSET的全部用電資料均已輸入至解析模型。
若步驟S312的判斷結果為肯定,則流程結束。若步驟S312的判斷結果為否定,則結構參數調整模組1031a將在調整結構參數(e.g.學習率參數)(步驟S314)後,重新執行步驟S303。由於解析模型在訓練過程中,解析效果會越趨理想。因此,本發明根據迭代次數遞減學習率參數,可讓參數的更新幅度趨緩。另,資料處理裝置101不需要重複產生訓練資料集,僅有模型建置裝置103需要重複執行訓練階段STG1的流程,以及模型評估裝置105需要重複進行評估。
接著,以第9~14圖進一步說明模型建置裝置103的內部結構與其對總電表聚合資料ainPm的解析處理。第9、10、11圖說明特性分析模組1035將依據預設的數個檢測條件而對總電表聚合資料ainPm進行用電特性(例如:頻譜分布、邊緣變化等)的檢測,並依據檢測的結果產生多筆特性分析資訊。第12圖說明資訊映射模組1037將特性分析資訊映射為分屬於多個映射維度的多筆編碼結果。第13、14圖說明時序分析模組1039依照時間戳的順序,對編碼結果分組模組1038產生的各個時間戳編碼組合進行分析並找出時間關聯性,據以產生與各時間戳對應的仿電器特性合成資料doutPa、doutPb、doutPc、doutPd。
請參見第9圖,其係特性分析模組的架構圖。特性分析模組1035所接收的總電表聚合資料ainPm對應於單位資料處理期間Tunit。
特性分析模組1035包含頻譜檢測模組1035a與邊緣檢測模組1035b,兩者皆採用卷積神經網路(Convolutional Neural Network,簡稱為CNN)架構。其中,頻譜檢測模組1035a與邊緣檢測 模組1035b均接收總電表聚合資料ainPm,但兩者對總電表聚合資料ainPm進行的特性檢驗並不相同。頻譜檢測模組1035a利用頻譜資訊(time-frequency information)檢測總電表聚合資料ainPm,據以推估電器A、B、C、D的使用概況(temporal profile of usage)。此外,若一或多個電器A、B、C、D開啟或關閉時,可能使總電表聚合資料ainPm產生正緣觸發(positive edge trigger)或負緣觸發(negative edge trigger)的現象。因此,邊緣檢測模組1035b用於檢測總電表聚合資料ainPm中的正緣觸發與負緣觸發。
頻譜檢測模組1035a包含多個與電器A對應的頻譜檢測器1034a;多個與電器B對應的頻譜檢測器1034b;多個與電器C對應的頻譜檢測器1034c;以及,多個與電器D對應的頻譜檢測器1034d。
與各個電器A、B、C、D對應的頻譜檢測器1034a、1034b、1034c、1034d的個數不需相等。例如,假設與電器A對應的頻譜檢測器1034a共有x1個,即,頻譜檢測器FLTa[1]~FLTa[x1];與電器B對應的頻譜檢測器1034b共有x2個,即,頻譜檢測器FLTb[1]~FLTb[x2];與電器C對應的頻譜檢測器1034c共有x3個,即,頻譜檢測器FLTc[1]~FLTc[x3];以及與電器D對應的頻譜檢測器1034d共有x4個,即,頻譜檢測器FLTd[1]~FLTd[x4]。
頻譜檢測器1034a、1034b、1034c、1034d的檢測結果,可能受到CNN感知域大小,以及定義電器使用狀態的時間門檻、功率門檻Pth,以及電器的使用功率、總電表的輸入波形Wm、電器波形Wa、Wb、Wc、Wd等因素影響。同樣是用於檢測電器A的多個頻譜檢測器1034a,仍可能具有不同的頻譜過濾參數。
因為頻譜過濾參數不同的緣故,用於檢測相同電器的多個頻譜檢測器,在檢測相同的總電表聚合資料ainPm時,產生的檢測結果也不盡相同。例如,頻譜檢測器FLTa[1]檢測總電表聚合資料ainPm後,產生與電器A對應的Na1筆頻譜特性分析資訊DTa1;頻譜檢測器FLTa[x1]檢測總電表聚合資料ainPm後,產生與電器A對應的Nax1筆頻譜特性分析資訊DTax1,且Na1與Nax1可能相等或不等。據此,與電器A對應的x1個頻譜檢測器FLTa[1]~FLTa[x1],將產生(Na1+Na2+Na3.....Nax1)筆與電器A對應的頻譜特性分析資訊DTa1、...DTax1。同理,與電器B、C、D相對應的頻譜檢測器針對相同的總電表聚合資料ainPm進行檢測時,產生的頻譜特性分析資訊(DTb1~DTbx2、DTc1~DTcx3、DTd1~DTdx4)的筆數(Nb1~Nbx2、Nc1~Ncx3、Nd1~Ndx4)也不盡相同。
頻譜檢測器1034a、1034b、1034c、1034d可設定相關的頻譜過濾參數,且頻譜過濾參數的個數與大小並不需要被限定。例如,頻譜過濾參數可包含感知域Tscan的長度、一個或多個電器使用時間域參數Tflt的長度、一個或多個電器功率門檻Pth。此外,頻譜檢測器1034a、1034b、1034c、1034d可以針對每個時間戳進行檢測,也可以透過間隔參數(stride)的定義而減少所需檢測之時間戳的個數。
請參見第10圖,其係頻譜過濾參數之頻譜檢測器的示意圖。第10圖繪式的頻譜過濾參數包含感知域Tscan與時間域參數Tflt,其中並假設感知域Tscan等於電器使用期間Tflt(Tscan=Tflt)。
請參見第11圖,其係邊緣檢測器之示意圖。邊緣檢測模組1035b可包含多個邊緣檢測器1036。不同的邊緣檢測器1036可設定 不同的邊緣檢測條件,用於對總電表聚合資料ainPm分別進行檢驗。為便於說明,此處僅以一個邊緣檢測器1036為例。
邊緣檢測器1036分別以時間戳t1~t60為中心,搭配預設的感知域Tscan而檢測總電表聚合資料ainPm。邊緣檢測器1036會針對每個時間戳t1~t60輪流檢測,並分別產生一個邊緣特性分析資訊。在此圖式中,假設邊緣檢測器1036的感知域長度為3。例如,當邊緣檢測器1036以時間戳t2為中心時,時間戳t1、t3也會被邊緣檢測器1036的範圍所涵蓋。各個邊緣檢測1036器可分別設定不同的邊緣檢測條件,藉以檢驗總電表聚合資料ainPm的邊緣特性分析資訊,在該邊緣檢測條件下,被視為正緣觸發DEp、負緣觸發DEn或穩態DEs。邊緣檢測器1036針對總電表聚合資料ainPm的時間戳t1~t60進行檢測後,其中Np個時間戳被認定為正緣觸發DEp、Nn個時間戳被認定為負緣觸發DEn,以及Ns個時間戳被認定為穩態DEs。
由於每個邊緣檢測器1036會針對在單位資料處理期間Tunit內的60個時間戳分別進行檢測,因此,每個邊緣檢測器1036將對應產生60個邊緣特性分析資訊(Np+Nn+Ns=60)。各邊緣檢測器1036具有不同的邊緣檢測條件,且其感知域的長度可以調整。因此,針對總電表聚合資料ainPm中的同一個時間戳,不同的邊緣檢測器1036檢測的結果也不會完全相同。
在特性分析模組1035中,關於頻譜檢測模組1035a所包含之頻譜檢測器的個數與邊緣檢測模組1035b所包含之邊緣檢測器1036的個數,屬於結構參數,並不會在訓練階段STG1被調整。另一方面,各個頻譜檢測器所採用的頻譜檢測條件,以及各個邊緣檢測器1036 所採用的邊緣檢測條件屬於附屬參數,可由附屬參數調整模組1031b在訓練階段STG1中進行調整。
承上所述,頻譜檢測模組1035a會產生(Na1+Na2+Na3.....Nax1)筆與電器A對應的頻譜特性、(Nb1+Nb2+Nb3.....Nbx2)筆與電器B對應的頻譜特性、(Nc1+Nc2+Nc3.....Ncx3)筆與電器C對應的頻譜特性,以及(Nd1+Nd2+Nd3.....Ndx4)筆與電器D對應的頻譜特性。另一方面,邊緣檢測模組1035b產生的邊緣檢測特性的筆數為,(60*邊緣檢測器1036個數)。因此,資訊映射模組1037的輸入資料的筆數為,=[(Na1+...+Nax1)+(Nb1+...+Nbx2)+(Nc1+...+Ncx3)+(Nd1+...Ndx4)]+60*邊緣檢測器的個數。
根據本發明構想的實施例,資訊映射模組1037為採用全連接層(fully connected layer)的深度神經網路(Deep neural network,簡稱為DNN)架構,將頻譜特性分析資訊與邊緣特性分析資訊作為資訊映射模組1037的輸入神經元。資訊映射模組1037將輸入神經元映射(嵌套(embedding))至多個映射維度。並且,將每一個映射維度對應的降維結果視為一組編碼結果。映射維度的個數須為在單位資料處理期間所包含之時間戳的個數的整數倍。例如,當單位資料處理期間為1小時,且每個時間戳的間距為一分鐘時,映射維度須為60的整數倍。此外,映射維度的個數小於頻譜特性分析資訊與邊緣特性分析資訊相加後的總筆數。
請參見第12圖,其係一種資訊映射模組映射資料之示意圖。此例為資訊映射模組1037僅包含一個處理層的情形。此圖假設資訊映射模組1037包含Ndin1個輸入神經元41a,以及Ndout1個輸出神經 元41b。實際應用時,在輸入神經元與輸出神經元之間,還可能包含一層或多層內層神經元(internal neuron)。
資訊映射模組1037所包含的輸入神經元個數、輸出神經元個數、是否包含內層神經元,以及內層神經元的層數與個數等,屬於結構參數。另一方面,輸入/輸出/內層神經元彼此間的連結權重,則為訓練階段STG1所需調整的附屬參數。資訊映射模組1037的輸出神經元被視為編碼結果,藉由編碼結果分組模組1038對其進行分組(reshape)。例如,將編碼結果區分為與60個時間戳相對應的60個時間戳編碼組合。
在此實施例中,時序分析模組1039包含三層雙向長短期記憶模型(Bidirectional Long Short-Term Memory,簡稱為BLSTM)的內部元件,即,關聯性分析模組1039b、基底波形產生模組1039c,以及資料合成模組1039d。其中,關聯性分析模組1039b與基底波形產生模組1039c進行資料處理時,並未針對個別的電器加以區分,固可視為資料共享層(shared layer)。另一方面,對資料合成模組1039d而言,其操作時,已經針對電器A、B、C、D的不同而分別處理,故可視為分支層(branch layer)。
請參見第13圖,其係關聯性分析模組將與時間戳對應的時間戳編碼組合,轉換為過去時間關聯性序列以及未來時間關聯性序列之示意圖。
關聯性分析模組1039b按照時間戳t1~t60的順序,以長短期記憶神經元90p、90f將各時間戳編碼組合81所包含的編碼結果71b用於產生兩個第一層時間序列(第一層過去時間序列901p與第一層未來時間序列901f)。
以時間戳t1為例,關聯性分析模組1039b將與時間戳t1對應的時間戳編碼組合81表示為:與時間戳t1對應之第一層過去時間長短期記憶神經元LSTM1p(t1),以及與時間戳t1對應之第一層未來時間長短期記憶神經元LSTM1f(t1)的輸入資料。與其他時間戳對應的第一層過去/未來長短期記憶神經元的表示方式亦類似,此處不再詳述。
在此圖式中,第一層過去時間長短期記憶神經元LSTM1p(t1)~LSTM1p(t60)共同形成第一層過去時間序列901p,第一層未來時間長短期記憶神經元LSTM1f(t1)~LSTM1f(t60)共同形成第一層未來時間序列901f。接著,關聯性分析模組1039b利用第一層過去時間長短期記憶神經元LSTM1p(t1)~LSTM1p(t60)產生Nr1個過去時間關聯性序列94p;以及,利用第一層未來時間長短期記憶神經元LSTM1f(t1)~LSTM1f(t60)產生Nr1個未來時間關聯性序列94f。
接著,關聯性分析模組1039b將這60組各自包含Nr1個過去時序關聯性分析結果91p的過去時序關聯性分組921、922、923、92x依照時間戳t1~t60的順序並排排列後,改為針對每個時間戳t1~t60選擇取出一個過去時序關聯性分析結果91p。第13圖的左下方為過去時間關聯性序列94p所代表的意涵。縱軸方向代表關聯性(相關程度),橫軸方向為時間戳t1~t60。此外,在兩兩時間戳之間的右向箭頭代表每個時間戳會受到其過去時間戳的影響。例如,過去時間關聯性序列94p在時間戳t3的關聯性會受到過去時間關聯性序列94p在時間戳t1、t2的關聯性所影響。
關聯性分析模組1039b利用第一層未來時間長短期記憶神經元LSTM1f1(t1)~LSTM1f1(t60)分別產生與時間戳t1~t60相對應之,60組各自包含Nr1個未來時序關聯性分析結果91f的未來時序關聯 性分組931、932、933、93x(此處以縱向方向的虛線方框表示未來時序關聯性分組)。
這60組各自包含Nr1個未來時序關聯性分析結果91f的未來時序關聯性分組931、932、933、93x可依照時間戳t1~t60的順序並排排列後,改為針對每個時間戳t1~t60選擇取出一個未來時序關聯性分析結果91f。據此,共可得出Nr1個未來時間關聯性序列94f。第13圖的右下方為未來時間關聯性序列94f所代表的意涵。縱軸方向代表關聯性(相關程度),橫軸方向為時間戳t1~t60。此外,在兩兩時間戳之間的左向箭頭代表每個時間戳會受到其未來時間戳的影響。
關聯性分析模組1039b將Nr1個過去時間關聯性序列94p與Nr1個未來時間關聯性序列94f傳送至基底波形產生模組1039c,作為基底波形產生模組1039c的輸入資料。
請參見第14圖,其係基底波形產生模組將過去時間關聯性序列以及未來時間關聯性序列,轉換為過去時序波形與未來時序波形後,資料合成模組進一步將基底波形進行成分選擇與波形重組後,形成與個別電器對應的仿電器特性合成資料之示意圖。根據第13圖的敘述可以得知,每個時間戳t1~60的輸入資料分別對應於Nr1個過去時序關聯性分析結果91p與Nr1個未來時序關聯性分析結果91f。
基底波形產生模組1039c按照時間戳t1~t60的順序,排列過去時序關聯性分析結果91p與未來時序關聯性分析結果91f後,按照時間戳t1~t60的順序定義時序關聯性分組941、942、943、94x。接著,再以BLSTM的方式對時序關聯性分組941、942、943、94x進行分析與處理,進而產生Nr2個過去時序波形與Nr2個未來時序波形。在此實施例中,將過去時序波形與未來時序波形共同定義為共用 基底波形。因此,資料合成模組1039d自基底波形產生模組1039c取得Nr2*2個共用基底波形。
為便於說明,第14圖僅繪式六個共用基底波形991、992、993、994、995、996。實際應用時,共用基底波形的個數並不以此為限。成分波形選擇模組1038a自共用基底波形991、992、993、994、995、996中,選擇與電器A對應的一個或多個第一電器成分基底波形(例如,共用基底波形993、996),以及決定第一電器成分基底波形彼此間的比例關係R1。成分波形合成模組1036a再依據比例關係R1將第一電器成分基底波形組合成為仿電器特性合成資料doutPa。
同理,成分波形選擇模組1038b與成分波形合成模組1036b將產生仿電器特性合成資料doutPb;成分波形選擇模組1038c與成分波形合成模組1036c將產生仿電器特性合成資料doutPc;以及成分波形選擇模組1038d與成分波形合成模組1036d將產生仿電器特性合成資料doutPd。
前述關於第9~14圖的作法,可適用於訓練階段STG1、測試階段STG2與應用模式M2。在訓練階段STG1,模型評估裝置105會比較仿電器特性合成資料doutPa、doutPb、doutPc、doutPd與驗證資料dvrPa、dvrPb、dvrPc、dvrPd之間的相似度,以相似度比較結果修改附屬參數。在測試階段STG2,模型評估裝置105雖會比較仿電器特性合成資料doutPa、doutPb、doutPc、doutPd與驗證資料dvrPa、dvrPb、dvrPc、dvrPd之間的相似度,但以相似度比較結果用來修改結構參數。模型評估裝置105在應用模式M2停止使用,用電資料彙整與 分析裝置15直接使用模型建置裝置103所產生的仿電器特性合成資料doutPa、doutPb、doutPc、doutPd。
根據本發明的構想,負載解析系統先於模型建置模式M1下建立解析模型。一旦解析模型建立後,只須對一般用戶取得總電表原始數據,即可藉由解析模型產生與用戶的電器相對應的仿電器特性合成資料。也就是說,即便未於一般用戶家中加裝個別的電表,仍可準確的推估該些電器於某時段內使用狀態及電力流向。此種方式僅需收集一般用戶的總電表數據,為一種成本相對低廉,且可大量應用於數量龐大之用戶的用電分析。
綜上所述,雖然本發明已以實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。

Claims (14)

  1. 一種模型建置裝置,用以解析一單位資料處理期間之一總電表聚合資料,其中該單位資料處理期間係包含複數個時間戳,其中該模型建置裝置係包含:一特性分析模組,其係接收該總電表聚合資料,依據複數個檢測條件而檢測該總電表聚合資料,並依據檢測的結果而產生複數筆特性分析資訊;一資訊映射模組,電連接於該特性分析模組,其係將該等特性分析資訊映射為分屬於複數個映射維度的複數筆編碼結果;以及一時序分析模組,電連接於該資訊映射模組,其係依照各該時間戳而分析該等編碼結果的時間關聯性,進而產生與該等時間戳對應的一第一仿電器特性合成資料與一第二仿電器特性合成資料,其中該第一仿電器特性合成資料與該第二仿電器特性合成資料係分別對應於一用戶在該單位資料處理期間使用之一第一電器與一第二電器。
  2. 如申請專利範圍第1項所述之模型建置裝置,其中該等檢測條件係包含與該第一電器對應的複數組第一電器頻譜過濾參數,以及與該第二電器對應的複數組第二電器頻譜過濾參數,且該特性分析模組係包含:一頻譜檢測模組,包含:複數個第一電器頻譜檢測器,其中各該第一電器頻譜檢測器係分別依據各該組第一電器頻譜過濾參數而檢測該總電表聚合資料,並依據檢測的結果而產生複數個第一電器頻譜特性分析資訊;以及複數個第二電器頻譜檢測器,其中各該第二電器頻譜檢測器係分別依據各該組第二電器頻譜過濾參數而檢測該總電表聚合資料,並依據檢測的結果而產生複數個第二電器頻譜特性分析資訊。
  3. 如申請專利範圍第1項所述之模型建置裝置,其中該等檢測條件係包含一邊緣檢測條件,且該特性分析模組係包含:一邊緣檢測模組,其係分別以各該時間戳為中心,依據該邊緣檢測條件而檢測該總電表聚合資料,並依據檢測的結果而產生與各該時間戳對應的複數個邊緣特性分析資訊。
  4. 如申請專利範圍第1項所述之模型建置裝置,其中該等映射維度的個數係為該單位資料處理期間所包含之該等時間戳的個數的整數倍,且該等映射維度的個數少於該等特性分析資訊的筆數。
  5. 如申請專利範圍第1項所述之模型建置裝置,其中該時序分析模組係包含:一關聯性分析模組,其係按照各該時間戳的順序產生與各該時間戳對應的複數個第一層過去時間長短期記憶神經元以及與各該時間戳對應的複數個第一層未來時間長短期記憶神經元,且該關聯性分析模組係根據該等第一層過去時間長短期記憶神經元所組成之一第一層過去時間序列而產生複數個過去時間關聯性序列,以及根據該等第一層未來時間長短期記憶神經元所組成之一第一層未來時間序列而產生複數個未來時間關聯性序列。
  6. 如申請專利範圍第5項所述之模型建置裝置,其中該等過去時間關聯性序列與該等未來時間關聯性序列係定義為複數個時間關聯性序列,其中該時序分析模組更包含:一基底波形產生模組,電連接於該關聯性分析模組,其係產生複數個過去時序波形與複數個未來時序波形,其中該等過去時序波形與該等未來時序波形係定義為複數筆共用基底波形。
  7. 如申請專利範圍第6項所述之模型建置裝置,其中該時序分析模組更包含:一資料合成模組,電連接於該基底波形產生模組,包含:複數個成分波形選擇模組,電連接於該基底波形產生模組,其係自該等共用基底波形中選擇一部分作為與該第一電器對應的複數個第一電器成分基底波形,以及自該等共用基底波形中選擇另一部分作為與該第二電器對應的複數個第二電器成分基底波形;以及複數個成分波形合成模組,分別電連接於各該成分波形選擇模組,其係藉由組合該等第一電器成分基底波形而產生該第一仿電器特性合成資料,以及藉由該等第二電器成分基底波形而產生該第二仿電器特性合成資料。
  8. 如申請專利範圍第7項所述之模型建置裝置,其中該等成分波形選擇模組係包含:一第一成分波形選擇模組,其係自該等共用基底波形中選擇該等第一電器成分基底波形,以及決定該等第一電器成分基底波形彼此間的一第一比例關係,其中該等第一電器成分基底波形係依據該第一比例關係而組合成為該第一仿電器特性合成資料。
  9. 如申請專利範圍第1項所述之模型建置裝置,其中該模型建置裝置更包含:一訓練梯次決定模組,其係將自一資料處理裝置接收的複數組增強資料區分為複數個梯次,其中各該組增強資料係包含作為該總電表聚合資料之一總電表增強資料、與該第一電器對應的一第一電器增強資料,以及與該第二電器對應的一第二電器增強資料。
  10. 一種負載解析系統,接收一用戶之一總電表在一單位資料處理期間產生的一總電表原始數據、與該用戶所使用之一第一電器對應的一第一電器電表在該單位資料處理期間產生的第一電器原始數據,以及與該用戶所使用之一第二電器對應的一第二電器電表在該單位資料處理期間產生的第二電器原始數據,其中該負載解析系統係包含:一資料處理裝置,其係對該總電表原始數據、該第一電器原始數據,以及該第二電器原始數據分別進行資料處理,進而產生一總電表聚合資料、一第一電器驗證資料,以及一第二電器驗證資料,其中該單位資料處理期間係包含複數個時間戳;一模型建置裝置,電連接於該資料處理裝置,包含:一特性分析模組,其係接收該總電表聚合資料,依據複數個檢測條件而檢測該總電表聚合資料,並依據檢測的結果而產生複數筆特性分析資訊;一資訊映射模組,電連接於該特性分析模組,其係將該等特性分析資訊映射為複數筆編碼結果;以及一時序分析模組,電連接於該資訊映射模組,其係依照各該時間戳而分析該等編碼結果的時間關聯性,進而產生與該等時間戳對應之一第一仿電器特性合成資料與一第二仿電器特性合成資料,其中該第一仿電器特性合成資料與該第二仿電器特性合成資料係分別對應該第一電器與該第二電器;以及一模型評估裝置,電連接於資料處理裝置與該模型建置裝置,其係自該資料處理裝置接收該第一電器驗證資料與該第二電器驗證資料,以及自該模型建置裝置接收該第一仿電器特性合成資料與該第二仿電器特性合成資料,其係比較該第一電器驗證資料與該第一仿電器特性合成資料之間的相似度,以及比較該第二電器驗證資料與該第二仿電器特性合成資料之間的相似度。
  11. 如申請專利範圍第10項所述之負載解析系統,其中該負載解析系統係依序操作在一模型建置模式與一模型應用模式下,其中當該負載解析系統操作在該模型建置模式時,該負載解析系統係處於一訓練階段與一測試階段之一者,其中,在該模型建置模式時,該負載解析系統啟用該資料處理裝置、該模型建置裝置與該模型評估裝置;以及在該模型應用模式時,該負載解析系統啟用該資料處理裝置與該模型建置裝置,以及停用該模型評估裝置。
  12. 如申請專利範圍第10項所述之負載解析系統,其中該資料處理裝置係包含:一數據處理模組,包含:一數據取樣模組,其係根據一取樣週期而對該總電表原始數據、該第一電器原始數據與該第二電器原始數據分別進行取樣,並產生複數筆總電表取樣資料、複數筆第一電器取樣資料,以及複數筆第二電器取樣資料;以及一預處理模組,電連接於該數據取樣模組,其對該等總電表取樣資料、該等第一電器取樣資料,以及該等第二電器取樣資料分別進行資料預處理,進而產生複數筆總電表預處理資料、複數筆第一電器預處理資料,以及複數筆第二電器預處理資料;其中該等總電表取樣資料的筆數、該等第一電器取樣資料的筆數、該等第二電器取樣資料的筆數、該等總電表預處理資料的筆數、該等第一電器預處理資料的筆數以及該等第二電器預處理資料的筆數相等。
  13. 如申請專利範圍第12項所述之負載解析系統,其中該資料處理裝置更包含:一資料平衡化模組,電連接於該預處理模組,其係參考該第一電器與該第二電器在該單位資料處理期間的使用情形,對該等總電表預處理資料、該等第一電器預處理資料,以及該等第二電器預處理資料進行自助取樣(bootstrap),進而產生複數筆總電表平衡化資料、複數筆第一電器平衡化資料,以及複數筆第二電器平衡化資料;其中該等總電表平衡化資料的筆數多於該等總電表預處理資料的筆數,且該等總電表平衡化資料的筆數、該等第一電器平衡化資料的筆數以及該等第二電器平衡化資料的筆數相等。
  14. 如申請專利範圍第13項所述之負載解析系統,其中該資料處理裝置更包含:一資料增強模組,電連接於該資料平衡化模組,其係依據至少一個資料增強規則而對該等總電表平衡化資料、該等第一電器平衡化資料,以及該等第二電器平衡化資料進行資料增強,進而得出複數筆總電表增強資料、複數筆第一電器增強資料,以及複數筆第二電器增強資料;其中該等總電表增強資料的筆數多於該等總電表平衡化資料的筆數,且該等總電表增強資料的筆數、該等第一電器增強資料的筆數以及該等第二電器增強資料的筆數相等。
TW107142078A 2018-11-26 2018-11-26 模型建置裝置與負載解析系統 TWI671652B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW107142078A TWI671652B (zh) 2018-11-26 2018-11-26 模型建置裝置與負載解析系統
CN201811502675.0A CN111222078B (zh) 2018-11-26 2018-12-10 模型建置装置与负载解析***
US16/217,332 US11854095B2 (en) 2018-11-26 2018-12-12 Model building device and loading disaggregation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107142078A TWI671652B (zh) 2018-11-26 2018-11-26 模型建置裝置與負載解析系統

Publications (2)

Publication Number Publication Date
TWI671652B true TWI671652B (zh) 2019-09-11
TW202020697A TW202020697A (zh) 2020-06-01

Family

ID=68618731

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107142078A TWI671652B (zh) 2018-11-26 2018-11-26 模型建置裝置與負載解析系統

Country Status (3)

Country Link
US (1) US11854095B2 (zh)
CN (1) CN111222078B (zh)
TW (1) TWI671652B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6929322B2 (ja) * 2019-05-31 2021-09-01 楽天グループ株式会社 データ拡張システム、データ拡張方法、及びプログラム
CN112784516B (zh) * 2021-01-22 2022-09-30 重庆大学 基于统一回路构建的高压直流输电直流偏磁水平计算方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201324431A (zh) * 2011-12-13 2013-06-16 Inst Information Industry 關聯式負載預測系統、方法及其記錄媒體
CN106655487A (zh) * 2016-09-28 2017-05-10 国网山东省电力公司梁山县供电公司 一种配电网络智能安全全方位预警与控制***
CN106779133A (zh) * 2016-10-18 2017-05-31 中国电子技术标准化研究院 一种家庭用电数据预测方法
TW201719547A (zh) * 2015-11-30 2017-06-01 財團法人資訊工業策進會 智慧型電表系統

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9104189B2 (en) * 2009-07-01 2015-08-11 Mario E. Berges Gonzalez Methods and apparatuses for monitoring energy consumption and related operations
US9190844B2 (en) * 2012-11-04 2015-11-17 Bao Tran Systems and methods for reducing energy usage
WO2012082802A2 (en) * 2010-12-13 2012-06-21 Fraunhofer Usa, Inc. Methods and system for nonintrusive load monitoring
WO2013145778A2 (en) * 2012-03-30 2013-10-03 Sony Corporation Data processing apparatus, data processing method, and program
CN107122790B (zh) * 2017-03-15 2021-06-11 华北电力大学 基于混合神经网络和集成学习的非侵入式负荷识别算法
CN107730003B (zh) * 2017-10-23 2020-09-08 华中科技大学 一种支持多电器类型高精度的nilm实现方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201324431A (zh) * 2011-12-13 2013-06-16 Inst Information Industry 關聯式負載預測系統、方法及其記錄媒體
TW201719547A (zh) * 2015-11-30 2017-06-01 財團法人資訊工業策進會 智慧型電表系統
CN106655487A (zh) * 2016-09-28 2017-05-10 国网山东省电力公司梁山县供电公司 一种配电网络智能安全全方位预警与控制***
CN106779133A (zh) * 2016-10-18 2017-05-31 中国电子技术标准化研究院 一种家庭用电数据预测方法

Also Published As

Publication number Publication date
US20200167644A1 (en) 2020-05-28
US11854095B2 (en) 2023-12-26
CN111222078A (zh) 2020-06-02
CN111222078B (zh) 2023-08-22
TW202020697A (zh) 2020-06-01

Similar Documents

Publication Publication Date Title
TWI671652B (zh) 模型建置裝置與負載解析系統
CN103020478B (zh) 一种海洋水色遥感产品真实性检验的方法
CN115267928B (zh) 一种用于随钻元素测井的能谱智能处理方法
CN102879094B (zh) 一种成像光谱仪辐射定标精度对数据质量影响分析方法
Clarke String/Rope length methods using the Lafler-Kinman statistic
CN102111312A (zh) 基于多尺度主成分分析的网络异常检测方法
CN102928514A (zh) 一种基于频率特征的木材应力波无损检测方法
CN106090626B (zh) 一种供水管网异常侦测方法
CN106918797B (zh) 一种基于标准数字功率源的数字化电能表检定和溯源方法
CN107632010A (zh) 一种结合激光诱导击穿光谱对钢铁样品的定量方法
CN105046203B (zh) 基于夹角dtw距离的卫星遥测数据自适应层次聚类方法
CN109142403A (zh) 一种用于地球元素测井仪解谱获取元素产额的方法
CN103995147B (zh) 一种适用于声学多普勒流速仪的数据后处理***与应用
CN109254321A (zh) 一种地震激励下快速贝叶斯模态参数识别方法
CN108594147A (zh) 一种模拟信号和数字信号同步采集及同步时间差校准方法
CN114487976A (zh) 一种mcm电子式互感器校验仪溯源不确定度评定方法及***
Herath et al. Comprehensive analysis of convolutional neural network models for non-instructive load monitoring
Huang et al. Characterization of gas–liquid two-phase flow by correlation dimension of vortex-induced pressure fluctuation
Zhang et al. Poisson rectangular pulse (PRP) model establishment based on uncertainty analysis of urban residential water consumption patterns
CN114236272B (zh) 一种电子产品的智能检测***
CN110348094A (zh) 基于影响网络的石油管道泄漏检测方法及***
Wang et al. Wind tunnel investigation of natural ventilation through multiple stacks. Part 2: Instantaneous values
CN107239256A (zh) 基于综合评价的彩票行业随机序列的随机性检测方法
CN108832963A (zh) 扩频通信***中类随机序列的控制参数及使用这些参数的集成评测方法
CN116736895B (zh) 基于音速喷嘴法气体流量控制***