TWI665611B - Operation method - Google Patents

Operation method Download PDF

Info

Publication number
TWI665611B
TWI665611B TW107107645A TW107107645A TWI665611B TW I665611 B TWI665611 B TW I665611B TW 107107645 A TW107107645 A TW 107107645A TW 107107645 A TW107107645 A TW 107107645A TW I665611 B TWI665611 B TW I665611B
Authority
TW
Taiwan
Prior art keywords
units
terminal
physiological characteristic
generating
detection
Prior art date
Application number
TW107107645A
Other languages
Chinese (zh)
Other versions
TW201911112A (en
Inventor
徐明震
謝祥圓
盧敏曜
莊錦棠
Original Assignee
友達光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友達光電股份有限公司 filed Critical 友達光電股份有限公司
Priority to TW107107645A priority Critical patent/TWI665611B/en
Publication of TW201911112A publication Critical patent/TW201911112A/en
Application granted granted Critical
Publication of TWI665611B publication Critical patent/TWI665611B/en

Links

Abstract

一種生物特徵辨識系統,其包括多個第一偵測電極、多個第一單元、多個第二單元以及運算放大器。多個第一單元接收偵測電壓並與第一偵測電極電性耦接。多個第二單元分別對應於多個第一單元,第二單元至少具有一第二偵測電極,各第二偵測電極與各第一偵測電極相互分隔。運算放大器電性連接於多個第一單元其中至少一個與多個第二單元其中至少一個,其中,運算放大器與至少一個第一偵測電極以及至少一個第二偵測電極電性耦接,運算放大器用以輸出感測電壓。A biometric identification system includes a plurality of first detection electrodes, a plurality of first units, a plurality of second units, and an operational amplifier. The plurality of first units receive the detection voltage and are electrically coupled to the first detection electrode. The plurality of second units respectively correspond to the plurality of first units, and the second unit has at least a second detection electrode, and each of the second detection electrodes is separated from each of the first detection electrodes. The operational amplifier is electrically connected to at least one of the plurality of first units and at least one of the plurality of second units. The operational amplifier is electrically coupled to at least one first detection electrode and at least one second detection electrode. The amplifier is used to output a sensed voltage.

Description

操作方法Operation method

本發明係有關於一種生物特徵辨識系統,尤指一種可撓的生物特徵辨識系統及其操作方法。The invention relates to a biometric identification system, in particular to a flexible biometric identification system and an operation method thereof.

為了進行準確的身分認證,利用個人的生物特徵進行身分辨識的方式已行之有年,而相較於聲紋、簽名等辨識方式容易依時間變化或個人生理狀態影響而改變,掌紋辨識、虹膜辨識等具有永久性的生物特徵為目前生物辨識領域發展之重心,其中,掌紋辨識更是隨著技術發展廣泛應用於智慧型手機或門禁系統。然而,掌紋辨識仍容易受到水氣或者汙染影響而降低其辨識率,明顯造成使用上的困擾。In order to perform accurate identity authentication, personal biometrics have been used for identification for many years. Compared with voiceprints and signatures, identification methods are more likely to change with time or the influence of personal physiological conditions. Permanent biometrics, such as identification, are the focus of current biometrics development. Among them, palmprint recognition is widely used in smart phones or access control systems with the development of technology. However, palmprint recognition is still susceptible to water vapor or pollution, which reduces its recognition rate, which obviously causes problems in use.

為了解決上述之缺憾,本發明提出一種生物特徵辨識系統實施例,其包括絕緣基板、多個第一單元、多個第二單元以及運算放大器,多個第一單元以及多個第二單元設置於絕緣基板上。第一單元至少包括第一電晶體、第二電晶體以及第一偵測電極,第一電晶體具有第一端、第二端以及第一控制端,第一電晶體的第一端接收第一電壓準位,第一控制端接收第二電壓準位,第二電晶體具有第一端、第二端以及第二控制端,第二電晶體的第一端與第一電晶體的第二端電性耦接,第二控制端接收一偵測電壓,第二電晶體的第二端與第一偵測電極電性耦接。多個第二單元分別對應於多個第一單元,其中,第二單元至少具有一第二偵測電極,各第二偵測電極與各第一偵測電極相互分隔,且第二單元之第二偵測電極電性耦接於一可調整電壓源。運算放大器電性連接於多個第一單元其中至少一個與多個第二單元其中至少一個,其中,運算放大器具有第一輸入端、第二輸入端以及第一輸出端,第一輸入端與多個第一單元其中至少一個之第一偵測電極電性耦接,第二輸入端電性連接於多個第二單元其中至少一個之第二偵測電極,第一輸出端用以輸出感測電壓。In order to solve the above-mentioned shortcomings, the present invention provides an embodiment of a biometric identification system, which includes an insulating substrate, a plurality of first units, a plurality of second units, and an operational amplifier. On an insulated substrate. The first unit includes at least a first transistor, a second transistor, and a first detection electrode. The first transistor has a first terminal, a second terminal, and a first control terminal. The first terminal of the first transistor receives the first transistor. Voltage level, the first control terminal receives the second voltage level, the second transistor has a first terminal, a second terminal, and a second control terminal; the first terminal of the second transistor and the second terminal of the first transistor The second control terminal receives a detection voltage, and the second terminal of the second transistor is electrically connected to the first detection electrode. The plurality of second units respectively correspond to the plurality of first units, wherein the second unit has at least a second detection electrode, each second detection electrode is separated from each first detection electrode, and the second unit The two detection electrodes are electrically coupled to an adjustable voltage source. The operational amplifier is electrically connected to at least one of the plurality of first units and at least one of the plurality of second units. The operational amplifier has a first input terminal, a second input terminal, and a first output terminal. The first detection electrodes of at least one of the first units are electrically coupled, the second input terminal is electrically connected to the second detection electrodes of at least one of the plurality of second units, and the first output terminal is used for output sensing. Voltage.

本發明更提出一種操作方法,其步驟包括:根據生物特徵來產生多個感測電阻值;根據感測電阻值經由運算來產生對應的生理特徵資訊;將生理特徵資訊與至少一儲存生理特徵資訊進行比對;以及當生理特徵資訊與至少一儲存生理特徵資訊相符時,執行對應的操作。The invention further provides an operation method, whose steps include: generating a plurality of sensing resistance values according to biological characteristics; generating corresponding physiological characteristic information through calculation according to the sensing resistance values; and storing the physiological characteristic information with at least one stored physiological characteristic information Performing a comparison; and performing a corresponding operation when the physiological characteristic information matches at least one stored physiological characteristic information.

由於本發明之生物特徵辨識系統利用電晶體陣列來進行感測,且利用可撓的絕緣基板上的電晶體陣列使其可根據需求配置於任何曲面。此外,由於本發明是藉由感測電阻值來進行生物特徵判定,因此在雨天或者使用者手上沾有水氣的狀態下,較不會影響本發明之辨識率,且可藉由水氣更可幫助導電,進而更準確的得到感測電阻值。Since the biometric identification system of the present invention uses a transistor array for sensing, and a transistor array on a flexible insulating substrate, it can be arranged on any curved surface according to requirements. In addition, since the present invention determines biological characteristics by sensing the resistance value, in the rain or when the user has water vapor on his hands, the recognition rate of the present invention is not affected, and the water vapor can be used. It can also help conduct electricity, and then get the sensing resistance value more accurately.

為讓本發明之上述和其他目的、特徵和優點能更明顯易懂,下文特舉較佳實施例並配合所附圖式做詳細說明如下。In order to make the above and other objects, features, and advantages of the present invention more comprehensible, a detailed description is given below with reference to preferred embodiments and the accompanying drawings.

在下文中將參照附圖更全面地描述本發明,在附圖中示出了本發明的示例性實施例。如本領域技術人員將認識到的,可以以各種不同的方式修改所描述的實施例,而不脫離本發明的精神或範圍。The invention will be described more fully hereinafter with reference to the accompanying drawings, in which exemplary embodiments of the invention are shown. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.

應當理解,當諸如層、膜、區域或基板的元件被稱為在另一元件”上”或”連接到”或”耦接到”另一元件時,其可以直接在另一元件上或與另一元件連接(或耦接),或者中間元件可以也存在。相反,當元件被稱為”直接在另一元件上”或”直接連接(耦接)到”另一元件時,不存在中間元件。如本文所使用的,”連接或耦接”可以指物理及/或電性連接(或電性耦接)。It will be understood that when an element such as a layer, film, region, or substrate is referred to as being "on" or "connected to" or "coupled to" another element, it can be directly on or in contact with the other element. Another element is connected (or coupled), or an intermediate element may also be present. In contrast, when an element is referred to as being "directly on" or "directly connected (coupled)" to another element, there are no intervening elements present. As used herein, "connected or coupled" may refer to a physical and / or electrical connection (or electrical coupling).

本文使用的”約”、”近似”或、”實質上”包括所述值和在本領域普通技術人員確定的特定值的可接受的偏差範圍內的平均值,考慮到所討論的測量和與測量相關的誤差的特定數量(即,測量系統的限制)。例如,”約”可以表示在所述值的一個或多個標準偏差內,或±30%、±20%、±10%、±5%內。As used herein, "about", "approximately" or "substantially" includes the stated value and the average value within an acceptable deviation range of a particular value determined by one of ordinary skill in the art, taking into account the measurements and A specific number of measurement-related errors (ie, limitations of the measurement system). For example, "about" may mean within one or more standard deviations of the stated value, or within ± 30%, ± 20%, ± 10%, ± 5%.

除非另有定義,本文使用的所有術語(包括技術和科學術語)具有與本發明所屬領域的普通技術人員通常理解的相同的含義。將進一步理解的是,諸如在通常使用的字典中定義的那些術語應當被解釋為具有與它們在相關技術和本發明的上下文中的含義一致的含義,並且將不被解釋為理想化的或過度正式的意義,除非本文中明確地這樣定義。Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms such as those defined in commonly used dictionaries should be interpreted to have meanings consistent with their meanings in the context of the related art and the present invention, and will not be interpreted as idealized or excessive Formal meaning unless explicitly defined as such in this article.

請先參考圖1A,圖1A為本發明之生物特徵辨識系統實施例一,生物特徵辨識系統100包括絕緣基板10以及基板20,絕緣基板10包括陣列11、多工器12以及運算放大器13。其中,絕緣基板10較佳可為可撓性基板,但不限於此。陣列11配置有多個第一偵測電極111以及多個第二偵測電極112,多個第一偵測電極111可配置於實質上同一列(row),多個第二偵測電極112可配置於實質上同一列,且第一偵測電極111以及第二偵測電極112配置於不同列,例如:第一偵測電極111列與第二偵測電極112列可沿著一方向彼此交錯配置(alternately, or staggered),且至少一個第一偵測電極111與相鄰的至少一個第二偵測電極112為同一個感測電極組113,如圖1A所示,但不以此為限。於其它實施例中,多個第一偵測電極111可配置於實質上同一行(column),多個第二偵測電極112可配置於實質上同一行,且第一偵測電極111以及第二偵測電極112配置於不同行,例如:第一偵測電極111行與第二偵測電極112行可沿著一方向彼此交錯配置(alternately, or staggered),且至少一個第一偵測電極111與相鄰的至少一個第二偵測電極112為同一個感測電極組113。於再一實施例中,多個第一偵測電極111可配置於實質上同一斜向方向列,多個第二偵測電極112可配置於實質上同一斜向方向列,且第一偵測電極111以及第二偵測電極112配置於不同斜向列,例如:第一偵測電極111列與第二偵測電極112列可沿著一方向彼此交錯配置(alternately, or staggered),且至少一個第一偵測電極111與相鄰的至少一個第二偵測電極112為同一個感測電極組113。多工器12具有至少二端,運算放大器13電性連接於多工器12之其中一端,多工器12之另一端電性耦接多個第一偵測電極111與多個第二偵測電極112。運算放大器13具有第一輸入端、第二輸入端以及第一輸出端,第一輸入端透過多工器12與多個第一偵測電極111電性耦接,第二輸入端透過多工器12電性連接於多個第二偵測電極112,運算放大器13的第一輸出端用以輸出感測電壓VskinPlease refer to FIG. 1A first. FIG. 1A is a first embodiment of the biometric identification system of the present invention. The biometric identification system 100 includes an insulating substrate 10 and a substrate 20. The insulating substrate 10 includes an array 11, a multiplexer 12, and an operational amplifier 13. The insulating substrate 10 may be a flexible substrate, but is not limited thereto. The array 11 is provided with a plurality of first detection electrodes 111 and a plurality of second detection electrodes 112. The plurality of first detection electrodes 111 may be arranged in substantially the same row, and the plurality of second detection electrodes 112 may be The first detection electrode 111 and the second detection electrode 112 are arranged in different columns, for example, the first detection electrode 111 and the second detection electrode 112 may be staggered with each other in one direction. Alternately, or staggered, and at least one first detection electrode 111 and adjacent at least one second detection electrode 112 are the same sensing electrode group 113, as shown in FIG. 1A, but not limited thereto . In other embodiments, a plurality of first detection electrodes 111 may be arranged in substantially the same column, a plurality of second detection electrodes 112 may be arranged in substantially the same row, and the first detection electrodes 111 and the first The two detection electrodes 112 are arranged in different rows. For example, the first detection electrodes 111 and the second detection electrodes 112 can be alternately (or staggered) along one direction, and at least one first detection electrode 111 and the adjacent at least one second detection electrode 112 are the same sensing electrode group 113. In yet another embodiment, a plurality of first detection electrodes 111 may be disposed in substantially the same oblique direction row, a plurality of second detection electrodes 112 may be disposed in substantially the same oblique direction row, and the first detection The electrodes 111 and the second detection electrodes 112 are arranged in different oblique rows. For example, the first detection electrode 111 and the second detection electrodes 112 may be alternately (or staggered) along one direction, and at least One first detection electrode 111 and the adjacent at least one second detection electrode 112 are the same sensing electrode group 113. The multiplexer 12 has at least two ends. The operational amplifier 13 is electrically connected to one end of the multiplexer 12. The other end of the multiplexer 12 is electrically coupled to a plurality of first detection electrodes 111 and a plurality of second detections. Electrode 112. The operational amplifier 13 has a first input end, a second input end, and a first output end. The first input end is electrically coupled to the plurality of first detection electrodes 111 through the multiplexer 12 and the second input end is through the multiplexer. 12 is electrically connected to the plurality of second detection electrodes 112, and the first output terminal of the operational amplifier 13 is used for outputting the sensing voltage V skin .

於本實施例之生物特徵辨識系統100中,可更包含訊號處理模組21。舉例而言,訊號處理模組21用以接收感測電壓Vskin ,訊號處理模組21並根據感測電壓Vskin 得到感測電極組113對應的感測電阻值Rskin ,訊號處理模組21再根據多個感測電阻值Rskin 生成對應的生理特徵影像以及生理特徵影像所包含的生理特徵資訊,生物特徵辨識系統100即可根據生理特徵資訊進行身分的驗證。於本實施例之生物特徵辨識系統100中,可更包含儲存模組22。儲存模組22儲存有多個預先儲存的儲存生理特徵資訊或者是用以儲存生理特徵資訊並成為儲存生理特徵資訊。舉例而言,訊號處理模組21可與儲存模組22電性耦接,儲存生理特徵資訊是藉由儲存上述訊號處理模組21所運算出之生理特徵資訊來得到。於本實施例,訊號處理模組21以及儲存模組22可配置於基板20上,但不限於此。The biometric identification system 100 in this embodiment may further include a signal processing module 21. For example, the signal processing module 21 is configured to receive the sensed voltage V skin, signal processing module 21 and sense voltage 113 V skin obtained according to the corresponding sensing electrodes sense the resistance value R skin, signal processing module 21 The corresponding physiological characteristic image and the physiological characteristic information contained in the physiological characteristic image are generated according to multiple sensing resistance values R skin , and the biometric identification system 100 can perform identity verification based on the physiological characteristic information. The biometric identification system 100 in this embodiment may further include a storage module 22. The storage module 22 stores a plurality of pre-stored stored physiological characteristic information or is used to store physiological characteristic information and becomes stored physiological characteristic information. For example, the signal processing module 21 may be electrically coupled to the storage module 22, and storing the physiological characteristic information is obtained by storing the physiological characteristic information calculated by the signal processing module 21. In this embodiment, the signal processing module 21 and the storage module 22 may be disposed on the substrate 20, but are not limited thereto.

請參考圖1B,圖1B為本發明之生物特徵辨識系統實施例二,圖1A與圖1B中,相同的元件符號為同一元件,以下將不再贅述。圖1A與圖1B之差別在於,上述之多工器12以及運算放大器13可配置於上述之基板20上。於其它實施例中,多工器12可配置於絕緣基板10上,而運算放大器13可配置於上述之基板20上。Please refer to FIG. 1B. FIG. 1B is a second embodiment of the biometric identification system of the present invention. In FIG. 1A and FIG. The difference between FIG. 1A and FIG. 1B is that the above-mentioned multiplexer 12 and the operational amplifier 13 can be disposed on the above-mentioned substrate 20. In other embodiments, the multiplexer 12 may be disposed on the insulating substrate 10, and the operational amplifier 13 may be disposed on the substrate 20 described above.

請參考圖2A,陣列11更包括有多個第一單元114以及多個第二單元115,圖2A並以第一單元114以及第二單元115為同一個感測電極組113為例進行說明。第一單元114至少包括第一電晶體T1以及第二電晶體T2,第一電晶體T1以及第二電晶體T2例如為薄膜電晶體,但不以此為限。於其它實施例中,第一電晶體T1以及第二電晶體T2其中至少一者,可為P型或N型電晶體,電晶體的類型可為底閘型(例如:半導體層位於後述控制端上方)、頂閘型(例如:半導體層位於後述控制端下方)、立體通道型、或其它合適的電晶體類型。其中,半導體層可為單層或多層結構,且其材料包含非晶矽、微晶矽、多晶矽、單晶矽、有機半導體材料、氧化物半導體材料、奈米炭管/桿、或其它合適的材料。第一電晶體T1具有第一端、第二端以及第一控制端,第一電晶體T1的第一端接收第一電壓準位Va ,第一電壓準位Va 例如為固定高電壓準位,第一控制端接收第二電壓準位Vb ,第一電晶體T1在此實施例中例如為電流源。第二電晶體T2具有第一端、第二端以及第二控制端,第二電晶體T2的第一端與第一電晶體T1的第二端電性耦接,第二控制端接收偵測電壓VAC ,偵測電壓VAC 例如為固定頻率之交流電壓,第二電晶體T2的第二端與第一偵測電極111電性耦接,第二電晶體T2可操作於實質上飽和區或趨於飽和區。第二單元115至少包括上述之第二偵測電極112,第二偵測電極112並與可調整電壓源VAD 電性耦接,可調整電壓源VAD 例如約為0伏特、接地電壓或者系統所需電壓值,其中第一電壓準位Va 之電壓準位大於可調整電壓源VAD 。圖2A中以阻抗模型Zskin 代表使用者之手掌皮膚所對應之阻抗為範例。因此當使用者的手掌皮膚接觸同組的第一偵測電極111以及第二偵測電極112,使第一偵測電極111以及第二偵測電極112之間藉由手掌皮膚形成迴路,偵測電流Iskin 流經手掌皮膚所形成的阻抗模型Zskin ,因此第一偵測電極111以及第二偵測電極112產生對應阻抗模型Zskin 的電壓值,電壓值將透過多工器12傳送至運算放大器13,運算放大器13將根據第一偵測電極111以及第二偵測電極112的電壓值得到阻抗模型Zskin 上之跨壓,此跨壓即為感測電壓Vskin 。其中,第二電壓準位Vb 可配合第二電晶體T2的尺寸來調整,以使偵測電流Iskin 維持於一範圍內,在此實施例中,偵測電流Iskin 絕對值之範圍不大於5mA,但不等於零為範例。於其它實施例中,若偵測電流Iskin 絕對值有波動變化,數值為零也只是波動變化一個數值,對於偵測電流Iskin 絕對值決定權重值較低。Please refer to FIG. 2A. The array 11 further includes a plurality of first cells 114 and a plurality of second cells 115. FIG. 2A illustrates that the first cell 114 and the second cell 115 are the same sensing electrode group 113 as an example. The first unit 114 includes at least a first transistor T1 and a second transistor T2. The first transistor T1 and the second transistor T2 are, for example, thin film transistors, but are not limited thereto. In other embodiments, at least one of the first transistor T1 and the second transistor T2 may be a P-type or N-type transistor, and the type of the transistor may be a bottom gate type (for example, a semiconductor layer is located at a control terminal described later). (Above), top-gate type (for example, the semiconductor layer is located below the control terminal described later), three-dimensional channel type, or other suitable transistor type. The semiconductor layer may be a single-layer or multi-layer structure, and its material includes amorphous silicon, microcrystalline silicon, polycrystalline silicon, single crystal silicon, organic semiconductor materials, oxide semiconductor materials, nano-carbon tubes / rods, or other suitable materials. material. The first transistor T1 has a first terminal, a second terminal, and a first control terminal. The first terminal of the first transistor T1 receives a first voltage level V a . The first voltage level V a is, for example, a fixed high voltage level. The first control terminal receives the second voltage level V b , and the first transistor T1 in this embodiment is, for example, a current source. The second transistor T2 has a first terminal, a second terminal, and a second control terminal. The first terminal of the second transistor T2 is electrically coupled to the second terminal of the first transistor T1. The second control terminal receives detection. The voltage V AC , the detection voltage V AC is, for example, an AC voltage of a fixed frequency, the second terminal of the second transistor T2 is electrically coupled to the first detection electrode 111, and the second transistor T2 is operable in a substantially saturated region. Or tend to the saturation region. The second unit 115 includes the at least the second detecting electrode 112, and the second detecting electrode 112 and the adjustable voltage source is electrically coupled to V AD, V AD adjustable voltage source is approximately 0 volts, for example, a ground voltage or the system desired voltage value, wherein the voltage level of a first voltage level V a is greater than an adjustable voltage source V AD. In FIG. 2A, the impedance model Z skin represents the impedance corresponding to the palm skin of the user as an example. Therefore, when the palm skin of the user contacts the first detection electrode 111 and the second detection electrode 112 in the same group, a loop is formed between the first detection electrode 111 and the second detection electrode 112 through the palm skin to detect The current I skin flows through the impedance model Z skin formed by the palm skin . Therefore, the first detection electrode 111 and the second detection electrode 112 generate a voltage value corresponding to the impedance model Z skin . The voltage value is transmitted to the calculation through the multiplexer 12 The amplifier 13 and the operational amplifier 13 will obtain the voltage across the impedance model Z skin according to the voltage values of the first detection electrode 111 and the second detection electrode 112. This voltage across is the sensing voltage V skin . The second voltage level V b can be adjusted in accordance with the size of the second transistor T2 to maintain the detection current I skin within a range. In this embodiment, the range of the absolute value of the detection current I skin does not vary. More than 5mA, but not equal to zero is an example. In other embodiments, if the absolute value of the detection current I skin fluctuates, a value of zero is only a value of the fluctuation. The absolute value of the detection current I skin determines a lower weight value.

請參考圖2B,圖2B為手掌皮膚接觸第一偵測電極111以及第二偵測電極112之實施例示意圖,其中,手掌皮膚因為乳突紋而產生深淺不一的掌紋300,如圖2B中的所指310(突起處)以及320(凹陷處),與第一偵測電極111以及第二偵測電極112接觸的手掌皮膚將會於第一偵測電極111以及第二偵測電極112之間形成迴路,因此可進行上述之感測。Please refer to FIG. 2B. FIG. 2B is a schematic diagram of an embodiment in which the skin of the palm contacts the first detection electrode 111 and the second detection electrode 112. The palm skin 300 has different shades of palm print 300 due to the mastoid pattern, as shown in FIG. 2B The indicated 310 (protrusion) and 320 (recess), the palm skin in contact with the first detection electrode 111 and the second detection electrode 112 will be between the first detection electrode 111 and the second detection electrode 112 A loop is formed between them, so the above-mentioned sensing can be performed.

請參考圖3,圖3為不同皮膚深度在給予不同頻率電壓下之阻抗變化示意圖,橫軸為電壓之頻率,縱軸為阻抗值,圖3中曲線1、2、3、4分別對應至不同的皮膚深度。其中,阻抗單位為千歐姆(kΩ),頻率單位為赫茲(Hz),曲線2的深度大於曲線1,曲線1的的深度大於曲線4,曲線4的深度大於曲線3,且深度單位為微米(micrometer, um)。而在本發明之實施例中,偵測電壓VAC 之頻率較佳可選用約為0 HZ ~2.1 KHZ 、電壓值較佳可選用約為3.3V~5V,但不限於此。在本發明實施例中,較佳地,偵測電壓VAC 更可選用頻率約為1.9KHZ ,其原因在於約為1.9KHZ 所能感測的範圍較貼近皮膚表層,較佳地,選用電壓值約為5V,但不以此為限。Please refer to Figure 3. Figure 3 is a schematic diagram of the impedance change under different skin voltages at different frequency voltages. The horizontal axis is the frequency of the voltage and the vertical axis is the impedance value. The curves 1, 2, 3, and 4 in Figure 3 correspond to different values. Skin depth. Among them, the unit of impedance is kiloohms (kΩ), the unit of frequency is hertz (Hz), the depth of curve 2 is greater than curve 1, the depth of curve 1 is greater than curve 4, the depth of curve 4 is greater than curve 3, and the depth unit is microns ( micrometer, um). In the embodiment of the present invention, the frequency of the detection voltage V AC is preferably selected from about 0 H Z to 2.1 KH Z , and the voltage value is preferably selected from about 3.3 V to 5 V, but is not limited thereto. In the embodiment of the present invention, the detection voltage V AC is more preferably selected at a frequency of about 1.9KH Z because the range that can be sensed at about 1.9KH Z is closer to the surface of the skin. The voltage value is about 5V, but it is not limited to this.

圖4A為本發明之訊號處理模組21實施例示意圖,在本實施例中,訊號處理模組21可至少包括微處理器211、輸入端212、第二輸出端213、阻抗轉換單元214以及影像處理單元215,微處理器211與輸入端212、第二輸出端213、阻抗轉換單元214以及影像處理單元215電性耦接,其中,在某些實施例中,阻抗轉換單元214以及影像處理單元215其中至少一者可選擇性的設置於訊號處理模組21之外,但不以此為限。輸入端212是可用以接收感測電壓Vskin 以及傳送至訊號處理模組21之儲存生理特徵資訊,第二輸出端213是可用以輸出控制訊號或輸出多個生理特徵資訊以儲存至儲存模組22。阻抗轉換單元214可用以接收多個感測電壓Vskin 並根據每一感測電壓Vskin 產生對應的感測電阻值Rskin ,例如阻抗轉換單元214可藉由電流Iskin 以及感測電壓Vskin 得到對應之感測電阻值Rskin ,阻抗轉換單元214並將感測電阻值Rskin 回傳至微處理器211。影像處理單元215接收微處理器211所傳送的感測電阻值Rskin ,每一感測電阻值Rskin 並對應於感測電極組113於陣列11之位置,如圖4B所示,多個感測電阻值Rskin 根據其對應的感測電極組113於陣列11上之位置來排列,以表示出陣列11於不同位置感測到的感測電阻值Rskin 。影像處理單元215並對感測電阻值Rskin 進行正規化以產生對應的多個第一灰階值,如圖4C所示,在此實施例中,感測電阻值Rskin 根據其電阻代表值轉換成等比例之第一灰階值,在此實施例中,越大的電阻代表值對應至數值越大的灰階值,例如,圖4B中的電阻值Rskin 40經過正規化後對應至圖4C中的第一灰階值255,但不以此為限。相反地,越小的電阻代表值對應至數值越小的灰階值,例如,圖4B中的電阻值Rskin 10經過正規化後對應至圖4C中的第一灰階值68,但不以此為限。於部份實施例中,正規化處理可為線性或非線性處理。影像處理單元215並再對多個第一灰階值進行負片轉換以得到對應的多個第二灰階值,如圖4D所示。舉例而言,數值越大的第一灰階值經過負片轉換後對應至數值越小的第二灰階值,例如,圖4C中的第一灰階值255經過負片轉換後對應至圖4D中的第二灰階值68,但不以此為限。相反地,數值越小的第一灰階值經過負片轉換後對應至數值越大的第二灰階值,例如,圖4C中的第一灰階值68經過負片轉換後對應至圖4D中的第二灰階值187,但不以此為限。於部份實施例中,負片轉換處理可為線性或非線性處理。其中,第一與第二灰階值無單位。影像處理單元215藉由多個第二灰階值得到灰階分佈影像,如圖4E所示,影像處理單元215即可藉由灰階分佈影像得到如圖4F所示的生理特徵影像,在本實施例中,生理特徵影像例如為使用者的掌紋,但不以此為限。影像處理單元215得到生理特徵影像後對其進行檢測(例如:邊緣檢測)並得到其生理特徵資訊,而所述的生理特徵資訊例如為掌紋所形成的奇異點或者紋型。影像處理單元215並可將得到的生理特徵資訊與儲存於儲存模組中的多個儲存生理特徵資訊進行比對,若當前的生理特徵資訊符合其中一筆儲存生理特徵資訊時,代表當前使用者為符合條件的使用者,微處理器211會根據比對結果進行對應的操作,例如,微處理器211根據比對結果輸出控制訊號至開關控制單元(未標示),開關控制單元根據接收到的控制訊號開啟鎖固元件(或稱為開關元件,例如:門鎖元件、車鎖元件、握把鎖元件、或其它合適的鎖固元件,未標示),而可運用於具有前述鎖固元件的物件(例如:門、車、有握把的物件、或其它合適的物件)。FIG. 4A is a schematic diagram of an embodiment of the signal processing module 21 of the present invention. In this embodiment, the signal processing module 21 may include at least a microprocessor 211, an input terminal 212, a second output terminal 213, an impedance conversion unit 214, and an image. The processing unit 215 and the microprocessor 211 are electrically coupled to the input terminal 212, the second output terminal 213, the impedance conversion unit 214, and the image processing unit 215. In some embodiments, the impedance conversion unit 214 and the image processing unit At least one of 215 may be selectively disposed outside the signal processing module 21, but is not limited thereto. The input terminal 212 can be used to receive the sensing voltage V skin and store the stored physiological characteristic information to the signal processing module 21, and the second output terminal 213 can be used to output the control signal or output multiple physiological characteristic information to be stored in the storage module. twenty two. Impedance converting unit 214 may be used to receive a plurality of sensed voltage V skin and generate a corresponding sense resistor R skin according to each value of the sense voltage V skin, for example, the impedance conversion unit 214 by the current I skin and may sense voltage V skin The corresponding sensing resistance value R skin is obtained , and the impedance conversion unit 214 returns the sensing resistance value R skin to the microprocessor 211. The image processing unit 215 receives the sensing resistance value R skin transmitted by the microprocessor 211, and each sensing resistance value R skin corresponds to the position of the sensing electrode group 113 on the array 11, as shown in FIG. 4B. The resistance value R skin is arranged according to the position of the corresponding sensing electrode group 113 on the array 11 to indicate the resistance value R skin sensed by the array 11 at different positions. The image processing unit 215 normalizes the sensing resistance value R skin to generate a corresponding plurality of first grayscale values, as shown in FIG. 4C. In this embodiment, the sensing resistance value R skin is based on its resistance representative value. The first gray scale value is converted into equal proportions. In this embodiment, a larger resistance representative value corresponds to a larger gray scale value. For example, the resistance value R skin 40 in FIG. 4B corresponds to The first grayscale value in FIG. 4C is 255, but not limited thereto. Conversely, a smaller resistance representative value corresponds to a smaller grayscale value. For example, the resistance value R skin 10 in FIG. 4B corresponds to the first grayscale value 68 in FIG. 4C after being normalized, but not to This is limited. In some embodiments, the normalization process may be a linear or non-linear process. The image processing unit 215 performs negative conversion on the plurality of first grayscale values to obtain corresponding second grayscale values, as shown in FIG. 4D. For example, the first grayscale value with a larger value corresponds to a second grayscale value with a smaller value after negative conversion. For example, the first grayscale value 255 in FIG. 4C corresponds to FIG. 4D after negative film conversion. The second grayscale value is 68, but not limited to this. Conversely, the first grayscale value with a smaller value corresponds to a second grayscale value with a larger value after negative conversion. For example, the first grayscale value 68 in FIG. 4C corresponds to the one in FIG. 4D after negative conversion. The second grayscale value is 187, but not limited thereto. In some embodiments, the negative conversion process may be a linear or non-linear process. The first and second grayscale values are unitless. The image processing unit 215 obtains a grayscale distribution image by using a plurality of second grayscale values. As shown in FIG. 4E, the image processing unit 215 can obtain a physiological characteristic image as shown in FIG. 4F from the grayscale distribution image. In the embodiment, the physiological characteristic image is, for example, a palm print of a user, but is not limited thereto. After the image processing unit 215 obtains the physiological characteristic image, it detects it (for example, edge detection) and obtains its physiological characteristic information, and the physiological characteristic information is, for example, a singular point or a pattern formed by a palm print. The image processing unit 215 can compare the obtained physiological characteristic information with a plurality of stored physiological characteristic information stored in the storage module. If the current physiological characteristic information matches one of the stored physiological characteristic information, it represents that the current user is For qualified users, the microprocessor 211 performs corresponding operations according to the comparison result. For example, the microprocessor 211 outputs a control signal to the switch control unit (not labeled) according to the comparison result, and the switch control unit performs control according to the received control. Signal to open the lock element (or switch element, such as: door lock element, car lock element, grip lock element, or other suitable locking element, not labeled), and can be applied to objects with the aforementioned locking element (E.g. door, car, gripped object, or other suitable object).

綜以上所述,本發明可彙整出生物特徵辨識系統100的操作方法步驟實施例。請參考圖5,於步驟501,生物特徵辨識系統100傳輸偵測電流Iskin 檢測物體來產生多個感測電壓Vskin ,在此實施例中,所述物體即為使用者之手掌皮膚。在步驟502中,生物特徵辨識系統100通過訊號處理模組21根據多個感測電壓Vskin 產生對應的感測電阻值Rskin 。於步驟503中,訊號處理模組21將感測電阻值Rskin 進行正規化以產生第一灰階值。於步驟504中,訊號處理模組21將多個第一灰階值進行負片轉換並對應產生多個第二灰階值。於步驟505中,訊號處理模組21根據多個第二灰階值產生對應的生理特徵影像。於步驟506中,訊號處理模組21根據生理特徵影像產生生理特徵資訊。於步驟507中,訊號處理模組21將生理特徵資訊於儲存生理特徵資訊進行比對,訊號處理模組21判斷當前的生理特徵資訊是否與儲存生理特徵資訊相符。當步驟507中判斷為是,即代表當前使用者為符合條件的使用者,因此進行步驟508。反之,當步驟509判斷為否,即代表當前使用者並非適格的使用者,因此生物特徵辨識系統100回到步驟501,持續進行感測。於步驟508中,訊號處理模組21會產生控制訊號,並將控制訊號傳送至開關控制單元,開關控制單元根據控制訊號開啟鎖固元件(例如:門鎖元件或前述所述之元件,結束此操作方法。In summary, the present invention can summarize the steps of the method for operating the biometric identification system 100. Referring to FIG. 5, in step 501, the biometric identification system 100 transmits a detection current I skin to detect an object to generate a plurality of sensing voltages V skin . In this embodiment, the object is the skin of the palm of the user. In step 502, the biometric identification system 100 generates a corresponding sensing resistance value R skin according to the plurality of sensing voltages V skin through the signal processing module 21. In step 503, the signal processing module 21 normalizes the sensing resistance value R skin to generate a first gray level value. In step 504, the signal processing module 21 performs negative conversion on the plurality of first grayscale values and generates a plurality of second grayscale values correspondingly. In step 505, the signal processing module 21 generates a corresponding physiological feature image according to a plurality of second grayscale values. In step 506, the signal processing module 21 generates physiological characteristic information according to the physiological characteristic image. In step 507, the signal processing module 21 compares the physiological characteristic information with the stored physiological characteristic information, and the signal processing module 21 determines whether the current physiological characteristic information is consistent with the stored physiological characteristic information. When it is determined as YES in step 507, it means that the current user is a qualified user, so step 508 is performed. On the contrary, when it is judged as negative in step 509, it means that the current user is not a qualified user. Therefore, the biometric identification system 100 returns to step 501 and continues sensing. In step 508, the signal processing module 21 generates a control signal and transmits the control signal to the switch control unit. The switch control unit opens the locking element (for example, a door lock element or the aforementioned element, and ends this process) according to the control signal. Method of operation.

綜以上所述,由於本發明之生物特徵辨識系統較佳地可利用可撓的絕緣基板上的電晶體陣列來進行感測,可撓的特性使其可根據需求配置於任何曲面,例如門把,因此本發明在配置上具有更加的靈活性,但不限於此。此外,由於本發明是以感測電阻值來進行生物特徵判定,因此在雨天或者使用者手上沾有水氣的狀態下,偵測電流以及感測電壓雖可能因環境而變化,但由於感測電阻值與偵測電流以及感測電壓保有實質上固定的關係,感測電阻值不因環境影響而約可保持穩定,因此本發明較不會因為水氣或汙染影響辨識率,且藉由水氣更可幫助手掌皮膚導電,進而更準確的得到感測電阻值,本發明明顯具有較佳的生物特徵辨識率。In summary, since the biometric identification system of the present invention can preferably use a transistor array on a flexible insulating substrate for sensing, the flexible characteristics allow it to be configured on any curved surface, such as a doorknob. Therefore, the present invention has more flexibility in configuration, but is not limited thereto. In addition, since the present invention uses a sensing resistance value for biological feature determination, the detection current and the sensing voltage may change due to the environment in a rainy day or in a state where the user's hand is wet with moisture. The measured resistance value has a substantially fixed relationship with the detected current and the sensed voltage. The sensed resistance value can be kept stable without being affected by the environment. Therefore, the present invention will not affect the recognition rate due to water vapor or pollution. Water vapor can also help the skin of the palm to conduct electricity, and then obtain the sensing resistance value more accurately. The invention obviously has a better biometric recognition rate.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何熟習此技術者,在不脫離本發明之精神和範圍內,當可做些許之更動與潤飾,因此本發明之保護範圍當視後付之申請專利範圍所界定者為準。Although the present invention has been disclosed as above by way of example, it is not intended to limit the present invention. Any person skilled in the art can make some modifications and retouches without departing from the spirit and scope of the present invention. Therefore, the protection of the present invention The scope shall be determined by the scope of the post-paid application patent scope.

100‧‧‧生物特徵辨識系統100‧‧‧Biometric Identification System

10‧‧‧絕緣基板10‧‧‧ Insulated substrate

11‧‧‧陣列11‧‧‧ array

111‧‧‧第一偵測電極111‧‧‧first detection electrode

112‧‧‧第二偵測電極112‧‧‧Second detection electrode

113‧‧‧感測電極組113‧‧‧sensing electrode group

114‧‧‧第一單元114‧‧‧ Unit 1

115‧‧‧第二單元115‧‧‧ Unit 2

12‧‧‧多工器12‧‧‧ Multiplexer

13‧‧‧運算放大器13‧‧‧ Operational Amplifier

20‧‧‧基板20‧‧‧ substrate

21‧‧‧訊號處理模組21‧‧‧Signal Processing Module

211‧‧‧微處理器211‧‧‧Microprocessor

212‧‧‧輸入端212‧‧‧input

213‧‧‧第二輸出端213‧‧‧Second output

214‧‧‧阻抗轉換單元214‧‧‧Impedance conversion unit

215‧‧‧影像處理單元215‧‧‧Image Processing Unit

22‧‧‧儲存模組22‧‧‧Storage Module

T1‧‧‧第一電晶體T1‧‧‧First transistor

T2‧‧‧第二電晶體T2‧‧‧Second transistor

Va‧‧‧第一電壓準位Va‧‧‧first voltage level

Vb‧‧‧第二電壓準位Vb‧‧‧second voltage level

VAD‧‧‧可調整電壓源V AD ‧‧‧ Adjustable voltage source

VAC‧‧‧偵測電壓V AC ‧‧‧ Detection voltage

Iskin‧‧‧偵測電流I skin ‧‧‧ Detection current

Vskin‧‧‧感測電壓V skin ‧‧‧ sensing voltage

Rskin‧‧‧感測電阻值R skin ‧‧‧ sensing resistance

Zskin‧‧‧阻抗模型Z skin ‧‧‧ impedance model

300、310、320‧‧‧掌紋300, 310, 320‧‧‧ Palm prints

501、502、503、504、505、506、507、508‧‧‧步驟501, 502, 503, 504, 505, 506, 507, 508‧‧‧ steps

圖1A為本發明之生物特徵辨識系統實施例一示意圖。 圖1B為本發明之生物特徵辨識系統實施例二示意圖。 圖2A為本發明之第一單元以及第二單元實施例示意圖。 圖2B為掌紋接觸本發明之第一偵測電極以及第二偵測電極之實施例示意圖。 圖3為皮膚阻抗分佈實施例示意圖。 圖4A為本發明之訊號處理模組實施例示意圖。 圖4B為本發明之感測阻抗分佈實施例示意圖。 圖4C為本發明之第一灰階值分佈實施例示意圖。 圖4D為本發明之第二灰階值分佈實施例示意圖。 圖4E為本發明之灰階分佈影像實施例示意圖。 圖4F為本發明得到之掌紋示意圖。 圖5為本發明之操作方法步驟實施例示意圖。FIG. 1A is a schematic diagram of a biometric identification system according to a first embodiment of the present invention. FIG. 1B is a schematic diagram of a second embodiment of the biometric identification system of the present invention. FIG. 2A is a schematic diagram of an embodiment of a first unit and a second unit of the present invention. FIG. 2B is a schematic diagram of an embodiment in which the palm print contacts the first detection electrode and the second detection electrode of the present invention. FIG. 3 is a schematic diagram of an embodiment of skin impedance distribution. FIG. 4A is a schematic diagram of an embodiment of a signal processing module according to the present invention. FIG. 4B is a schematic diagram of a sensing impedance distribution according to an embodiment of the present invention. FIG. 4C is a schematic diagram of a first grayscale value distribution embodiment of the present invention. FIG. 4D is a schematic diagram of a second grayscale value distribution embodiment of the present invention. FIG. 4E is a schematic diagram of an embodiment of a grayscale distribution image according to the present invention. FIG. 4F is a schematic diagram of a palm print obtained by the present invention. FIG. 5 is a schematic diagram of an embodiment of an operation method step of the present invention.

Claims (9)

一種操作方法,其包括: 根據一生物特徵來產生多個感測電阻值; 根據該些感測電阻值經由運算來產生對應的一生理特徵資訊; 將該生理特徵資訊與至少一儲存生理特徵資訊進行比對;以及 當該生理特徵資訊與該至少一儲存生理特徵資訊相符時,執行對應的操作。An operation method includes: generating a plurality of sensing resistance values according to a biological characteristic; generating a corresponding physiological characteristic information through calculation according to the sensing resistance values; and combining the physiological characteristic information with at least one stored physiological characteristic information Performing a comparison; and performing a corresponding operation when the physiological characteristic information matches the at least one stored physiological characteristic information. 如請求項第1項所述之操作方法,其中,根據該生物特徵來產生多個感測電阻值之方法,包含經由一生物特徵辨識系統傳輸至少一電流檢測一物體來產生多個感測電壓; 以及 通過一訊號處理模組根據該些感測電壓產生對應的該感測電阻值。The operating method according to claim 1, wherein the method of generating a plurality of sensing resistance values according to the biometrics includes transmitting at least one current to detect an object through a biometric recognition system to generate a plurality of sensing voltages. And generating a corresponding resistance value according to the sensing voltages by a signal processing module. 如請求項第1項所述之操作方法,其中,根據該些感測電阻值經由運算來產生對應的該生理特徵資訊之方法,更包括: 根據該些感測電阻值產生一生理特徵影像;以及 根據該生理特徵影像產生對應的該生理特徵資訊。The operation method according to claim 1, wherein the method of generating corresponding physiological characteristic information through calculation based on the sensing resistance values further includes: generating a physiological characteristic image according to the sensing resistance values; And generating corresponding physiological characteristic information according to the physiological characteristic image. 如請求項第3項所述之操作方法,其中,根據該些感測電阻值產生該生理特徵影像之方法,更包括: 將該些感測電阻值進行正規化並對應產生多個第一灰階值; 將該些第一灰階值進行負片轉換並對應產生多個第二灰階值;以及 根據該些第二灰階值產生該生理特徵影像。The operating method according to item 3 of the claim, wherein the method of generating the physiological characteristic image according to the sensing resistance values further includes: normalizing the sensing resistance values and generating a plurality of first grays correspondingly. Level values; negatively converting the first gray level values and correspondingly generating a plurality of second gray level values; and generating the physiological characteristic image according to the second gray level values. 如請求項第3項所述之操作方法,其中,根據該些感測電阻值產生該生理特徵影像之方法,更包括: 將該些感測電阻值進行正規化並對應產生多個灰階值;以及 根據該些灰階值產生該生理特徵影像。The operating method according to item 3 of the claim, wherein the method of generating the physiological characteristic image according to the sensing resistance values further includes: normalizing the sensing resistance values and generating multiple grayscale values correspondingly ; And generating the physiological characteristic image according to the grayscale values. 如請求項第2項所述之操作方法,其中,該生物特徵辨識系統包括: 一絕緣基板; 多個第一單元,設置於該絕緣基板上,且每一該第一單元包括: 一第一偵測電極; 一第一電晶體,其具有一第一端、一第二端以及一第一控制端,該第一電晶體的該第一端接收一第一電壓準位,該第一控制端接收一第二電壓準位;以及 一第二電晶體,其具有一第一端、第二端以及一第二控制端,該第二電晶體的該第一端與該第一電晶體的該第二端電性耦接,該第二控制端接收一偵測電壓,該第二電晶體的該第二端與該第一偵測電極電性耦接; 多個第二單元,設置於該絕緣基板,且該些第二單元分別對應於該些第一單元,其中,各該第二單元至少具有一第二偵測電極,各該第二偵測電極與各該第一偵測電極相互分隔,且該些第二單元之該些第二偵測電極電性耦接於一可調整電壓源;以及 一運算放大器,電性連接於該些第一單元其中至少一個與該些第二單元其中至少一個,其中,該運算放大器具有一第一輸入端、一第二輸入端以及一第一輸出端,該第一輸入端與該些第一單元其中至少一個之該第一偵測電極電性耦接,該第二輸入端電性連接於該些第二單元其中至少一個之該第二偵測電極,該第一輸出端用以輸出該感測電壓。The operating method according to claim 2, wherein the biometric identification system comprises: an insulating substrate; a plurality of first units disposed on the insulating substrate, and each of the first units includes: a first A detection electrode; a first transistor having a first terminal, a second terminal, and a first control terminal, the first terminal of the first transistor receiving a first voltage level, the first control Receiving a second voltage level; and a second transistor having a first terminal, a second terminal, and a second control terminal, the first terminal of the second transistor and the first transistor The second terminal is electrically coupled, the second control terminal receives a detection voltage, the second terminal of the second transistor is electrically coupled with the first detection electrode, and a plurality of second units are disposed at The insulating substrate, and the second units respectively correspond to the first units, wherein each of the second units has at least a second detection electrode, each of the second detection electrode and each of the first detection electrode Separated from each other, and the second detection electrodes of the second units are electrically coupled Connected to an adjustable voltage source; and an operational amplifier electrically connected to at least one of the first units and at least one of the second units, wherein the operational amplifier has a first input terminal, a second An input terminal and a first output terminal, the first input terminal is electrically coupled to the first detection electrode of at least one of the first units, and the second input terminal is electrically connected to the second units; At least one of the second detection electrodes, and the first output terminal is used to output the sensing voltage. 如請求項第6項所述之操作方法,其中,該偵測電壓為一固定頻率的交流電壓。The operation method according to claim 6, wherein the detection voltage is an AC voltage with a fixed frequency. 如請求項第6項所述之操作方法,更包含一具有至少二端之多工器,其中,該運算放大器電性連接於該多工器之其中一端,該多工器之另一端電性耦接於該些第一單元其中至少二個之該些第一偵測電極與該些第二單元其中至少二個之該些第二偵測電極。The operation method according to claim 6, further comprising a multiplexer having at least two ends, wherein the operational amplifier is electrically connected to one end of the multiplexer and the other end of the multiplexer is electrically The first detection electrodes coupled to at least two of the first units and the second detection electrodes of at least two of the second units are coupled. 如請求項第1項所述之操作方法,其中該對應的操作為一訊號處理模組輸出一控制訊號至一開關控制單元,該開關控制單元根據該控制訊號開啟一鎖固元件。The operation method according to item 1 of the claim, wherein the corresponding operation is that a signal processing module outputs a control signal to a switch control unit, and the switch control unit activates a locking element according to the control signal.
TW107107645A 2017-07-28 2017-07-28 Operation method TWI665611B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107107645A TWI665611B (en) 2017-07-28 2017-07-28 Operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107107645A TWI665611B (en) 2017-07-28 2017-07-28 Operation method

Publications (2)

Publication Number Publication Date
TW201911112A TW201911112A (en) 2019-03-16
TWI665611B true TWI665611B (en) 2019-07-11

Family

ID=66589994

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107107645A TWI665611B (en) 2017-07-28 2017-07-28 Operation method

Country Status (1)

Country Link
TW (1) TWI665611B (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200928936A (en) * 2007-12-28 2009-07-01 Egalax Empia Technology Inc Method for sensing a position of a single touch input and a funciton represented by multiple-touch positions on resistive touch panel
CN101702110A (en) * 2009-11-25 2010-05-05 松翰科技股份有限公司 Method for detecting multi-touch of resistive touch pad
CN101727253A (en) * 2008-10-14 2010-06-09 宸鸿光电科技股份有限公司 Method for sensing touch position of touch device
TW201102888A (en) * 2009-07-15 2011-01-16 Innolux Display Corp Method of multi-touch detection for touch panel
US7899217B2 (en) * 2006-07-19 2011-03-01 Lumidign, Inc. Multibiometric multispectral imager
TW201113796A (en) * 2009-10-06 2011-04-16 Pixart Imaging Inc Resistive touch controlling system and sensing method
TW201115448A (en) * 2009-10-30 2011-05-01 Sonix Technology Co Ltd Multi-touch measuring method for resistive touch panel
TW201216140A (en) * 2010-10-15 2012-04-16 Sonix Technology Co Ltd Multi-touch coordinate measuring method and device for resistive touch panel
TW201421337A (en) * 2012-11-23 2014-06-01 Beijing Funate Innovation Tech Resistance type touch panel
TWI588731B (en) * 2016-10-13 2017-06-21 敦泰電子股份有限公司 Electronic device and the driving method thereof

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7899217B2 (en) * 2006-07-19 2011-03-01 Lumidign, Inc. Multibiometric multispectral imager
TW200928936A (en) * 2007-12-28 2009-07-01 Egalax Empia Technology Inc Method for sensing a position of a single touch input and a funciton represented by multiple-touch positions on resistive touch panel
CN101727253A (en) * 2008-10-14 2010-06-09 宸鸿光电科技股份有限公司 Method for sensing touch position of touch device
TWI450138B (en) * 2009-07-15 2014-08-21 Innolux Corp Touch panel and method of multi-touch detection thereof
TW201102888A (en) * 2009-07-15 2011-01-16 Innolux Display Corp Method of multi-touch detection for touch panel
CN102033675A (en) * 2009-10-06 2011-04-27 原相科技股份有限公司 Resistive touch controlling system and sensing method
TW201113796A (en) * 2009-10-06 2011-04-16 Pixart Imaging Inc Resistive touch controlling system and sensing method
TWI399686B (en) * 2009-10-06 2013-06-21 Pixart Imaging Inc Resistive touch controlling system and sensing method
TW201115448A (en) * 2009-10-30 2011-05-01 Sonix Technology Co Ltd Multi-touch measuring method for resistive touch panel
CN101702110A (en) * 2009-11-25 2010-05-05 松翰科技股份有限公司 Method for detecting multi-touch of resistive touch pad
TW201216140A (en) * 2010-10-15 2012-04-16 Sonix Technology Co Ltd Multi-touch coordinate measuring method and device for resistive touch panel
TW201421337A (en) * 2012-11-23 2014-06-01 Beijing Funate Innovation Tech Resistance type touch panel
TWI588731B (en) * 2016-10-13 2017-06-21 敦泰電子股份有限公司 Electronic device and the driving method thereof

Also Published As

Publication number Publication date
TW201911112A (en) 2019-03-16

Similar Documents

Publication Publication Date Title
JP6605678B2 (en) Fingerprint sensing system and method
JP6750059B2 (en) Capacitive fingerprint sensor with improved sensing element
US9542590B2 (en) Fingerprint scanning method
CN100410621C (en) Electrostatic capacitance detection device
KR100393191B1 (en) Fingerprint sensor using piezoelectric membrane
EP2728512B1 (en) Capacitive imaging device with active pixels
US7081765B2 (en) Electrostatic capacitance detection device
TW469411B (en) Unevenness detecting sensor, fingerprint ID system and personal ID system
CN107077588A (en) Finger print detection device and its driving method
Hashido et al. A capacitive fingerprint sensor chip using low-temperature poly-Si TFTs on a glass substrate and a novel and unique sensing method
CN108205653B (en) Capacitive sensing unit, capacitive fingerprint sensor and sensing circuit
JP2000346608A (en) Sensor circuit for recognizing surface shape
US20150253363A1 (en) Low noise reading architecture for active sensor arrays
US8885896B2 (en) Multiple charge-coupled biometric sensor array
TWI665611B (en) Operation method
TWI626597B (en) Biometric identification system
CN109690560B (en) Fingerprint sensing with different capacitive configurations
US11721126B2 (en) Method to authenticate a user in an electronic device comprising a fingerprint sensor
US10101373B2 (en) Capacitive imaging device with active pixels and method
KR20080067920A (en) Personal identification system using piezoelectric sensor
TW201820205A (en) Fingerprint sensing with voltage pattern configurations
Dauksevicius et al. Finite element analysis of polymer-encapsulated ZnO nanowire-based sensor array intended for pressure sensing in biometric applications
Nayak A novel architecture for embedded biometric authentication system
KR20050025690A (en) Finger print sensor and method thereof
WO2023275559A1 (en) Apparatus and method for capacitive touch detection