TW201216140A - Multi-touch coordinate measuring method and device for resistive touch panel - Google Patents

Multi-touch coordinate measuring method and device for resistive touch panel Download PDF

Info

Publication number
TW201216140A
TW201216140A TW99135214A TW99135214A TW201216140A TW 201216140 A TW201216140 A TW 201216140A TW 99135214 A TW99135214 A TW 99135214A TW 99135214 A TW99135214 A TW 99135214A TW 201216140 A TW201216140 A TW 201216140A
Authority
TW
Taiwan
Prior art keywords
touch
value
touch panel
coordinate
voltage
Prior art date
Application number
TW99135214A
Other languages
Chinese (zh)
Inventor
Ming-Kai Liao
Chia-Ho Hu
Yi-Cheng Huang
Original Assignee
Sonix Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sonix Technology Co Ltd filed Critical Sonix Technology Co Ltd
Priority to TW99135214A priority Critical patent/TW201216140A/en
Publication of TW201216140A publication Critical patent/TW201216140A/en

Links

Landscapes

  • Position Input By Displaying (AREA)

Abstract

A multi-touch coordinate measuring method and device are provided. Voltage values on four sides of a resistive touch panel are first measured to obtain an absolute coordinate of a center point of two touch points. Next, an X-side current and a Y-side current are measured to calculate out horizontal-interval units and vertical-interval units between two touch points in a touch screen, and resolutions for each horizontal-interval unit and vertical-interval unit are also recognized. Finally, a real-time absolute coordinate for each touch point is obtained according to the resolution and relative position with respect to the center point.

Description

201216140 六、發明說明: 【發明所屬之技術領域】 本發明關於一種多點觸控座標偵測方法及裝置,且特別 是用於電阻式觸控板之多點觸控座標偵測方法及裝置。 【先前技術】 圖1為一習知電阻式觸控板内部元件之示意圖。一般觸 控板分為電容式觸控板及電阻式觸控板兩種。其中,電阻式 觸控板係由X層板102與Y層板104上下疊合而成的。X層 板102與Y層板104皆為平面電阻,且於自然狀態下不互相 接觸。當使用者施力觸壓電阻式觸控板時,會使X層板1〇2 與Y層板104於對應觸壓點之位置互相接觸。例如:當使用 者施力觸壓電阻式觸控板時,Y層板104上對應該觸壓點之 點P1會與X層板102上對應該觸壓點之點P2互相接觸。 圖2為圖1之電阻式觸控板的等效電路圖。電阻式觸控 板之等效電路202中,X層板1〇2與Y層板104之間具有一 等效電阻RM。當Y層板104與X層板102處於自然狀態時, 兩者並不接觸。此時,Y層板104與X層板102之間為開路, 可視為X層板102與Y層板1〇4之間具有一電阻值為無限大 之等效電阻RM。當外力觸壓電阻式觸控板時,Y層板1〇4 與X層板102彼此互相接觸,兩者間形成通路,則等效電阻 RM之電阻值會遠小於自然狀態時之電阻值。此外,X層板 201216140 1〇2與Y層板1〇4皆為平面電阻,當外力觸壓電阻式觸控板, 使得Y層板104上之點P1與χ層板1G2上之點P2互她 觸時,X層板102之等效電阻係為相接於點p2之兩電阻如〇 與Rx卜其中,兩等效電阻_與㈣之電阻值係由點打 於X層板102之位置所決定。且其電阻值僅隨點⑽之乂座 標的位置而變化’而不隨γ座標的位置變化。同理,Y層板 104之等效電阻係為串聯於點ρι之兩電阻Ry〇與Rw。兩 • 等效電阻尺y0與R W之電阻值係由點P1於Y層板1〇4之 位置所決定。且兩等效電阻R yG與Ryl之電阻值僅隨點Η 之Y座標的位置而變化,而不隨又座標的位置變化。如此, 當有一外力觸壓電阻式觸控板,而使得γ層板104上對應該 觸壓點之點Ρ1與X層板102上對應該觸壓點之點Ρ2互相接 觸時,其等效電路係如圖2所示。 然而,上述的電阻式難板通常僅能得知單點觸控的座 馨 標位置,而難以實施多點觸控操作。因此,目前有一些多點 觸控技術被提出以實施多點觸控操作。舉例而言,台灣專利 公開第200905539號揭露一種多點觸控技術,其係根據一第 -接觸體及-第二接觸體分別與觸控面板接觸的時間差,決 定第一接觸體及第一接觸體之接觸順序,並藉由電阻式觸控 面板所感測之電壓値依序決定一第一接觸座標以及一中點二 座標,再根據第一接觸座標及中點座標決定一第二接觸座 標。然而’此一設計必須有接觸的時間差,無法即時提供座 201216140 標值’且第-觸碰點必須持續保持接觸,若兩指同時移動即 無法提供正確之觸碰點座標。另外,台灣專利公開第 p 2〇0915165號揭露[種多點觸控技術,其中觸控面板包含 第-電阻_圖樣及第二電阻侧圖樣,且各個偵測圖樣I 含複數個平行且垂直排列的線條,當供應電壓給第—電阻= 測圖樣以及第二電阻偵測圖樣時,可得到χ座標與γ座桿。 上述利用一矩陣區塊式觸控面板的設計雖可獲得多個觸碰 點的座標,但矩陣區塊式觸控面板的結構複雜且成本高。 【發明内容】 本發明提供一種用於電阻式觸控板之多點觸控座標偵 測方法及裝置,其能避免上述各個習知設計的缺點。 本發明的其他目的和優點可以從本發明所揭露的技術 特徵中得到進一步的了解。 為達上述之一或部份或全部目的或是其他目的,本發明 之一實施例提供一種用於電阻式觸控板之多點觸控座標偵 測方法,電阻式觸控板至少包含彼此具一間隔的X透明導電 層及Υ透明導電層,該X透明導電層於平行一γ軸方向上 具有相對的一第一X侧及一第二χ側,且γ透明導電層於 平行一X轴方向上具有相對的一第一γ侧及一第二γ側。 多點觸控座標偵測方法包含如下步驟:量測一第一 χ側電壓 值、一第二X側電壓值、一第一γ侧電壓值及一第二丫側 201216140 得出兩個觸_的—中心點的座標;量測-χ側電 =門隔流值以計算兩__於—螢幕上的 水千間“位數及垂㈣隔單錄;及計算每—水 ::隔單位對應的解析度值,並依™ 兩個㈣點相對中心點的位置取得兩個峨點各自的座標。 本發明之另一實施例提供一種用於電阻式觸控板之多 點觸控座標_方法,電阻式觸控板至少包含用以產生 一軸向之座標信號的-第—平面電阻、及用以產生—第 =標信號的一第二平面電阻,且多點觸控座標偵咖 包3如下步驟:量㈣—平面電阻及第二平面電阻的電敎 以得出兩個觸壓點的-中心點的座標;量測第—平面電阻及 第二平面電阻的電流值以計算兩個觸壓點於一觸控榮幕上 的水平間隔單位數及垂直間隔單位數;及計算每—水平間隔 早位及每-垂制隔單輯應的解析度值,並依據解析度值 及兩個觸壓點相對中心點的位置取得兩個觸壓點各自的座 標0 本發明之另-實施例提供一種用於電阻式觸控板之多 點觸控座標偵測裝置’電阻式觸控板至少包含彼此具一間隔 的X透明導電層及Υ透明導電層,χ翻導電層於平行一 γ 轴方向上具有相對的-第-Χ側及—第二χ側,且γ透明 導電層於平行-X軸方向上具有姆的—第—Υ側及一第二 Υ側。多點觸控座標细樣置包含至少三域測單元分別 201216140 連接該第χ側、該第二\側、該第—Y側及該第二Y側 中的至少三侧’且每—_單元具有-_元件以進行量測 電流與量測鹤_切換,該些感測單元於不同操作模式下 偵測出—第一 Χ側電麼值、一第二X側值、-第一 γ t電塵值、—第二Υ侧㈣值、—X側電流值及-γ側電 ",L值該二電廢值定義兩個觸墨點的一中心點的座標,X側 電^值對應兩個驗點於—觸控螢幕上的水平距離且Y側 ^ 電流值對應兩個觸壓點於該觸控螢幕上的垂直距離。 基於上述各個實闕之設計,藉由感測單元#測觸控螢 幕的X側與γ側的電驗,即可定義兩觸壓點的中心點的絕 對座標且再塁測X側與γ側電流值後即可得知兩個觸壓點 間的水平距離與垂直距離後即時推算出兩觸塵點的絕對座 標。和習知設計她,上述實施例的電壓及電流量測單元的 結構簡單成本低,且㈣接辦間差即可提供正確之兩觸壓 •,點的即時絕對座標,因此即使兩指同時移動也可提供兩觸壓 點的即時絕對座標。 為讓本發明之上述特徵和優點能更明顯易懂,下文特舉 實施例並配合所附圖式,作詳細說明如下。 【實施方式】 有關本發明之前述及其他技術内容、特點與功效,在以 下配合參考圖式之實施例的詳細說明中,將可清楚的呈現。 以下實施例中所提到的方向用語,例如:上、下、左、右、 201216140 前或後等,僅是參考附加圖式的方向。因此,使用的方向用 語是用來說明並非用來限制本發明。 圖3A及圖3B為方塊圖,顯示多點觸控座標偵測方法的 一電流偵測實施架構。如圖3A及圖3B所示,電阻式觸控板 10至少包含彼此具一間隔的X透明導電層12及γ透明導電 層14,該X透明導電層12於平行一 γ轴方向上具有相對的 一第一 X側(Xa侧)12a及一第二X侧(Xb側)12b,且該Y透 明導電層14於平行一 X轴方向上具有相對的一第一 γ侧(Ya 側)14a及一第二Y侧(Yb侧)Mb。X透明導電層12及γ透 明導電層14可視為可分別產生一第一轴向座標信號及一第 二軸向座標信號的平面電阻。 於圖3A中,電阻式觸控板1〇連接至一電源(圖未示)以 提供一感測電壓Vdd至第一 Y侧14a ’並將一電流量測單元 16連接至第二Y側14b。於圖3B中,電阻式觸控板1〇連接 至一電源(圖未示)以提供一感測電壓Vdd至第一 X側12a, 並將一電流量測單元16連接至第二X側12b。請同時參考 圖4、圖5A及圖5B,圖4為單點觸控模式的等效電路模型, 圖5A及圖5B為簡化的兩點觸控模式等效電路模型,其中圖 5A對應圖3A(感測電壓Vdd施加於第一 γ侧Ma且假設兩 觸壓點的X軸位移相同;Χ1=Χ2),且圖5B對應圖3B(感測 電壓Vdd施加於第一 X侧12a且假設兩觸壓點的γ轴位移 相同;Y1=Y2)。當僅有單一觸壓點τ時,由圖4的單點觸控 201216140 模型可知不論觸控位置為何,電流量測單元ιό量柯到電流 iy〇均為固定’但當觸壓點為γ軸上的兩點Tm,觸壓 點Ή的座標為(XI,YD,觸壓點η的座標為(双乃),且假 α又XI X2時時等效電路模型需採用圖Μ,此時Y袖等 效總電阻Ry符合下式: _(式一)201216140 VI. Description of the Invention: [Technical Field] The present invention relates to a multi-touch coordinate detecting method and apparatus, and more particularly to a multi-touch coordinate detecting method and apparatus for a resistive touch panel. [Prior Art] FIG. 1 is a schematic view of an internal component of a conventional resistive touch panel. Generally, the touch panel is divided into a capacitive touch panel and a resistive touch panel. The resistive touch panel is formed by stacking the X layer board 102 and the Y layer board 104 up and down. Both the X layer board 102 and the Y layer board 104 are planar resistors and do not contact each other in a natural state. When the user applies a force to touch the resistive touch panel, the X-layer board 1〇2 and the Y-layer board 104 are in contact with each other at the position of the corresponding touch point. For example, when the user applies a force-sensitive resistive touch panel, the point P1 of the Y-layer board 104 corresponding to the touch point will contact the point P2 of the X-layer board 102 corresponding to the touch point. 2 is an equivalent circuit diagram of the resistive touch panel of FIG. 1. In the equivalent circuit 202 of the resistive touch panel, there is an equivalent resistance RM between the X-layer board 1〇2 and the Y-layer board 104. When the Y-layer board 104 and the X-layer board 102 are in a natural state, the two are not in contact. At this time, the Y-layer board 104 and the X-layer board 102 are open between each other, and it can be considered that the X-layer board 102 and the Y-layer board 1〇4 have an equivalent resistance RM whose resistance value is infinite. When the external force touches the resistive touch panel, the Y layer board 1〇4 and the X layer board 102 are in contact with each other, and a path is formed therebetween, so that the resistance value of the equivalent resistance RM is much smaller than the resistance value in the natural state. In addition, the X-layer board 201216140 1〇2 and the Y-layer board 1〇4 are both planar resistors, and when the external force touches the resistive touch panel, the point P1 on the Y-layer board 104 and the point P2 on the layer board 1G2 are mutually When she touches, the equivalent resistance of the X-layer board 102 is two resistances such as 〇 and Rx which are connected to the point p2, and the resistance values of the two equivalent resistors _ and (4) are placed at the position of the X-layer board 102 by the point. Determined. And its resistance value only changes with the position of the coordinates of the point (10)' without changing with the position of the gamma coordinate. Similarly, the equivalent resistance of the Y-layer board 104 is two resistors Ry〇 and Rw connected in series to the point ρι. Two • The resistance values of the equivalent resistance bars y0 and R W are determined by the position of the point P1 on the Y-layer board 1〇4. And the resistance values of the two equivalent resistors R yG and Ryl vary only with the position of the Y coordinate of the point ,, and do not change with the position of the coordinate. In this way, when there is an external force touching the resistive touch panel, and the point Ρ1 corresponding to the touch point on the γ layer 104 and the point Ρ2 corresponding to the touch point on the X layer board 102 are in contact with each other, the equivalent circuit thereof The system is shown in Figure 2. However, the above-mentioned resistive hard board usually only knows the position of the single touch, and it is difficult to implement a multi-touch operation. Therefore, some multi-touch technologies have been proposed to implement multi-touch operations. For example, the multi-touch technology of the first contact body and the first contact are determined according to the time difference between the contact of the first contact body and the second contact body with the touch panel, respectively. The contact sequence of the body is determined by the voltage sensed by the resistive touch panel, and a first contact coordinate and a midpoint two coordinate are sequentially determined, and then a second contact coordinate is determined according to the first contact coordinate and the midpoint coordinate. However, this design must have a time difference of contact, and the 201216140 standard value cannot be provided immediately and the first-touch point must be kept in contact. If the two fingers move at the same time, the correct touch point coordinates cannot be provided. In addition, a multi-touch technology is disclosed in the Japanese Patent Publication No. pp. 0915165, wherein the touch panel includes a first-resistance pattern and a second resistance side pattern, and each of the detection patterns I includes a plurality of parallel and vertical alignments. The line, when the voltage is supplied to the first resistance = the measurement pattern and the second resistance detection pattern, the χ coordinate and the γ seat post can be obtained. The above-described design using a matrix block type touch panel can obtain coordinates of a plurality of touch points, but the matrix block type touch panel has a complicated structure and high cost. SUMMARY OF THE INVENTION The present invention provides a multi-touch coordinate detecting method and apparatus for a resistive touch panel, which can avoid the disadvantages of the above various conventional designs. Other objects and advantages of the present invention will become apparent from the technical features disclosed herein. In order to achieve one or a part or all of the above or other purposes, an embodiment of the present invention provides a multi-touch coordinate detecting method for a resistive touch panel, wherein the resistive touch panel includes at least one of each other. a spaced X transparent conductive layer and a transparent conductive layer, the X transparent conductive layer having a first X side and a second side in a parallel γ-axis direction, and the γ transparent conductive layer is parallel to an X-axis The direction has a first gamma side and a second gamma side. The multi-touch coordinate detecting method comprises the following steps: measuring a first χ side voltage value, a second X side voltage value, a first γ side voltage value, and a second 丫 side 201216140 to obtain two touches _ - the coordinates of the center point; the measurement - the side of the electricity = the door flow value to calculate the two __ on the screen of the water "number of digits and vertical (four) separate recording; and calculate each water:: compartment Corresponding resolution values, and obtaining the coordinates of the two defects according to the position of the two (four) points relative to the center point. Another embodiment of the present invention provides a multi-touch coordinate for the resistive touch panel _ The resistive touch panel includes at least a first-plane resistance for generating an axial coordinate signal, and a second planar resistance for generating a -first signal, and the multi-touch coordinate detection package 3 the following steps: quantity (four) - plane resistance and the electric resistance of the second plane resistance to obtain the coordinates of the center point of the two touch points; measure the current values of the first plane resistance and the second plane resistance to calculate two The number of horizontal interval units and the number of vertical intervals on the touch screen of a touch screen; The resolution value of each of the horizontal interval and the per-series separation, and the coordinates of the two touch points are obtained according to the resolution value and the position of the two touch points relative to the center point. - The embodiment provides a multi-touch coordinate detecting device for a resistive touch panel. The resistive touch panel includes at least a transparent conductive layer and a transparent conductive layer with a space therebetween. The γ-axis direction has opposite-first-Χ side and second-side side, and the γ-transparent conductive layer has a m-first side and a second side in a parallel-X-axis direction. The control coordinate set includes at least three domain measuring units respectively 201216140 connecting the third side, the second side, the first Y side and the second side of the second Y side and each__ unit has -_ The component is configured to measure current and measurement crane_switching, and the sensing units are detected in different operation modes—first first side electric value, one second X side value, and first first γ t electric dust value , the second side (four) value, the -X side current value and the -γ side power ", the L value of the second electric waste value defines one of the two touch points The coordinate of the center point, the X side electric value corresponds to the two check points on the horizontal distance on the touch screen and the Y side ^ current value corresponds to the vertical distance of the two touch points on the touch screen.阙Design, by sensing the X and γ side of the touch screen by the sensing unit #, you can define the absolute coordinates of the center point of the two touch points and then measure the X side and γ side current values. It can be known that the absolute coordinates of the two touch points are instantaneously calculated after the horizontal distance and the vertical distance between the two touch points. And by designing her, the voltage and current measuring unit of the above embodiment has a simple structure and low cost, and (4) The difference between the two touches can be provided, and the instantaneous absolute coordinates of the points can be provided. Therefore, even if the two fingers move at the same time, the instantaneous absolute coordinates of the two touch points can be provided. To make the above features and advantages of the present invention more It is apparent that the embodiments are described in detail below with reference to the accompanying drawings. The above and other technical contents, features and effects of the present invention will be apparent from the following detailed description of the embodiments of the invention. The directional terms mentioned in the following embodiments, such as up, down, left, right, before or after 201216140, are only directions referring to the additional drawings. Therefore, the directional term used is used to describe that it is not intended to limit the invention. 3A and 3B are block diagrams showing a current detecting implementation architecture of a multi-touch coordinate detecting method. As shown in FIG. 3A and FIG. 3B, the resistive touch panel 10 includes at least an X transparent conductive layer 12 and a γ transparent conductive layer 14 having a space therebetween, and the X transparent conductive layer 12 has opposite sides in a parallel γ-axis direction. a first X side (Xa side) 12a and a second X side (Xb side) 12b, and the Y transparent conductive layer 14 has a first γ side (Ya side) 14a in a parallel X-axis direction and A second Y side (Yb side) Mb. The X transparent conductive layer 12 and the γ transparent conductive layer 14 can be regarded as planar resistors that respectively generate a first axial coordinate signal and a second axial coordinate signal. In FIG. 3A, the resistive touch panel 1 is connected to a power source (not shown) to provide a sensing voltage Vdd to the first Y side 14a' and a current measuring unit 16 to the second Y side 14b. . In FIG. 3B, the resistive touch panel 1 is connected to a power source (not shown) to provide a sensing voltage Vdd to the first X side 12a, and a current measuring unit 16 to the second X side 12b. . Please refer to FIG. 4, FIG. 5A and FIG. 5B at the same time. FIG. 4 is an equivalent circuit model of the single-touch mode, and FIG. 5A and FIG. 5B are simplified two-point touch mode equivalent circuit models, wherein FIG. 5A corresponds to FIG. 3A. (The sensing voltage Vdd is applied to the first γ side Ma and assumes that the X-axis displacements of the two touch points are the same; Χ1=Χ2), and FIG. 5B corresponds to FIG. 3B (the sensing voltage Vdd is applied to the first X side 12a and assumes two The γ-axis displacement of the point of contact is the same; Y1=Y2). When there is only a single touch point τ, the single-point touch 201216140 model of Fig. 4 shows that the current measurement unit ι 柯 到 到 到 current y 〇 is fixed regardless of the touch position, but when the touch point is γ axis On the upper two points Tm, the coordinates of the touch point Ή are (XI, YD, the coordinates of the touch point η are (double is), and the pseudo-α and XI X2 time-time equivalent circuit models need to adopt the map, at this time Y The sleeve equivalent total resistance Ry conforms to the following formula: _(式一)

Ry = Rl+R3 + R4 + R6 R2 R5 + R7^ 由上式可知,兩點的觸壓方式可產生電阻並聯效果,使 總電阻下降,目此㈣麵時的γ _效總€阻Ry(tl,切會 小於單點罐的γ辨效總電阻Ry(t)。換言之,兩點觸壓 時電流量料元16 #酬的錢Iy —定會大於單點觸壓時 電流量測單元16量測到的電流Iyo。另外,如圖3B所示, 當提供一感測電壓Vdd至電阻式觸控板1〇的第一又侧12a, 並將一電流量測單元16連接至第二X側12b,當觸壓點為χ 軸上的兩點T1及T2,觸壓點T1的座標為(XI,γι),觸壓點 T2的座標為(χ2, γ2),且假設γι=γ2時,這時等效電路模型 可採用圖5Β,Χ軸等效總電阻Rx(ti,t2)同樣會小於單點觸愿 的X轴等效總電阻Rx⑴,即兩點觸壓時電流量測單元16量 測到的電流Ιχ—定會大於單點觸壓時電流量測單元16量測 到的電流Ixo。因此,微處器18即可藉由電流量測值判斷目 前觸控狀態為單點觸控模式或多點觸控模式。 接著’如下以圖5A為例說明當觸壓點為兩點時,如何 201216140 藉由電流量測值的變化判斷兩點間的距離。如圖5a所八, 當觸壓點由τι變化為T1,使兩點垂直距離的增大為 y+Z\y時’此時電阻R1或電阻R3會減少且電阻幻増大, 所以由(式-)可知γ軸等效總電阻Ry(tl,,⑺會變小。曰因, 個觸壓點間的垂直距離,與流經丫透明導電層14的電流值 iy具有-正比關係,故於量測目前電流值Iy後即可得知:^ 曰哥Γ 觸控狀態下兩個不同觸壓點間的垂直距離。同樣地,如圖犯 • 所示’當觸壓點由T2變化為T2,使兩點水平距離由χ增大 為距離χ+Λχ時,此時χ軸等效總電阻^^口,)會變小。 因兩個觸壓點間的水平距離,同樣與流經χ透明導電層U 的電流值Ιχ具有一正比關係,故於量測目前電流值後即可得 知目則觸控狀態下兩個不同觸壓點間的水平距離。 圖6Α及圖6Β為方塊圖,顯示多點觸控座標偵測方法的 一電壓偵測實施架構。電阻式觸控板1()至少包含彼此具一 φ 間隔的X透明導電層12及Υ透明導電層14,該X透明導電 層於平行一 Υ轴方向上具有相對的一第一 X侧(Xa側)12a及 一第二X侧(Xb侧)12b,且Y透明導電層於平行一 X軸方向 上具有相對的一第一 Y側(Ya側)14a及一第二Y側(Yb 側)14b。如圖6A所示,於本實施例中,電阻式觸控板1〇連 接至一電源22以提供一感測電壓Vdd至第一 Y侧14a,並 將第二Y側14b接地,且一電壓量測單元26連接至第一 X 侧12a及第二X侧12b,可量測得到第一 X側12a的端電壓 11 [S] 201216140Ry = Rl+R3 + R4 + R6 R2 R5 + R7^ It can be seen from the above formula that the two-point contact voltage method can produce a parallel effect of resistance, so that the total resistance is reduced, and the γ _ effect total resistance Ry (the fourth surface) Tl, the cut will be smaller than the total resistance Ry(t) of the gamma effect of the single-point tank. In other words, when the two points are pressed, the current amount of the material element 16# will be greater than the single-point touch current measuring unit 16 The measured current Iyo. In addition, as shown in FIG. 3B, when a sensing voltage Vdd is supplied to the first side 12a of the resistive touch panel 1A, a current measuring unit 16 is connected to the second X. Side 12b, when the pressure point is two points T1 and T2 on the χ axis, the coordinates of the touch point T1 are (XI, γι), and the coordinates of the touch point T2 are (χ2, γ2), and γι=γ2 is assumed At this time, the equivalent circuit model can adopt FIG. 5Β, and the equivalent total resistance Rx(ti, t2) of the x-axis is also smaller than the X-axis equivalent total resistance Rx(1) of the single-point contact, that is, the current measuring unit 16 when the two-point is pressed. The measured current Ιχ will be greater than the current Ixo measured by the current measuring unit 16 at a single point of contact. Therefore, the micro-device 18 can determine the current touch state as a single touch by the current measurement value. control Or multi-touch mode. Next, let's take Figure 5A as an example to illustrate how the distance between two points is determined by the change of the current measurement value when the pressure point is two points. As shown in Figure 5a, when The pressure point is changed from τι to T1, so that the increase of the vertical distance between the two points is y+Z\y. At this time, the resistance R1 or the resistance R3 will decrease and the resistance will be large. Therefore, the γ-axis is equivalent by (Formula-). The total resistance Ry (tl,, (7) will become smaller. Because of this, the vertical distance between the touch points has a proportional relationship with the current value iy flowing through the transparent conductive layer 14, so after measuring the current current value Iy You can know: ^ 曰哥Γ The vertical distance between two different touch points in the touch state. Similarly, as shown in the figure, 'When the touch point changes from T2 to T2, the horizontal distance between the two points is When χ is increased to distance χ+Λχ, the equivalent total resistance of the χ axis will be smaller. The horizontal distance between the two contact points is also the current value flowing through the χ transparent conductive layer U. Ιχ has a proportional relationship, so after measuring the current current value, the horizontal distance between two different touch points in the touch state can be known. 6 is a block diagram showing a voltage detecting implementation structure of a multi-touch coordinate detecting method. The resistive touch panel 1 () includes at least an X transparent conductive layer 12 and a transparent conductive layer 14 having a φ interval therebetween. The X transparent conductive layer has a first X side (Xa side) 12a and a second X side (Xb side) 12b in a parallel axis direction, and the Y transparent conductive layer is in a parallel X-axis direction. There is a first Y side (Ya side) 14a and a second Y side (Yb side) 14b. As shown in FIG. 6A, in the embodiment, the resistive touch panel 1 is connected to a power source 22 A sensing voltage Vdd is provided to the first Y side 14a, and the second Y side 14b is grounded, and a voltage measuring unit 26 is connected to the first X side 12a and the second X side 12b, and the first X can be measured. Side voltage of side 12a 11 [S] 201216140

Vxa及第二X側12b的端電壓Vxb。如圖6B所示,當電阻 式觸控板10連接至一電源22以提供一感測電壓vdd至第一 X側12a,並將第二X側12b接地,且一電壓量測單元26 連接至第一 Y側14a及第二Y側14b,可量測得到第一 γ側 14a的端電壓Vya及第二Y侧14b的端電壓Vyb。 於本實施例中,如圖7所示,當觸控螢幕3〇上形成兩The terminal voltage Vxb of Vxa and the second X side 12b. As shown in FIG. 6B, when the resistive touch panel 10 is connected to a power source 22 to provide a sensing voltage vdd to the first X side 12a, and the second X side 12b is grounded, and a voltage measuring unit 26 is connected to The first Y side 14a and the second Y side 14b can measure the terminal voltage Vya of the first γ side 14a and the terminal voltage Vyb of the second Y side 14b. In this embodiment, as shown in FIG. 7, when the touch screen 3 is formed on the screen 3

個觸壓點B卜B2時,量測得的端電壓值Vxa、Vxb、Vya 及Vyb所對應的座標值即可定義兩觸壓點Bi、B2的中心點 A的絕對座標(Xm,Ym)。再者’因兩個觸壓點B1、B2間的 水平距離與垂直距離,分別與前述量測到的電流值&、電流 值Iy(圖3A-5B所示)具有一正比關係,故藉由電流值伙、電 流值Iy可推算出兩個觸壓點B卜B2間的水平間隔單位數Η 及垂直間隔單錄V。_控螢幕3G之橫長及縱寬分別劃 分為N個水平間隔單位倾直間隔單位,再根據畫面 解析度可計算it{每個水啊a1隔單⑽應之解析度Dx,及每 個垂直間酵靖應之解析度Dy,透過以上麟及兩觸壓 點B1、B2相對A點的位置關係,可即時推算出B1點絕i 座標(XI,Y1)和32點絕對座標(χ2, γ2)。 因此’基於上述各個實施例之設計,藉由感測單元量 觸控螢幕30的X側與γ側的電壓值及州 P可疋義兩觸壓點的巾心_絕對座標,且再量測電流值 iy後即可得知兩個繼關的水平㈣與垂直距離後1 [S] 12 201216140 時推算出兩繼點的絕對座標。和f知設計相較上述實施 例的電壓及電流量測單元的結構簡單成本低,且不需接觸= 間差即可提供正確之關壓點的即時絕對絲,目此即使兩 指同時移動也可提供兩觸壓點的即時絕對座標。 圖8為本發明一實施例之多點觸控座標偵測方法流程 圖,於一實施例中,該方法可包含如下步驟:When the touch point B B B2, the measured coordinate values of the terminal voltage values Vxa, Vxb, Vya and Vyb can define the absolute coordinates (Xm, Ym) of the center point A of the two contact points Bi and B2. . Furthermore, because of the horizontal distance and vertical distance between the two contact points B1 and B2, they have a proportional relationship with the measured current value & current value Iy (shown in Figures 3A-5B). From the current value and the current value Iy, the horizontal interval unit number Η between the two touch pressure points B and B2 and the vertical interval single record V can be derived. _ control screen 3G horizontal length and width are divided into N horizontal interval unit tilt interval unit, and then according to the screen resolution can calculate it {each water a1 interval (10) should be the resolution Dx, and each vertical The resolution Dy of the intervening jingjing, through the positional relationship between the above lining and the two touch points B1 and B2 relative to the A point, can immediately calculate the B1 point i coordinate (XI, Y1) and the 32 point absolute coordinate (χ2, γ2 ). Therefore, based on the design of each of the above embodiments, the voltage values of the X side and the γ side of the touch screen 30 and the center of the touch point of the two touch points of the state P can be measured by the sensing unit, and then measured. After the current value iy, the two relay levels (four) and the vertical distance 1 [S] 12 201216140 can be used to calculate the absolute coordinates of the two relay points. Compared with the design of the voltage and current measuring unit of the above embodiment, the structure of the voltage and current measuring unit is simple and low, and the instant absolute wire of the correct closing point can be provided without contact = difference, so that even if the two fingers move at the same time, Instant absolute coordinates for two touch points are available. FIG. 8 is a flow chart of a multi-touch coordinate detecting method according to an embodiment of the present invention. In an embodiment, the method may include the following steps:

Step S10 :開始。 • Step S20 :量測一電阻式觸控板X側與Y側的電壓值Step S10: Start. • Step S20: Measure the voltage value of the X side and Y side of a resistive touch panel

Vxa、Vxb、Vya 及 Vyb 及電流值 Ιχ、iy 〇Vxa, Vxb, Vya, and Vyb and current values Ιχ, iy 〇

Step S30 :利用電壓值Vxa、Vxb、Vya及州得出兩觸 壓點的中心點絕對座標。Step S30: Using the voltage values Vxa, Vxb, Vya, and the state to obtain the absolute coordinates of the center point of the two touch points.

Step S40 :利用電流值Ix、Iy推算於觸控螢幕上兩個觸 屋點的水平間隔單位數及垂直間隔單位數。Step S40: Use the current values Ix and Iy to calculate the horizontal interval unit number and the vertical interval unit number of the two touch points on the touch screen.

Step S50 :根據晝面解析度推算每個水平間隔單位對應 φ 之解析度、及每個垂直間隔單位對應之解析度。Step S50: Calculate the resolution of each horizontal interval unit corresponding to φ and the resolution corresponding to each vertical interval unit according to the kneading resolution.

Step S60 :依據中心點座標、水平間隔單位數、垂直間 隔單位數、單位解析度、及兩觸壓點與中心點位置對應關係 得出兩觸壓點的即時絕對座標。Step S60: According to the coordinates of the center point, the number of horizontal intervals, the number of vertical intervals, the unit resolution, and the correspondence between the two touch points and the center point position, the instantaneous absolute coordinates of the two touch points are obtained.

Step S70 :結束。 圖9為一示意圖,顯示依本發明一實施例的多點觸控座 標偵測裝置。如圖9所示,多點觸控座標偵測裝置係運用於 一四線式的電阻式觸控板1〇且包含四個相同的感測單元 [S] 13 201216140 32。四個感測單it 32分職接電阻式觸控板1()的第一 χ 側、第二X側、第-Υ侧及第二¥側,藉由程式設定每 個感測單元32可在不同的操作模式下偵測電壓及電流的變 化量,進行前述多點觸控座標_方法的電壓值娜、Step S70: End. FIG. 9 is a schematic diagram showing a multi-touch coordinate detecting apparatus according to an embodiment of the present invention. As shown in FIG. 9, the multi-touch coordinate detecting device is applied to a four-wire resistive touch panel 1 and includes four identical sensing units [S] 13 201216140 32. The four sensing points are 32 points of the first side, the second side, the second side, and the second side of the resistive touch panel 1 (), and each sensing unit 32 can be programmed. Detecting the amount of change in voltage and current in different operation modes, and performing the voltage value of the multi-touch coordinate method described above

W夂Vyb *測及電流值Ix、Iy量測的步驟。另外,上述於 電阻式觸控板10的四側連接四個感測單元32的方式僅為例 示。如圖Η)所示’於四線式電阻式觸控板1〇上亦可僅將 四側中的至少三侧分別連接一感測單元32,且每個感測單元 32内均設置-切換元件42,切換元件42可受料控制進行 量測電流與制電壓_切換,如簡樣可獲得所有四側上 的電屋及電流變化量資訊,不諸每—侧均連接—感测單元 32 °再者’於—實施例中’多點觸控座標_裝置可整合於 單顆IC40上且可使解碼_未抑㈣去控制至少三 個感測早7L 32。當然多點觸控座標偵測裝置的結構並不限 定’僅絲獲得錢及電_量測效果即可,例如亦可 阻式觸控面板1G的Χ轴與Υ轴各串接-電流表,並於第一 X側、第二X侧、第—γ側及第側各串接—電麗表, 於雙指觸碰螢幕時_量測其電流及電壓,測得之電虔 及電抓值㈣推算出兩觸麵於綱螢幕上之絕對座標。 惟以上所述者,僅為本㈣之較佳實施例而已, 以此限定本發明實施之範圚,即大凡依本發明“ 及發明朗内容所作之解的等效變化與修飾皆仍屬本發 201216140 明專利涵蓋之範圍内。另外本發明的實施例或中請專利 範圍不須達成本發明所揭露之全部目的或優點或特點。此 外,摘要部分和標題僅是用來輔助專利文件搜尋之用,並非 用來限制本發明之權利範圍。 【圖式簡單說明】 圖1為一習知電阻式觸控板内部元件之示意圖。 圖2為圖1之電阻式觸控板的等效電路圖。 圖3A及圖3B為方塊圖,顯示多點觸控座標偵測方法一 實施例的實施架構。 圖4為單·_控模式的等效電路翻,圖5A及圖5B為 簡化的兩點觸控模式等效電路模型。 圖6A及圖6B為方塊圖,顯示多點觸控座標摘測方法另 一實施例的實施架構。 圖7為-示意圖,顯示兩不同觸壓點的即時座標推算方 式。 圖為本發月f施例之多點觸控座標债測方法流程 圖。 圖9為-示意圖’顯示依本發明—實施例的多點觸控座 標偵測裝置。 圖10為-示意圖,顯示依本發明另—實施例的多 控座標偵測裝置。 [S] 15 201216140W夂Vyb* measures the steps of measuring the current values Ix and Iy. In addition, the manner in which the four sensing units 32 are connected to the four sides of the resistive touch panel 10 is merely an example. As shown in FIG. ', on the four-wire resistive touch panel 1 至少, at least three sides of the four sides may be respectively connected to one sensing unit 32, and each sensing unit 32 is set-switched. The component 42 and the switching component 42 can be controlled by the material to measure the current and the voltage-switching. As shown in the figure, the information of the electric house and the current change amount on all four sides can be obtained, and the sensing unit 32 is not connected to each side. Furthermore, in the embodiment, the 'multi-touch coordinate' device can be integrated on a single IC 40 and can be decoded to prevent at least three sensing early 7L 32. Of course, the structure of the multi-touch coordinate detecting device is not limited to 'only the wire can obtain the money and the electric measurement effect. For example, the x-axis and the x-axis of the resistive touch panel 1G can be connected in series - an ammeter, and The first X side, the second X side, the γ side and the first side are connected in series—the electric meter is used to measure the current and voltage when the two fingers touch the screen, and the measured electric power and electric grab value are measured. (4) Calculate the absolute coordinates of the two touches on the screen. However, the above is only the preferred embodiment of the present invention, and thus the scope of the present invention is limited, that is, the equivalent changes and modifications of the solution according to the invention and the content of the invention are still The scope of the invention is not limited to the scope of the patents. The scope of the invention or the scope of the invention is not limited to the full purpose or advantages or features disclosed herein. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view of an internal component of a conventional resistive touch panel. Fig. 2 is an equivalent circuit diagram of the resistive touch panel of Fig. 1. 3A and 3B are block diagrams showing an implementation structure of an embodiment of a multi-touch coordinate detecting method. FIG. 4 is an equivalent circuit flip of the single-control mode, and FIGS. 5A and 5B are simplified two-touch Control mode equivalent circuit model. Fig. 6A and Fig. 6B are block diagrams showing the implementation structure of another embodiment of the multi-touch coordinate extraction method. Fig. 7 is a schematic view showing the instantaneous coordinate calculation method of two different touch points. The picture shows FIG. 9 is a schematic diagram showing a multi-touch coordinate detecting device according to the present invention. FIG. 10 is a schematic diagram showing the present invention. Inventively another embodiment of the multi-control coordinate detecting device. [S] 15 201216140

【主要元件符號說明】 10 電阻式觸控板 12 X透明導電層 12a 第一 X側 12b 第二X側 14 Y透明導電層 14a 第一 Y側 14b 第二Y側 16 電流量測單元 18 微處理器 22 電源 26 電壓量測單元 30 觸控螢幕 32 感測單元 40 1C 42 切換元件 102 X層板 104 Y層板 202 等效電路 Step 10-70 方法步驟[Main component symbol description] 10 Resistive touch panel 12 X transparent conductive layer 12a First X side 12b Second X side 14 Y transparent conductive layer 14a First Y side 14b Second Y side 16 Electric current measuring unit 18 Micro processing 22 Power supply 26 Voltage measurement unit 30 Touch screen 32 Sensing unit 40 1C 42 Switching element 102 X-layer board 104 Y-layer board 202 Equivalent circuit Step 10-70 Method steps

Claims (1)

201216140 七、申請專利範園: 1. 一種用於電阻式馳板之多點觸控座標㈣方法,該 電阻式觸控板至少包含彼此具-間隔的又翻導電層及^ 透明導電層,該X透明導電層於平行一 γ轴方向上且θ 的一第一X側及一第二X側,且該γ透明導電層於平行― X轴方向上具有相對的-第一 γ側及一第二γ侧鋪測方 法包含如下步驟: 量測一第一 X侧電壓值、一第二又側電壓值一第—Υ 側種值及-第二γ側電壓值以得出兩個繼點的一中心 點的絕對座標; 量測-X側電流值及-γ測電流值以計算該兩個觸壓點 於-觸控螢幕上的水平間隔單位數及垂直間隔單位數;及 計算每-水平間隔單位及每一垂直間隔單位對應的解 析度值’並依據該解析度值及該兩個觸屢點相對該中心點的 位置取得該兩個觸壓點各自的即時絕對座標。 2. 如請求項!所述之用於電阻式觸控板之多點觸控座 ,偵測方法’其中該兩個顧點間的—水平距離與該χ側電 流值具有-正比關係,且該兩個觸壓點間的—垂直距離與該 γ侧電流值具有一正比關係。 3. 如請求項1所述之餘電阻式觸控板之多點觸控座 標偵測方法,其中該電壓量測步驟包含: 將該第-X側連接至-電源並將該第二χ側接地且將一 [SJ 201216140 電壓量測單元連接至該第一γ側及第二γ側;及 將該第一 Υ側連接至一電源並將該第二γ侧接地且將一 電壓量測單元連接至該第一 X側及第二X側。 4. 如請求項1所述之用於電阻式觸控板之多點觸控座 標偵測方法,其中該電流量測步驟包含: 提供一感測電壓至該第一 X侧並將一電流量測單元連 接至該第二X側;及 提供一感測電壓至該第一 Υ侧並將一電流量測單元連 接至該第二Υ側。 5. 如請求項1所述之用於電阻式觸控板之多點觸控座 標债測方法’其中該解析度值計算步驟包含: 將該觸控螢幕的橫長及縱寬分別劃分為複數個水平間 隔單位及複數個垂直間隔單位;及 根據該觸控螢幕的畫面解析度計算每一水平間隔單位 對應之解析度及每一垂直間隔單位對應之解析度。 6. —種用於電阻式觸控板之多點觸控座標偵測方法,該 電阻式觸控板至少包含用以產生-第—轴向之座標信號的 一第-平面電阻、及用以產生-第二轴向之座標信號的一第 二平面電阻,該多點觸控座標偵測方法包含如下步驟: 量測該第一平面電阻及該第二平面電阻的電壓值以得 出兩個觸壓點的一中心點的絕對座標; 量測該第-平面電阻及該第二平面電阻的電流值以計 [S] 18 201216140 算該兩個觸壓點於一觸控螢幕上的水平間隔單位數及垂直 間隔單位數;及 計算每一水平間隔單位及每一垂直間隔單位對應的解 析度值,並依據該解析度值及該兩個觸壓點相對該中心點的 位置取得該兩個觸壓點各自的即時絕對座標。 7·如請求項6所述之用於電阻式觸控板之多點觸控座 標偵測方法,其中該兩個觸壓點間的一水平距離與該第一平 面電阻的電流值具有—正比關係,且該兩個觸壓點間的一垂 直距離與該第二平面電_電流值具有—正比關係。 8·如凊求項6所述之用於電阻式觸控板之多點觸控座 標该測方法’其中該電壓量測步驟包含: 將該第平面電阻相對的兩側分別連接一電源及接地 且將該第二平面電阻相對的兩側均連接至一電壓量測單 元;及 將該第一平面電阻相對的兩側分別連接一電源及接地 且將該第-平面電阻相對的兩侧均連接至—雜量測單元。 * 9.如4求項6所述之㈣電阻式觸控板之多點觸控座 標该測方法,其巾該電流量測步驟包含: 旦,供一感測電墨至該第一平面電阻的一侧並將一電流 量測單it連接至該第—平面電阻相對的另一側;及 β ,供-感測電壓至該第二平面電阻的一側並將一電流 置測單元連接至該第二平面電阻相對的另一側。 19 201216140 1〇.如請求項6所述之用於電阻式觸控板之多點觸控座 標偵測方法,其令該解析度值計算步驟包含: 將該觸控螢幕的橫長及縱寬分別劃分為複數個水平間 隔單位及複數個垂直間隔單位;及 根據該觸控螢幕的畫面解析度計算每一水平間隔單位 對應之解析度及每-垂直間隔單位對應之解析度。 11. -種躲電阻式觸控板之多點座標彳貞測裝置, • 該電阻式觸控板至少包含彼此具—間隔的X透明導電層及γ 透明導電層,該X透明導電層於平行一 ¥軸方向上具杨對 的-第-X側及-第二乂侧,且該γ透明導電層於平行一 X軸方向上具有相對的-第一γ側及—第二γ侧,該多 控座標偵測裝置包含: ~ 至少三個感測單it,分別連接該第—χ側該第二X 侧、該第一 γ側及該第二γ侧中的至少三側,且每一 ^感測 • 單元具有—讀元件⑽行量戦流與量職JS間的切 換,該些感測單元於不同操作模式下债測出一第一 χ侧電麗 值、-第二X側電壓值、-第―丫側電墨值、一第二γ側 電壓值一 X側電流值及—γ側電流值,其中該些電壓 義兩侧壓關-中心點的絕對座標,該電流值對應該 兩個觸壓點於-觸控螢幕上的水平距離,且該Υ側電流ϋ 應該兩個觸壓點於該觸控螢幕上的垂直距離。 L 12. 如請求項㈣述之用於電阻式觸控板之多點觸控 [S] 20 201216140 座標伯職置,其中該魏解元係整合於—單顆b 13. -種麟電阻式板之多_控座標細裝置, 該電阻式觸控板至少包含彼此具—間_χ透明導電層及Y 透明導電層,該X透料電層於付—γ軸方向上具有相對 的一第一 χ側HX侧’且該Υ透明導電層於平行一 X轴方向上具有相對的一第一 γ側及一第二γ側該多點觸 控座標偵測裝置包含: 四個電流感測單元,分別連接該第一 χ側、該第二X 侧、該第-Υ側及該第二丫側,各該電流感測單元於^同操 作模式下_出-第-X側健值、—第二χ侧電壓值、— 第-Υ侧電壓值、-第二γ側電壓值、一χ側電流值及一 Υ侧電流值’其中該些電壓值定義兩個觸壓點的—中心點的 絕對座標’該X侧電流值對應該兩_壓點於—觸控榮幕上 的水平距離’錢丫織流值對賴^侧該觸控榮 幕上的垂直距離。 14.如請求項13所述之用於電阻式觸控板之多點觸控 座標偵測裝置,其中該些感測單元係整合於一單顆忙。 [S] 21201216140 VII. Application for Patent Park: 1. A multi-touch coordinate (4) method for resistive chirp, the resistive touch panel comprising at least a mutually-turned conductive layer and a transparent conductive layer. The X transparent conductive layer is parallel to a γ-axis direction and a first X side and a second X side of θ, and the γ transparent conductive layer has a relative - first γ side and a first in a parallel X-axis direction The two-gamma side-sampling method comprises the following steps: measuring a first X-side voltage value, a second-side voltage value-the first-side side value, and a second-side side voltage value to obtain two subsequent points. Absolute coordinates of a center point; measuring -X side current value and - gamma current value to calculate the horizontal interval unit number and vertical interval unit number of the two touch points on the touch screen; and calculating the per-level The interval unit and the resolution value corresponding to each vertical interval unit are obtained according to the resolution value and the positions of the two touch points relative to the center point to obtain the instantaneous absolute coordinates of the two touch points. 2. As requested! The multi-touch holder for the resistive touch panel, wherein the detection method 'the horizontal distance between the two points has a proportional relationship with the current value of the side, and the two touch points The inter-vertical distance has a proportional relationship with the gamma-side current value. 3. The multi-touch coordinate detecting method of the residual resistive touch panel according to claim 1, wherein the voltage measuring step comprises: connecting the first-X side to the power source and the second side Grounding and connecting a [SJ 201216140 voltage measuring unit to the first γ side and the second γ side; and connecting the first side to a power source and grounding the second γ side and a voltage measuring unit Connected to the first X side and the second X side. 4. The multi-touch coordinate detecting method for a resistive touch panel according to claim 1, wherein the current measuring step comprises: providing a sensing voltage to the first X side and a current amount The measuring unit is connected to the second X side; and provides a sensing voltage to the first side and a current measuring unit to the second side. 5. The multi-touch coordinate debt measuring method for a resistive touch panel according to claim 1, wherein the resolution value calculating step comprises: dividing the horizontal length and the vertical width of the touch screen into plural numbers respectively a horizontal interval unit and a plurality of vertical interval units; and calculating a resolution corresponding to each horizontal interval unit and a resolution corresponding to each vertical interval unit according to the screen resolution of the touch screen. 6. A multi-touch coordinate detecting method for a resistive touch panel, the resistive touch panel comprising at least a first-plane resistance for generating a -first-axis coordinate signal, and Generating a second planar resistance of the second axial coordinate signal, the multi-touch coordinate detection method comprising the steps of: measuring the voltage values of the first planar resistance and the second planar resistance to obtain two The absolute coordinate of a center point of the touch point; the current value of the first plane resistance and the second plane resistance is measured by [S] 18 201216140, and the horizontal interval of the two touch points on a touch screen is calculated a unit number and a vertical interval unit number; and calculating a resolution value corresponding to each horizontal interval unit and each vertical interval unit, and obtaining the two according to the resolution value and the positions of the two touch points relative to the center point The instantaneous absolute coordinates of the touch points. The multi-touch coordinate detecting method for a resistive touch panel according to claim 6, wherein a horizontal distance between the two touch points is proportional to a current value of the first planar resistor Relationship, and a vertical distance between the two touch points has a proportional relationship with the second plane electrical_current value. 8. The multi-touch coordinate method for resistive touch panel according to claim 6, wherein the voltage measuring step comprises: connecting the opposite sides of the first planar resistor to a power source and a ground respectively And connecting opposite sides of the second planar resistor to a voltage measuring unit; and connecting opposite sides of the first planar resistor to a power source and a ground respectively, and connecting opposite sides of the first plane resistor To - miscellaneous measurement unit. * 9. The method of measuring the multi-touch coordinate of the (4) resistive touch panel according to claim 4, wherein the current measuring step of the towel comprises: a sensing ink to the first planar resistor One side and a current measuring unit it is connected to the opposite side of the first plane resistance; and β, the sensing voltage is applied to one side of the second planar resistor and a current detecting unit is connected to The second planar resistance is opposite the other side. The method for detecting a multi-touch coordinate for a resistive touch panel according to claim 6, wherein the step of calculating the resolution value comprises: the horizontal length and the width of the touch screen Dividing into a plurality of horizontal interval units and a plurality of vertical interval units respectively; and calculating a resolution corresponding to each horizontal interval unit and a resolution corresponding to each vertical interval unit according to the screen resolution of the touch screen. 11. Multi-point coordinate measuring device for hiding resistive touch panel, • The resistive touch panel comprises at least X-transparent conductive layer and γ transparent conductive layer with each other, the X transparent conductive layer is parallel The γ-transparent conductive layer has a pair of -first γ side and a second γ side in a parallel X-axis direction in the direction of the axis. The multi-control coordinate detecting device comprises: ~ at least three sensing singles connected to at least three sides of the second X side, the first γ side and the second γ side, respectively, and each ^ Sensing • The unit has a - reading component (10) between the line turbulence and the amount of JS switching, the sensing unit in the different operating modes to measure a first side of the electric value, - the second X side voltage a value, a -th 丫-side electro-ink value, a second gamma-side voltage value-X-side current value, and a -γ-side current value, wherein the voltages are on both sides of the absolute-offset of the central point, the current value is The two touch points should be on the horizontal distance on the touch screen, and the side current ϋ should be the vertical distance between the two touch points on the touch screen. from. L 12. Multi-touch for resistive touch panels as described in item (4) [S] 20 201216140 coordinates of the post, where the Wei Jie Yuan is integrated in - single b 13. - Lin resistance plate a plurality of _ control coordinates, the resistive touch panel comprises at least a transparent conductive layer and a Y transparent conductive layer, the X dielectric layer having a first χ in the direction of the γ-axis The side HX side ′ and the Υ transparent conductive layer has a first γ side and a second γ side in a parallel X-axis direction. The multi-touch coordinate detecting device comprises: four current sensing units, respectively Connecting the first side, the second side, the first side, and the second side, each of the current sensing units in the same mode of operation - the -X-side value, - the second χ side voltage value, - first-turn side voltage value, - second γ side voltage value, one χ side current value and one Υ side current value 'where the voltage values define the absolute point of the two touch points - the absolute value The coordinate 'the X-side current value corresponds to two _ pressure points on the - the horizontal distance on the touch screen ' 丫 丫 丫 ^ ^ 该 该The vertical distance. 14. The multi-touch coordinate detecting device for a resistive touch panel according to claim 13, wherein the sensing units are integrated into a single busy. [S] 21
TW99135214A 2010-10-15 2010-10-15 Multi-touch coordinate measuring method and device for resistive touch panel TW201216140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99135214A TW201216140A (en) 2010-10-15 2010-10-15 Multi-touch coordinate measuring method and device for resistive touch panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99135214A TW201216140A (en) 2010-10-15 2010-10-15 Multi-touch coordinate measuring method and device for resistive touch panel

Publications (1)

Publication Number Publication Date
TW201216140A true TW201216140A (en) 2012-04-16

Family

ID=46787100

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99135214A TW201216140A (en) 2010-10-15 2010-10-15 Multi-touch coordinate measuring method and device for resistive touch panel

Country Status (1)

Country Link
TW (1) TW201216140A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI665611B (en) * 2017-07-28 2019-07-11 友達光電股份有限公司 Operation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI665611B (en) * 2017-07-28 2019-07-11 友達光電股份有限公司 Operation method

Similar Documents

Publication Publication Date Title
CN103221911B (en) Capacitive touch sensors and method for measurement in same
KR101084448B1 (en) A multi-point touch-sensitive system
TW201037576A (en) Touch sensor device
TW201044241A (en) Two-dimensional position sensor
TW200529052A (en) Anisotropic touch screen element
JP2017511522A (en) Projected capacitive touch with force detection
JP2009176114A (en) Touch panel device and user interface device
CN101661363A (en) Application method for multipoint touch sensing system
TW201203327A (en) A panel for position sensors
TW201303671A (en) Touch panel device
JP2009048233A (en) Touch panel input device
CN102792251A (en) Five-wire resistive touch screen pressure measurement circuit and method
TW201040824A (en) Patterned resistive touch panel
CN101661362A (en) Multipoint touch sensing device
CN105094487B (en) Touch screen and its control method, control device, touch display unit
CN110032300B (en) Touch panel and touch panel device
EP2904479B1 (en) Touch sensors and touch sensing methods
CN105389038B (en) Scan the method for touch screen and the touch-control integrated circuit for executing this method
KR20160144957A (en) Apparatus for improving signal-to-noise performance of projected capacitance touch screens and panels
TWI459267B (en) Method for detecting touch spot of touch panel
JP2010092347A (en) Touch panel device
TW201115448A (en) Multi-touch measuring method for resistive touch panel
US10318037B2 (en) Detection method for enhanced 3D detection module
TW201216140A (en) Multi-touch coordinate measuring method and device for resistive touch panel
JP5262703B2 (en) Coordinate input system