TWI636286B - Display device - Google Patents

Display device Download PDF

Info

Publication number
TWI636286B
TWI636286B TW106111028A TW106111028A TWI636286B TW I636286 B TWI636286 B TW I636286B TW 106111028 A TW106111028 A TW 106111028A TW 106111028 A TW106111028 A TW 106111028A TW I636286 B TWI636286 B TW I636286B
Authority
TW
Taiwan
Prior art keywords
waveform
light
sub
display device
fwhm
Prior art date
Application number
TW106111028A
Other languages
Chinese (zh)
Other versions
TW201837511A (en
Inventor
蔡宗輝
張凱傑
Original Assignee
友達光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友達光電股份有限公司 filed Critical 友達光電股份有限公司
Priority to TW106111028A priority Critical patent/TWI636286B/en
Priority to CN201911301020.1A priority patent/CN111367120B/en
Priority to CN201710305272.6A priority patent/CN107132692B/en
Application granted granted Critical
Publication of TWI636286B publication Critical patent/TWI636286B/en
Publication of TW201837511A publication Critical patent/TW201837511A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133624Illuminating devices characterised by their spectral emissions

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Led Device Packages (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一種顯示裝置包括顯示面板及光源模組。光源模組設置於顯示面板的一側。光源模組提供光源穿過顯示面板後呈現出顯示光。顯示光的頻譜包括峰值波長不同的第一波形、第二波形與第三波形中至少一者。第一波形具有第一峰值波長,第一峰值波長為λ1且λ1在500nm至570nm的範圍內。第二波形具有第二峰值波長,第二峰值波長為λ2且λ2在590nm至700nm的範圍內。所述第一波形的半高寬為FWHM1且符合公式1: ,其中λv=λ1/λ2。 A display device includes a display panel and a light source module. The light source module is disposed on one side of the display panel. The light source module provides display light after the light source passes through the display panel. The frequency spectrum of the display light includes at least one of a first waveform, a second waveform, and a third waveform having different peak wavelengths. The first waveform has a first peak wavelength, and the first peak wavelength is λ1 and λ1 is in a range of 500 nm to 570 nm. The second waveform has a second peak wavelength, and the second peak wavelength is λ2 and λ2 is in a range of 590 nm to 700 nm. The FWHM1 of the first waveform is FWHM1 and conforms to Formula 1: Where λv = λ1 / λ2.

Description

顯示裝置Display device

本發明是有關於一種電子裝置,且特別是有關於一種顯示裝置。 The invention relates to an electronic device, and in particular to a display device.

隨著顯示裝置日益普及,人們使用顯示裝置的頻率與時間都逐漸增長。使用顯示裝置時,由顯示裝置發射的顯示光會直接進入人眼,以讓使用者觀看到顯示裝置所顯示的影像。一般來說,由顯示裝置發出的顯示光進入人眼的能量往往高於使用者觀看紙面時所接收到的能量。這也是使用者使用顯示裝置來觀看影像較觀看紙面時更容易疲勞的原因之一。特別是,顯示光進入人眼的能量越大,使用者的雙眼越容易疲勞,甚至導致使用者的眼部病變。因此,除了在畫質與裝置品質上的改良外,可以減緩使用者觀看畫面時的疲勞程度也是顯示裝置的改良需要考量的因素。 With the increasing popularity of display devices, the frequency and time that people use display devices have gradually increased. When the display device is used, the display light emitted by the display device directly enters the human eye, so that the user can view the image displayed by the display device. In general, the energy of the display light emitted by the display device to enter the human eye is often higher than the energy received by the user when viewing the paper surface. This is one of the reasons why users use display devices to view images more easily than when viewing paper. In particular, the greater the energy of display light entering the human eye, the more susceptible the user's eyes are to fatigue, and even cause eye lesions to the user. Therefore, in addition to improvements in image quality and device quality, the degree of fatigue that can be reduced when a user views a screen is also a factor that needs to be considered in the improvement of a display device.

本發明提供一種顯示裝置,可以維持理想的顯示效果並 且減輕使用者觀看顯示畫面時產生疲勞的程度。 The invention provides a display device which can maintain an ideal display effect and In addition, it reduces the degree of fatigue that occurs when a user views a display screen.

本發明一實施例的顯示裝置包括顯示面板及光源模組。光源模組設置於顯示面板的一側。光源模組提供光源穿過顯示面板後呈現出顯示光。顯示光的頻譜包括峰值波長不同的第一波形、第二波形與第三波形中至少一者。第一波形具有第一峰值波長,第一峰值波長為λ1且λ1在500nm至570nm的範圍內。第二波形具有第二峰值波長,第二峰值波長為λ2且λ2在590nm至700nm的範圍內。所述第一波形的半高寬為FWHM1且符合公式1:FWHM 1 -15970λ v 2+29486λ v -13533,其中λv=λ1/λ2。 A display device according to an embodiment of the present invention includes a display panel and a light source module. The light source module is disposed on one side of the display panel. The light source module provides display light after the light source passes through the display panel. The frequency spectrum of the display light includes at least one of a first waveform, a second waveform, and a third waveform having different peak wavelengths. The first waveform has a first peak wavelength, and the first peak wavelength is λ1 and λ1 is in a range of 500 nm to 570 nm. The second waveform has a second peak wavelength, and the second peak wavelength is λ2 and λ2 is in a range of 590 nm to 700 nm. The FWHM of the first waveform is FWHM 1 and conforms to Formula 1: FWHM 1 -15970 λ v 2 +29486 λ v -13533, where λ v = λ1 / λ2.

在本發明的一實施例中,0.852<λ v<0.894。 In one embodiment of the present invention, 0.852 < λ v <0.894.

在本發明的一實施例中,第二波形的半高寬為FWHM2且符合公式2:FWHM 2 -15970λ v 2+29486λ v -13533。 In an embodiment of the present invention, the FWHM of the second waveform is FWHM 2 and conforms to Formula 2: FWHM 2 -15970 λ v 2 +29486 λ v -13533.

在本發明的一實施例中,FWHM1與FWHM2的差值小於5nm。 In one embodiment of the present invention, the difference between FWHM 1 and FWHM 2 is less than 5 nm.

在本發明的一實施例中,0.866<λ v<0.886,第二波形的半高寬為FWHM2,則FWHM1<59.4nm且FWHM2<59.4nm。 In an embodiment of the present invention, 0.866 < λ v <0.886, and the FWHM of the second waveform is FWHM 2 , then FWHM 1 <59.4nm and FWHM 2 <59.4nm.

在本發明的一實施例中,0.862<λ v<0.868,第二波形的半高寬為FWHM2,則FWHM1<32.7nm且FWHM2<32.7nm。 In an embodiment of the present invention, 0.862 < λ v <0.868, and the FWHM of the second waveform is FWHM 2 , then FWHM 1 <32.7nm and FWHM 2 <32.7nm.

在本發明的一實施例中,第二波形的半高寬為FWHM2,且FWHM2等於FWHM1In an embodiment of the present invention, the FWHM of the second waveform is FWHM 2 , and FWHM 2 is equal to FWHM 1 .

在本發明的一實施例中,光源模組包括多個發光元件。發光元件適於發出光源且發光元件包括三波長型發光元件。 In an embodiment of the invention, the light source module includes a plurality of light emitting elements. The light emitting element is adapted to emit a light source and the light emitting element includes a three-wavelength type light emitting element.

在本發明的一實施例中,三波長型發光元件包括量子點型發光二極體元件、螢光粉型發光二極體元件、晶片型發光二極體元件或其組合。 In one embodiment of the present invention, the three-wavelength type light emitting element includes a quantum dot type light emitting diode element, a phosphor powder type light emitting diode element, a wafer type light emitting diode element, or a combination thereof.

在本發明的一實施例中,顯示面板包括多個第一子畫素、多個第二子畫素與多個第三子畫素。第一子畫素、第二子畫素與第三子畫素呈陣列排列,且第一子畫素、第二子畫素與第三子畫素適於同步或不同步開啟以呈現出所述顯示光。 In an embodiment of the invention, the display panel includes a plurality of first sub-pixels, a plurality of second sub-pixels, and a plurality of third sub-pixels. The first subpixel, the second subpixel, and the third subpixel are arranged in an array, and the first subpixel, the second subpixel, and the third subpixel are suitable to be turned on synchronously or asynchronously to show all Mentioned display light.

在本發明的一實施例中,顯示面板藉由開啟第一子畫素而使顯示光包括第一波形。 In one embodiment of the present invention, the display panel includes a first waveform by turning on the first sub-pixel.

在本發明的一實施例中,顯示面板藉由開啟第二子畫素而使顯示光包括第二波形。 In one embodiment of the present invention, the display panel includes a second waveform by turning on the second sub-pixel.

在本發明的一實施例中,顯示面板藉由開啟第三子畫素而使顯示光包括第三波形。 In one embodiment of the present invention, the display panel includes a third waveform by turning on the third sub-pixel.

在本發明的一實施例中,顯示面板更包括多個第四子畫素。第一子畫素、第二子畫素、第三子畫素與第四子畫素呈陣列排列,且第一子畫素、第二子畫素、第三子畫素與第四子畫素適於同步或不同步開啟以呈現出顯示光。 In an embodiment of the invention, the display panel further includes a plurality of fourth sub-pixels. The first subpixel, the second subpixel, the third subpixel, and the fourth subpixel are arranged in an array, and the first subpixel, the second subpixel, the third subpixel, and the fourth subpixel are arranged in an array. The element is suitable to be turned on synchronously or asynchronously to present display light.

在本發明的一實施例中,顯示面板藉由開啟第四子畫素而使顯示光包括第一波形、第二波形與第三波形。 In an embodiment of the invention, the display panel includes a first waveform, a second waveform, and a third waveform by turning on the fourth sub-pixel.

在本發明的一實施例中,第三波形具有第三峰值波長,第三峰值波長為λ3且λ3在440nm至470nm的範圍內。 In an embodiment of the present invention, the third waveform has a third peak wavelength, and the third peak wavelength is λ3 and λ3 is in a range of 440 nm to 470 nm.

本發明一實施例的顯示裝置包括顯示面板及光源模組。 光源模組設置於顯示面板的一側。光源模組提供光源穿過顯示面板後呈現出顯示光。顯示光的頻譜包括峰值波長不同的第一波形、第二波形與第三波形中至少一者。第一波形具有第一峰值波長,第一峰值波長為λ1C且λ1C在500nm至570nm的範圍內。第二波形具有多個峰值波長。第二波形的峰值波長最大者在590nm至700nm的範圍內。第一波形的半高寬為Fc且Fc符合公式3:Fc -0.16λ 1C 2+181.2λ 1C -51212。 A display device according to an embodiment of the present invention includes a display panel and a light source module. The light source module is disposed on one side of the display panel. The light source module provides display light after the light source passes through the display panel. The frequency spectrum of the display light includes at least one of a first waveform, a second waveform, and a third waveform having different peak wavelengths. The first waveform has a first peak wavelength, the first peak wavelength is λ 1C and λ 1C is in a range of 500 nm to 570 nm. The second waveform has a plurality of peak wavelengths. The largest peak wavelength of the second waveform is in the range of 590 nm to 700 nm. The FWHM of the first waveform is Fc and Fc conforms to Equation 3: Fc -0.16 λ 1C 2 +181.2 λ 1 C -51212.

在本發明的一實施例中,第二波形具有三個峰值波長。 In an embodiment of the invention, the second waveform has three peak wavelengths.

在本發明的一實施例中,光源模組包括至少一螢光粉型發光二極體元件。螢光粉型發光二極體元件第二波形的光。 In one embodiment of the present invention, the light source module includes at least one phosphor-type light emitting diode element. Light of the second waveform of the phosphor type light emitting diode element.

在本發明的一實施例中,所述螢光粉型發光二極體元件包括紅色螢光粉,且紅色螢光粉的化學式為A2(MF6):Mn4+,其中A是Li、Na、K、Rb、Cs、NH4的其中一種,而M是Ge、Si、Sn、Ti、Zr的其中一種或者是上述元素的組合。 In an embodiment of the present invention, the phosphor-type light-emitting diode element includes red phosphor, and the chemical formula of the red phosphor is A 2 (MF 6 ): Mn 4+ , where A is Li, One of Na, K, Rb, Cs, NH 4 and M is one of Ge, Si, Sn, Ti, Zr or a combination of the above elements.

基於上述,本發明實施例的顯示裝置,利用顯示光的峰值波長調整,以達到呈現出單位入眼能量較低的顯示光。同時,本發明實施例的顯示裝置在較低單位入眼能量之下仍可維持理想的演色性與顯示品質。 Based on the above, the display device of the embodiment of the present invention utilizes the adjustment of the peak wavelength of the display light to achieve display light with a lower unit eye energy. At the same time, the display device of the embodiment of the present invention can still maintain ideal color rendering and display quality under a low unit of eye energy.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 In order to make the above features and advantages of the present invention more comprehensible, embodiments are hereinafter described in detail with reference to the accompanying drawings.

10‧‧‧視效函數分布線 10‧‧‧ visual effect function distribution line

100‧‧‧顯示裝置 100‧‧‧ display device

110、110A、110B‧‧‧顯示面板 110, 110A, 110B‧‧‧ display panel

112‧‧‧第一子畫素 112‧‧‧ the first sub pixel

114‧‧‧第二子畫素 114‧‧‧ second sub-pixel

116‧‧‧第三子畫素 116‧‧‧ third sub pixel

118‧‧‧第四子畫素 118‧‧‧ fourth sub pixel

120‧‧‧光源模組 120‧‧‧light source module

122‧‧‧發光元件 122‧‧‧Light-emitting element

FWHM1、FWHM2、FWHM3‧‧‧半高寬 FWHM 1 , FWHM 2 , FWHM 3 ‧‧‧ half-width

L‧‧‧顯示光 L‧‧‧Display light

S‧‧‧光源 S‧‧‧light source

SP1、SP2、SP3‧‧‧頻譜 SP1, SP2, SP3 ‧‧‧ Spectrum

W1、W1A、W1B、W1C‧‧‧第一波形 W1, W1A, W1B, W1C‧‧‧ the first waveform

W2、W2A、W2B、W2C‧‧‧第二波形 W2, W2A, W2B, W2C‧‧‧Second Waveform

W3、W3A、W3B、W3C‧‧‧第三波形 W3, W3A, W3B, W3C‧‧‧Third Waveform

λ1、λ1C‧‧‧第一峰值波長 λ 1, λ 1C ‧‧‧ the first peak wavelength

λ2‧‧‧第二峰值波長 λ 2‧‧‧ second peak wavelength

λ3‧‧‧第三峰值波長 λ 3‧‧‧ third peak wavelength

圖1是視效函數圖。 Figure 1 is a visual effect function diagram.

圖2為本發明一實施例的顯示裝置的示意圖。 FIG. 2 is a schematic diagram of a display device according to an embodiment of the invention.

圖3至圖5為顯示裝置所發出的顯示光的整體頻譜,其中縱軸為發光強度經正規化後所得的強度百分比,而橫軸為發光波長。 FIG. 3 to FIG. 5 are the overall spectrum of the display light emitted by the display device, wherein the vertical axis is the intensity percentage obtained after the light emission intensity is normalized, and the horizontal axis is the light emission wavelength.

圖6為圖2的顯示裝置中顯示面板的一實施例的上視示意圖。 FIG. 6 is a schematic top view of an embodiment of a display panel in the display device of FIG. 2.

圖7為圖2的顯示裝置中顯示面板的另一實施例的上視示意圖。 FIG. 7 is a schematic top view of another embodiment of a display panel in the display device of FIG. 2.

由於人眼對於不同波長的光有著不同的敏銳性,顯示裝置的實際發光強度並非直接反映出人眼所感受到的亮度。因此,國際照明委員會(INTERNATIONAL COMMISSION ON ILLUMINATION,CIE)公布了以實驗方式得到的視效函數(如圖1所示)作為亮度計算的標準函數。 Because the human eye has different sensitivities to light of different wavelengths, the actual luminous intensity of the display device does not directly reflect the brightness perceived by the human eye. Therefore, the International Commission on Illumination (CIE) has published the visual effect function (as shown in Figure 1) obtained experimentally as a standard function for brightness calculation.

具體來說,亮度(luminance)是表示人眼對發光體的發光或被照射物體表面的反射光進入人眼的光強度的實際感受程度。根據國際照明委員會(CIE)發布的標準,一個發光裝置的亮度為此發光裝置的發光強度頻譜與視效函數相乘後的內積,且亮度單位為流明(lumen,lm)。對於本身不發光只反射光線的物品來說,則可以採用環境照明的發光強度頻譜與物品的反射率的乘積來做出進入人眼的光強度頻譜,並以進入人眼的光強度頻譜與視 效函數相乘後的內積來計算出人眼觀看此類物品所感受到的亮度。此外,根據亮度的計算方式可知,頻譜中各波長下進入人眼的光強度總合與亮度的比值可以視為每單位亮度的單位入眼能量(單位為瓦/流明,W/lm)。 Specifically, brightness refers to the actual degree of human light's perception of the light intensity of the luminous body or the reflected light from the surface of the illuminated object entering the human eye. According to the standards issued by the International Commission on Illumination (CIE), the brightness of a light-emitting device is the inner product of the luminous intensity spectrum of the light-emitting device multiplied by the visual effect function, and the unit of brightness is lumen (lm). For an item that does not emit light and reflects only light, the product of the light intensity spectrum of ambient lighting and the reflectance of the article can be used to make the light intensity spectrum that enters the human eye, and the light intensity spectrum that enters the human eye and the visual The inner product multiplied by the effect function to calculate the brightness perceived by the human eye when viewing such an item. In addition, according to the calculation method of brightness, it can be known that the ratio of the sum of the light intensity entering the human eye and the brightness at each wavelength in the spectrum can be regarded as the unit eye energy per unit of brightness (the unit is watt / lumen, W / lm).

以色溫5500K的環境照明下觀看可見光反射率為75%至85%的紙張,所得到的單位入眼能量大致為3.15×10-3瓦/流明(W/lm)。相較之下,現今市場上的顯示裝置(以液晶顯示裝置為例)的顯示光的單位入眼能量約為3.4×10-3瓦/流明(W/lm)至4.01×10-3瓦/流明(W/lm)甚至更高。由此可知,觀看顯示裝置的畫面與觀看紙張上印刷的資訊兩者相較之下,人眼觀看顯示裝置的畫面時感受到疲勞的現象較為明顯。 When viewing paper with a visible light reflectance of 75% to 85% under an ambient lighting at a color temperature of 5500K, the unit eye energy obtained is approximately 3.15 × 10 -3 watts / lumen (W / lm). In comparison, the unit eye energy of display light of display devices on the market today (taking liquid crystal display devices as an example) is about 3.4 × 10 -3 watts / lumen (W / lm) to 4.01 × 10 -3 watts / lumen (W / lm) is even higher. It can be seen that compared to viewing the screen of the display device and viewing the information printed on the paper, the phenomenon of fatigue when human eyes see the screen of the display device is more obvious.

由圖1的視效函數分布線10可知,視效函數的峰值波長大致落在555nm處,且由555nm處向兩側遞減,也就是一個正常分布(normal distribution)型函數。根據視效函數分布線10,在相同光強度下,光線的波長越接近555nm,人眼可以感受到的亮度越亮。因此,如果要將顯示裝置的單位入眼能量降低又要維持人眼觀看到的亮度,調整顯示裝置的顯示光的頻譜分布是一種可採用的方式。 It can be seen from the visual effect function distribution line 10 in FIG. 1 that the peak wavelength of the visual effect function falls approximately at 555 nm and decreases from 555 nm to both sides, which is a normal distribution type function. According to the visual effect function distribution line 10, under the same light intensity, the closer the wavelength of the light is to 555 nm, the brighter the human eye can feel. Therefore, if the unit eye energy of the display device is to be reduced and the brightness viewed by the human eye is to be maintained, adjusting the spectral distribution of the display light of the display device is an available method.

表一為經實驗後所得的顯示光的單位入眼能量的結果。表一的結果是在顯示裝置的光源模組中採用不同規格的發光元件,並量測顯示光的強度頻譜後所計算出來的單位入眼能量。在此,顯示光的強度頻譜由三個波形組成,因此具有三個波峰,其 峰值波長由短到長可分別表示藍光波形、綠光波形與紅光波形。表一的第一欄中每個表格列出三個數字,這三個數字分別代表這三個波形的峰值波長。在表一的實驗中,藍光波形的峰值波長固定為450nm,綠光波形的峰值波長包括530nm、535nm、540nm、545nm、550nm與555nm,而紅光波形的峰值波長包括630nm、625nm、620nm、615nm與610nm。此外,在表一的實驗中,可以藉由發光元件的選擇,使得綠光波形與紅光波形的半高寬都相同,且第一列的FWHM即表示為綠光波形與紅光波形在各實驗例中的半高寬大小,其在20nm~60nm。 Table 1 shows the results of the unit eye energy of light obtained after the experiment. The results in Table 1 are unit eye energy calculated by using light emitting elements of different specifications in the light source module of the display device and measuring the intensity spectrum of the display light. Here, the intensity spectrum of the display light consists of three waveforms and therefore has three peaks, which The peak wavelength can represent blue light waveform, green light waveform and red light waveform from short to long respectively. Each table in the first column of Table 1 lists three numbers, and these three numbers represent the peak wavelengths of the three waveforms. In the experiments in Table 1, the peak wavelength of the blue light waveform is fixed at 450nm, the peak wavelength of the green light waveform includes 530nm, 535nm, 540nm, 545nm, 550nm, and 555nm, and the peak wavelength of the red light waveform includes 630nm, 625nm, 620nm, 615nm With 610nm. In addition, in the experiment in Table 1, the full width at half maximum of the green light waveform and the red light waveform can be made by the selection of the light-emitting element, and the FWHM of the first column is expressed as the green light waveform and the red light waveform in each The full width at half maximum in the experimental example ranges from 20nm to 60nm.

由表一可以得知,單位入眼能量與紅光波形及綠光波形的峰值波長以及半高寬有關。紅光波形及綠光波形的峰值波長固定時,紅光波形及綠光波形的半高寬越大,單位入眼能量越大。 紅光波形及綠光波形的半高寬固定時,單位入眼能量會隨綠光波形及紅光波形的峰值波長比值變化。經統計後,可得綠光波形的半高寬為FWHMG符合下列公式:FWHM G -15970λ v 2+29486λ v -13533時,單位入眼能量不大於3.15×10-3瓦/流明(W/lm),其中λv為綠光波形及紅光波形的峰值波長比值,也就是說,綠光波形的峰值波長為λG,紅光波形的峰值波長為λR時,λv=λG/λR。同時,紅光波形的半高寬FWHMR符合下列公式:FWHM R -15970λ v 2+29486λ v -13533時,單位入眼能量不大於3.15×10-3瓦/流明(W/lm)。因此,顯示裝置可以依據上述關係式來設計以減輕人眼觀看疲勞感,讓使用者舒適的觀看畫面。 As can be seen from Table 1, the unit eye energy is related to the peak wavelength and half-width of the red and green light waveforms. When the peak wavelengths of the red light waveform and the green light waveform are fixed, the larger the FWHM of the red light waveform and the green light waveform, the greater the unit eye energy. When the FWHM of the red and green waveforms is fixed, the unit eye energy will change with the peak wavelength ratio of the green and red waveforms. After statistics, it can be obtained that the FWHM of the green light waveform is FWHM G, which conforms to the following formula: FWHM G -15970 λ v 2 +29486 λ v -13533, the unit eye energy is not greater than 3.15 × 10 -3 watts / lumen (W / lm), where λ v is the peak wavelength ratio of the green light waveform and the red light waveform, that is, In other words, when the peak wavelength of the green light waveform is λG and the peak wavelength of the red light waveform is λR, λ v = λG / λR. At the same time, the FWHM R of the FWHM of the red light waveform conforms to the following formula: FWHM R -15970 λ v 2 +29486 λ v -13533, the unit eye energy is not more than 3.15 × 10 -3 watts / lumen (W / lm). Therefore, the display device can be designed according to the above-mentioned relational expression to reduce the viewing fatigue of human eyes and allow the user to view the picture comfortably.

圖2為本發明一實施例的顯示裝置的示意圖。請參照圖2,顯示裝置100包括顯示面板110以及光源模組120,其中光源模組120設置於顯示面板110的一側,且光源模組120提供的光源S穿過顯示面板110後即呈現出顯示光L。光源模組120是一個可以提供面光源的組件,可以採用直下式背光模組的型態來實現或是採用側面入光式背光模組的型態來實現。圖2以光源模組120為直下式背光模組作為示例進行說明,但不以此為限。 FIG. 2 is a schematic diagram of a display device according to an embodiment of the invention. Referring to FIG. 2, the display device 100 includes a display panel 110 and a light source module 120. The light source module 120 is disposed on one side of the display panel 110, and the light source S provided by the light source module 120 passes through the display panel 110 and appears. Display light L. The light source module 120 is a component that can provide a surface light source, which can be implemented by using a direct type backlight module or by using a side-type backlight module. FIG. 2 illustrates the light source module 120 as a direct-type backlight module as an example, but is not limited thereto.

光源模組120包括多個發光元件122,且發光元件122的發光方向朝向顯示面板110以提供光源S。光源模組120可更包括有擴散片、稜鏡片、增亮片等光學片(未繪示),且光學片可以設置於顯示面板110與發光元件122之間。在其他實施例中,光源模組120如果採用側面入光式背光模組的型態來實施,則光源模 組120可以包括一導光板,其具有相鄰的入光面與出光面。此時,發光元件122的發光方向可以朝向導光板的入光面,而導光板的出光面可以面向顯示面板110。 The light source module 120 includes a plurality of light emitting elements 122, and the light emitting direction of the light emitting elements 122 is directed toward the display panel 110 to provide the light source S. The light source module 120 may further include an optical sheet (not shown) such as a diffusion sheet, a fascia sheet, and a brightness enhancement sheet, and the optical sheet may be disposed between the display panel 110 and the light emitting element 122. In other embodiments, if the light source module 120 is implemented by using a side-light type backlight module, the light source module 120 The group 120 may include a light guide plate having adjacent light incident surfaces and light emitting surfaces. At this time, the light emitting direction of the light emitting element 122 may be toward the light incident surface of the light guide plate, and the light emitting surface of the light guide plate may face the display panel 110.

在一實施例中,發光元件122用以發出光源S,且光源S經過顯示面板110後呈現出來的顯示光L的整體頻譜如圖3所示。由圖3可知,顯示光L的整體頻譜包括第一波形W1、第二波形W2與第三波形W3。第一波形W1具有的第一峰值波長為λ1且λ1在500nm至570nm的範圍內。第二波形W2具有的第二峰值波長為λ2且λ2在590nm至700nm的範圍內。第三波形W3具有的第三峰值波長為λ3且λ3在440nm至470nm的範圍內。如此一來,第一波形W1的光大致呈現出綠光,第二波形W2的光大致呈現出紅光而第三波形W3的光大致呈現出藍光。顯示裝置110的顯示光L可以由第一波形W1、第二波形W2與第三波形W3的至少一者或及其組成以顯示出需要的畫面色彩。 In one embodiment, the light-emitting element 122 is configured to emit the light source S, and the entire frequency spectrum of the display light L displayed by the light source S after passing through the display panel 110 is shown in FIG. 3. It can be seen from FIG. 3 that the entire frequency spectrum of the display light L includes a first waveform W1, a second waveform W2, and a third waveform W3. The first waveform W1 has a first peak wavelength of λ1 and λ1 is in a range of 500 nm to 570 nm. The second waveform W2 has a second peak wavelength of λ2 and λ2 is in a range of 590 nm to 700 nm. The third waveform W3 has a third peak wavelength of λ3 and λ3 is in a range of 440 nm to 470 nm. In this way, the light of the first waveform W1 is approximately green, the light of the second waveform W2 is approximately red, and the light of the third waveform W3 is approximately blue. The display light L of the display device 110 may be composed of at least one of the first waveform W1, the second waveform W2, and the third waveform W3 or a combination thereof to display a required screen color.

舉例而言,顯示白色畫面時,顯示裝置100的顯示光L可以由第一波形W1、第二波形W2與第三波形W3三者共同組成;顯示藍色畫面時,顯示裝置100的顯示光L可以由第三波形W3組成。顯示綠色畫面時,顯示裝置100的顯示光L可以由第一波形W1組成。顯示紅色畫面時,顯示裝置100的顯示光L則由第二波形W2組成。顯示紫色畫面時,顯示裝置100的顯示光L則由第二波形W2與第三波形W3組成。顯示黃色畫面時,顯示裝置100的顯示光L則由第一波形W1與第二波形W2組成。 For example, when displaying a white screen, the display light L of the display device 100 may be composed of the first waveform W1, the second waveform W2, and the third waveform W3. When displaying a blue screen, the display light L of the display device 100 It may be composed of the third waveform W3. When the green screen is displayed, the display light L of the display device 100 may be composed of the first waveform W1. When the red screen is displayed, the display light L of the display device 100 is composed of the second waveform W2. When the purple screen is displayed, the display light L of the display device 100 is composed of the second waveform W2 and the third waveform W3. When a yellow screen is displayed, the display light L of the display device 100 is composed of a first waveform W1 and a second waveform W2.

在本實施例中,為了使顯示裝置100提供較為舒適的視覺效果,可以調整第一波形W1的半高寬FWHM1、第二波形W2的半高寬FWHM2與第三波形W3的半高寬FWHM3中至少一者及/或調整第一峰值波長λ1、第二峰值波長λ2與第一峰值波長λ3中至少一者。具體來說,依據前述表一的實驗結果,要使顯示裝置100的顯示光L具有的單位入眼能量不大於3.15×10-3瓦/流明(W/lm),第一波形W1的半高寬FWHM1可設置為符合公式1:FWHM 1 -15970λ v 2+29486λ v -13533,其中λv=λ1/λ2。同時,第二波形W2的半高寬FWHM2可設置為符合公式2,其中公式2:FWHM 2 -15970λ v 2+29486λ v -13533。 In this embodiment, in order to provide the display device 100 with a more comfortable visual effect, the FWHM 1 of the FWHM 1 of the first waveform W1, the FWHM 2 of the FWHM 2 of the second waveform W2, and the FWHM of the third waveform W3 can be adjusted. At least one of the FWHM 3 and / or the adjustment of at least one of the first peak wavelength λ 1, the second peak wavelength λ 2 and the first peak wavelength λ 3. Specifically, according to the experimental results in Table 1 above, the unit eye energy of the display light L of the display device 100 is not greater than 3.15 × 10 -3 watts / lumen (W / lm), and the full width at half maximum of the first waveform W1 FWHM 1 can be set to conform to Formula 1: FWHM 1 -15970 λ v 2 +29486 λ v -13533, where λ v = λ1 / λ2. At the same time, the FWHM 2 of the full width at half maximum of the second waveform W2 can be set to conform to Formula 2, where Formula 2: FWHM 2 -15970 λ v 2 +29486 λ v -13533.

一般來說,λ v太大可能使得顯示裝置100的演色性不佳,而λ v太小不容易符合低單位入眼能量的需求。舉例來說,在λ v>0.894時,由於呈現綠光的第一波形W1與呈現紅光的第二波形W2所呈現的色彩彼此接近,顯示裝置100的NTSC覆蓋率會小於80%,這將因為演色性不佳而無法達到自然且逼真的顯示效果。在λ v<0.852時,經表一的實驗結果得知,顯示光L的單位入眼能量大致上都會高於3.15×10-3瓦/流明(W/lm)。因此,在一實施例中,也可進一步選擇以0.852<λ v<0.894作為顯示裝置的設定條件。 In general, too large λ v may make the color rendering of the display device 100 poor, and too small λ v is not easy to meet the requirement of low unit eye energy. For example, when λ v > 0.894, because the colors presented by the first waveform W1 showing green light and the second waveform W2 showing red light are close to each other, the NTSC coverage of the display device 100 will be less than 80%, which will Due to poor color rendering, it is impossible to achieve a natural and realistic display effect. When λ v <0.852, the experimental results in Table 1 show that the unit eye energy of the display light L is generally higher than 3.15 × 10 -3 watts / lumen (W / lm). Therefore, in one embodiment, 0.852 < λ v <0.894 can be further selected as the setting condition of the display device.

舉例來說,λ1為536nm且λ2為629nm時,λ v為0.852。在這樣的第一峰值波長λ1與第二峰值波長λ2下,為了達到理想的單位入眼能量,FWHM1與FWHM2需要都為1nm左右。λ1為 543nm且λ2為620nm時,λ v也可為0.852。在這樣的第一峰值波長λ1與第二峰值波長λ2下,為了達到理想的單位入眼能量FWHM1與FWHM2需要都為30nm以下。另外,λ1為550nm且λ2為615nm時,λ v為0.894。在這樣的第一峰值波長λ1與第二峰值波長λ2下,為了達到理想的單位入眼能量,FWHM1與FWHM2需要都為64nm以下。 For example, when λ 1 is 536 nm and λ 2 is 629 nm, λ v is 0.852. In such a first peak wavelength λ 1 and a second peak wavelength λ 2, in order to achieve an ideal unit eye energy, both FWHM 1 and FWHM 2 need to be about 1 nm. When λ 1 is 543 nm and λ 2 is 620 nm, λ v may be 0.852. In such a first peak wavelength λ 1 and a second peak wavelength λ 2, in order to achieve the ideal unit eye energy FWHM 1 and FWHM 2 both need to be 30 nm or less. When λ 1 is 550 nm and λ 2 is 615 nm, λ v is 0.894. In such a first peak wavelength λ 1 and a second peak wavelength λ 2, in order to achieve the ideal unit eye energy, both FWHM 1 and FWHM 2 need to be 64 nm or less.

在其他實施例中,可選擇讓0.866<λ v<0.886,FWHM1<59.4nm且FWHM2<59.4nm。此時,λ1可以為540nm至545nm,且λ2可以為612nm至625nm。在又另一實施例中,可選擇讓0.862<λ v<0.868,FWHM1<32.7nm且FWHM2<32.7nm。此時,λ1可以為544nm至546nm,且λ2可以為629nm至631nm。在上述各種條件範圍下,顯示裝置100顯示畫面時,顯示光L的單位入眼能量可以不高於3.15×10-3瓦/流明(W/lm)。 In other embodiments, 0.866 < λ v <0.886, FWHM 1 <59.4nm, and FWHM 2 <59.4nm can be selected. At this time, λ 1 may be 540 nm to 545 nm, and λ 2 may be 612 nm to 625 nm. In yet another embodiment, 0.862 < λ v <0.868, FWHM 1 <32.7nm, and FWHM 2 <32.7nm can be selected. At this time, λ 1 may be 544 nm to 546 nm, and λ 2 may be 629 nm to 631 nm. Under the above various condition ranges, when the display device 100 displays a screen, the unit eye energy of the display light L may not be higher than 3.15 × 10 -3 watts / lumen (W / lm).

圖2的顯示裝置100可以根據目標的單位入眼能量來選擇光源模組120中的發光元件122,以使顯示光L的頻譜符合上述各種條件。具體來說,發光元件122可以為三波長型發光元件,且三波長型發光元件可以包括量子點型發光二極體元件、螢光粉型發光二極體元件、晶片型發光二極體元件或其組合。當採用同一種類型的發光二極體元件作為顯示裝置100的發光元件122時,圖3中的半高寬FWHM1與FWHM2的差值可以小於5nm,甚至半高寬FWHM1與FWHM2可以彼此相等,但不以此為限。此外,在一實施例中,在半高寬FWHM1或是FWHM2大於5nm時,第三 波形W3的半高寬FWHM3可為15nm至30nm。另外,在半高寬FWHM1或是FWHM2小於5nm時,第三波形W3的半高寬FWHM3可以也小於5nm。半高寬較小的波形的發光元件例如為雷射元件,但不以此為限。 The display device 100 of FIG. 2 may select the light emitting element 122 in the light source module 120 according to the target unit eye energy, so that the frequency spectrum of the display light L conforms to the aforementioned various conditions. Specifically, the light-emitting element 122 may be a three-wavelength light-emitting element, and the three-wavelength light-emitting element may include a quantum dot-type light-emitting diode element, a phosphor powder-type light-emitting diode element, a wafer-type light-emitting diode element, or Its combination. When the same type of light-emitting diode element is used as the light-emitting element 122 of the display device 100, the difference between the FWHM 1 and FWHM 2 in FIG. 3 can be less than 5 nm, and even the FWHM 1 and FWHM 2 can be They are equal to each other, but not limited to this. In addition, in one embodiment, when the FWHM 1 or FWHM 2 is larger than 5 nm, the FWHM 3 of the third waveform W3 may be 15 nm to 30 nm. In addition, when the FWHM 1 or FWHM 2 is less than 5 nm, the FWHM 3 FWHM 3 of the third waveform W3 may also be less than 5 nm. The light-emitting element having a waveform having a smaller half-width is, for example, a laser element, but is not limited thereto.

量子點型發光二極體元件包括發光二極體晶片以及與發光二極體晶片封裝在一起的量子點晶體。發光二極體晶片採電致發光的方式發出光線,且發光二極體晶片發出的光照射量子點晶體後,量子點晶體也會發出光線。一般來說,發光二極體晶片發出的光可以為藍光或是紫外光。量子點晶體的尺寸(或直徑)大小可以決定發光元件的發光頻譜,且量子點晶體的尺寸越小則發光頻譜的峰值波長越小。因此,可以依據需要的峰值波長來決定量子點晶體的尺寸大小。 The quantum dot type light emitting diode element includes a light emitting diode wafer and a quantum dot crystal packaged with the light emitting diode wafer. The light emitting diode wafer emits light in an electroluminescence manner, and after the light emitted by the light emitting diode wafer irradiates the quantum dot crystal, the quantum dot crystal also emits light. Generally, the light emitted by the light-emitting diode wafer can be blue light or ultraviolet light. The size (or diameter) of the quantum dot crystal can determine the light emission spectrum of the light emitting element, and the smaller the size of the quantum dot crystal, the smaller the peak wavelength of the light emission spectrum. Therefore, the size of the quantum dot crystal can be determined according to the required peak wavelength.

螢光粉型發光二極體元件包括發光二極體晶片以及與發光二極體晶片封裝在一起的螢光粉。發光二極體晶片採電致發光的方式發出光線,且發光二極體晶片的光照射螢光粉後,螢光粉會發出不同波長的光。一般來說,發光二極體晶片發出的光可以為藍光或是紫外光。螢光粉的材質可以決定發光元件的發光頻譜。因此,可以依據需要的峰值波長來決定螢光粉的種類。在一實施例中,可以將紅色螢光粉與綠色螢光粉搭配藍光發光二極體晶片封裝在一起以作為白光發光元件。此時,單個發光元件就可以發出具有三個峰值波長的頻譜的光。另外,可以選擇以三個發光元件為一組,讓三個發光元件分別用以提供不同峰值波長(不同 顏色)的光。 The phosphor-type light-emitting diode element includes a light-emitting diode chip and a phosphor packaged with the light-emitting diode chip. The light emitting diode chip emits light in an electroluminescence manner, and after the light of the light emitting diode chip is irradiated with the fluorescent powder, the fluorescent powder will emit light of different wavelengths. Generally, the light emitted by the light-emitting diode wafer can be blue light or ultraviolet light. The material of the phosphor can determine the light emission spectrum of the light emitting element. Therefore, the type of phosphor can be determined according to the required peak wavelength. In one embodiment, the red phosphor and the green phosphor and the blue light emitting diode chip can be packaged together to serve as a white light emitting element. At this time, a single light emitting element can emit light having a spectrum with three peak wavelengths. In addition, you can choose to use three light-emitting elements as a group, so that the three light-emitting elements are used to provide different peak wavelengths (different Color).

晶片型發光二極體元件可以是採用發光二極體晶片自身發出的光線作為光源。舉例而言,應用於圖2的顯示裝置100的發光元件122可以由三種晶片型發光二極體元件構成,其包括具有紅光晶片的晶片型發光二極體元件、具有藍光晶片的晶片型發光二極體元件以及具有綠光晶片的晶片型發光二極體元件。晶片型發光二極體元件的發光頻譜由其晶片本身的晶格結構來決定。此時,可以根據需要的峰值波長來選擇對應的晶片型發光二極體元件。 The wafer-type light-emitting diode element may use light emitted from the light-emitting diode wafer itself as a light source. For example, the light-emitting element 122 applied to the display device 100 of FIG. 2 may be composed of three wafer-type light-emitting diode elements, including a wafer-type light-emitting diode element having a red light wafer, and a wafer-type light-emitting element having a blue light wafer. Diode element and wafer-type light emitting diode element having a green light wafer. The emission spectrum of a wafer-type light-emitting diode device is determined by the lattice structure of the wafer itself. At this time, the corresponding wafer-type light emitting diode element can be selected according to the required peak wavelength.

以下舉例說明調整顯示裝置的顯示光的單位入眼能量的方法。不過,以下說明僅是舉例之用,並非用以限定本發明的具體實踐方式。圖4為顯示裝置的顯示光的整體頻譜的示意圖。在一實施例中,顯示裝置100的顯示光L具有第一頻譜SP1,其中第一頻譜SP1包括第一波形W1A、第二波形W2A與第三波形W3A。具體來說,這個顯示裝置100中採用第一量子點型發光二極體元件來提供具有第一波形W1A的光,採用第二量子點型發光二極體元件來提供具有第二波形W2A的光,且採用晶片型發光二極體元件來提供具有第三波形W3A的光。第一量子點型發光二極體元件的量子點晶體的尺寸(直徑)為2.49nm,且第二量子點型發光二極體元件的量子點晶體的尺寸(直徑)為3.89nm。如此,第一波形W1A的峰值波長為528nm,第二波形W2A的峰值波長為630nm,且第三波形W3A的峰值波長為460nm。經計算第一頻譜 SP1得到此顯示裝置的顯示光的單位入眼能量為3.74×10-3瓦/流明(W/lm),這大於預期的3.15×10-3瓦/流明(W/lm)。因此,這個顯示裝置需要進一步修正與調整。 The following describes an example of a method for adjusting the unit eye energy of the display light of the display device. However, the following description is for example only, and is not intended to limit the specific practice of the present invention. FIG. 4 is a schematic diagram of an entire spectrum of display light of a display device. In one embodiment, the display light L of the display device 100 has a first frequency spectrum SP1. The first frequency spectrum SP1 includes a first waveform W1A, a second waveform W2A, and a third waveform W3A. Specifically, in this display device 100, a first quantum dot type light emitting diode element is used to provide light having a first waveform W1A, and a second quantum dot type light emitting diode element is used to provide light having a second waveform W2A And, a wafer-type light emitting diode element is used to provide light having a third waveform W3A. The size (diameter) of the quantum dot crystal of the first quantum dot type light emitting diode element is 2.49 nm, and the size (diameter) of the quantum dot crystal of the second quantum dot type light emitting diode element is 3.89 nm. As such, the peak wavelength of the first waveform W1A is 528 nm, the peak wavelength of the second waveform W2A is 630 nm, and the peak wavelength of the third waveform W3A is 460 nm. By calculating the first spectrum SP1, the unit eye energy of the display light of this display device is 3.74 × 10 -3 watts / lumen (W / lm), which is larger than the expected 3.15 × 10 -3 watts / lumen (W / lm). Therefore, this display device needs further correction and adjustment.

在一實施例中,調整上述顯示裝置100的方式包括將第一量子點型發光二極體元件的量子點晶體的尺寸(直徑)由2.49nm修改為2.61nm,且將第二量子點型發光二極體元件的量子點晶體的尺寸(直徑)由3.89nm修改為3.71nm。如此一來,顯示裝置的顯示光呈現如第二頻譜SP2。第二頻譜SP2包括第一波形W1B、第二波形W2B與第三波形W3B,且第一波形W1B的峰值波長為543nm,第二波形W2B的峰值波長為620nm而第三波形W3B的峰值波長仍為460nm。由修改後的顯示裝置的第二頻譜SP2經計算後,得到的單位入眼能量為3.12×10-3瓦/流明(W/lm),這可符合預期的標準3.15×10-3瓦/流明(W/lm)。由此實例可知,改變發光元件中的量子點晶體的尺寸大小可以做為調整顯示裝置的顯示光的單位入眼能量的手段之一。 In an embodiment, the manner of adjusting the display device 100 includes modifying the size (diameter) of the quantum dot crystal of the first quantum dot type light emitting diode element from 2.49 nm to 2.61 nm, and modifying the second quantum dot type light emission. The size (diameter) of the quantum dot crystal of the diode element was modified from 3.89 nm to 3.71 nm. In this way, the display light of the display device appears as the second spectrum SP2. The second spectrum SP2 includes a first waveform W1B, a second waveform W2B, and a third waveform W3B. The peak wavelength of the first waveform W1B is 543nm, the peak wavelength of the second waveform W2B is 620nm, and the peak wavelength of the third waveform W3B is still 460nm. After calculating the second spectrum SP2 of the modified display device, the unit eye energy obtained is 3.12 × 10 -3 watts / lumen (W / lm), which can meet the expected standard 3.15 × 10 -3 watts / lumen ( W / lm). It can be known from this example that changing the size of the quantum dot crystal in the light emitting element can be used as one of the means for adjusting the unit eye energy of the display light of the display device.

圖5為顯示裝置的顯示光的整體頻譜的示意圖。在一實例中,顯示裝置的顯示光的頻譜SP3包括第一波形W1C、第二波形W2C與第三波形W3C,其中第一波形W1C與第三波形W2C都是單峰波形而第二波形W2C為三峰波形。具體來說,這個顯示裝置中採用第一螢光粉型發光二極體元件來提供具有第一波形W1B的光,採用第二螢光粉型發光二極體元件來提供具有第二波形W2B的光,且採用晶片型發光二極體元件來提供具有第三波形 W3C的光。在此,第二波形W2C具有多個峰值波長,其中第二波形W2C的峰值波長的最大者在590nm至700nm的範圍內。第二螢光粉型發光二極體元件的發光元件中,紅色螢光粉的化學式為A2(MF6):Mn4+,其中A是Li、Na、K、Rb、Cs、NH4的其中一種,而M是Ge、Si、Sn、Ti、Zr的其中一種或者是上述元素的組合。這種紅色螢光粉也稱為氟化物螢光粉,或是KSF螢光粉。具有此種紅色螢光粉的發光二極體元件的發光波形(即第二波形W2C)一般來說是固定的,不容易調整。因此,顯示裝置100所採用這種發光元件作為光源模組中發出紅光的元件,又需要調整顯示光以具有合適的單位入眼能量時,可採用調整第一螢光粉型發光二極體元件的發光頻譜來實現。舉例來說,表二為採用上述紅光發光二極體元件作為一部分發光元件的顯示裝置的實驗結果。 FIG. 5 is a schematic diagram of an entire spectrum of display light of a display device. In an example, the spectrum SP3 of the display light of the display device includes a first waveform W1C, a second waveform W2C, and a third waveform W3C, where the first waveform W1C and the third waveform W2C are both single-peak waveforms and the second waveform W2C is Three-peak waveform. Specifically, in this display device, a first phosphor-type light-emitting diode element is used to provide light having a first waveform W1B, and a second phosphor-type light-emitting diode element is used to provide a light having a second waveform W2B. Light, and a wafer-type light emitting diode element is used to provide light having a third waveform W3C. Here, the second waveform W2C has a plurality of peak wavelengths, and a maximum of the peak wavelength of the second waveform W2C is in a range of 590 nm to 700 nm. In the light-emitting element of the second phosphor type light-emitting diode element, the chemical formula of the red phosphor is A 2 (MF 6 ): Mn 4+ , where A is Li, Na, K, Rb, Cs, NH 4 One of them, and M is one of Ge, Si, Sn, Ti, Zr or a combination of the above elements. This red phosphor is also called fluoride phosphor, or KSF phosphor. The light-emitting waveform (ie, the second waveform W2C) of the light-emitting diode element having such a red phosphor is generally fixed and difficult to adjust. Therefore, when the light-emitting element used by the display device 100 is a red light emitting element in the light source module, and the display light needs to be adjusted to have an appropriate eye energy, the first phosphor type light-emitting diode element may be adjusted. Light emission spectrum to achieve. For example, Table 2 shows the experimental results of a display device using the red light emitting diode element as a part of the light emitting element.

由表二的結果統計並計算後可知,第一波形W1C的峰值波長為λ1C,λ1C在500nm至570nm的範圍內,且第一波形W1C的半高寬Fc符合公式三:Fc -0.16λ 1C 2+181.2λ 1C -51212,可使顯示裝置的單位入眼能量不大於3.15×10-3瓦/流明(W/lm)。 From the results of Table 2 after statistics and calculations, it can be known that the peak wavelength of the first waveform W1C is λ 1C , λ 1C is in the range of 500nm to 570nm, and the FWHM of the first waveform W1C is in accordance with formula 3: Fc -0.16 λ 1C 2 +181.2 λ 1 C -51212 can make the unit eye energy of the display device not more than 3.15 × 10 -3 watts / lumen (W / lm).

圖6為圖2的顯示裝置中顯示面板的一實施例的上視示 意圖。由圖6可知,顯示面板110A包括多個第一子畫素112、多個第二子畫素114與多個第三子畫素116。第一子畫素112、第二子畫素114與第三子畫素116呈陣列排列。此外,第一子畫素112、第二子畫素114與第三子畫素116適於同步或不同步開啟以呈現出顯示光L。 6 is a top view of an embodiment of a display panel in the display device of FIG. 2 intention. As can be seen from FIG. 6, the display panel 110A includes a plurality of first sub-pixels 112, a plurality of second sub-pixels 114, and a plurality of third sub-pixels 116. The first sub-pixel 112, the second sub-pixel 114, and the third sub-pixel 116 are arranged in an array. In addition, the first sub-pixel 112, the second sub-pixel 114, and the third sub-pixel 116 are adapted to be turned on synchronously or asynchronously to present the display light L.

圖7為圖2的顯示裝置中顯示面板的另一實施例的上視示意圖。由圖7可知,顯示面板110B除了圖6所示的多個第一子畫素112、多個第二子畫素114與多個第三子畫素116外,還包括第四子畫素118。第一子畫素112、第二子畫素114、第三子畫素116與第四子畫素118呈陣列排列。此外,在本實施例中,第一子畫素112、第二子畫素114第三子畫素116與第四子畫素118適於同步或不同步開啟以呈現出顯示光L。 FIG. 7 is a schematic top view of another embodiment of a display panel in the display device of FIG. 2. As can be seen from FIG. 7, the display panel 110B includes a fourth sub-pixel 118 in addition to the plurality of first sub-pixels 112, the plurality of second sub-pixels 114 and the plurality of third sub-pixels 116 shown in FIG. . The first sub-pixel 112, the second sub-pixel 114, the third sub-pixel 116, and the fourth sub-pixel 118 are arranged in an array. In addition, in this embodiment, the first sub-pixel 112, the second sub-pixel 114, the third sub-pixel 116, and the fourth sub-pixel 118 are adapted to be turned on synchronously or asynchronously to present the display light L.

在圖6與圖7實施例中,第一子畫素112、第二子畫素114與第三子畫素116例如用以控制不同色彩的灰階高低。第四子畫素118則用來控制光源S的穿透量,因此不具有特別色彩,但不以為限。圖6的顯示面板110A或圖7的顯示面板110B應用於顯示裝置100時,顯示裝置100所發出的顯示光L的頻譜可以由這些子畫素的開啟來決定。 In the embodiments of FIGS. 6 and 7, the first sub-pixel 112, the second sub-pixel 114, and the third sub-pixel 116 are used to control the gray levels of different colors, for example. The fourth sub-pixel 118 is used to control the penetration of the light source S, so it does not have a special color, but it is not limited. When the display panel 110A of FIG. 6 or the display panel 110B of FIG. 7 is applied to the display device 100, the frequency spectrum of the display light L emitted by the display device 100 can be determined by turning on these sub-pixels.

具體來說,第一子畫素112開啟時,可使得顯示光L的頻譜包括第一波形W1。也就是說,第一子畫素112可以用來控制第一波形W1的光的通過量。第二子畫素114開啟時,可使得顯示光L的頻譜包括第二波形W2。也就是說,第二子畫素114可以 用來控制第二波形W2的光的通過量。第三子畫素116開啟時,可使得顯示光L的頻譜包括第三波形W3。也就是說,第三子畫素116可以用來控制第三波形W3的光的通過量。另外,第四子畫素118開啟時,顯示光線L可以同時包括圖3的第一波形W1、第二波形W2與第三波形W3。也就是說,第一子畫素112可以控制第一波形W1、第二波形W2、與第三波形W3三者的光的通過量。另外,當第一子畫素112、第二子畫素114與第三子畫素116都開啟時,顯示光L的頻譜也可以同時包括第一波形W1、第二波形W2與第三波形W3三者。因此,顯示光L的整體頻譜可包括峰值波長不同的第一波形W1、第二波形W2與第三波形W3。不過,這些子畫素可以同步或是不同步的開啟與關閉,所以顯示光線L的頻譜實質上會由第一波形W1、第二波形W2與第三波形W3至少一者組成,並非限定必須恆常的同時包括此三個波形。 Specifically, when the first sub-pixel 112 is turned on, the spectrum of the display light L may include the first waveform W1. That is, the first sub-pixel 112 can be used to control the light throughput of the first waveform W1. When the second sub-pixel 114 is turned on, the spectrum of the display light L can include the second waveform W2. In other words, the second sub-pixel 114 can Used to control the amount of light passing through the second waveform W2. When the third sub-pixel 116 is turned on, the spectrum of the display light L can include the third waveform W3. That is, the third sub-pixel 116 can be used to control the amount of light passing through the third waveform W3. In addition, when the fourth sub-pixel 118 is turned on, the display light L may include the first waveform W1, the second waveform W2, and the third waveform W3 of FIG. 3 at the same time. That is, the first sub-pixel 112 can control the light throughput of the first waveform W1, the second waveform W2, and the third waveform W3. In addition, when the first sub-pixel 112, the second sub-pixel 114, and the third sub-pixel 116 are all turned on, the spectrum of the display light L may also include the first waveform W1, the second waveform W2, and the third waveform W3 at the same time. Three. Therefore, the entire spectrum of the display light L may include the first waveform W1, the second waveform W2, and the third waveform W3 having different peak wavelengths. However, these sub-pixels can be turned on and off synchronously or asynchronously, so the spectrum of the display light L will essentially consist of at least one of the first waveform W1, the second waveform W2, and the third waveform W3, which is not limited to be constant. These three waveforms are often included simultaneously.

綜上所述,藉由調整顯示光的頻譜中對應於綠光的波形的峰值波長與半高寬以及/或對應於紅光的波形的峰值波長與半高寬可調節顯示裝的單位入眼能量。基於本發明實施例的半高寬條件,可讓顯示光的單位入眼能量低於3.15×10-3瓦/流明(W/lm),且讓顯示裝置維持良好的演色性及/或顯示效果。因此,本發明實施例的顯示裝置可以減輕觀看者的眼部疲勞感且仍兼具有理想顯示品質。 In summary, by adjusting the peak wavelength and half-width of the waveform corresponding to the green light in the spectrum of the display light and / or the peak wavelength and half-width of the waveform corresponding to the red light, the unit eye energy of the display device can be adjusted. . Based on the half-height-width condition of the embodiment of the present invention, the unit eye energy of the display light can be lower than 3.15 × 10 -3 watts / lumen (W / lm), and the display device can maintain good color rendering and / or display effect. Therefore, the display device of the embodiment of the present invention can reduce the eye fatigue of the viewer and still have ideal display quality.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的 精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed as above with the examples, it is not intended to limit the present invention. Any person with ordinary knowledge in the technical field will not depart from the present invention. Within the spirit and scope, some modifications and retouching can be made. Therefore, the scope of protection of the present invention shall be determined by the scope of the attached patent application.

Claims (19)

一種顯示裝置,包括:顯示面板;以及光源模組,設置於所述顯示面板的一側,所述光源模組提供光源穿過所述顯示面板後呈現出顯示光,所述顯示光的頻譜包括峰值波長不同的第一波形、第二波形與第三波形中至少一者,其中所述第一波形具有第一峰值波長,所述第一峰值波長為λ1且λ1在500nm至570nm的範圍內;所述第二波形具有第二峰值波長,所述第二峰值波長為λ2且λ2在590nm至700nm的範圍內;且所述第一波形的半高寬為FWHM1(單位:nm)且符合公式1:FWHM 1 -15970λ v 2+29486λ v -13533,且所述第二波形的半高寬為FWHM2(單位:nm)且符合公式2:FWHM 2 -15970λ v 2+29486λ v -13533其中λv=λ1/λ2。A display device includes: a display panel; and a light source module disposed on one side of the display panel. The light source module provides a light source to display display light after passing through the display panel. The frequency spectrum of the display light includes At least one of a first waveform, a second waveform, and a third waveform having different peak wavelengths, wherein the first waveform has a first peak wavelength, the first peak wavelength is λ1, and λ1 is in a range of 500 nm to 570 nm; The second waveform has a second peak wavelength, the second peak wavelength is λ2 and λ2 is in a range of 590nm to 700nm; and the FWHM of the first waveform is FWHM 1 (unit: nm) and conforms to the formula 1: FWHM 1 -15970 λ v 2 +29486 λ v -13533, and the FWHM of the second waveform is FWHM 2 (unit: nm) and conforms to the formula 2: FWHM 2 -15970 λ v 2 +29486 λ v -13533 where λ v = λ1 / λ2. 如申請專利範圍第1項所述的顯示裝置,其中0.852<λ v<0.894。The display device according to item 1 of the scope of patent application, wherein 0.852 < λ v <0.894. 如申請專利範圍第1項所述的顯示裝置,其中FWHM1與FWHM2的差值小於5nm。The display device according to item 1 of the scope of patent application, wherein the difference between FWHM 1 and FWHM 2 is less than 5 nm. 如申請專利範圍第1項所述的顯示裝置,其中0.866<λ v<0.886,則FWHM1<59.4nm且FWHM2<59.4nm。According to the display device described in the first item of the patent application range, wherein 0.866 < λ v <0.886, then FWHM 1 <59.4nm and FWHM 2 <59.4nm. 如申請專利範圍第1項所述的顯示裝置,其中0.862<λ v<0.868,則FWHM1<32.7nm且FWHM2<32.7nm。According to the display device described in item 1 of the scope of patent application, where 0.862 < λ v <0.868, then FWHM 1 <32.7nm and FWHM 2 <32.7nm. 如申請專利範圍第1項所述的顯示裝置,其中所述第二波形的半高寬等於所述第一波形的半高寬。The display device according to item 1 of the application, wherein the FWHM of the second waveform is equal to the FWHM of the first waveform. 如申請專利範圍第1項所述的顯示裝置,其中所述光源模組包括多個發光元件,所述發光元件適於發出所述光源。The display device according to item 1 of the scope of patent application, wherein the light source module includes a plurality of light emitting elements, and the light emitting elements are adapted to emit the light source. 如申請專利範圍第7項所述的顯示裝置,其中所述發光元件包括量子點型發光二極體元件、螢光粉型發光二極體元件、晶片型發光二極體元件或其組合。The display device according to item 7 of the scope of patent application, wherein the light emitting element includes a quantum dot type light emitting diode element, a phosphor powder type light emitting diode element, a wafer type light emitting diode element, or a combination thereof. 如申請專利範圍第1項所述的顯示裝置,其中所述顯示面板包括多個第一子畫素、多個第二子畫素與多個第三子畫素,所述第一子畫素、所述第二子畫素與所述第三子畫素呈陣列排列,且所述第一子畫素、所述第二子畫素與所述第三子畫素適於同步或不同步開啟以呈現出所述顯示光。The display device according to item 1 of the patent application scope, wherein the display panel includes a plurality of first sub pixels, a plurality of second sub pixels, and a plurality of third sub pixels, and the first sub pixel The second sub-pixel and the third sub-pixel are arranged in an array, and the first sub-pixel, the second sub-pixel, and the third sub-pixel are suitable for synchronization or non-synchronization. Turn on to present the display light. 如申請專利範圍第9項所述的顯示裝置,其中所述顯示面板藉由開啟所述第一子畫素而使所述顯示光包括所述第一波形。The display device according to item 9 of the scope of patent application, wherein the display panel includes the first waveform by turning on the first sub-pixel. 如申請專利範圍第9項所述的顯示裝置,其中所述顯示面板藉由開啟所述第二子畫素而使所述顯示光包括所述第二波形。The display device according to item 9 of the patent application scope, wherein the display panel includes the second waveform by turning on the second sub-pixel. 如申請專利範圍第9項所述的顯示裝置,其中所述顯示面板藉由開啟所述第三子畫素而使所述顯示光包括所述第三波形。The display device according to item 9 of the scope of patent application, wherein the display panel includes the third waveform by turning on the third sub-pixel. 如申請專利範圍第9項所述的顯示裝置,其中所述顯示面板更包括多個第四子畫素,所述第一子畫素、所述第二子畫素、所述第三子畫素與所述第四子畫素呈陣列排列,且所述第一子畫素、所述第二子畫素、所述第三子畫素與所述第四子畫素適於同步或不同步開啟以呈現出所述顯示光。The display device according to item 9 of the scope of patent application, wherein the display panel further includes a plurality of fourth sub pixels, the first sub pixel, the second sub pixel, and the third sub pixel Pixels and the fourth sub-pixel are arranged in an array, and the first sub-pixel, the second sub-pixel, the third sub-pixel, and the fourth sub-pixel are adapted to be synchronized or not Sync on to show the display light. 如申請專利範圍第13項所述的顯示裝置,其中所述顯示面板藉由開啟所述第四子畫素而使所述顯示光包括所述第一波形、所述第二波形與所述第三波形。The display device according to item 13 of the patent application scope, wherein the display panel includes the first waveform, the second waveform, and the first waveform by turning on the fourth sub-pixel. Three waveforms. 如申請專利範圍第1項所述的顯示裝置,其中所述第三波形具有第三峰值波長,所述第三峰值波長為λ3且λ3在440nm至470nm的範圍內。The display device according to item 1 of the scope of patent application, wherein the third waveform has a third peak wavelength, and the third peak wavelength is λ3 and λ3 is in a range of 440 nm to 470 nm. 一種顯示裝置,包括:顯示面板;以及光源模組,設置於所述顯示面板的一側,所述光源模組提供光源穿過所述顯示面板後呈現出顯示光,所述顯示光的頻譜包括峰值波長不同的第一波形、第二波形與第三波形中至少一者,其中所述第一波形具有第一峰值波長,所述第一峰值波長為λ1C且λ1C在500nm至570nm的範圍內;所述第二波形具有多個峰值波長,所述峰值波長最大者在590nm至700nm的範圍內;且所述第一波形的半高寬為Fc(單位:nm)且符合公式3:Fc -0.16λ 1C 2+181.2λ 1C -51212。A display device includes: a display panel; and a light source module disposed on one side of the display panel. The light source module provides a light source to display display light after passing through the display panel. The frequency spectrum of the display light includes At least one of a first waveform, a second waveform, and a third waveform having different peak wavelengths, wherein the first waveform has a first peak wavelength, the first peak wavelength is λ 1C and λ 1C is in a range of 500 nm to 570 nm therein; a plurality of the second waveform having a peak wavelength of the greatest peak wavelength in the range 590nm to 700nm; and the FWHM of the first waveform is Fc (unit: nm) and in accordance with equation 3: Fc -0.16 λ 1C 2 +181.2 λ 1 C -51212. 如申請專利範圍第16項所述的顯示裝置,其中所述第二波形具有三個峰值波長。The display device according to item 16 of the scope of patent application, wherein the second waveform has three peak wavelengths. 如申請專利範圍第16項所述的顯示裝置,其中所述光源模組包括至少一螢光粉型發光二極體元件,所述螢光粉型發光二極體元件發出所述第二波形的光。The display device according to item 16 of the scope of patent application, wherein the light source module includes at least one phosphor-type light-emitting diode element, and the phosphor-type light-emitting diode element emits the second waveform Light. 如申請專利範圍第18項所述的顯示裝置,其中所述螢光粉型發光二極體元件包括紅色螢光粉,且所述紅色螢光粉的化學式為A2(MF6):Mn4+,其中A是Li、Na、K、Rb、Cs、NH4的其中一種,而M是Ge、Si、Sn、Ti、Zr的其中一種或者是上述元素的組合。The display device according to item 18 of the scope of patent application, wherein the phosphor-type light-emitting diode element includes red phosphor, and the chemical formula of the red phosphor is A 2 (MF 6 ): Mn 4 + , Where A is one of Li, Na, K, Rb, Cs, NH 4 and M is one of Ge, Si, Sn, Ti, Zr or a combination of the above elements.
TW106111028A 2017-03-31 2017-03-31 Display device TWI636286B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW106111028A TWI636286B (en) 2017-03-31 2017-03-31 Display device
CN201911301020.1A CN111367120B (en) 2017-03-31 2017-05-03 Display device
CN201710305272.6A CN107132692B (en) 2017-03-31 2017-05-03 Display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106111028A TWI636286B (en) 2017-03-31 2017-03-31 Display device

Publications (2)

Publication Number Publication Date
TWI636286B true TWI636286B (en) 2018-09-21
TW201837511A TW201837511A (en) 2018-10-16

Family

ID=59715182

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106111028A TWI636286B (en) 2017-03-31 2017-03-31 Display device

Country Status (2)

Country Link
CN (2) CN107132692B (en)
TW (1) TWI636286B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI678804B (en) * 2019-02-20 2019-12-01 友達光電股份有限公司 Display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090115714A1 (en) * 2007-11-07 2009-05-07 Hee-Seong Jeong Liquid crystal display
TW201242099A (en) * 2011-04-14 2012-10-16 Lextar Electronics Corp Light-tuning method
WO2016171333A1 (en) * 2015-04-21 2016-10-27 우리이앤엘 주식회사 Display device

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE288131T1 (en) * 1995-09-21 2005-02-15 Matsushita Electric Ind Co Ltd LIGHT SOURCE
JPH10246884A (en) * 1997-03-04 1998-09-14 Casio Comput Co Ltd Color liquid crystal display device
JP2005321727A (en) * 2004-05-11 2005-11-17 Sony Corp Backlight device and color liquid crystal display
CN100507676C (en) * 2004-08-18 2009-07-01 索尼株式会社 Backlight device and color liquid crystal display apparatus
JP2006201376A (en) * 2005-01-19 2006-08-03 Mitsubishi Chemicals Corp Filter for liquid crystal display and liquid crystal display using the same
CN100472295C (en) * 2005-07-22 2009-03-25 索尼株式会社 Light source apparatus and liquid crystal display
JP5263722B2 (en) * 2007-06-08 2013-08-14 シャープ株式会社 Phosphor, light emitting device, and image display device
TWI398700B (en) * 2009-12-30 2013-06-11 Au Optronics Corp Display device with quantum dot phosphor and manufacturing method thereof
CN101788737A (en) * 2010-01-26 2010-07-28 友达光电股份有限公司 Display device using quantum dot fluorescent powder
EP2500951A1 (en) * 2011-03-17 2012-09-19 Valoya Oy Plant illumination device and method
EP3483496B1 (en) * 2011-11-07 2020-07-29 Kabushiki Kaisha Toshiba White light source and white light source system including the same
JP6176517B2 (en) * 2012-09-24 2017-08-09 大日本印刷株式会社 Color filter and display device
TWI472843B (en) * 2012-11-20 2015-02-11 Au Optronics Corp Display device
TWI534484B (en) * 2012-12-21 2016-05-21 友達光電股份有限公司 Display device
TWI483045B (en) * 2013-06-20 2015-05-01 Au Optronics Corp Display
JP5878579B2 (en) * 2014-03-31 2016-03-08 シャープ株式会社 Display device and television receiver
JP6169530B2 (en) * 2014-05-13 2017-07-26 富士フイルム株式会社 Liquid crystal display
JP6397789B2 (en) * 2014-07-04 2018-09-26 株式会社ジャパンディスプレイ Surface light source device and liquid crystal display device
CN105158963A (en) * 2015-09-30 2015-12-16 冠捷显示科技(厦门)有限公司 Method for achieving wide-color-gamut display and display device and apparatus using same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090115714A1 (en) * 2007-11-07 2009-05-07 Hee-Seong Jeong Liquid crystal display
TW201242099A (en) * 2011-04-14 2012-10-16 Lextar Electronics Corp Light-tuning method
WO2016171333A1 (en) * 2015-04-21 2016-10-27 우리이앤엘 주식회사 Display device

Also Published As

Publication number Publication date
CN107132692B (en) 2020-03-06
CN111367120A (en) 2020-07-03
TW201837511A (en) 2018-10-16
CN107132692A (en) 2017-09-05
CN111367120B (en) 2023-04-14

Similar Documents

Publication Publication Date Title
US8384856B2 (en) Color filter substrate and display device
US20160004124A1 (en) High color gamut quantum dot display
US20200011508A1 (en) Method and apparatus to enhance spectral purity of a light source
TWI564630B (en) Backlight module having design of switchable lighting modes and display module utilized thereof
JP7315194B2 (en) Display imaging system and transportation tool with such system
TWI503812B (en) Display
US10187954B2 (en) Lighting apparatus for display illumination
WO2020164183A1 (en) Backlight module, display apparatus, driving method for display apparatus, and electronic device and computer-readable storage medium
TW200839381A (en) LED backlight using discrete rgb phosphors
TWI390496B (en) Method of controlling backlight module, backlight controller and display device using the same
EP2706400A1 (en) Display apparatus and manufacturing method thereof
TWI279592B (en) Liquid crystal display device and producing method thereof
WO2019062290A1 (en) Light-emitting unit and method for adjusting light-emitting spectrum thereof, backlight module, and liquid crystal display device
CN101501558B (en) Liquid crystal display device
TWI442136B (en) Liquid crystal display
TWI636286B (en) Display device
JP4899261B2 (en) Color liquid crystal display
CN100437287C (en) High colour expression liquid crystal display
TW201527838A (en) Backlight systems containing downconversion film elements
CN109870844B (en) Energy-saving display method based on complementary color light
US7821195B2 (en) High color expression display device
WO2021106823A1 (en) Display device and apparatus
TW200925719A (en) Liquid crystal display
WO2021256307A1 (en) Lighting device
JP2021092760A (en) Display unit and apparatus