TWI628488B - Communication method based on terahertz wave - Google Patents

Communication method based on terahertz wave Download PDF

Info

Publication number
TWI628488B
TWI628488B TW106115313A TW106115313A TWI628488B TW I628488 B TWI628488 B TW I628488B TW 106115313 A TW106115313 A TW 106115313A TW 106115313 A TW106115313 A TW 106115313A TW I628488 B TWI628488 B TW I628488B
Authority
TW
Taiwan
Prior art keywords
terahertz wave
terahertz
nano
carbon tube
carbon
Prior art date
Application number
TW106115313A
Other languages
Chinese (zh)
Other versions
TW201839468A (en
Inventor
張凌
柳鵬
吳揚
范守善
Original Assignee
鴻海精密工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鴻海精密工業股份有限公司 filed Critical 鴻海精密工業股份有限公司
Application granted granted Critical
Publication of TWI628488B publication Critical patent/TWI628488B/en
Publication of TW201839468A publication Critical patent/TW201839468A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/90Non-optical transmission systems, e.g. transmission systems employing non-photonic corpuscular radiation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/85Protection from unauthorised access, e.g. eavesdrop protection

Abstract

本發明涉及一種太赫茲波通訊方法,其包括以下步驟:提供一太赫茲波源,並使該太赫茲波源激發產生太赫茲波;在所述太赫茲波源的出射面一側設置一奈米碳管結構,使該太赫茲波源產生的太赫茲波透過該奈米碳管結構後形成太赫茲調製波發射出去,其中,該奈米碳管結構包括複數個沿同一方向定向延伸的奈米碳管;通過有規律地加熱所述奈米碳管結構對所述太赫茲調製波進行加密;採用一太赫茲波接收裝置接收加密後的太赫茲調製波,並計算所述太赫茲波的穿透率;以及根據所述太赫茲波的穿透率變化規律對該加密後的太赫茲調製波進行解密。 The invention relates to a terahertz wave communication method, which comprises the following steps: providing a terahertz wave source and exciting the terahertz wave source to generate a terahertz wave; setting a nano carbon tube on one side of an exit surface of the terahertz wave source Structure, so that the terahertz wave generated by the terahertz wave source passes through the nanometer carbon tube structure to form a terahertz modulation wave and emit it, wherein the nanometer carbon tube structure includes a plurality of nanometer carbon tubes extending in the same direction; Encrypting the terahertz modulated wave by regularly heating the nano carbon tube structure; using a terahertz wave receiving device to receive the encrypted terahertz modulated wave, and calculating the transmittance of the terahertz wave; And decrypting the encrypted terahertz modulated wave according to the change law of the transmittance of the terahertz wave.

Description

一種太赫茲波通訊方法 Terahertz wave communication method

本發明涉太赫茲波檢測、調製以及應用技術領域。 The invention relates to the technical field of terahertz wave detection, modulation and application.

太赫茲波通常指的是頻率在0.1THz~10THz,波長在30μm~3mm之間的電磁波,其波段在微波和紅外光之間,屬於遠紅外波段。由於缺乏有效的產生方法和檢測手段,科學家對於該波段電磁輻射性質的瞭解非常有限。 Terahertz waves generally refer to electromagnetic waves with a frequency of 0.1 THz to 10 THz and a wavelength of 30 μm to 3 mm. The wave band is between microwave and infrared light, which belongs to the far infrared band. Due to the lack of effective generation methods and detection methods, scientists have very limited knowledge of the nature of electromagnetic radiation in this band.

近十幾年來,超快雷射技術的迅速發展,為太赫茲波的產生提供了穩定、可靠的激發光源,使太赫茲波的產生和應用得到了蓬勃發展。然而,由於太赫茲源發射功率較低,而熱背景雜訊相對較高,需要高靈敏度的探測手段探測太赫茲信號。目前,人們對太赫茲波的性能認識比較少。故,如何檢測、調製以及應用太赫茲波成為研究的熱點。 In the past ten years, the rapid development of ultrafast laser technology has provided a stable and reliable excitation light source for the generation of terahertz waves, and the generation and application of terahertz waves have flourished. However, because the terahertz source has low transmit power and relatively high thermal background noise, a high-sensitivity detection method is required to detect the terahertz signal. At present, little is known about the performance of terahertz waves. Therefore, how to detect, modulate, and apply terahertz waves has become a research hotspot.

本申請發明人研究發現,通過奈米碳管結構可以調節太赫茲波的穿透率,即,太赫茲波的穿透率隨著波數或波長呈波峰波谷交替形狀。而且,通過調節所述奈米碳管結構的溫度,或者調節奈米碳管結構中奈米碳管的延伸方向與太赫茲波偏振方向的夾角,可以進一步調節該波峰波谷形狀。鑒於此,本發明提供一種太赫茲波發射裝置、一種太赫茲波通訊裝置以及一種太赫茲波波長檢測裝置。 The inventors of the present application have found that the transmittance of terahertz waves can be adjusted by the nano-carbon tube structure, that is, the transmittance of terahertz waves has an alternating shape of peaks and troughs with wavenumber or wavelength. Furthermore, by adjusting the temperature of the nano carbon tube structure, or adjusting the angle between the extension direction of the nano carbon tube and the polarization direction of the terahertz wave in the nano carbon tube structure, the shape of the wave crest can be further adjusted. In view of this, the present invention provides a terahertz wave transmitting device, a terahertz wave communication device, and a terahertz wavelength detection device.

一種太赫茲波通訊方法,其包括以下步驟:提供一太赫茲波源,並使該太赫茲波源激發產生太赫茲波;在所述太赫茲波源的出射面一側設置一奈米碳管結構,使該太赫茲波源產生的太赫茲波透過該奈米碳管結構後形成太赫 茲調製波發射出去,其中,該奈米碳管結構包括複數個沿同一方向定向延伸的奈米碳管;通過有規律地加熱所述奈米碳管結構對所述太赫茲調製波進行加密;採用一太赫茲波接收裝置接收加密後的太赫茲調製波,並計算所述太赫茲波的穿透率;以及根據所述太赫茲波的穿透率變化規律對該加密後的太赫茲調製波進行解密。 A terahertz wave communication method includes the following steps: providing a terahertz wave source and exciting the terahertz wave source to generate a terahertz wave; setting a nano-carbon tube structure on one side of an exit surface of the terahertz wave source, so that The terahertz wave generated by the terahertz wave source passes through the nanometer carbon tube structure to form a terahertz Modulation wave is emitted, wherein the carbon nanotube structure includes a plurality of carbon nanotubes extending in the same direction, and the terahertz modulation wave is encrypted by regularly heating the carbon nanotube structure; A terahertz wave receiving device is used to receive the encrypted terahertz modulated wave, and calculate the transmittance of the terahertz wave; and the encrypted terahertz modulated wave according to the change law of the transmittance of the terahertz wave Decrypt.

如上述太赫茲波通訊方法,其中,所述奈米碳管結構包括一奈米碳管膜,所述奈米碳管膜包括複數個通過凡得瓦力首尾相連的奈米碳管束,每一奈米碳管束包括複數個相互平行的奈米碳管。 According to the above terahertz wave communication method, the nano carbon tube structure includes a nano carbon tube film, and the nano carbon tube film includes a plurality of nano carbon tube bundles connected end to end through Van der Waals force, each The nano carbon tube bundle includes a plurality of nano carbon tubes parallel to each other.

如上述太赫茲波通訊方法,其中,所述複數個奈米碳管的表面包覆有金屬導電層。 According to the above terahertz wave communication method, a surface of the plurality of nano carbon tubes is coated with a metal conductive layer.

如上述太赫茲波通訊方法,其中,所述奈米碳管結構的邊緣固定於一支撐框架上,中間部分通過該支撐框架懸空設置。 As described in the above terahertz wave communication method, the edges of the nano carbon tube structure are fixed on a support frame, and the middle portion is suspended by the support frame.

如上述太赫茲波通訊方法,其中,所述有規律地加熱所述奈米碳管結構的方法為有規律地向所述奈米碳管結構兩端施加電壓。 The terahertz wave communication method as described above, wherein the method of regularly heating the carbon nanotube structure is to apply a voltage to both ends of the carbon nanotube structure regularly.

如上述太赫茲波通訊方法,其中,所述奈米碳管結構通過兩個間隔設置的電極懸空設置,所述向奈米碳管結構兩端施加電壓的方法為有規律地在該兩個電極之間施加電壓。 As described in the above terahertz wave communication method, the carbon nanotube structure is suspended by two spaced-apart electrodes, and the method of applying a voltage to the two ends of the carbon nanotube structure is to regularly apply voltage to the two electrodes. Apply voltage between.

如上述太赫茲波通訊方法,其中,所述奈米碳管結構設置於一真空容器中。 According to the above terahertz wave communication method, the nano carbon tube structure is disposed in a vacuum container.

如上述太赫茲波通訊方法,其中,所述施加的電壓範圍為0V~200V。 According to the above terahertz wave communication method, wherein the applied voltage ranges from 0V to 200V.

如上述太赫茲波通訊方法,其中,所述有規律地熱所述奈米碳管結構的方法為通過一加熱裝置有規律地熱所述奈米碳管結構。 The terahertz wave communication method as described above, wherein the method of regularly heating the carbon nanotube structure is to regularly heat the carbon nanotube structure by a heating device.

如上述太赫茲波通訊方法,其中,所述奈米碳管結構懸空設置於一真空容器中,所述加熱裝置包括兩個間隔設置的電極和一太赫茲波可以穿透的加熱膜,該加熱膜設置於該真空容器的內壁上且與該兩個電極電連接。 According to the above terahertz wave communication method, the nano carbon tube structure is suspended in a vacuum container, and the heating device includes two spaced-apart electrodes and a heating film that the terahertz wave can penetrate. The membrane is disposed on the inner wall of the vacuum container and is electrically connected to the two electrodes.

相較於先前技術,本發明的太赫茲波通訊方法,通過奈米碳管結構對太赫茲波的調製規律對太赫茲波進行加密,結構簡單,保密性好。 Compared with the prior art, the terahertz wave communication method of the present invention encrypts the terahertz wave through the modulation rule of the terahertz wave by the nano carbon tube structure, and has a simple structure and good security.

10,10A,10B,10C‧‧‧太赫茲波發射裝置 10,10A, 10B, 10C‧‧‧‧THz wave transmitting device

10D,10E,10F,10G‧‧‧太赫茲波通訊裝置 10D, 10E, 10F, 10G‧‧‧THz communication device

10H,10I,10J,10K‧‧‧太赫茲波波長檢測裝置 10H, 10I, 10J, 10K‧‧‧THz wave wavelength detection device

11‧‧‧太赫茲波源 11‧‧‧ Terahertz wave source

111‧‧‧出射面 111‧‧‧ exit surface

12‧‧‧調製裝置 12‧‧‧ modulation device

120‧‧‧支撐框架 120‧‧‧ support frame

121‧‧‧奈米碳管結構 121‧‧‧Nano carbon tube structure

13‧‧‧旋轉裝置 13‧‧‧rotating device

14‧‧‧真空容器 14‧‧‧Vacuum container

15‧‧‧加熱裝置 15‧‧‧Heating device

151‧‧‧第一電極 151‧‧‧first electrode

152‧‧‧第二電極 152‧‧‧Second electrode

153‧‧‧電源 153‧‧‧ Power

154‧‧‧加熱膜 154‧‧‧heating film

16‧‧‧太赫茲波接收裝置 16‧‧‧ Terahertz wave receiving device

161‧‧‧入射面 161‧‧‧ incident surface

17‧‧‧解密裝置 17‧‧‧ decryption device

171,191‧‧‧控制模組 171,191‧‧‧Control Module

172,192‧‧‧計算模組 172,192‧‧‧Computing Module

173,193‧‧‧比較模組 173,193‧‧‧Comparison Module

174,194‧‧‧通訊模組 174,194‧‧‧communication module

175,195‧‧‧存儲模組 175,195‧‧‧Storage Module

18‧‧‧加密裝置 18‧‧‧ encryption device

19‧‧‧電腦 19‧‧‧ Computer

20‧‧‧移動裝置 20‧‧‧ mobile device

圖1為本發明實施例1提供的太赫茲波發射裝置的結構示意圖。 FIG. 1 is a schematic structural diagram of a terahertz wave transmitting device according to Embodiment 1 of the present invention.

圖2為本發明實施例1提供的太赫茲波發射裝置的調製裝置的結構示意圖。 FIG. 2 is a schematic structural diagram of a modulation device of a terahertz wave transmitting device provided in Embodiment 1 of the present invention.

圖3為本發明實施例1採用的奈米碳管拉膜的掃描電鏡照片。 FIG. 3 is a scanning electron microscope photograph of a nano-carbon tube drawn film used in Example 1 of the present invention.

圖4為本發明實施例1採用的非扭轉的奈米碳管線的掃描電鏡照片。 FIG. 4 is a scanning electron microscope photograph of a non-twisted nano-carbon pipeline used in Example 1 of the present invention.

圖5為本發明實施例1採用的扭轉的奈米碳管線的掃描電鏡照片。 FIG. 5 is a scanning electron microscope photograph of a twisted nano-carbon pipeline used in Example 1 of the present invention.

圖6為本發明實施例1的同一方向設置的奈米碳管拉膜對遠紅外波段的太赫茲波的穿透率測試結果。 FIG. 6 is a test result of a transmittance of a terahertz wave in a far-infrared band of a nano-carbon tube drawn film disposed in the same direction in Embodiment 1 of the present invention.

圖7為本發明實施例1的同一方向設置的奈米碳管拉膜對中紅外波段的太赫茲波的穿透率測試結果。 FIG. 7 is a test result of the transmittance of a nano-carbon tube drawn film disposed in the same direction to a terahertz wave in the mid-infrared band in the same direction as in FIG.

圖8為本發明實施例1的交叉設置的奈米碳管拉膜對遠紅外波段的太赫茲波的穿透率測試結果。 FIG. 8 is a test result of the transmittance of the terahertz wave in the far-infrared band of the cross-assembled carbon nanotube drawn film of Example 1 of the present invention.

圖9為本發明實施例2的同一方向設置的包覆預製層的奈米碳管拉膜對遠紅外波段的太赫茲波的穿透率測試結果。 FIG. 9 is a test result of the transmittance of the terahertz wave in the far-infrared wave band of the carbon nanotube drawn film with a prefabricated layer disposed in the same direction in Example 2 of the present invention.

圖10為本發明實施例2的同一方向設置的包覆預製層的奈米碳管拉膜對中紅外波段的太赫茲波的穿透率測試結果。 FIG. 10 is a test result of the transmittance of the terahertz wave in the mid-infrared band by the nano-carbon tube coated film coated with the prefabricated layer disposed in the same direction in Example 2 of the present invention.

圖11為本發明實施例3提供的太赫茲波發射裝置的結構示意圖。 FIG. 11 is a schematic structural diagram of a terahertz wave transmitting device according to Embodiment 3 of the present invention.

圖12為本發明實施例3提供的太赫茲波發射裝置的調製裝置和旋轉裝置的結構示意圖。 FIG. 12 is a schematic structural diagram of a modulation device and a rotation device of a terahertz wave transmitting device according to Embodiment 3 of the present invention.

圖13為本發明實施例3的同一方向設置的奈米碳管拉膜每次旋轉15度角後對遠紅外波段的太赫茲波的穿透率測試結果。 FIG. 13 is a test result of the transmittance of a terahertz wave in the far-infrared band after a 15-degree rotation of a nano-carbon tube drawn film disposed in the same direction in Embodiment 3 of the present invention.

圖14為本發明實施例3的同一方向設置的奈米碳管拉膜旋轉0度和90度角後對遠紅外波段的太赫茲波的穿透率測試結果。 FIG. 14 is a test result of the transmittance of the terahertz wave in the far-infrared band after the nano-carbon tube pull film provided in the same direction is rotated by 0 degrees and 90 degrees in the same direction in Example 3.

圖15為本發明實施例3的同一方向設置的奈米碳管拉膜旋轉60度和150度角後對遠紅外波段的太赫茲波的穿透率測試結果。 FIG. 15 is a test result of the transmittance of the terahertz wave in the far-infrared band after the nano-carbon tube pull film provided in the same direction is rotated in the same direction by an angle of 60 degrees and 150 degrees.

圖16為本發明實施例3的同一方向設置的奈米碳管拉膜旋轉0度和180度角後對遠紅外波段的太赫茲波的穿透率測試結果。 FIG. 16 is a test result of the transmittance of the terahertz wave in the far-infrared band after the nano-carbon tube pull film provided in the same direction is rotated by 0 degrees and 180 degrees in the same direction in Example 3 of the present invention.

圖17為本發明實施例4提供的太赫茲波發射裝置的結構示意圖。 FIG. 17 is a schematic structural diagram of a terahertz wave transmitting device according to Embodiment 4 of the present invention.

圖18為本發明實施例4提供的太赫茲波發射裝置的調製裝置和加熱裝置的結構示意圖。 18 is a schematic structural diagram of a modulation device and a heating device of a terahertz wave transmitting device according to Embodiment 4 of the present invention.

圖19為圖18沿線S-S的剖視圖。 Fig. 19 is a sectional view taken along line S-S in Fig. 18.

圖20為本發明實施例4提供的太赫茲波發射裝置的另一種加熱裝置的結構示意圖。 FIG. 20 is a schematic structural diagram of another heating device of a terahertz wave emitting device provided in Embodiment 4 of the present invention.

圖21為本發明實施例4的同一方向設置的單層奈米碳管拉膜施加不同電壓加熱後對中紅外波段的太赫茲波的穿透率測試結果。 FIG. 21 is a test result of the transmittance of a terahertz wave in the mid-infrared band after a single-layer carbon nanotube drawn film provided in the same direction is heated in the same direction in Example 4 of the present invention after applying different voltages for heating.

圖22為本發明實施例4的同一方向設置的單層奈米碳管拉膜施加不同電壓加熱後對遠紅外波段的太赫茲波的穿透率測試結果。 FIG. 22 is a test result of the transmittance of a terahertz wave in the far-infrared band after a single-layer carbon nanotube drawn film provided in the same direction is heated in the same direction in Example 4 of the present invention after applying different voltages.

圖23為本發明實施例4的同一方向設置的雙層奈米碳管拉膜施加不同電壓加熱後對遠紅外波段的太赫茲波的穿透率測試結果。 FIG. 23 is a test result of the transmittance of a terahertz wave in the far-infrared band after a two-layer nano-carbon tube drawn film provided in the same direction is heated in the same direction in Example 4 of the present invention after applying different voltages.

圖24為本發明實施例5提供的太赫茲波發射裝置的結構示意圖。 FIG. 24 is a schematic structural diagram of a terahertz wave transmitting device according to Embodiment 5 of the present invention.

圖25為本發明實施例6提供的太赫茲波通訊裝置的結構示意圖。 FIG. 25 is a schematic structural diagram of a terahertz wave communication device according to Embodiment 6 of the present invention.

圖26為本發明實施例6提供的太赫茲波通訊裝置的解密裝置的模組示意圖。 FIG. 26 is a module schematic diagram of a decryption device for a terahertz wave communication device according to Embodiment 6 of the present invention.

圖27為本發明實施例7提供的太赫茲波通訊裝置的結構示意圖。 FIG. 27 is a schematic structural diagram of a terahertz wave communication device according to Embodiment 7 of the present invention.

圖28為本發明實施例8提供的太赫茲波通訊裝置的結構示意圖。 FIG. 28 is a schematic structural diagram of a terahertz wave communication device according to Embodiment 8 of the present invention.

圖29為本發明實施例9提供的太赫茲波通訊裝置的結構示意圖。 FIG. 29 is a schematic structural diagram of a terahertz wave communication device according to Embodiment 9 of the present invention.

圖30為本發明實施例10提供的太赫茲波波長檢測裝置的結構示意圖。 FIG. 30 is a schematic structural diagram of a terahertz wave detection device according to Embodiment 10 of the present invention.

圖31為本發明實施例10提供的太赫茲波波長檢測裝置的電腦的模組示意圖。 FIG. 31 is a schematic diagram of a module of a computer of a terahertz wave detection device according to Embodiment 10 of the present invention.

圖32為本發明實施例11提供的太赫茲波波長檢測裝置的結構示意圖。 FIG. 32 is a schematic structural diagram of a terahertz wave detection device according to Embodiment 11 of the present invention.

圖33為本發明實施例12提供的太赫茲波波長檢測裝置的結構示意圖。 FIG. 33 is a schematic structural diagram of a terahertz wave detection device according to Embodiment 12 of the present invention.

圖34為本發明實施例13提供的太赫茲波波長檢測裝置的結構示意圖。 FIG. 34 is a schematic structural diagram of a terahertz wave detection device according to Embodiment 13 of the present invention.

下面將結合附圖及具體實施例對本發明作進一步的詳細說明。 The present invention will be further described in detail below with reference to the drawings and specific embodiments.

實施例1 Example 1

請參閱圖1,本發明實施例1提供一種太赫茲波發射裝置10,其包括一太赫茲波源11以及一置於該太赫茲波源11的出射面111一側的調製裝置12。所述太赫茲波源11用於激發太赫茲波。所述太赫茲波源11激發的太赫茲波經該調製裝置12調製後形成太赫茲調製波並發射出去。 Referring to FIG. 1, Embodiment 1 of the present invention provides a terahertz wave transmitting device 10, which includes a terahertz wave source 11 and a modulation device 12 disposed on an exit surface 111 side of the terahertz wave source 11. The terahertz wave source 11 is used to excite a terahertz wave. The terahertz wave excited by the terahertz wave source 11 is modulated by the modulation device 12 to form a terahertz modulated wave and emitted.

所述太赫茲波源11的結構不限,可以為不相干的熱輻射光源、寬波段脈衝(T-ray)光源或窄波段的連續波光源。 The structure of the terahertz wave source 11 is not limited, and may be an irrelevant thermal radiation light source, a wide-band pulse (T-ray) light source, or a narrow-band continuous wave light source.

請參閱圖2,所述調製裝置12包括一支撐框架120以及一奈米碳管結構121。所述支撐框架120的形狀和尺寸可以根據需要選擇。所述支撐框架120到的材料不限,可以為金屬、聚合物、玻璃、陶瓷或碳材料等。所述支撐框架120定義一開口。所述奈米碳管結構121的邊緣固定於該支撐框架120上,且中間部分通過該支撐框架120懸空設置。所述奈米碳管結構121可以通過粘結劑固定於所述支撐框架120上。所述奈米碳管結構121可以直接設置於所述太赫茲波源11的出射面111上,也可以與所述太赫茲波源11的出射面111間隔設置。當所述奈米碳管結構121可以直接設置於所述太赫茲波源11的出射面111上時,所述支撐框架120可以省略。 Referring to FIG. 2, the modulation device 12 includes a support frame 120 and a carbon nanotube structure 121. The shape and size of the supporting frame 120 can be selected according to needs. The material of the supporting frame 120 is not limited, and may be metal, polymer, glass, ceramic, or carbon material. The support frame 120 defines an opening. An edge of the nano carbon tube structure 121 is fixed on the support frame 120, and a middle portion is suspended by the support frame 120. The carbon nanotube structure 121 can be fixed on the support frame 120 by an adhesive. The carbon nanotube structure 121 may be directly disposed on the exit surface 111 of the terahertz wave source 11, or may be disposed at a distance from the exit surface 111 of the terahertz wave source 11. When the nano carbon tube structure 121 can be directly disposed on the exit surface 111 of the terahertz wave source 11, the support frame 120 can be omitted.

所述奈米碳管結構121包括複數個沿同一方向定向延伸的奈米碳管且形成複數個均勻分佈的微孔。所述複數個奈米碳管通過範德華力緊密連接從而使該奈米碳管結構121形成一自支撐結構。所謂自支撐結構是指該結構可以無需一支撐體而保持一特定的膜狀結構。因而,所述奈米碳管結構121具有自支撐性而可部分懸空設置。所述奈米碳管平行於所述奈米碳管結構121的表面。所述奈米碳管包括單壁奈米碳管、雙壁奈米碳管及多壁奈米碳管中的一種或多種。所述單壁奈米碳管的直徑為0.5奈米~10奈米,雙壁奈米碳管的直徑為1.0奈米~15奈米,多壁奈米碳管的直徑為1.5奈米~50奈米。所述奈米碳管的長度大於50微米。優選地,該奈米碳管的長度為200微米~900微米。該微孔的尺寸為1奈米~0.5微米。具體地,所述奈米碳管結構121可以包括至少一奈米碳管拉膜或複數個平行且間隔設置的奈米碳管線。所述奈米碳管線可以是非扭轉的奈米碳管線或扭轉的奈米碳管線。 The carbon nanotube structure 121 includes a plurality of carbon nanotubes extending in the same direction and forming a plurality of uniformly distributed micropores. The plurality of carbon nanotubes are tightly connected by Van der Waals force, so that the carbon nanotube structure 121 forms a self-supporting structure. The so-called self-supporting structure means that the structure can maintain a specific membrane-like structure without a support. Therefore, the carbon nanotube structure 121 is self-supporting and can be partially suspended. The nano carbon tube is parallel to a surface of the nano carbon tube structure 121. The carbon nanotube includes one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. The diameter of the single-walled carbon tube is 0.5 nm to 10 nm, the diameter of the double-walled carbon tube is 1.0 nm to 15 nm, and the diameter of the multi-walled carbon tube is 1.5 nm to 50. Nano. The length of the nano carbon tube is greater than 50 microns. Preferably, the length of the nano carbon tube is 200 μm to 900 μm. The size of the micropores ranges from 1 nanometer to 0.5 micrometer. Specifically, the nano-carbon tube structure 121 may include at least one nano-carbon tube pull film or a plurality of nano-carbon lines arranged in parallel and spaced apart. The nano-carbon pipeline may be a non-twisted nano-carbon pipeline or a twisted nano-carbon pipeline.

請參閱圖3,該奈米碳管拉膜包括複數個連續且定向延伸的奈米碳管束。該複數個奈米碳管束通過範德華力首尾相連。每一奈米碳管束包括複數 個相互平行的奈米碳管,該複數個相互平行的奈米碳管通過範德華力緊密結合。該奈米碳管束的直徑為10奈米~200奈米,優選的,10奈米~100奈米。該奈米碳管拉膜中的奈米碳管沿同一方向擇優取向排列。所述奈米碳管拉膜包括複數個微孔。該微孔為一貫穿該奈米碳管拉膜的厚度方向的通孔。該微孔可為孔隙和/或間隙。當所述奈米碳管結構121僅包括單層奈米碳管拉膜時,該奈米碳管拉膜中相鄰的奈米碳管片段之間具有間隙,其中,該間隙的尺寸為1奈米~0.5微米。所述奈米碳管拉膜的厚度為0.01微米~100微米。可以理解,在由多層奈米碳管拉膜組成的奈米碳管結構121中,相鄰兩個奈米碳管拉膜中的奈米碳管的排列方向相同。所述奈米碳管拉膜可以通過拉取一奈米碳管陣列直接獲得。所述奈米碳管拉膜的結構及其製備方法請參見范守善等人於2007年2月12日申請的,於2010年7月11公告的第I327177號台灣公告專利申請“奈米碳管薄膜結構及其製備方法”,申請人:鴻海精密工業股份有限公司。為節省篇幅,僅引用此,但上述申請所有技術揭露也應視為本發明申請技術揭露的一部分。 Please refer to FIG. 3, the nano carbon tube pull film includes a plurality of continuous and directionally extending nano carbon tube bundles. The plurality of nano carbon tube bundles are connected end to end by Van der Waals. Each carbon nanotube bundle includes a plurality Carbon nanotubes parallel to each other, the plurality of carbon nanotubes parallel to each other are tightly combined by van der Waals force. The diameter of the carbon nanotube bundle is 10 nm to 200 nm, and preferably 10 nm to 100 nm. The carbon nanotubes in the carbon nanotube drawn film are aligned in a preferred orientation in the same direction. The nano-carbon tube pulling film includes a plurality of micropores. The micro-hole is a through-hole penetrating through the thickness direction of the carbon nanotube drawn film. The micropores may be pores and / or gaps. When the nano carbon tube structure 121 only includes a single-layer nano carbon tube drawing film, there is a gap between adjacent nano carbon tube fragments in the nano carbon tube drawing film, wherein the size of the gap is 1 Nanometer ~ 0.5 micron. The thickness of the nano-carbon tube drawn film is 0.01 μm to 100 μm. It can be understood that, in the nano-carbon tube structure 121 composed of a multilayer nano-carbon tube drawn film, the arrangement directions of the nano-carbon tubes in two adjacent carbon-carbon drawn films are the same. The nano-carbon tube pulling film can be directly obtained by pulling a nano-carbon tube array. For the structure of the carbon nanotube drawn film and its preparation method, please refer to Taiwan Sentral Patent Application No. I327177 published on July 11, 2010, applied by Fan Shoushan et al. Structure and Preparation Method ", applicant: Hon Hai Precision Industry Co., Ltd. To save space, only this is cited, but all technical disclosures of the above application should also be considered as part of the technical disclosure of the present application.

請參閱圖4,該非扭轉的奈米碳管線包括複數個沿該非扭轉的奈米碳管線長度方向排列的奈米碳管。具體地,該非扭轉的奈米碳管線包括複數個奈米碳管片段,該複數個奈米碳管片段通過範德華力首尾相連,每一奈米碳管片段包括複數個相互平行並通過範德華力緊密結合的奈米碳管。該奈米碳管片段具有任意的長度、厚度、均勻性及形狀。該非扭轉的奈米碳管線長度不限,直徑為0.5奈米~100微米。非扭轉的奈米碳管線為將奈米碳管拉膜通過有機溶劑處理得到。具體地,將有機溶劑浸潤所述奈米碳管拉膜的整個表面,在揮發性有機溶劑揮發時產生的表面張力的作用下,奈米碳管拉膜中的相互平行的複數個奈米碳管通過範德華力緊密結合,從而使奈米碳管拉膜收縮為一非扭轉的奈米碳管線。該有機溶劑為揮發性有機溶劑,如乙醇、甲醇、丙酮、二氯乙烷或氯仿,本實施例中採用乙醇。通過有機溶劑處理的非扭轉的奈米碳管線與未經有機溶劑處理的奈米碳管膜相比,比表面積減小,粘性降低。 Please refer to FIG. 4, the non-twisted nano carbon pipeline includes a plurality of nano carbon tubes arranged along a length direction of the non-twisted nano carbon pipeline. Specifically, the non-twisted nano-carbon pipeline includes a plurality of nano-carbon tube segments, the plurality of nano-carbon tube segments are connected end-to-end through Van der Waals force, and each nano-carbon tube segment includes a plurality of mutually parallel and passes through the van Tektronix tightly bonded carbon nanotubes. The nano carbon tube segment has an arbitrary length, thickness, uniformity and shape. The non-twisted nanometer carbon pipeline has an unlimited length, with a diameter of 0.5 nanometers to 100 micrometers. The non-twisted nano-carbon pipeline is obtained by processing the nano-carbon tube film through an organic solvent. Specifically, the entire surface of the carbon nanotube drawn film is impregnated with an organic solvent. Under the action of the surface tension generated when the volatile organic solvent is volatilized, a plurality of parallel carbon nanotubes in the carbon nanotube drawn film are parallel to each other. The tubes are tightly coupled by van der Waals force, so that the carbon nanotube film is shrunk into a non-twisted carbon tube. The organic solvent is a volatile organic solvent, such as ethanol, methanol, acetone, dichloroethane, or chloroform. In this embodiment, ethanol is used. Compared with non-organic solvent-treated carbon nanotube film, non-twisted nano-carbon pipeline treated with organic solvent has a lower specific surface area and lower viscosity.

所述扭轉的奈米碳管線為採用一機械力將所述奈米碳管拉膜兩端沿相反方向扭轉獲得。請參閱圖5,該扭轉的奈米碳管線包括複數個繞該扭轉的奈米碳管線軸向螺旋排列的奈米碳管。具體地,該扭轉的奈米碳管線包括複數個奈米碳管片段,該複數個奈米碳管片段通過範德華力首尾相連,每一奈米碳管片段包括複數個相互平行並通過範德華力緊密結合的奈米碳管。該奈米碳管片 段具有任意的長度、厚度、均勻性及形狀。該扭轉的奈米碳管線長度不限,直徑為0.5奈米~100微米。進一步地,可採用一揮發性有機溶劑處理該扭轉的奈米碳管線。在揮發性有機溶劑揮發時產生的表面張力的作用下,處理後的扭轉的奈米碳管線中相鄰的奈米碳管通過範德華力緊密結合,使扭轉的奈米碳管線的比表面積減小,密度及強度增大。 The twisted nanometer carbon pipeline is obtained by twisting two ends of the nanometer carbon tube pulling film in opposite directions by using a mechanical force. Please refer to FIG. 5, the twisted nano carbon pipeline includes a plurality of nano carbon tubes arranged in an axial spiral around the twisted nano carbon pipeline. Specifically, the twisted nano-carbon pipeline includes a plurality of nano-carbon tube segments, and the plurality of nano-carbon tube segments are connected end to end by Van der Waals force. Each nano-carbon tube segment includes a plurality of parallel and pass through vans. Tektronix tightly bonded carbon nanotubes. The nano carbon tube piece Segments have any length, thickness, uniformity, and shape. The length of the twisted nanometer carbon pipeline is not limited, and the diameter is 0.5 nanometer to 100 micrometers. Further, the twisted nano-carbon pipeline can be treated with a volatile organic solvent. Under the action of the surface tension generated when the volatile organic solvent is volatilized, adjacent nano-carbon pipes in the treated twisted nano-carbon pipeline are tightly combined by Van der Waals force to make the specific surface area of the twisted nano-carbon pipeline Decrease, density and strength increase.

所述奈米碳管線及其製備方法請參見范守善等人於2002年11月5日申請的,2008年11月27日公告的第I303239號台灣公告專利“一種奈米碳管繩及其製造方法”,申請人:鴻海精密工業股份有限公司,以及2005年12月16日申請的,2009年7月21日公告的第I312337號台灣公告專利“奈米碳管絲之製作方法”,申請人:鴻海精密工業股份有限公司。為節省篇幅,僅引用此,但上述申請所有技術揭露也應視為本發明申請技術揭露的一部分。 For the nano carbon pipeline and the preparation method thereof, please refer to Taiwan Announcement Patent No. I303239 published on November 5, 2002, applied by Fan Shoushan et al. ", The applicant: Hon Hai Precision Industry Co., Ltd., and the Taiwan Announcement Patent No. I312337," Method for Making Carbon Nanotubes, "filed on July 16, 2009 and published on July 21, 2009, the applicant: Hon Hai Precision Industry Co., Ltd. To save space, only this is cited, but all technical disclosures of the above application should also be considered as part of the technical disclosure of the present application.

本發明實施例1進一步提供一種產生太赫茲調製波的方法,該方法包括以下步驟:步驟S11,提供一太赫茲波源11,並使該太赫茲波源11激發產生太赫茲波;以及步驟S12,在所述太赫茲波源11的出射面111一側設置一奈米碳管結構121,使該太赫茲波源11產生的太赫茲波透過該奈米碳管結構121後發射出去,其中,該奈米碳管結構121包括複數個沿同一方向定向延伸的奈米碳管。 Embodiment 1 of the present invention further provides a method for generating a terahertz modulated wave. The method includes the following steps: step S11, providing a terahertz wave source 11 and exciting the terahertz wave source 11 to generate a terahertz wave; and step S12, in step S12, A nano-carbon tube structure 121 is provided on one side of the exit surface 111 of the terahertz wave source 11, so that the terahertz wave generated by the terahertz-wave source 11 passes through the nano-carbon tube structure 121 and is emitted, wherein the nano-carbon The tube structure 121 includes a plurality of carbon nanotubes extending in the same direction.

所述步驟S12中,太赫茲波源11產生的太赫茲波經過所述奈米碳管結構121調製後形成太赫茲偏振波。 In step S12, the terahertz wave generated by the terahertz wave source 11 is modulated by the nano carbon tube structure 121 to form a terahertz polarized wave.

本申請發明人研究發現,通過奈米碳管結構121可以調節太赫茲波的穿透率,即,太赫茲波的穿透率隨著波數或波長呈波峰波谷交替形狀。本實施例中,分別採用1層、2層、3層、4層、5層的奈米碳管拉膜進行測量,多層奈米碳管拉膜的奈米碳管的延伸方向相同,且奈米碳管的延伸方向分別為水準方向和豎直方向。 The inventors of the present application have found that the transmittance of the terahertz wave can be adjusted by the nano-carbon tube structure 121, that is, the transmittance of the terahertz wave has an alternating shape of peaks and troughs with the wave number or wavelength. In this embodiment, the measurement is performed by using 1-layer, 2-layer, 3-layer, 4-layer, and 5-layer nano-carbon tube drawn film. The extension direction of the nano-carbon tube of the multi-layered carbon tube drawn film is the same, and The extension direction of the meter carbon tube is the horizontal direction and the vertical direction.

參見圖6,在波數為680~30,波長範圍為15微米~300微米的遠紅外波段,無論奈米碳管的延伸方向是水準方向還是豎直方向,太赫茲波的穿透率隨著波數均呈明顯的波峰波谷交替形狀。而且,當奈米碳管的延伸方向分別為水準方向和豎直方向時,該波峰波谷正好相反。例如,在波數為475~300範圍內,當奈米碳管的延伸方向為水準方向時,該穿透率呈波谷形狀,而當奈米 碳管的延伸方向為豎直方向時,該穿透率呈波峰形狀。另外,隨著奈米碳管拉膜層數的增加,太赫茲波的穿透率逐漸下降,但隨著波數任然呈波峰波谷交替形狀。而且,隨著奈米碳管拉膜層數的增加,當奈米碳管的延伸方向分別為水準方向和豎直方向時,該波峰波谷的反差也逐漸增大。例如,在波數為475~300範圍內,隨著奈米碳管拉膜層數的增加,該波峰波谷的反差也明顯逐漸增大。 Referring to Figure 6, in the far-infrared band with a wavenumber of 680 to 30 and a wavelength range of 15 to 300 microns, no matter whether the extension direction of the carbon nanotube is horizontal or vertical, the transmittance of the terahertz wave varies with The wave numbers all show obvious alternating peaks and troughs. Moreover, when the extending direction of the nano carbon tube is the horizontal direction and the vertical direction, the peaks and troughs are just opposite. For example, in the range of 475 ~ 300, when the extension direction of the carbon nanotube is horizontal, the transmittance is in the shape of a trough, and When the extending direction of the carbon tube is a vertical direction, the transmittance has a wave shape. In addition, with the increase of the number of nano-carbon tube drawn film layers, the terahertz wave's transmittance gradually decreases, but with the wave number, it still takes the shape of alternating peaks and troughs. Moreover, with the increase of the number of layers of the nano-carbon tube, when the extending direction of the nano-carbon tube is the horizontal direction and the vertical direction, the contrast of the peaks and troughs gradually increases. For example, in the range of 475 ~ 300, the contrast between the peaks and troughs of the carbon nanotubes increases gradually with the increase of the number of nano-carbon tube drawn film layers.

參見圖7,在波數為7500~400,波長範圍為1.3微米~25微米的中紅外波段,無論奈米碳管的延伸方向是水準方向還是豎直方向,太赫茲波的穿透率隨著波數也呈一定的波峰波谷交替形狀,但與遠紅外波段相比,波峰波谷交替現象沒那麼明顯。另外,隨著奈米碳管拉膜層數的增加,太赫茲波的穿透率逐漸下降。但是波峰波谷交替現象卻逐漸加強。例如,採用5層的奈米碳管拉膜時,已經可以看出明顯的波峰波谷交替現象。 Referring to Figure 7, in the mid-infrared band with a wavenumber of 7500 ~ 400 and a wavelength range of 1.3 micrometers to 25 micrometers, no matter whether the extension direction of the carbon nanotube is horizontal or vertical, the transmittance of the terahertz wave varies with The wave number also has a certain alternating shape of peaks and valleys, but compared to the far-infrared band, the phenomenon of peaks and valleys is less obvious. In addition, with the increase in the number of nanofilm carbon nanotube film layers, the terahertz wave transmittance gradually decreases. However, the peak-to-valley alternation phenomenon has gradually strengthened. For example, when 5 layers of carbon nanotubes are used to pull the film, it can already be seen that the peaks and valleys are alternating.

進一步,本實施例中,分別採用2層和4層的交叉的奈米碳管拉膜進行測量。其中,採用2層奈米碳管拉膜時,2層奈米碳管拉膜的奈米碳管的延伸方向垂直。而採用4層奈米碳管拉膜時,第1和第3層奈米碳管拉膜中的奈米碳管的延伸方向相同,第2和第4層奈米碳管拉膜中的奈米碳管的延伸方向相同,且,第1和第2層奈米碳管拉膜中的奈米碳管的延伸方向垂直。參見圖8,在遠紅外波段,當將2層和4層的交叉的奈米碳管拉膜旋轉0度、90度、180度以及270度時,測量結果基本相同,且沒有波峰波谷交替現象。由此可見,上述波峰波谷交替現象,是由於奈米碳管結構121中的奈米碳管週期性定向排列伸造成的。由於相鄰奈米碳管間的縫隙與太赫茲波的波長相當,太赫茲波透過奈米碳管結構121時發生干涉,故產生波峰波谷交替現象。該波峰波谷交替現象在宏觀上表現為偏振特性。 Further, in this embodiment, the measurement is performed by using a two-layer and four-layer cross-section carbon nanotube drawn film. Wherein, when two-layer nano-carbon tube stretch film is used, the extending direction of the two-layer nano-carbon tube stretch film is vertical. When the 4-layer carbon nanotube film is used, the extension direction of the nano-carbon tubes in the first and third nano-carbon tube film is the same, and the nano-tubes in the second- and fourth-layer nano-carbon tube film are the same. The extending direction of the carbon nanotubes is the same, and the extending direction of the carbon nanotubes in the first and second layers of the carbon nanotube drawn film is perpendicular. Referring to FIG. 8, in the far-infrared band, when the cross-layered carbon nanotube pull film of 2 layers and 4 layers is rotated by 0 degrees, 90 degrees, 180 degrees, and 270 degrees, the measurement results are basically the same, and there is no peak and valley alternating phenomenon. . It can be seen that the above-mentioned alternating phenomenon of peaks and valleys is caused by the periodic alignment and extension of the nano carbon tubes in the nano carbon tube structure 121. Since the gap between the adjacent carbon nanotubes is equivalent to the wavelength of the terahertz wave, the terahertz wave interferes when passing through the carbon nanotube structure 121, so a peak-valley alternation phenomenon occurs. This peak-to-valley alternation phenomenon manifests itself as a polarization characteristic on a macro scale.

實施例2 Example 2

本發明實施例2提供的太赫茲波發射裝置10與本發明實施例1提供的太赫茲波發射裝置10結構基本相同,其區別在於,所述奈米碳管結構121中沿同一方向定向延伸的奈米碳管的表面包覆有一層預製層。優選地,所述預製層包覆於每個奈米碳管的整個表面。 The structure of the terahertz wave transmitting device 10 provided in Embodiment 2 of the present invention is basically the same as that of the terahertz wave transmitting device 10 provided in Embodiment 1 of the present invention. The difference is that the nano-carbon tube structure 121 extends in the same direction in the same direction. The surface of the carbon nanotube is covered with a prefabricated layer. Preferably, the prefabricated layer covers the entire surface of each nano carbon tube.

所述預製層的材料可為金、鎳、鈦、鐵、鋁、鈦、鉻等金屬、氧化鋁、氧化鎂、氧化鋅、氧化鉿等金屬氧化物、金屬氮化物、或金屬硫化物等中 的至少一種。可以理解,所述預製層的材料不限於上述列舉材料,還可以為二氧化矽等非金屬氧化物、碳化矽等非金屬碳化物或氮化矽等非金屬氮化物等,只要可以物理性的沈積於所述奈米碳管結構121的表面,且將奈米碳管包覆即可。所述物理性的沈積是指所述預製層不與所述奈米碳管結構121發生化學反應,而是通過範德華力與所述奈米碳管結構121緊密結合,並附於所述奈米碳管結構121中奈米碳管的表面。所述預製層的厚度不限,可為3奈米~50奈米。 The material of the prefabricated layer may be metal such as gold, nickel, titanium, iron, aluminum, titanium, chromium, metal oxide such as aluminum oxide, magnesium oxide, zinc oxide, hafnium oxide, metal nitride, or metal sulfide. At least one. It can be understood that the material of the prefabricated layer is not limited to the materials listed above, but may also be a non-metal oxide such as silicon dioxide, a non-metal carbide such as silicon carbide, or a non-metal nitride such as silicon nitride, as long as it can be physically It can be deposited on the surface of the carbon nanotube structure 121, and the carbon nanotube can be covered. The physical deposition means that the prefabricated layer does not chemically react with the carbon nanotube structure 121, but is tightly combined with the carbon nanotube structure 121 by Van der Waals force and attached to the carbon nanotube structure 121. The surface of the carbon nanotube in the carbon nanotube structure 121. The thickness of the prefabricated layer is not limited, and may be 3 nm to 50 nm.

本實施例中,通過電子束蒸鍍法在單層奈米碳管拉膜的表面分別設置三氧化二鋁層和金層作為預製層進行測量,其中,預製層厚度分別為15奈米和30奈米,奈米碳管的延伸方向分別為水準方向和豎直方向。 In this embodiment, an aluminum trioxide layer and a gold layer are respectively provided on the surface of the single-layer carbon nanotube drawn film by the electron beam evaporation method for measurement as a prefabricated layer, wherein the thickness of the prefabricated layer is 15nm and 30nm, respectively. The extension directions of nanometer and nanometer carbon tubes are horizontal and vertical respectively.

參見圖9,在遠紅外波段,無論奈米碳管的延伸方向是水準方向還是豎直方向,波峰波谷交替現象仍然明顯。但是,相對於純奈米碳管拉膜,包覆三氧化二鋁層後,波峰波谷交替現象有所減弱,而包覆金層後,波峰波谷交替現象明顯增強。並且,包覆金層後的樣品的穿透率在低波數有明顯的上升趨勢,這個對於純奈米碳管結構121是沒有的。另外,隨著金層厚度增加,太赫茲波的穿透率整體下降,但波峰波谷交替現象仍然明顯。 Referring to FIG. 9, in the far-infrared wave band, no matter whether the extending direction of the carbon nanotube is horizontal or vertical, the phenomenon of alternating peaks and troughs is still obvious. However, compared to the pure carbon nanotube film, after the aluminum oxide layer is coated, the peak and valley alternation phenomenon is weakened, and after the gold layer is coated, the peak and valley alternation phenomenon is significantly enhanced. In addition, the transmittance of the samples coated with the gold layer has a significant upward trend at low wave numbers, which is not the case for the pure carbon nanotube structure 121. In addition, as the thickness of the gold layer increases, the transmittance of the terahertz wave decreases as a whole, but the phenomenon of alternating peaks and troughs is still obvious.

參見圖10,在中紅外波段,包覆金層的單層奈米碳管拉膜比純的單層奈米碳管拉膜穿透率明顯下降,但是波峰波谷交替現象卻比純的單層奈米碳管拉膜明顯增強。而包覆三氧化二鋁層後的單層奈米碳管拉膜,波峰波谷交替現象幾乎消失。 Referring to FIG. 10, in the mid-infrared wavelength range, the single-layered carbon nanotube film with a gold coating is more transparent than the purely single-layered carbon nanotube film. The film pull of nano carbon tube is obviously enhanced. In the single-layer carbon nanotube film coated with the alumina layer, the peak-to-valley alternation phenomenon almost disappeared.

作為典型的金屬材料,金對於電磁波能量的吸收主要來源於其載流子電子。這同奈米碳管膜材料是類似的。只不過,由於金的電子數量要遠遠多於奈米碳管,故少量金的引入即可對奈米碳管膜的透過率有相當大的影響。從這一點出發,通過金屬蒸鍍,我們可以有效地調節奈米碳管膜的透過率。通過和金屬氧化物的鍍膜對比表明,奈米碳管的透過率行為確實同電子相關,稱為電子調控。並且通過電子對透過率的調控範圍較廣,涵蓋整個中紅外到遠紅外區間。調控對鍍膜厚度不敏感,對材料更加敏感。另外,由於蒸鍍的金屬層的奈米碳管膜的波峰波谷交替現象顯增強,這表明金屬層本身也可以產生波峰波谷交替現象。當奈米碳管膜表面蒸鍍金屬層後,相當於結構相同的奈米碳管膜和金屬層分別對太赫茲波透射進行調製和疊加。 As a typical metal material, gold's absorption of electromagnetic wave energy mainly comes from its carrier electrons. This is similar to the carbon nanotube film material. However, since the number of gold electrons is far more than that of the carbon nanotubes, the introduction of a small amount of gold can have a considerable effect on the transmittance of the carbon nanotube film. From this point, through metal evaporation, we can effectively adjust the transmittance of the carbon nanotube film. The comparison with the coating of metal oxide shows that the transmittance behavior of carbon nanotubes is indeed related to electrons, which is called electronic regulation. Moreover, the transmission range can be adjusted by electrons, covering the entire mid-infrared to far-infrared range. The regulation is not sensitive to the coating thickness and is more sensitive to the material. In addition, the peak-to-valley alternation phenomenon of the carbon nanotube film of the vapor-deposited metal layer is significantly enhanced, which indicates that the metal layer itself can also generate a wave-to-valley alternation phenomenon. After the metal layer is deposited on the surface of the carbon nanotube film, the equivalent carbon nanotube film and metal layer with the same structure modulate and superimpose the terahertz wave transmission, respectively.

實施例3 Example 3

請參閱圖11-12,本發明實施例3提供一種太赫茲波發射裝置10A,其包括一太赫茲波源11、一置於該太赫茲波源11的出射面111一側的調製裝置12以及一旋轉裝置13。 Please refer to FIGS. 11-12. Embodiment 3 of the present invention provides a terahertz wave transmitting device 10A, which includes a terahertz wave source 11, a modulation device 12 disposed on the exit surface 111 side of the terahertz wave source 11, and a rotation.装置 13。 Device 13.

本發明實施例3提供的太赫茲波發射裝置10A與本發明實施例1提供的太赫茲波發射裝置10結構基本相同,其區別在於,進一步包括一旋轉裝置13。所述旋轉裝置13用於旋轉所述太赫茲波源11或/和調製裝置12,從而調節所述奈米碳管結構121中奈米碳管的延伸方向與太赫茲波偏振方向的夾角。所述旋轉裝置13也可以安裝在所述太赫茲波源11上,也可以安裝在所述調製裝置12上。或者,分別在所述太赫茲波源11和調製裝置12上各安裝一個旋轉裝置13。 The terahertz wave transmitting device 10A provided in Embodiment 3 of the present invention is basically the same as the terahertz wave transmitting device 10 provided in Embodiment 1 of the present invention, and the difference is that it further includes a rotating device 13. The rotating device 13 is configured to rotate the terahertz wave source 11 or / and the modulation device 12 so as to adjust an included angle between the extending direction of the nano carbon tube and the polarization direction of the terahertz wave in the nano carbon tube structure 121. The rotating device 13 may be mounted on the terahertz wave source 11 or may be mounted on the modulation device 12. Alternatively, a rotation device 13 is installed on each of the terahertz wave source 11 and the modulation device 12.

本實施例中,所述旋轉裝置13與該支撐框架120連接,用於旋轉該支撐框架120,從使所述奈米碳管結構121在其所在平面內旋轉。所述旋轉裝置13至少包括電機以及控制模組。所述奈米碳管結構121旋轉角度的精度小於等於5度,優選地,旋轉角度的精度為1度。 In this embodiment, the rotating device 13 is connected to the supporting frame 120 for rotating the supporting frame 120 to rotate the nano carbon tube structure 121 in a plane where the nano carbon tube structure 121 is located. The rotating device 13 includes at least a motor and a control module. The accuracy of the rotation angle of the carbon nanotube structure 121 is less than or equal to 5 degrees, and preferably, the accuracy of the rotation angle is 1 degree.

可以理解,由於太赫茲波實際偏振方向無法事先確定,本實施例定義垂直於地面的方向基準,以奈米碳管延伸方向垂直於地面為0度角。當只有所述奈米碳管結構121旋轉時,所述奈米碳管結構121旋轉的角度就是所述奈米碳管結構121中奈米碳管的延伸方向與太赫茲波偏振方向的夾角。當所述奈米碳管結構121和所述太赫茲波源11同時旋轉時,根據所述奈米碳管結構121和所述太赫茲波源11各自旋轉的角度即可計算出所述奈米碳管結構121中奈米碳管的延伸方向與太赫茲波偏振方向的夾角。例如,當所述奈米碳管結構121和所述太赫茲波源11旋轉方向相同時,該夾角為所述奈米碳管結構121和所述太赫茲波源11各自旋轉角度的差。當所述奈米碳管結構121和所述太赫茲波源11旋轉方向相反時,該夾角為所述奈米碳管結構121和所述太赫茲波源11各自旋轉角度的和。 It can be understood that, since the actual polarization direction of the terahertz wave cannot be determined in advance, this embodiment defines a direction reference perpendicular to the ground, and the direction in which the carbon nanotube extends is perpendicular to the ground at an angle of 0 degrees. When only the nano carbon tube structure 121 is rotated, the rotation angle of the nano carbon tube structure 121 is the angle between the extension direction of the nano carbon tube in the nano carbon tube structure 121 and the polarization direction of the terahertz wave. When the nano carbon tube structure 121 and the terahertz wave source 11 rotate at the same time, the nano carbon tube can be calculated according to the rotation angles of the nano carbon tube structure 121 and the terahertz wave source 11 respectively. The angle between the extension direction of the nano-carbon tube and the polarization direction of the terahertz wave in the structure 121. For example, when the rotation direction of the carbon nanotube structure 121 and the terahertz wave source 11 are the same, the included angle is the difference between the rotation angles of the carbon nanotube structure 121 and the terahertz wave source 11 respectively. When the nano carbon tube structure 121 and the terahertz wave source 11 rotate in opposite directions, the included angle is the sum of the respective rotation angles of the nano carbon tube structure 121 and the terahertz wave source 11.

本發明實施例3進一步提供一種產生太赫茲調製波的方法,該方法包括以下步驟:步驟S31,提供一太赫茲波源11,並使該太赫茲波源11激發產生太赫茲波; 步驟S32,在所述太赫茲波源11的出射面111一側設置一奈米碳管結構121,使該太赫茲波源11產生的太赫茲波透過該奈米碳管結構121後發射出去,其中,該奈米碳管結構121包括複數個沿同一方向定向延伸的奈米碳管;以及步驟S33,旋轉所述太赫茲波源11或/和調製裝置12,從而調節所述奈米碳管結構121中奈米碳管的延伸方向與太赫茲波偏振方向的夾角。 Embodiment 3 of the present invention further provides a method for generating a terahertz modulated wave. The method includes the following steps: step S31, providing a terahertz wave source 11 and exciting the terahertz wave source 11 to generate a terahertz wave; In step S32, a nanometer carbon tube structure 121 is provided on the side of the exit surface 111 of the terahertz wave source 11, so that the terahertz wave generated by the terahertz wave source 11 passes through the nanometer carbon pipe structure 121 and is emitted. The nano carbon tube structure 121 includes a plurality of nano carbon tubes extending in the same direction; and in step S33, the terahertz wave source 11 or / and the modulation device 12 are rotated to adjust the nano carbon tube structure 121. The angle between the extension direction of the nano carbon tube and the polarization direction of the terahertz wave.

本實施例採用單層奈米碳管拉膜進行測量,以奈米碳管延伸方向垂直於地面為0度角起,每隔15度測量一次,一直到180度。參見圖13,上述波峰波谷交替現象呈週期性變化。即,隨著奈米碳管拉膜旋轉,波峰與波谷之間逐漸相互轉化。參見圖14-15,當奈米碳管拉膜旋轉90度之後,波峰變為波谷,波谷變為波峰,且相差90度的兩個角度下,波峰波谷呈對稱狀。參見圖16,當奈米碳管拉膜旋轉180度之後,波峰波谷形狀與0度角的波峰波谷形狀相同。 In this embodiment, a single-layer carbon nanotube film is used for measurement. The extending direction of the carbon nanotube is perpendicular to the ground at an angle of 0 degrees, and the measurement is performed every 15 degrees to 180 degrees. Referring to FIG. 13, the above-mentioned alternating phenomenon of peaks and valleys changes periodically. That is, as the nano-carbon tube pull film rotates, the wave peaks and valleys gradually transform into each other. Referring to FIGS. 14-15, after the carbon nanotube pull film is rotated 90 degrees, the wave peaks become wave troughs, and the wave troughs become wave crests. At two angles that are 90 degrees apart, the wave troughs are symmetrical. Referring to FIG. 16, after the carbon nanotube film is rotated 180 degrees, the shape of the wave trough is the same as the shape of the wave trough at an angle of 0 degrees.

實施例4 Example 4

請參閱圖17,本發明實施例3提供一種太赫茲波發射裝置10B,其包括一太赫茲波源11、一置於該太赫茲波源11的出射面111一側的調製裝置12、一真空容器14以及一加熱裝置15。 Referring to FIG. 17, Embodiment 3 of the present invention provides a terahertz wave transmitting device 10B, which includes a terahertz wave source 11, a modulation device 12 disposed on the exit surface 111 side of the terahertz wave source 11, and a vacuum container 14 And a heating device 15.

本發明實施例4提供的太赫茲波發射裝置10B與本發明實施例1提供的太赫茲波發射裝置10結構基本相同,其區別在於,進一步包括真空容器14和加熱裝置15。所述加熱裝置15用於加熱所述奈米碳管結構121。所述調製裝置12設置於所述真空容器14內,用於保護所述調製裝置12的奈米碳管結構121,以防止該奈米碳管結構121被加熱後氧化。尤其,當所述奈米碳管結構121表面包覆金屬層後,加熱時金屬層很容易形成金屬氧化物。可以理解,由於奈米碳管結構121設置於真空容器14內,所述加熱裝置15可以為設置於所述真空容器14內的專門電加熱裝置,也可以設置於真空容器14外的光加熱裝置,例如鐳射加熱。優選地,通過對該奈米碳管結構121施加電壓來實現加熱,而不引入奈米碳管結構121以外的其他加熱裝置。因為其他加熱裝置與奈米碳管結構121之間的熱交換主要通過熱輻射進行,而熱輻射會引入其他電磁波,從而對太赫茲波的調節形成干擾。 The terahertz wave transmitting device 10B provided in Embodiment 4 of the present invention is basically the same as the terahertz wave transmitting device 10 provided in Embodiment 1 of the present invention, and the difference is that it further includes a vacuum container 14 and a heating device 15. The heating device 15 is used to heat the carbon nanotube structure 121. The modulation device 12 is disposed in the vacuum container 14 to protect the nano carbon tube structure 121 of the modulation device 12 to prevent the nano carbon tube structure 121 from being oxidized after being heated. In particular, after the surface of the carbon nanotube structure 121 is coated with a metal layer, the metal layer is liable to form a metal oxide when heated. It can be understood that, because the nano carbon tube structure 121 is disposed in the vacuum container 14, the heating device 15 may be a special electric heating device disposed in the vacuum container 14 or a light heating device disposed outside the vacuum container 14. , Such as laser heating. Preferably, heating is achieved by applying a voltage to the nano carbon tube structure 121 without introducing any heating device other than the nano carbon tube structure 121. Because the heat exchange between other heating devices and the carbon nanotube structure 121 is mainly performed by thermal radiation, and thermal radiation will introduce other electromagnetic waves, which will interfere with the adjustment of the terahertz wave.

所述真空容器14採用太赫茲波可以穿透的材料製備,例如玻璃或透明樹脂。所述真空容器14的真空度要求不高,只要壓強低於100帕即可。可 以理解,所述真空容器14內也可以填充惰性氣體。實驗測試表明通過向奈米碳管結構121施加電壓加熱,由於熱平衡需要一個過程,需要一定加熱時間才能得到穩定收斂的測量結果。尤其在真空環境中,達到熱平衡需要的時間更長,這也影響的調製的速度。為此本發明提出兩個方案提高加熱調製的速度。方案一為:在大氣環境中,即在所述真空容器14內填充一個大氣壓的空氣,施加電壓加熱該奈米碳管結構121,但是加熱溫度控制在300攝氏度以內,以防止該奈米碳管結構121氧化。方案二為:在所述真空容器14內填充惰性氣體。這樣既可以獲得較快的熱調製的速度又可以獲得較明顯的調製特徵。 The vacuum container 14 is made of a material that can be penetrated by a terahertz wave, such as glass or transparent resin. The vacuum degree of the vacuum container 14 is not high, as long as the pressure is lower than 100 Pa. can It is understood that the vacuum container 14 may also be filled with an inert gas. Experimental tests show that by applying a voltage to the carbon nanotube structure 121 for heating, since thermal equilibrium requires a process, a certain heating time is required to obtain a stable and convergent measurement result. Especially in a vacuum environment, it takes longer to reach thermal equilibrium, which also affects the speed of modulation. Therefore, the present invention proposes two schemes to increase the speed of heating modulation. The first solution is: in the atmospheric environment, that is, fill the vacuum container 14 with an atmospheric pressure of air, apply a voltage to heat the carbon nanotube structure 121, but the heating temperature is controlled within 300 degrees Celsius to prevent the carbon nanotube Structure 121 is oxidized. The second solution is: filling the vacuum container 14 with an inert gas. In this way, both the faster thermal modulation speed and the more obvious modulation characteristics can be obtained.

本實施例中,所述加熱裝置15包括一第一電極151、一第二電極152以及一電源153。所述第一電極151與第二電極152間隔設置,且分別與所述電源153電連接。所述第一電極151或第二電極152為金屬層或金屬片。所述第一電極151與第二電極152固定於所述支撐框架120上,且與所述奈米碳管結構121電連接。所述奈米碳管結構121夾持在所述支撐框架120與所述第一電極151或第二電極152之間。所述電源153可以為交流電源或直流電源。當通過所述第一電極151和第二電極152向所述奈米碳管結構121施加電壓時,所述奈米碳管結構121會自身發熱。 In this embodiment, the heating device 15 includes a first electrode 151, a second electrode 152, and a power source 153. The first electrode 151 and the second electrode 152 are spaced apart, and are electrically connected to the power source 153 respectively. The first electrode 151 or the second electrode 152 is a metal layer or a metal sheet. The first electrode 151 and the second electrode 152 are fixed on the support frame 120 and are electrically connected to the nano-carbon tube structure 121. The carbon nanotube structure 121 is sandwiched between the support frame 120 and the first electrode 151 or the second electrode 152. The power source 153 may be an AC power source or a DC power source. When a voltage is applied to the nano-carbon tube structure 121 through the first electrode 151 and the second electrode 152, the nano-carbon tube structure 121 generates heat by itself.

請參閱圖18-19,具體地,所述奈米碳管結構121的長度大於所述支撐框架120在長度方向的尺寸。所述奈米碳管結構121設置於所述支撐框架120的一表面,且兩端分別彎折後設置於所述支撐框架120的背面。所述第一電極151或第二電極152均為金屬環,套設於所述支撐框架120上,從而使得所述支撐框架120正面和背面的奈米碳管結構121均夾持在所述支撐框架120與所述第一電極151或第二電極152之間。 Please refer to FIGS. 18-19. Specifically, the length of the carbon nanotube structure 121 is greater than the length of the support frame 120 in the length direction. The nano-carbon tube structure 121 is disposed on one surface of the support frame 120, and two ends thereof are respectively bent and disposed on the back surface of the support frame 120. The first electrode 151 or the second electrode 152 are both metal rings, and are sleeved on the support frame 120, so that the carbon nanotube structure 121 on the front and back of the support frame 120 is clamped on the support. Between the frame 120 and the first electrode 151 or the second electrode 152.

可以理解,本實施例中,所述奈米碳管結構121同時作為加熱元件使用。在另一個實施例中,所述加熱裝置15可以包括專門的加熱元件。例如,請參閱圖20,所述加熱裝置15包括一太赫茲波可以穿透的加熱膜154,該加熱膜154設置於該真空容器14的內壁上且於該所述第一電極151和第二電極152電連接。所述加熱膜154與所述奈米碳管結構121間隔設置。所述加熱膜154的材料可以為ITO。 It can be understood that, in this embodiment, the nano carbon tube structure 121 is used as a heating element at the same time. In another embodiment, the heating device 15 may include a dedicated heating element. For example, referring to FIG. 20, the heating device 15 includes a heating film 154 that can be penetrated by a terahertz wave. The heating film 154 is disposed on the inner wall of the vacuum container 14 and between the first electrode 151 and the first electrode. The two electrodes 152 are electrically connected. The heating film 154 is spaced from the nano carbon tube structure 121. The material of the heating film 154 may be ITO.

本發明實施例4進一步提供一種產生太赫茲調製波的方法,該方法包括以下步驟: 步驟S41,提供一太赫茲波源11,並使該太赫茲波源11激發產生太赫茲波;步驟S42,在所述太赫茲波源11的出射面111一側設置一奈米碳管結構121,使該太赫茲波源11產生的太赫茲波透過該奈米碳管結構121後發射出去,其中,該奈米碳管結構121包括複數個沿同一方向定向延伸的奈米碳管;以及步驟S43,加熱所述奈米碳管結構121。 Embodiment 4 of the present invention further provides a method for generating a terahertz modulated wave. The method includes the following steps: In step S41, a terahertz wave source 11 is provided, and the terahertz wave source 11 is excited to generate a terahertz wave. In step S42, a nanometer carbon tube structure 121 is provided on the side of the exit surface 111 of the terahertz wave source 11, so that the The terahertz wave generated by the terahertz wave source 11 is transmitted through the nano carbon tube structure 121, wherein the nano carbon tube structure 121 includes a plurality of nano carbon tubes extending in the same direction; and step S43, heating the Describing the carbon nanotube structure 121.

所述步驟S43中,加熱所述奈米碳管結構121的過程還可以包括改變所述奈米碳管結構121的溫度。本實施例中,通過向所述奈米碳管結構121沿著奈米碳管延伸方向的兩端施加電壓加熱所述奈米碳管結構121。所述施加的電壓範圍為0V~200V。進一步,向所述奈米碳管結構121沿著奈米碳管延伸方向的兩端施加的電壓可以為恒壓也可以為變化的電壓。 In step S43, the process of heating the carbon nanotube structure 121 may further include changing the temperature of the carbon nanotube structure 121. In this embodiment, the nano carbon tube structure 121 is heated by applying a voltage to both ends of the nano carbon tube structure 121 along the extending direction of the nano carbon tube. The applied voltage ranges from 0V to 200V. Further, the voltage applied to the two ends of the nano carbon tube structure 121 along the extending direction of the nano carbon tube may be a constant voltage or a variable voltage.

本實施例的第1次測試中,採用單層奈米碳管拉膜進行測量,奈米碳管的延伸方向分別為水準和豎直,施加電壓分別為0V、30V、60V以及90V。參見圖21,在靠近中紅外波段,隨著電壓增大,太赫茲波的穿透率在逐漸下降,而在靠近遠紅外波段,其穿透率則是劇烈下降。波峰波谷交替現象仍然保留,但不明顯。 In the first test of this embodiment, a single-layer carbon nanotube film was used for measurement. The extending directions of the carbon nanotubes were horizontal and vertical, respectively, and the applied voltages were 0V, 30V, 60V, and 90V. Referring to FIG. 21, in the vicinity of the mid-infrared band, as the voltage increases, the transmittance of the terahertz wave gradually decreases, and in the vicinity of the far-infrared band, its transmittance decreases sharply. The peak-to-valley alternation phenomenon remains, but it is not obvious.

本實施例的第2次測試中,採用單層奈米碳管拉膜進行測量,奈米碳管的延伸方向分別為水準和豎直,施加電壓分別為0V、20V、40V、60V、80V以及100V。參見圖22,隨著電壓增大,遠紅外波段的穿透率急劇下降,而且可以明顯看出波峰波谷交替現象。另外,隨著電壓增大波峰波谷交替現象呈放大趨勢,一些在無電壓下很弱或者看不出的特徵,在高電壓下趨於明顯。例如,在波數為150,250以及600處附近的波峰和波谷均隨著電壓增大而變得更加明顯。 In the second test of this embodiment, a single-layer carbon nanotube film was used for measurement. The extending directions of the carbon nanotubes were horizontal and vertical, and the applied voltages were 0V, 20V, 40V, 60V, 80V, and 80V. 100V. Referring to FIG. 22, as the voltage increases, the transmittance in the far-infrared band decreases sharply, and the peak-to-valley alternation phenomenon can be clearly seen. In addition, as the voltage increases, the peak-to-valley alternation phenomenon is amplifying, and some features that are weak or invisible under no voltage tend to be obvious under high voltage. For example, the peaks and troughs around the wave numbers 150, 250, and 600 all become more pronounced as the voltage increases.

本實施例的第3次測試中,採用雙層奈米碳管拉膜進行測量,其他參數與第2次測試相同。參見圖23,採用雙層奈米碳管拉膜的測量結果與採用單層奈米碳管拉膜的測量結果基本相同。 In the third test of this embodiment, a double-walled carbon nanotube film is used for measurement, and other parameters are the same as the second test. Referring to FIG. 23, the measurement result of the film pulling with the double-walled carbon nanotube is basically the same as that of the film drawing with the single-walled carbon nanotube.

可以理解,奈米碳管和傳統的金屬與半導體材料的一個重要區別,在於奈米碳管的聲子行為。作為一種准粒子,聲子在奈米碳管的導熱中起了非常重要的作用。由於電子的熱容量和聲子遠不是一個數量級,奈米碳管高熱導低熱容的性質基本上來自於聲子貢獻。由於電子的熱容量極低,而奈米碳管導 熱並非依賴於電子,而是聲子,故,此時奈米碳管的透過率降低主要是由於聲子調控,而與電子並沒有直接關係。 It can be understood that an important difference between nano carbon tubes and traditional metal and semiconductor materials lies in the phonon behavior of nano carbon tubes. As a kind of quasi-particles, phonons play a very important role in the thermal conductivity of carbon nanotubes. Since the heat capacity and phonons of electrons are far from an order of magnitude, the properties of high thermal conductivity and low heat capacity of nanometer carbon tubes are basically derived from phonon contributions. Due to the extremely low heat capacity of the electrons, Heat does not depend on electrons, but on phonons. At this time, the reduction of the transmittance of the nano-carbon tube is mainly due to phonon regulation, and has no direct relationship with electrons.

結合實施例2可知,鍍金屬膜對於奈米碳管透過率的影響是涵蓋中紅外和遠紅外波段的,而加熱主要影響的是遠紅外波段。這表明了加熱手段對奈米碳管的影響的確從機理上同鍍金屬膜不同。無論是半導體類型還是金屬類型,奈米碳管的化學鍵的能量較高。遠紅外波段以晶格本身振動為代表的聲子等為主要運動模式,其能量相對較低,主要在遠紅外範圍。這從聲子譜的研究對照中可以得到驗證。 With reference to Example 2, it can be known that the influence of the metallized film on the transmittance of the nano-carbon tube covers the mid-infrared and far-infrared bands, and the heating mainly affects the far-infrared band. This shows that the effect of the heating method on the carbon nanotubes is indeed different from the metallized film. Regardless of the semiconductor type or the metal type, the energy of the chemical bond of the carbon nanotube is higher. In the far-infrared band, phonons, etc. represented by the vibration of the lattice itself are the main movement modes, and their energy is relatively low, mainly in the far-infrared range. This can be verified from the study comparison of phonon spectra.

實施例5 Example 5

請參閱圖24,本發明實施例5提供一種太赫茲波發射裝置10C,其包括一太赫茲波源11、一置於該太赫茲波源11的出射面111一側的調製裝置12、一旋轉裝置13、一真空容器14以及一加熱裝置15。 Referring to FIG. 24, Embodiment 5 of the present invention provides a terahertz wave transmitting device 10C, which includes a terahertz wave source 11, a modulation device 12, and a rotating device 13 disposed on an exit surface 111 side of the terahertz wave source 11. A vacuum container 14 and a heating device 15.

本發明實施例5提供的太赫茲波發射裝置10C與本發明實施例1提供的太赫茲波發射裝置10結構基本相同,其區別在於,進一步包括旋轉裝置13、真空容器14以及一加熱裝置15。可以理解,本發明實施例5提供的太赫茲波發射裝置10C為實施例3和實施例4的技術方案的結合。具體地,所述旋轉裝置13與所述太赫茲波源11連接,從而使該太赫茲波源11旋轉。 The terahertz wave transmitting device 10C provided in Embodiment 5 of the present invention is basically the same as the terahertz wave transmitting device 10 provided in Embodiment 1 of the present invention, and the difference is that it further includes a rotating device 13, a vacuum container 14, and a heating device 15. It can be understood that the terahertz wave transmitting device 10C provided in Embodiment 5 of the present invention is a combination of the technical solutions of Embodiment 3 and Embodiment 4. Specifically, the rotating device 13 is connected to the terahertz wave source 11 so that the terahertz wave source 11 is rotated.

實施例6 Example 6

請參閱圖25,本發明實施例6提供一種太赫茲波通訊裝置10D,其包括一太赫茲波源11、一置於該太赫茲波源11的出射面111一側的調製裝置12、一旋轉裝置13、一太赫茲波接收裝置16、一解密裝置17以及一加密裝置18。所述太赫茲波源11發射太赫茲波,所述調製裝置12對所述太赫茲波進行調製,所述加密裝置18通過所述旋轉裝置13對所述太赫茲波進行加密。所述太赫茲波接收裝置16用於接收太赫茲波,並將該太赫茲波的資料發送給所述解密裝置17。所述解密裝置17對接收到的太赫茲波的資料進行解密。 Referring to FIG. 25, Embodiment 6 of the present invention provides a terahertz wave communication device 10D, which includes a terahertz wave source 11, a modulation device 12, and a rotating device 13 disposed on the exit surface 111 side of the terahertz wave source 11. , A terahertz wave receiving device 16, a decryption device 17, and an encryption device 18. The terahertz wave source 11 transmits a terahertz wave, the modulation device 12 modulates the terahertz wave, and the encryption device 18 encrypts the terahertz wave through the rotation device 13. The terahertz wave receiving device 16 is configured to receive a terahertz wave and send the terahertz wave data to the decryption device 17. The decryption device 17 decrypts the received terahertz wave data.

參見圖13可見,當所述旋轉裝置13按照一定規律旋轉所述奈米碳管結構121時,所述太赫茲波的穿透率按照一定規律變化。故,所述旋轉裝置13的旋轉規律與所述太赫茲波的穿透率變化規律對應。當採用所述旋轉裝置13 的旋轉規律代表不同的信號時,通過計算接收到的太赫茲波的穿透率變化規律,即可獲得該太赫茲波所傳遞的信號。所述旋轉裝置13的旋轉規律可以根據需要設計,例如,旋轉角等間隔從小到大,旋轉角等間隔從大到小,或旋轉角不等間隔變化。總之,只要有一定規律即可。規律越複雜,保密性越好。所述加密裝置18與所述旋轉裝置13連接,為所述旋轉裝置13的控制電腦。 Referring to FIG. 13, it can be seen that when the rotating device 13 rotates the nano carbon tube structure 121 according to a certain rule, the transmittance of the terahertz wave changes according to a certain rule. Therefore, the rotation rule of the rotating device 13 corresponds to the change law of the transmittance of the terahertz wave. When using the rotating device 13 When the rotation law of φ represents different signals, the signal transmitted by the terahertz wave can be obtained by calculating the change law of the transmittance of the received terahertz wave. The rotation rule of the rotating device 13 can be designed according to requirements, for example, the rotation angle is equally spaced from small to large, the rotation angle is equally spaced from large to small, or the rotation angle is not uniformly changed. In short, as long as there is a certain pattern. The more complicated the rules, the better the confidentiality. The encryption device 18 is connected to the rotation device 13 and is a control computer of the rotation device 13.

參見實施例3可知,所述旋轉裝置13的作用為調節所述奈米碳管結構121中奈米碳管的延伸方向與太赫茲波偏振方向的夾角,故,也可以將所述旋轉裝置13設置於所述太赫茲波源11上。所述太赫茲波的穿透率變化規律與所述夾角的變化規律對應。 As can be seen from Example 3, the function of the rotating device 13 is to adjust the angle between the extending direction of the nano carbon tube and the polarization direction of the terahertz wave in the nano carbon tube structure 121. Therefore, the rotating device 13 can also be adjusted. It is arranged on the terahertz wave source 11. The change law of the transmittance of the terahertz wave corresponds to the change law of the included angle.

所述太赫茲波接收裝置16可以為太赫茲波強度檢測裝置,以獲得接收到的太赫茲波的強度資料,並將該強度資料發送給所述解密裝置17。 The terahertz wave receiving device 16 may be a terahertz wave intensity detection device to obtain the intensity data of the received terahertz wave and send the intensity data to the decryption device 17.

請參閱圖26,所述解密裝置17為一電腦,其包括一控制模組171、一計算模組172、一比較模組173、一通訊模組174以及一存儲模組175。所述控制模組171控制整個解密裝置17的運行。所述通訊模組174用於與所述太赫茲波接收裝置16之間進行通訊,以獲取所述太赫茲波接收裝置16接收到的太赫茲波的強度資料。所述存儲模組175內部存儲有所述太赫茲波源11發射的太赫茲波的原始強度資料,以及密碼本。所述密碼本包括所述太赫茲波的穿透率變化規律與其傳遞的信號之間的對應關係。所述計算模組172根據所述接收到的太赫茲波的強度資料和存儲的太赫茲波的原始強度資料可以計算出太赫茲波的穿透率。所述比較模組173根據計算出的太赫茲波的穿透率變化規律和密碼本確定其傳遞的信號。 Referring to FIG. 26, the decryption device 17 is a computer, which includes a control module 171, a calculation module 172, a comparison module 173, a communication module 174, and a storage module 175. The control module 171 controls the operation of the entire decryption device 17. The communication module 174 is configured to communicate with the terahertz wave receiving device 16 to obtain terahertz wave intensity data received by the terahertz wave receiving device 16. The storage module 175 stores the original intensity data of the terahertz wave emitted by the terahertz wave source 11 and a codebook. The codebook includes a correspondence relationship between a change law of the transmittance of the terahertz wave and a signal transmitted by the codebook. The calculation module 172 can calculate the terahertz wave transmittance based on the received terahertz wave intensity data and the stored terahertz wave original intensity data. The comparison module 173 determines the transmitted signal according to the calculated change law of the transmittance of the terahertz wave and the codebook.

本發明實施例6進一步提供一種採用太赫茲調製波進行通訊的方法,該方法包括以下步驟:步驟S61,提供一太赫茲波源11,並使該太赫茲波源11激發產生太赫茲波;步驟S62,在所述太赫茲波源11的出射面111一側設置一奈米碳管結構121,使該太赫茲波源11產生的太赫茲波透過該奈米碳管結構121後形成太赫茲調製波發射出去,其中,該奈米碳管結構121包括複數個沿同一方向定向延伸的奈米碳管;步驟S63,通過有規律地改變所述奈米碳管的延伸方向與太赫茲波偏振方向的夾角,對所述太赫茲調製波進行加密; 步驟S64,採用一太赫茲波接收裝置16接收加密後的太赫茲調製波,並計算所述太赫茲波的穿透率;以及步驟S65,根據所述太赫茲波的穿透率變化規律對該加密後的太赫茲調製波進行解密。 Embodiment 6 of the present invention further provides a method for communicating by using a terahertz modulated wave. The method includes the following steps: step S61, providing a terahertz wave source 11 and exciting the terahertz wave source 11 to generate a terahertz wave; step S62, A nano-carbon tube structure 121 is provided on the side of the exit surface 111 of the terahertz wave source 11 so that the terahertz wave generated by the terahertz wave source 11 passes through the nano-carbon pipe structure 121 to form a terahertz-modulated wave and emit it. The carbon nanotube structure 121 includes a plurality of carbon nanotubes extending in the same direction. In step S63, by regularly changing the angle between the extending direction of the carbon nanotubes and the polarization direction of the terahertz wave, Encrypting the terahertz modulated wave; In step S64, a terahertz wave receiving device 16 is used to receive the encrypted terahertz modulated wave, and the transmittance of the terahertz wave is calculated; and in step S65, the terahertz wave is transmitted according to a change rule of the transmittance of the terahertz wave. The encrypted terahertz modulated wave is decrypted.

由於太赫茲波在遠紅外波段比在中紅外波段的波峰波谷交替現象更為明顯,本實施例優選採用波長範圍為15微米~300微米的太赫茲波進行通訊。由於太赫茲波的檢測和調製比較困難,故,本發明採用太赫茲波的通訊方法更為安全。 Since the terahertz wave is more obvious in the far-infrared wave band than the crest and valley alternation phenomenon in the mid-infrared wave band, in this embodiment, a terahertz wave with a wavelength range of 15 μm to 300 μm is preferably used for communication. Because terahertz waves are difficult to detect and modulate, the communication method using terahertz waves in the present invention is more secure.

實施例7 Example 7

請參閱圖27,本發明實施例7提供一種太赫茲波通訊裝置10E,其包括一太赫茲波源11、一置於該太赫茲波源11的出射面111一側的調製裝置12、一真空容器14、一加熱裝置15、一太赫茲波接收裝置16、一解密裝置17以及一加密裝置18。所述太赫茲波源11發射太赫茲波,所述調製裝置12對所述太赫茲波進行調製,所述加密裝置18通過所述加熱裝置15對所述太赫茲波進行加密。所述太赫茲波接收裝置16用於接收太赫茲波,並將該太赫茲波的資料發送給所述解密裝置17。所述解密裝置17對接收到的太赫茲波的資料進行解密。 Referring to FIG. 27, Embodiment 7 of the present invention provides a terahertz wave communication device 10E, which includes a terahertz wave source 11, a modulation device 12, and a vacuum container 14 disposed on an exit surface 111 side of the terahertz wave source 11. , A heating device 15, a terahertz wave receiving device 16, a decryption device 17, and an encryption device 18. The terahertz wave source 11 emits a terahertz wave, the modulation device 12 modulates the terahertz wave, and the encryption device 18 encrypts the terahertz wave through the heating device 15. The terahertz wave receiving device 16 is configured to receive a terahertz wave and send the terahertz wave data to the decryption device 17. The decryption device 17 decrypts the received terahertz wave data.

本發明實施例7提供的太赫茲波的通訊裝置10E與本發明實施例6提供的太赫茲波的通訊裝置10D結構基本相同,其區別在於,本發明實施例7採用所述加熱裝置15對所述太赫茲波進行加密。 The terahertz wave communication device 10E provided in Embodiment 7 of the present invention is basically the same as the terahertz wave communication device 10D provided in Embodiment 6 of the present invention. The difference is that Embodiment 7 of the present invention uses the heating device 15 to The terahertz wave is encrypted.

參見圖21-23,隨著溫度升高,太赫茲波的穿透率逐漸下降,而且可以明顯看出波峰波谷交替現象。另外,隨著溫度升高波峰波谷交替現象呈放大趨勢,一些在無電壓下很弱或者看不出的特徵,在高電壓下趨於明顯。也就是說,所述太赫茲波的穿透率與所述奈米碳管結構121的溫度具有對應關係。只要有規律的加熱所述奈米碳管結構121,所述太赫茲波的穿透率也會按照一定規律變化。故,通過有規律的加熱所述奈米碳管結構121,即可對所述太赫茲波進行加密。 Referring to Figure 21-23, as the temperature increases, the penetration of the terahertz wave gradually decreases, and the peak-valley alternation phenomenon can be clearly seen. In addition, as the temperature rises, the alternating phenomenon of peaks and troughs is enlarged, and some characteristics that are weak or invisible under no voltage tend to be obvious at high voltage. That is, the transmittance of the terahertz wave has a corresponding relationship with the temperature of the carbon nanotube structure 121. As long as the nano carbon tube structure 121 is regularly heated, the transmittance of the terahertz wave will also change according to a certain law. Therefore, by regularly heating the carbon nanotube structure 121, the terahertz wave can be encrypted.

由於所述奈米碳管結構121的溫度與所述加熱裝置15的工作參數,例如功率或電壓有關,只要有規律的調節所述加熱裝置15的工作參數,即可對所述太赫茲波進行加密。本實施例中,採用焦耳熱原理加熱所述奈米碳管結構 121,加熱溫度與施加的電壓有關,故,只要有規律的調節施加的電壓,即可對所述太赫茲波進行加密。 Since the temperature of the nano carbon tube structure 121 is related to the working parameters of the heating device 15, such as power or voltage, as long as the working parameters of the heating device 15 are regularly adjusted, the terahertz wave can be performed. encryption. In this embodiment, the nano carbon tube structure is heated using the Joule heating principle 121. The heating temperature is related to the applied voltage. Therefore, as long as the applied voltage is regularly adjusted, the terahertz wave can be encrypted.

另外,也可以在所述真空容器14內設置一溫度感測器(圖未示),通過該溫度感測器獲得所述奈米碳管結構121的溫度,從而通過所述加熱裝置15有規律的調節所述奈米碳管結構121的溫度。所述加熱溫度低於500攝氏度。優選地,在大氣中所述加熱溫度低於350攝氏度,以防止所述奈米碳管結構121被氧化。 In addition, a temperature sensor (not shown) may be provided in the vacuum container 14, and the temperature of the nano carbon tube structure 121 may be obtained through the temperature sensor, so that the heating device 15 has regularity. The temperature of the nano carbon tube structure 121 is adjusted. The heating temperature is below 500 degrees Celsius. Preferably, the heating temperature is lower than 350 degrees Celsius in the atmosphere to prevent the carbon nanotube structure 121 from being oxidized.

本發明實施例7進一步提供一種採用太赫茲調製波進行通訊的方法,該方法包括以下步驟:步驟S71,提供一太赫茲波源11,並使該太赫茲波源11激發產生太赫茲波;步驟S72,在所述太赫茲波源11的出射面111一側設置一奈米碳管結構121,使該太赫茲波源11產生的太赫茲波透過該奈米碳管結構121後形成太赫茲調製波發射出去,其中,該奈米碳管結構121包括複數個沿同一方向定向延伸的奈米碳管;步驟S73,通過有規律地加熱所述奈米碳管結構121,對所述太赫茲調製波進行加密;步驟S74,採用一太赫茲波接收裝置16接收加密後的太赫茲調製波,並計算所述太赫茲波的穿透率;以及步驟S75,根據所述太赫茲波的穿透率變化規律對該加密後的太赫茲調製波進行解密。 Embodiment 7 of the present invention further provides a communication method using a terahertz modulated wave. The method includes the following steps: step S71, providing a terahertz wave source 11 and exciting the terahertz wave source 11 to generate a terahertz wave; step S72, A nano-carbon tube structure 121 is provided on the side of the exit surface 111 of the terahertz wave source 11 so that the terahertz wave generated by the terahertz wave source 11 passes through the nano-carbon pipe structure 121 to form a terahertz-modulated wave and emit it. Wherein, the carbon nanotube structure 121 includes a plurality of carbon nanotubes extending in the same direction. In step S73, the terahertz modulated wave is encrypted by regularly heating the carbon nanotube structure 121; In step S74, a terahertz wave receiving device 16 is used to receive the encrypted terahertz modulated wave and calculate the transmittance of the terahertz wave; and in step S75, the transmittance of the terahertz wave is changed to the terahertz wave. The encrypted terahertz modulated wave is decrypted.

實施例8 Example 8

請參閱圖28,本發明實施例8提供一種太赫茲波通訊裝置10F,其包括一太赫茲波源11、一置於該太赫茲波源11的出射面111一側的調製裝置12、一旋轉裝置13、一真空容器14、一加熱裝置15、一太赫茲波接收裝置16、一解密裝置17以及一加密裝置18。 Please refer to FIG. 28. Embodiment 8 of the present invention provides a terahertz wave communication device 10F, which includes a terahertz wave source 11, a modulation device 12, and a rotating device 13 disposed on an exit surface 111 side of the terahertz wave source 11. , A vacuum container 14, a heating device 15, a terahertz wave receiving device 16, a decryption device 17, and an encryption device 18.

所述加密裝置18分別與所述旋轉裝置13和加熱裝置15連接,通過所述旋轉裝置13和加熱裝置15對所述太赫茲波進行加密。本發明實施例8的太赫茲波通訊裝置10F實際為實施例6和7的技術方案的結合。可以理解,本實施例中,所述太赫茲波的穿透率的變化規律為實施例6和7中所述太赫茲波的 穿透率的變化規律的疊加。由於將兩個不同的變化規律的疊加,進一步提高了通訊的安全性。 The encryption device 18 is connected to the rotation device 13 and the heating device 15 respectively, and the terahertz wave is encrypted by the rotation device 13 and the heating device 15. The terahertz wave communication device 10F of Embodiment 8 of the present invention is actually a combination of the technical solutions of Embodiments 6 and 7. It can be understood that, in this embodiment, the variation rule of the transmittance of the terahertz wave is the same as that of the terahertz wave described in Examples 6 and 7. Superposition of the change in transmittance. Due to the superposition of two different changing laws, the security of communication is further improved.

本發明實施例8進一步提供一種採用太赫茲調製波進行通訊的方法,該方法包括以下步驟:步驟S81,提供一太赫茲波源11,並使該太赫茲波源11激發產生太赫茲波;步驟S82,在所述太赫茲波源11的出射面111一側設置一奈米碳管結構121,使該太赫茲波源11產生的太赫茲波透過該奈米碳管結構121後形成太赫茲調製波發射出去,其中,該奈米碳管結構121包括複數個沿同一方向定向延伸的奈米碳管;步驟S83,通過同時有規律地加熱所述奈米碳管結構121和有規律地改變所述奈米碳管的延伸方向與太赫茲波偏振方向的夾角,對所述太赫茲調製波進行加密;步驟S84,採用一太赫茲波接收裝置16接收加密後的太赫茲調製波,並計算所述太赫茲波的穿透率;以及步驟S85,根據所述太赫茲波的穿透率變化規律對該加密後的太赫茲調製波進行解密。 Embodiment 8 of the present invention further provides a method for communicating by using a terahertz modulation wave. The method includes the following steps: step S81, providing a terahertz wave source 11 and exciting the terahertz wave source 11 to generate a terahertz wave; step S82, A nano-carbon tube structure 121 is provided on the side of the exit surface 111 of the terahertz wave source 11 so that the terahertz wave generated by the terahertz wave source 11 passes through the nano-carbon pipe structure 121 to form a terahertz-modulated wave and emit it. The carbon nanotube structure 121 includes a plurality of carbon nanotubes extending in the same direction. In step S83, the carbon nanotube structure 121 is regularly heated at the same time and the carbon nanotubes are changed regularly. The angle between the extension direction of the tube and the polarization direction of the terahertz wave is used to encrypt the terahertz modulated wave; step S84, a terahertz wave receiving device 16 is used to receive the encrypted terahertz modulated wave and calculate the terahertz wave And the step S85, decrypting the encrypted terahertz modulated wave according to the change rule of the terahertz wave's transmittance.

實施例9 Example 9

請參閱圖29,本發明實施例9提供一種太赫茲波通訊裝置10G,其包括一太赫茲波源11、一置於該太赫茲波源11的出射面111一側的調製裝置12、一太赫茲波接收裝置16、一解密裝置17以及一加密裝置18。所述太赫茲波源11發射太赫茲波,所述調製裝置12對所述太赫茲波進行調製,所述加密裝置18與所述太赫茲波源11連接,用於對所述太赫茲波進行加密。所述太赫茲波接收裝置16用於接收太赫茲波,並將該太赫茲波的資料發送給所述解密裝置17。所述解密裝置17對接收到的太赫茲波的資料進行解密。 Referring to FIG. 29, Embodiment 9 of the present invention provides a terahertz wave communication device 10G, which includes a terahertz wave source 11, a modulation device 12, and a terahertz wave placed on the exit surface 111 side of the terahertz wave source 11. The receiving device 16, a decryption device 17, and an encryption device 18. The terahertz wave source 11 emits a terahertz wave, the modulation device 12 modulates the terahertz wave, and the encryption device 18 is connected to the terahertz wave source 11 for encrypting the terahertz wave. The terahertz wave receiving device 16 is configured to receive a terahertz wave and send the terahertz wave data to the decryption device 17. The decryption device 17 decrypts the received terahertz wave data.

本發明實施例9提供的太赫茲波的通訊裝置10G與本發明實施例6或7提供的太赫茲波的通訊裝置10D、10E結構基本相同,其區別在於,本發明實施例9,採用加密裝置18直接控制所述太赫茲波源11,從而對所述太赫茲波進行加密。故,本發明實施例9可以省略所述加熱裝置15和所述旋轉裝置13。可以理解,本發明實施例9也可以進一步包括所述加熱裝置15和/或所述旋轉裝 置13,從而通過將兩個或三個不同的變化規律的疊加,進一步提高了通訊的安全性。 The terahertz wave communication device 10G provided in Embodiment 9 of the present invention is basically the same as the terahertz wave communication device 10D and 10E provided in Embodiment 6 or 7 of the present invention. The difference is that in Embodiment 9, the encryption device is used. 18 directly controls the terahertz wave source 11 to encrypt the terahertz wave. Therefore, in Embodiment 9 of the present invention, the heating device 15 and the rotating device 13 can be omitted. It can be understood that Embodiment 9 of the present invention may further include the heating device 15 and / or the rotary device. Set 13 to further improve the security of communication by superimposing two or three different changes.

具體地,本實施例中,通過控制所述太赫茲波源11發射的太赫茲波的波長範圍隨時間的規律實現對太赫茲波的加密。參見圖6可見,在波長範圍為15微米~300微米的遠紅外波段,太赫茲波的穿透率呈波峰波谷交替現象,而且,相鄰的波峰或波谷的波形均不相同。例如,當單層奈米碳管膜水準設置時,四個波峰分別對應波數範圍為:600~525、475~300、250~200、150~60,而三個波谷分別對應波數範圍為:525~475、300~250、200~150。採用不同的波峰或波谷代表不同的符號,可以得到7個不同的符號,例如數位1、2、3、4、5、6、7。只要按著時間間隔有規律的將這些波峰或波谷組合,就可以實現對太赫茲波的加密。例如,以每5秒為一個時間段,每個時間段內發送其中一個波峰或波谷,在1分鐘內,就可以得到20個有規律的波峰或波谷,例如20個1~7之間的數字。可以理解,當把單層奈米碳管膜垂直設置時的波峰或波谷也算上,相當於在波長範圍為15微米~300微米的遠紅外波段,可以獲得14個波峰或波谷,即,14個不同的符號。 Specifically, in this embodiment, the terahertz wave is encrypted by controlling the wavelength range of the terahertz wave emitted by the terahertz wave source 11 over time. Referring to FIG. 6, it can be seen that in the far-infrared wavelength band with a wavelength range of 15 μm to 300 μm, the transmittance of the terahertz wave is a peak and valley alternating phenomenon, and the waveforms of adjacent peaks or valleys are different. For example, when the single-layer carbon nanotube film level is set, the four wave peaks correspond to the wave number ranges of 600 to 525, 475 to 300, 250 to 200, and 150 to 60, and the three wave valleys correspond to the wave number ranges. : 525 ~ 475, 300 ~ 250, 200 ~ 150. Using different crests or troughs to represent different symbols, you can get 7 different symbols, such as the digits 1, 2, 3, 4, 5, 6, and 7. As long as these peaks or troughs are combined regularly at time intervals, terahertz waves can be encrypted. For example, if every 5 seconds is a time period, one of the peaks or valleys is sent in each time period. Within 1 minute, you can get 20 regular peaks or valleys, such as 20 numbers between 1 and 7. . It can be understood that when the single-walled carbon nanotube film is vertically arranged, the peaks or troughs are also counted, which is equivalent to the 14 infrared peaks or troughs in the far-infrared wavelength range of 15 μm to 300 μm, that is, 14 Different symbols.

本發明實施例9進一步提供一種採用太赫茲調製波進行通訊的方法,該方法包括以下步驟:步驟S91,提供一太赫茲波源11,並使該太赫茲波源11激發產生太赫茲波;步驟S92,在所述太赫茲波源11的出射面111一側設置一奈米碳管結構121,使該太赫茲波源11產生的太赫茲波透過該奈米碳管結構121後形成太赫茲調製波發射出去,其中,該奈米碳管結構121包括複數個沿同一方向定向延伸的奈米碳管;步驟S93,通過控制所述太赫茲波源11發射的太赫茲波的波長範圍隨時間的規律,對所述太赫茲調製波進行加密;步驟S94,採用一太赫茲波接收裝置16接收加密後的太赫茲調製波,並計算所述太赫茲波的穿透率;以及步驟S95,根據所述太赫茲波的穿透率變化規律對該加密後的太赫茲調製波進行解密。 Embodiment 9 of the present invention further provides a method for communicating by using a terahertz modulation wave. The method includes the following steps: step S91, providing a terahertz wave source 11 and exciting the terahertz wave source 11 to generate a terahertz wave; step S92, A nano-carbon tube structure 121 is provided on the side of the exit surface 111 of the terahertz wave source 11 so that the terahertz wave generated by the terahertz wave source 11 passes through the nano-carbon pipe structure 121 to form a terahertz-modulated wave and emit it. The carbon nanotube structure 121 includes a plurality of carbon nanotubes extending in the same direction. In step S93, by controlling the wavelength range of the terahertz wave emitted by the terahertz wave source 11 over time, The terahertz wave is encrypted; step S94, a terahertz wave receiving device 16 is used to receive the encrypted terahertz wave, and the transmittance of the terahertz wave is calculated; and step S95, according to the terahertz wave, The transmission law changes the encrypted terahertz modulated wave.

實施例10 Example 10

請參閱圖30,本發明實施例10提供一種太赫茲波波長檢測裝置10H,其包括一太赫茲波接收裝置16、一調製裝置12、一與該調製裝置12連接的移動裝置20,以及一與該太赫茲波接收裝置16連接的電腦19。 Referring to FIG. 30, Embodiment 10 of the present invention provides a terahertz wave detection device 10H, which includes a terahertz wave receiving device 16, a modulation device 12, a mobile device 20 connected to the modulation device 12, and a A computer 19 to which the terahertz wave receiving device 16 is connected.

所述移動裝置20用於控制所述調製裝置12,使該調製裝置12可以設置於該太赫茲波接收裝置16的入射面161上,或偏離該入射面161。所述移動裝置20可以為抽拉裝置或旋轉裝置。當所述調製裝置12設置於該太赫茲波接收裝置16的入射面161上時,所述奈米碳管結構121可以與所述入射面161接觸設置或間隔一定距離設置,只要確保被檢測的太赫茲波只能在透過所述奈米碳管結構121之後才能從入射面161進入該太赫茲波接收裝置16即可。當所述調製裝置12偏離該入射面161,被檢測的太赫茲波可以直接從入射面161進入該太赫茲波接收裝置16。此時,所述太赫茲波接收裝置16檢測到所述被檢測的太赫茲波的第一強度資料,並將該第一強度資料發送給所述電腦19。當所述調製裝置12設置於該太赫茲波接收裝置16的入射面161上時,被檢測的太赫茲波只能在透過所述奈米碳管結構121之後才能從入射面161進入該太赫茲波接收裝置16。此時,所述太赫茲波接收裝置16檢測到所述被檢測的太赫茲波的第二強度資料,並將該第二強度資料發送給所述電腦19。 The mobile device 20 is configured to control the modulation device 12 so that the modulation device 12 can be disposed on the incident surface 161 of the terahertz wave receiving device 16 or deviated from the incident surface 161. The moving device 20 may be a pulling device or a rotating device. When the modulation device 12 is disposed on the incident surface 161 of the terahertz wave receiving device 16, the nano-carbon tube structure 121 can be placed in contact with the incident surface 161 or set at a certain distance, as long as the detected The terahertz wave can enter the terahertz wave receiving device 16 from the incident surface 161 only after passing through the nano carbon tube structure 121. When the modulation device 12 deviates from the incident surface 161, the detected terahertz wave can enter the terahertz wave receiving device 16 directly from the incident surface 161. At this time, the terahertz wave receiving device 16 detects the first intensity data of the detected terahertz wave, and sends the first intensity data to the computer 19. When the modulation device 12 is disposed on the incident surface 161 of the terahertz wave receiving device 16, the detected terahertz wave can enter the terahertz from the incident surface 161 only after passing through the nano-carbon tube structure 121. Wave receiving device 16. At this time, the terahertz wave receiving device 16 detects the second intensity data of the detected terahertz wave, and sends the second intensity data to the computer 19.

請參閱圖31,所述電腦19包括一控制模組191、一計算模組192、一比較模組193、一通訊模組194以及一存儲模組195。所述控制模組191控制整個電腦19的運行。所述通訊模組194用於與所述太赫茲波接收裝置16之間進行通訊,以獲取所述太赫茲波接收裝置16接收到的太赫茲波的強度資料。所述存儲模組195內部存儲有如圖6-7所示的太赫茲波穿透率與波數的關係資料。所述計算模組192根據該第二強度資料和第一強度資料可以計算出被檢測的太赫茲波的穿透率曲線。所述比較模組193通過將穿透率曲線與圖6-7的資料進行比對,即可獲得該被檢測的太赫茲波的波長範圍。由圖6可見,不同波長範圍的太赫茲波對應不同的穿透率曲線。該對應關係在遠紅外波段尤其明顯。故,所述電腦19通過將被檢測的太赫茲波的穿透率曲線與圖6-7的資料進行比對,即可獲得該被檢測的太赫茲波的波長範圍。 Referring to FIG. 31, the computer 19 includes a control module 191, a calculation module 192, a comparison module 193, a communication module 194, and a storage module 195. The control module 191 controls the operation of the entire computer 19. The communication module 194 is configured to communicate with the terahertz wave receiving device 16 to obtain terahertz wave intensity data received by the terahertz wave receiving device 16. The storage module 195 internally stores the relationship between the terahertz wave transmittance and the wave number as shown in FIG. 6-7. The calculation module 192 can calculate a transmittance curve of the detected terahertz wave according to the second intensity data and the first intensity data. The comparison module 193 can obtain the wavelength range of the detected terahertz wave by comparing the transmittance curve with the data in FIG. 6-7. It can be seen from FIG. 6 that terahertz waves in different wavelength ranges correspond to different transmittance curves. This correspondence is particularly evident in the far infrared band. Therefore, the computer 19 can obtain the wavelength range of the detected terahertz wave by comparing the transmittance curve of the detected terahertz wave with the data of FIGS. 6-7.

本發明實施例10進一步提供一種太赫茲波波長檢測方法,該方法包括以下步驟: 步驟S101,使被檢測的太赫茲波直接入射在該太赫茲波接收裝置16上,所述太赫茲波接收裝置16檢測到所述被檢測的太赫茲波的第一強度資料;步驟S102,使被檢測的太赫茲波透過所述奈米碳管結構121之後入射在該太赫茲波接收裝置16上,所述太赫茲波接收裝置16檢測到所述被檢測的太赫茲波的第二強度資料;步驟S103,根據該第二強度資料和第一強度資料計算出被檢測的太赫茲波的穿透率曲線;以及步驟S104,通過將穿透率曲線一標準資料進行比對,獲得該被檢測的太赫茲波的波長範圍,其中,該標準資料包括太赫茲波對所述奈米碳管結構121的穿透率與波長的關係。 Embodiment 10 of the present invention further provides a terahertz wave detection method. The method includes the following steps: In step S101, the detected terahertz wave is directly incident on the terahertz wave receiving device 16, and the terahertz wave receiving device 16 detects the first intensity data of the detected terahertz wave; in step S102, the The detected terahertz wave passes through the nano-carbon tube structure 121 and is incident on the terahertz wave receiving device 16. The terahertz wave receiving device 16 detects the second intensity data of the detected terahertz wave. Step S103, calculating the transmittance curve of the detected terahertz wave based on the second intensity data and the first intensity data; and step S104, obtaining the detected signal by comparing the transmittance curve with standard data The wavelength range of the terahertz wave, wherein the standard data includes the relationship between the transmittance of the terahertz wave to the nano-carbon tube structure 121 and the wavelength.

實施例11 Example 11

請參閱圖32,本發明實施例11提供一種太赫茲波波長檢測裝置101,其包括一太赫茲波接收裝置16、一調製裝置12、一與該調製裝置12連接的旋轉裝置13,一與該調製裝置12連接的移動裝置20,以及一與該太赫茲波接收裝置16連接的電腦19。 Referring to FIG. 32, Embodiment 11 of the present invention provides a terahertz wave wavelength detection device 101, which includes a terahertz wave receiving device 16, a modulation device 12, a rotating device 13 connected to the modulation device 12, and a A mobile device 20 connected to the modulation device 12 and a computer 19 connected to the terahertz wave receiving device 16.

本發明實施例11提供的太赫茲波波長檢測裝置10I與本發明實施例10提供的太赫茲波波長檢測裝置10H結構基本相同,其區別在於,進一步包括一旋轉裝置13。所述旋轉裝置13用於控制所述調製裝置12,使該調製裝置12可以在所述奈米碳管結構121所在的平面內旋轉,從而改變所述奈米碳管結構121中奈米碳管的延伸方向與太赫茲波偏振方向的夾角。此時,所述太赫茲波接收裝置16檢測到所述被檢測的太赫茲波在的不同夾角下的第三強度資料。所述旋轉裝置13與所述電腦19之間有線或無線連接,使得所述電腦19可以獲取所述旋轉裝置13的旋轉角度。 The structure of the terahertz wave detection device 10I provided in Embodiment 11 of the present invention is basically the same as that of the terahertz wave detection device 10H provided in Embodiment 10 of the present invention. The difference is that it further includes a rotating device 13. The rotating device 13 is used to control the modulation device 12 so that the modulation device 12 can rotate in a plane where the carbon nanotube structure 121 is located, thereby changing the carbon nanotube in the carbon nanotube structure 121. And the angle between the direction of extension of the terahertz wave and the polarization direction of the terahertz wave. At this time, the terahertz wave receiving device 16 detects third intensity data of the detected terahertz wave at different angles. The rotating device 13 and the computer 19 are wired or wirelessly connected, so that the computer 19 can obtain the rotation angle of the rotating device 13.

所述存儲模組195內部進一步存儲有如圖13所示的太赫茲波穿透率與波數以及所述奈米碳管結構121中奈米碳管的延伸方向與太赫茲波偏振方向的夾角的關係資料。所述計算模組192根據該第三強度資料、第一強度資料以及所述旋轉裝置13的旋轉角度可以計算出被檢測的太赫茲波的穿透率曲線與所述旋轉裝置13的旋轉角度的對應關係。所述比較模組193通過將穿透率曲線 與所述旋轉裝置13的旋轉角度的對應關係與圖13的資料進行比對,即可獲得該被檢測的太赫茲波的波長範圍。 The storage module 195 further stores therein the terahertz wave transmittance and wave number as shown in FIG. 13 and the angle between the extension direction of the nano carbon tube and the polarization direction of the terahertz wave in the nano carbon tube structure 121. Relationship information. The calculation module 192 can calculate the transmittance curve of the detected terahertz wave and the rotation angle of the rotation device 13 based on the third intensity data, the first intensity data, and the rotation angle of the rotation device 13. Correspondence. The comparison module 193 converts the transmittance curve by By comparing the correspondence relationship with the rotation angle of the rotating device 13 with the data in FIG. 13, the wavelength range of the detected terahertz wave can be obtained.

本發明實施例11進一步提供一種太赫茲波波長檢測方法,該方法包括以下步驟:步驟S111,使被檢測的太赫茲波直接入射在該太赫茲波接收裝置16上,所述太赫茲波接收裝置16檢測到所述被檢測的太赫茲波的第一強度資料;步驟S112,使被檢測的太赫茲波透過所述奈米碳管結構121之後入射在該太赫茲波接收裝置16上,同時改變所述奈米碳管結構121中奈米碳管的延伸方向與太赫茲波偏振方向的夾角,所述太赫茲波接收裝置16檢測到所述被檢測的太赫茲波在的不同夾角下的第三強度資料;步驟S113,根據該第三強度資料、第一強度資料以及所述奈米碳管結構121中奈米碳管的延伸方向與太赫茲波偏振方向的夾角計算出被檢測的太赫茲波的穿透率曲線與所述奈米碳管結構121中奈米碳管的延伸方向與太赫茲波偏振方向的夾角的關係圖;以及步驟S114,通過將穿透率曲線與所述奈米碳管結構121中奈米碳管的延伸方向與太赫茲波偏振方向的夾角的關係與一標準資料進行比對,獲得該被檢測的太赫茲波的波長範圍,其中,該標準資料包括太赫茲波對所述奈米碳管結構121的穿透率與波長以及所述奈米碳管結構121中奈米碳管的延伸方向與太赫茲波偏振方向的夾角的關係。 Embodiment 11 of the present invention further provides a terahertz wave wavelength detection method. The method includes the following steps: Step S111, the detected terahertz wave is directly incident on the terahertz wave receiving device 16, which is a terahertz wave receiving device. 16 The first intensity data of the detected terahertz wave is detected; in step S112, the detected terahertz wave is transmitted through the nano-carbon tube structure 121 and then incident on the terahertz wave receiving device 16 while changing. The included angle between the extension direction of the nano-carbon tube and the polarization direction of the terahertz wave in the nano-carbon tube structure 121, and the terahertz wave receiving device 16 detects the first angle of the detected terahertz wave at different angles. Three intensity data; step S113, calculating the detected terahertz based on the third intensity data, the first intensity data, and the angle between the extending direction of the nano carbon tube and the polarization direction of the terahertz wave in the nano carbon tube structure 121 The relationship between the transmittance curve of the wave and the included angle between the extension direction of the carbon nanotube in the carbon nanotube structure 121 and the polarization direction of the terahertz wave; and step S114, Compare the relationship between the angle between the extension direction of the nano carbon tube and the polarization direction of the terahertz wave in the nano carbon tube structure 121 with a standard data to obtain the wavelength range of the detected terahertz wave. The standard data includes the relationship between the transmittance and wavelength of the terahertz wave to the carbon nanotube structure 121 and the angle between the extension direction of the carbon nanotube in the carbon nanotube structure 121 and the polarization direction of the terahertz wave.

實施例12 Example 12

請參閱圖33,本發明實施例12提供一種太赫茲波波長檢測裝置10J,其包括一太赫茲波接收裝置16、一調製裝置12、一真空容器14、一加熱裝置15,一與該調製裝置12連接的移動裝置20,以及一與該太赫茲波接收裝置16連接的電腦19。 Referring to FIG. 33, Embodiment 12 of the present invention provides a terahertz wave wavelength detection device 10J, which includes a terahertz wave receiving device 16, a modulation device 12, a vacuum container 14, a heating device 15, and a modulation device 12 is connected to the mobile device 20, and a computer 19 is connected to the terahertz wave receiving device 16.

本發明實施例12提供的太赫茲波波長檢測裝置10J與本發明實施例10提供的太赫茲波波長檢測裝置10H結構基本相同,其區別在於,進一步包括該真空容器14以及加熱裝置15。所述加熱裝置15用於加熱所述奈米碳管結構121,從而改變所述奈米碳管結構121的溫度。此時,所述太赫茲波接收裝置16檢測到所述被檢測的太赫茲波在的不同溫度下的第四強度資料。所述加熱裝 置15與所述電腦19之間有線或無線連接,使得所述電腦19可以獲取所述加熱裝置15的加熱電壓。 The structure of the terahertz wave detection device 10J provided in the twelfth embodiment of the present invention is basically the same as that of the terahertz wave detection device 10H provided in the tenth embodiment of the present invention, and the difference is that the vacuum container 14 and the heating device 15 are further included. The heating device 15 is configured to heat the nano carbon tube structure 121 to change the temperature of the nano carbon tube structure 121. At this time, the terahertz wave receiving device 16 detects fourth intensity data of the detected terahertz wave at different temperatures.所述 热 装 The heating device The device 15 is wired or wirelessly connected to the computer 19 so that the computer 19 can obtain the heating voltage of the heating device 15.

所述存儲模組195內部進一步存儲有如圖21-23所示的太赫茲波穿透率與波數以及所述加熱裝置15的加熱電壓(所述奈米碳管結構121的溫度)的關係資料。所述計算模組192根據該第四強度資料、第一強度資料以及所述加熱裝置15的加熱電壓(所述奈米碳管結構121的溫度)可以計算出被檢測的太赫茲波的穿透率曲線與所述加熱裝置15的加熱電壓(所述奈米碳管結構121的溫度)的對應關係。所述比較模組193通過將穿透率曲線與所述加熱裝置15的加熱電壓(所述奈米碳管結構121的溫度)的對應關係與圖21-23的資料進行比對,即可獲得該被檢測的太赫茲波的波長範圍。 The storage module 195 further stores the relationship data of the terahertz wave transmittance and the wave number as shown in FIGS. 21-23 and the heating voltage of the heating device 15 (the temperature of the carbon nanotube structure 121). . The calculation module 192 can calculate the detected penetration of the terahertz wave based on the fourth intensity data, the first intensity data, and the heating voltage of the heating device 15 (the temperature of the nano carbon tube structure 121). The corresponding relationship between the rate curve and the heating voltage of the heating device 15 (the temperature of the carbon nanotube structure 121). The comparison module 193 compares the correspondence between the transmittance curve and the heating voltage of the heating device 15 (the temperature of the carbon nanotube structure 121) with the data in Figs. 21-23 to obtain The wavelength range of the detected terahertz wave.

可以理解,採用專門加熱裝置15時,需要一溫度感測器(圖未示),所述奈米碳管結構121和溫度感測器設置於該真空容器14內,所述加熱裝置15用於加熱該奈米碳管結構121,從而改變所述奈米碳管結構121的溫度。所述存儲模組195內部存儲有太赫茲波對該奈米碳管結構121的穿透率與波數以及所述奈米碳管結構121的溫度的關係資料作為標準資料。 It can be understood that when the special heating device 15 is used, a temperature sensor (not shown) is needed. The nano carbon tube structure 121 and the temperature sensor are disposed in the vacuum container 14. The heating device 15 is used for The nano carbon tube structure 121 is heated to change the temperature of the nano carbon tube structure 121. The storage module 195 stores therein the relationship between the transmittance of the terahertz wave to the nano carbon tube structure 121 and the wave number and the temperature of the nano carbon tube structure 121 as standard data.

本發明實施例12進一步提供一種太赫茲波波長檢測方法,該方法包括以下步驟:步驟S121,使被檢測的太赫茲波直接入射在該太赫茲波接收裝置16上,所述太赫茲波接收裝置16檢測到所述被檢測的太赫茲波的第一強度資料;步驟S122,使被檢測的太赫茲波透過所述奈米碳管結構121之後入射在該太赫茲波接收裝置16上,同時加熱改變所述奈米碳管結構121的溫度,所述太赫茲波接收裝置16檢測到所述被檢測的太赫茲波在的不同溫度下的第四強度資料;步驟S123,根據該第四強度資料、第一強度資料以及所述奈米碳管結構121的溫度計算出被檢測的太赫茲波的穿透率曲線與所述奈米碳管結構121的溫度的關係圖;以及步驟S124,通過將穿透率曲線與所述奈米碳管結構121的溫度的關係與一標準資料進行比對,獲得該被檢測的太赫茲波的波長範圍,其中,該標準資料包括太赫茲波對所述奈米碳管結構121的穿透率與波長以及所述奈米碳管結構121的溫度的關係。 Embodiment 12 of the present invention further provides a terahertz wave wavelength detection method. The method includes the following steps: Step S121, the detected terahertz wave is directly incident on the terahertz wave receiving device 16, which is a terahertz wave receiving device. 16 The first intensity data of the detected terahertz wave is detected; in step S122, the detected terahertz wave is transmitted through the nano-carbon tube structure 121 and incident on the terahertz wave receiving device 16 while being heated. When the temperature of the nano carbon tube structure 121 is changed, the terahertz wave receiving device 16 detects fourth intensity data of the detected terahertz wave at different temperatures; step S123, according to the fourth intensity data , The first intensity data and the temperature of the nano carbon tube structure 121 to calculate a relationship diagram between the detected terahertz wave transmittance curve and the temperature of the nano carbon tube structure 121; and step S124, The relationship between the transmittance curve and the temperature of the carbon nanotube structure 121 is compared with a standard data to obtain the wavelength range of the detected terahertz wave. The standard data includes Wave transmittance and the relationship between the wavelength and the temperature of the carbon nanotube structure 121 carbon nanotube structure 121.

實施例13 Example 13

請參閱圖34,本發明實施例13提供一種太赫茲波波長檢測裝置10K,其包括一太赫茲波接收裝置16、一調製裝置12、一旋轉裝置13、一真空容器14、一加熱裝置15,一與該調製裝置12連接的移動裝置20,以及一與該太赫茲波接收裝置16連接的電腦19。 Referring to FIG. 34, Embodiment 13 of the present invention provides a terahertz wave detection device 10K, which includes a terahertz wave receiving device 16, a modulation device 12, a rotating device 13, a vacuum container 14, and a heating device 15, A mobile device 20 connected to the modulation device 12 and a computer 19 connected to the terahertz wave receiving device 16.

本發明實施例13提供的太赫茲波波長檢測裝置10K與本發明實施例10提供的太赫茲波波長檢測裝置10H結構基本相同,其區別在於,進一步包括該旋轉裝置13、真空容器14以及加熱裝置15。 The structure of the terahertz wave detection device 10K provided in Embodiment 13 of the present invention is basically the same as that of the terahertz wave detection device 10H provided in Embodiment 10 of the present invention. The difference is that it further includes the rotating device 13, the vacuum container 14, and the heating device. 15.

可以理解,本發明實施例13提供的太赫茲波波長檢測裝置10K整合了本發明實施例10-12的所有技術方案。本發明實施例13提供的太赫茲波波長檢測裝置10K的工作方法可以為本發明實施例10-12的工作方法中的任意一種。 It can be understood that the terahertz wavelength detection device 10K provided in Embodiment 13 of the present invention integrates all technical solutions of Embodiments 10-12 of the present invention. The working method of the terahertz wave detection device 10K provided in Embodiment 13 of the present invention may be any one of the working methods of Embodiments 10-12 of the present invention.

綜上所述,本發明確已符合發明專利之要件,遂依法提出專利申請。惟,以上所述者僅為本發明之較佳實施例,自不能以此限制本案之申請專利範圍。舉凡習知本案技藝之人士援依本發明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍內。 In summary, the present invention has indeed met the requirements for an invention patent, and a patent application was filed in accordance with the law. However, the above is only a preferred embodiment of the present invention, and it cannot be used to limit the scope of patent application in this case. Any equivalent modification or change made by those who are familiar with the skills of this case with the aid of the spirit of the present invention shall be covered by the scope of the following patent applications.

Claims (10)

一種太赫茲波通訊方法,其包括以下步驟:提供一太赫茲波源,並使該太赫茲波源激發產生太赫茲波;在所述太赫茲波源的出射面一側設置一奈米碳管結構,使該太赫茲波源產生的太赫茲波透過該奈米碳管結構後形成太赫茲調製波發射出去,其中,該奈米碳管結構包括複數個沿同一方向定向延伸的奈米碳管;通過有規律地加熱所述奈米碳管結構對所述太赫茲調製波進行加密;採用一太赫茲波接收裝置接收加密後的太赫茲調製波,並計算所述太赫茲波的穿透率;以及根據所述太赫茲波的穿透率變化規律對該加密後的太赫茲調製波進行解密。A terahertz wave communication method includes the following steps: providing a terahertz wave source and exciting the terahertz wave source to generate a terahertz wave; setting a nano carbon tube structure on the side of an exit surface of the terahertz wave source, so that The terahertz wave generated by the terahertz wave source passes through the nanometer carbon tube structure to form a terahertz modulated wave and is emitted. The nanometer carbon tube structure includes a plurality of nanometer carbon tubes extending in the same direction; Heating the nano carbon tube structure to encrypt the terahertz modulated wave; using a terahertz wave receiving device to receive the encrypted terahertz modulated wave, and calculating the transmittance of the terahertz wave; and The terahertz wave's transmissivity is used to decrypt the encrypted terahertz modulated wave. 如請求項1所述的太赫茲波通訊方法,其中,所述奈米碳管結構包括一奈米碳管膜,所述奈米碳管膜包括複數個通過凡得瓦力首尾相連的奈米碳管束,每一奈米碳管束包括複數個相互平行的奈米碳管。The terahertz wave communication method according to claim 1, wherein the nanometer carbon tube structure includes a nanometer carbon tube film, and the nanometer carbon tube film includes a plurality of nanometers connected end-to-end by Van der Waals force. Carbon tube bundle, each nano carbon tube bundle includes a plurality of parallel nano carbon tubes. 如請求項1所述的太赫茲波通訊方法,其中,所述複數個奈米碳管的表面包覆有金屬導電層。The terahertz wave communication method according to claim 1, wherein a surface of the plurality of carbon nanotubes is coated with a metal conductive layer. 如請求項1所述的太赫茲波通訊方法,其中,所述奈米碳管結構的邊緣固定於一支撐框架上,中間部分通過該支撐框架懸空設置。The terahertz wave communication method according to claim 1, wherein an edge of the nano carbon tube structure is fixed on a supporting frame, and a middle portion is suspended by the supporting frame. 如請求項1所述的太赫茲波通訊方法,其中,所述有規律地加熱所述奈米碳管結構的方法為有規律地向所述奈米碳管結構兩端施加電壓。The terahertz wave communication method according to claim 1, wherein the method of regularly heating the carbon nanotube structure is to apply a voltage to both ends of the carbon nanotube structure regularly. 如請求項5所述的太赫茲波通訊方法,其中,所述奈米碳管結構通過兩個間隔設置的電極懸空設置,所述向奈米碳管結構兩端施加電壓的方法為有規律地在該兩個電極之間施加電壓。The terahertz wave communication method according to claim 5, wherein the carbon nanotube structure is suspended by two spaced-apart electrodes, and the method of applying a voltage to both ends of the carbon nanotube structure is regularly A voltage is applied between the two electrodes. 如請求項5所述的太赫茲波通訊方法,其中,所述奈米碳管結構設置於一真空容器中。The terahertz wave communication method according to claim 5, wherein the nano-carbon tube structure is disposed in a vacuum container. 如請求項5所述的太赫茲波通訊方法,其中,所述施加的電壓範圍為0V~200V。The terahertz wave communication method according to claim 5, wherein the applied voltage ranges from 0V to 200V. 如請求項1所述的太赫茲波通訊方法,其中,所述有規律地加熱所述奈米碳管結構的方法為通過一加熱裝置有規律地熱所述奈米碳管結構。The terahertz wave communication method according to claim 1, wherein the method of regularly heating the carbon nanotube structure is to regularly heat the carbon nanotube structure by a heating device. 如請求項9所述的太赫茲波通訊方法,其中,所述奈米碳管結構懸空設置於一真空容器中,所述加熱裝置包括兩個間隔設置的電極和一太赫茲波可以穿透的加熱膜,該加熱膜設置於該真空容器的內壁上且與該兩個電極電連接。The terahertz wave communication method according to claim 9, wherein the carbon nanotube structure is suspended in a vacuum container, and the heating device includes two electrodes disposed at intervals and a terahertz wave that can penetrate A heating film is disposed on the inner wall of the vacuum container and is electrically connected to the two electrodes.
TW106115313A 2017-04-20 2017-05-09 Communication method based on terahertz wave TWI628488B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
??201710259257.2 2017-04-20
CN201710259257.2A CN108736980B (en) 2017-04-20 2017-04-20 Terahertz wave communication method

Publications (2)

Publication Number Publication Date
TWI628488B true TWI628488B (en) 2018-07-01
TW201839468A TW201839468A (en) 2018-11-01

Family

ID=63640546

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106115313A TWI628488B (en) 2017-04-20 2017-05-09 Communication method based on terahertz wave

Country Status (2)

Country Link
CN (1) CN108736980B (en)
TW (1) TWI628488B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140153094A1 (en) * 2011-06-22 2014-06-05 Seoul National University R & Db Foundation Carbon nanotube sheet and polarizer using same
TW201709250A (en) * 2015-08-25 2017-03-01 鴻海精密工業股份有限公司 Terahertz reflex klystron and micron-sized the terahertz reflection klystron array

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101605289B (en) * 2008-06-13 2013-07-03 清华大学 Sounding device
CN101713531B (en) * 2008-10-08 2013-08-28 清华大学 Sounding type lighting device
CN101734645B (en) * 2008-11-14 2015-09-30 清华大学 carbon nano-tube film
CN101893659B (en) * 2009-05-19 2012-06-20 清华大学 Method and device for detecting polarization direction of electromagnetic wave
CN101943803A (en) * 2010-07-07 2011-01-12 电子科技大学 Structural material for modulation of terahertz waves
CN102081274A (en) * 2010-12-22 2011-06-01 四川大学 Vanadium dioxide thin film phase transition characteristic-based terahertz wave modulation device and method
EP3084989A4 (en) * 2013-12-16 2017-08-16 Nokia Technologies Oy An apparatus and associated methods for wireless communication
CN104766902B (en) * 2014-06-16 2017-04-12 南京大学 Infrared light detecting transistor based on graphene carbon nano tube composite absorption layer
CN105428964B (en) * 2015-11-11 2019-02-05 清华大学 Graphene terahertz transmitter and preparation method thereof
CN105572797B (en) * 2016-02-15 2021-02-26 欧阳征标 Terahertz wave pulse amplitude modulation signal and optical pulse amplitude modulation signal conversion amplifier
CN106200016A (en) * 2016-07-25 2016-12-07 上海师范大学 A kind of Terahertz Graphene microstructure Modulation device
CN106449381B (en) * 2016-08-11 2018-11-02 上海师范大学 A kind of THz modulators and its preparation based on graphene-metal composite micro-structure
CN106200013A (en) * 2016-09-06 2016-12-07 中国科学院重庆绿色智能技术研究院 A kind of Terahertz manipulator of Graphene metal composite structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140153094A1 (en) * 2011-06-22 2014-06-05 Seoul National University R & Db Foundation Carbon nanotube sheet and polarizer using same
TW201709250A (en) * 2015-08-25 2017-03-01 鴻海精密工業股份有限公司 Terahertz reflex klystron and micron-sized the terahertz reflection klystron array

Also Published As

Publication number Publication date
CN108736980B (en) 2020-09-08
TW201839468A (en) 2018-11-01
CN108736980A (en) 2018-11-02

Similar Documents

Publication Publication Date Title
US8030623B2 (en) Method and device for measuring electromagnetic signal
JP5096519B2 (en) Electromagnetic wave detection apparatus and electromagnetic wave detection method
TWI630375B (en) Terahertz wavelength detecting device
TWI639865B (en) Communication method based on terahertz wave
TWI630173B (en) Terahertz wave transmitting device
TWI628488B (en) Communication method based on terahertz wave
TWI639866B (en) Communication device based on terahertz wave
TWI633053B (en) Method for transmitting terahertz modulated waves
TWI619321B (en) Method for detecting terahertz wavelength
TWI712237B (en) Communication method based on terahertz wave
Roberts et al. Electrically driven hyperbolic nanophotonic resonators as high speed, spectrally selective thermal radiators
JPWO2014147967A1 (en) Terahertz electromagnetic wave generator, terahertz spectrometer, and terahertz electromagnetic wave generation method
TWI400436B (en) Method and device for measuring a polarizing direction of an electromagnetic wave
Zhang et al. Detecting terahertz wave by microphone based on the photoacoustic effect in graphene foam
TWI709525B (en) A method for producing far infrared light
Wei et al. A mid-IR tunable graphene metasurface for ultrasensitive molecular fingerprint retrieval and refractive index sensing
Munir et al. Performance analysis of different plasmonic metallic nanoparticles using for ultra-sensitive optical sensor
ROMANOV SINGLE-WALLED CARBON NANOTUBES AS A SOURCE OF ULTRASOUND