TWI617114B - Energy recovery system converter for digital waste batteries - Google Patents

Energy recovery system converter for digital waste batteries Download PDF

Info

Publication number
TWI617114B
TWI617114B TW106108334A TW106108334A TWI617114B TW I617114 B TWI617114 B TW I617114B TW 106108334 A TW106108334 A TW 106108334A TW 106108334 A TW106108334 A TW 106108334A TW I617114 B TWI617114 B TW I617114B
Authority
TW
Taiwan
Prior art keywords
switch
active switch
diode
battery
filter capacitor
Prior art date
Application number
TW106108334A
Other languages
Chinese (zh)
Other versions
TW201834354A (en
Inventor
莊英俊
楊煌平
Original Assignee
崑山科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 崑山科技大學 filed Critical 崑山科技大學
Priority to TW106108334A priority Critical patent/TWI617114B/en
Application granted granted Critical
Publication of TWI617114B publication Critical patent/TWI617114B/en
Publication of TW201834354A publication Critical patent/TW201834354A/en

Links

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

本發明係有關於一種數位式廢棄電池能源回收系統轉換器,其主要係令回收系統轉換器分別由第一、二濾波電容器、第一~四主動開關、第一~四被動開關二極體、儲能電感、廢棄電池二極體開關、待儲能電池二極體開關所組成,於第一濾波電容器並聯有該蓄電池模組,於廢棄電池二極體開關與第二濾波電容器間連接有廢棄蓄電池模組,於待儲能電池二極體開關與第二濾波電容器間連接有該待儲能蓄電池模組;據此,不僅能有效回收廢棄電池之電能,達到節能減碳的要求,且具有體積縮小、重量減輕以及低成本的優點,能減少開關上的切換損失,和高耐壓大電流應力之問題。The invention relates to a digital waste battery energy recovery system converter, which mainly comprises a first and second filter capacitors, first to fourth active switches, first to fourth passive switch diodes, respectively. The energy storage inductor, the waste battery diode switch, and the energy storage battery diode switch are composed of the battery module in parallel with the first filter capacitor, and the waste battery diode switch and the second filter capacitor are connected with waste. The battery module is connected to the battery module to be stored between the energy storage battery diode switch and the second filter capacitor; accordingly, the energy of the waste battery can be effectively recovered, and the energy saving and carbon reduction requirements are met, and The advantages of reduced size, reduced weight, and low cost can reduce switching losses on the switch and high withstand voltage and high current stress.

Description

數位式廢棄電池能源回收系統轉換器Digital Waste Battery Energy Recovery System Converter

本發明係有關於一種數位式廢棄電池能源回收系統轉換器,尤其是指一種不僅能有效回收廢棄電池之電能,達到節能減碳的要求,且具有體積縮小、重量減輕以及低成本的優點,能減少開關上的切換損失,和高耐壓大電流應力之問題,而在其整體施行使用上更增實用功效特性之數位式廢棄電池能源回收系統轉換器創新設計者。The invention relates to a digital waste battery energy recovery system converter, in particular to an energy not only capable of effectively recovering waste battery energy, achieving energy saving and carbon reduction, but also having the advantages of volume reduction, weight reduction and low cost. An innovative designer of digital waste battery energy recovery system converters that reduce the switching losses on the switch and the high withstand voltage and high current stress, and the practical application of the utility model.

按,隨著環保意識的抬頭與國際油價持續受到國際局勢動盪不安的影響,自20世紀以來,電動車研究開發,始終是先進國家最熱門的發展領域之一。而由於電動汽車的關鍵技術,亦即車用電能之二次電池技術方面,已獲得重大突破性發展,使得多年來人類欲駕駛不用石油、無廢氣排放的電動汽車夢想,一步一步地即將實現。According to the rise of environmental awareness and international oil prices continue to be affected by the turbulence of the international situation, since the 20th century, electric vehicle research and development has always been one of the most popular development areas in advanced countries. Due to the key technology of electric vehicles, that is, the secondary battery technology of electric energy for vehicles, it has achieved a major breakthrough, making the dream of electric vehicles that people want to drive without oil and without exhaust emissions for many years to be realized step by step.

然而於電池製作過程中,包含從原始材料前處理、漿料配製、電極塗佈與製作、組裝電池、篩選電池以及最後應用於電動車的完整程序裡,各個步驟都會遇到流力、熱傳與質傳等相關問題;以電動汽車的關鍵技術二次電池為例:將二次電池放入電動汽車作為動力來源,並以電動馬達驅動的電壓設計為300V來看,大約需要30個以上的模組,因此每個模組的散熱效率,必須以有效的散熱流道設計,將電動汽車於行駛期間其電池模組所產生的熱量順利排放,才能確保各個電池模組的循環壽命一致。若是其中1個模組,抑或是其中1個單顆電池發生異常,則整個電動汽車將因電壓不足而無法行駛。以目前科技進步神速的眼光來看,未來汽車市場最大的賣點是新能源車,隨著各國對新能源汽車的扶持政策,電動車也正式駛入了發展的高速公路。在節能省碳的環保大趨勢下,以電力取代汽油,零排放的電動車,可望開啟另外一次的工業革命,而電池技術的掌握,更是主導電動車發展的關鍵。一台電動車平均要用五千顆電池芯,是一台筆記型電腦使用八顆電池芯的六百多倍的數量,也因此,二次電池的開發被視為未來最大潛力的市場。However, in the battery manufacturing process, including the original material pretreatment, slurry preparation, electrode coating and fabrication, assembly of the battery, screening of the battery and finally the application of the electric vehicle, the various steps will encounter flow, heat transfer Related issues with quality transmission; taking the secondary technology of the key technology of electric vehicles as an example: putting the secondary battery into the electric vehicle as the power source, and designing the voltage of the electric motor to be 300V, it takes about 30 or more. Modules, therefore, the heat dissipation efficiency of each module must be designed with an effective heat dissipation channel to smoothly discharge the heat generated by the battery modules of the electric vehicle during driving to ensure the uniform cycle life of each battery module. If one of the modules is used, or if one of the single cells is abnormal, the entire electric car will not be able to travel due to insufficient voltage. From the perspective of the rapid advancement of science and technology, the biggest selling point of the future automobile market is the new energy vehicle. With the support policies of new energy vehicles, electric vehicles have also officially entered the development of expressways. Under the environmental protection trend of energy saving and carbon saving, the replacement of gasoline with electric power and zero-emission electric vehicles is expected to open another industrial revolution, and the mastery of battery technology is the key to the development of electric vehicles. An electric vehicle uses an average of 5,000 battery cores, which is more than 600 times that of a notebook computer using eight battery cores. Therefore, the development of secondary batteries is regarded as the market with the greatest potential in the future.

而儲能設備的應用非常廣泛,大容量的儲電設備裝置可提供如再生能源儲電系統、油電混合電動車、純電動車、電動機車與電動自行車等的動力來源;至於小容量的儲電設備可提供電能給手機、筆記型電腦、數位相機、遊戲機、電動工具、機器人、電動刮鬍刀、UPS不斷電系統,未來更可應用在IC卡、軟性電子、生醫等薄型可撓式產品上,應用範圍十分廣泛。此外,目前消費性電子產品的外型要求趨向短小輕薄,因此重量輕、體積小、高儲能容量、安全性佳、高功率且無環境汙染的儲電裝置當然也受到矚目。目前可攜式電子產品如筆記型電腦[Notebook PC]、行動電話[Mobile Phone]、個人數位助理[PDA]、攝錄放影機、隨身聽或數位相機等正蓬勃發展。其中,二次電池[Secondary Battery]已成為可攜式消費性電子產品的主要電力供應來源,而正由於這些可攜式電子產品的成長,帶動了二次電池的生產數量越來越龐大。The application of energy storage equipment is very extensive. The large-capacity storage equipment can provide power sources such as renewable energy storage systems, hybrid electric vehicles, pure electric vehicles, electric vehicles and electric bicycles. As for small capacity storage Electrical equipment can provide power to mobile phones, notebook computers, digital cameras, game consoles, power tools, robots, electric razors, UPS uninterruptible power systems, and in the future can be applied to thin cards such as IC cards, soft electronics, and biomedical applications. For flexible products, the application range is very wide. In addition, the current appearance requirements of consumer electronic products tend to be short and light, so power storage devices with light weight, small size, high energy storage capacity, good safety, high power and no environmental pollution are of course also attracting attention. Currently, portable electronic products such as notebook computers [Notebook PC], mobile phones [Mobile Phone], personal digital assistants [PDA], video recorders, walkmans or digital cameras are booming. Among them, the secondary battery [Secondary Battery] has become the main source of power supply for portable consumer electronic products, and the growth of these portable electronic products has driven the production of secondary batteries to become larger and larger.

而眾所皆知,廢電池具有污染性,若任意丟棄,將污染環境,危害生物之健康,因此世界各國政府都會立法回收廢電池,然後再加以處理。經過多方調查發現,國內外廢電池回收機構都僅回收廢電池中之金屬與塑膠材料,並未回收其中之剩餘電力。此一作法實在令人惋惜,因為在能源價格高漲的今日,電能是十分寶貴的資源,實在是不應輕易浪費。另一方面再生能源發電與電動汽車所採用的蓄電池儲能系統都是以二次電池為主,二次電池是具備將化學能轉換成電能以及將電能轉換回化學能之雙向轉換功能,其種類包括鉛酸電池、鎳鎘[Ni-Cd]電池、鎳氫[Ni-H]電池與鋰離子[Li-ion]電池等。而這些蓄電池在生產完畢後,並不是馬上就能夠出廠販售讓使用者使用,而是必須先經過充/放電測試程序檢驗之後,確定品質符合規範才可以出廠販售給消費者使用。而傳統的蓄電池模組充/放電測試設備,不但充電時採用線性電源供應器,轉換效率差、耗電量大且放電時採用電子負載機放電,除電力無法回收再利用而造成能源浪費之外,更因消耗電能產生熱能,尚需更多風扇或冷氣散熱。同時,根據環保署所做的統計,國內廢乾電池與廢鉛酸蓄電池之回收重量每年約在3至5萬公噸之間,換算成3號乾電池約有數億個之多,若換算成機車用蓄電池也大約有數千萬個,這些數字都十分龐大。廢電池的剩餘電力或許不多,但其數量龐大,累加起來必然十分可觀,因此若能予以回收再利用,必能達到節能減碳之目的。As is well known, waste batteries are polluting. If they are discarded, they will pollute the environment and endanger the health of the organism. Therefore, governments around the world will legislate to recycle used batteries and then process them. After many investigations, it was found that the waste battery recycling organizations at home and abroad only recycle the metal and plastic materials in the waste batteries, and did not recover the surplus power. This practice is really regrettable, because today, when energy prices are rising, electricity is a very valuable resource, and it should not be easily wasted. On the other hand, the battery energy storage systems used in renewable energy power generation and electric vehicles are mainly secondary batteries, which are two-way conversion functions that convert chemical energy into electrical energy and convert electrical energy back into chemical energy. Including lead-acid batteries, nickel-cadmium [Ni-Cd] batteries, nickel-hydrogen [Ni-H] batteries and lithium-ion [Li-ion] batteries. After the production is completed, these batteries are not immediately available for sale to the user, but must be tested by the charge/discharge test procedure to determine the quality meets the specifications before they can be sold to consumers. The traditional battery module charging/discharging test equipment not only uses a linear power supply when charging, but also has poor conversion efficiency, large power consumption, and discharge by electronic loader during discharge, in addition to power waste that cannot be recycled and reused. Moreover, due to the consumption of electrical energy to generate thermal energy, more fans or cold air are needed to dissipate heat. At the same time, according to the statistics of the Environmental Protection Agency, the recycling weight of domestic waste battery and waste lead-acid battery is about 30,000 to 50,000 metric tons per year, which is equivalent to hundreds of millions of dry batteries. If converted into locomotives, There are also tens of millions of batteries, and these numbers are huge. The remaining power of the waste battery may not be much, but the amount is huge, and the accumulation is inevitably considerable. Therefore, if it can be recycled and reused, it will achieve the goal of energy saving and carbon reduction.

緣是,發明人有鑑於此,秉持多年該相關行業之豐富設計開發及實際製作經驗,針對現有之結構及缺失再予以研究改良,提供一種數位式廢棄電池能源回收系統轉換器,以期達到更佳實用價值性之目的者。In view of this, the inventor has provided many years of experience in the design and development of the related industries and the research and improvement of the existing structure and the lack of research and improvement to provide a digital waste battery energy recovery system converter, in order to achieve better. The purpose of practical value.

本發明之主要目的在於提供一種數位式廢棄電池能源回收系統轉換器,其主要係不僅能有效回收廢棄電池之電能,達到節能減碳的要求,且具有體積縮小、重量減輕以及低成本的優點,能減少開關上的切換損失,和高耐壓大電流應力之問題,而在其整體施行使用上更增實用功效特性者。The main object of the present invention is to provide a digital waste battery energy recovery system converter, which is mainly capable of efficiently recovering the electric energy of the waste battery, achieving the requirements of energy saving and carbon reduction, and having the advantages of volume reduction, weight reduction and low cost. It can reduce the switching loss on the switch, and the problem of high withstand voltage and high current stress, and it has more practical and effective characteristics in its overall implementation.

本發明數位式廢棄電池能源回收系統轉換器之主要目的與功效,係由以下具體技術手段所達成:The main purpose and effect of the digital waste battery recovery system converter of the present invention are achieved by the following specific technical means:

其主要係包括回收系統轉換器、蓄電池模組、廢棄蓄電池模組及待儲能蓄電池模組;其中:The main components include a recovery system converter, a battery module, a waste battery module and a battery module to be stored;

該回收系統轉換器係於第一濾波電容器 並聯有該蓄電池模組,且於該第一濾波電容器 之第一端與第一主動開關 之第一端及第一被動開關二極體 之負極相連接,該第一濾波電容器 第二端則分別與第二主動開關 之第二端及第二被動開關二極體 之正極、第三主動開關 之第二端及第三被動開關二極體 之正極、第二濾波電容器 之第二端相連接,令該第一主動開關 之第二端及該第一被動開關二極體 之正極與該第二主動開關 之第一端及該第二被動開關二極體 之負極皆和儲能電感 之第一端相連接,該儲能電感 之第二端與該第三主動開關 之第一端及該第三被動開關二極體 之負極皆與第四主動開關 之第二端及第四被動開關二極體 之正極相連接,而於該第四主動開關 之第一端及該第四被動開關二極體 之負極與該第二濾波電容器 之第一端則和廢棄電池二極體開關 之負極及待儲能電池二極體開關 之正極相連接,於該廢棄電池二極體開關 之正極與該第二濾波電容器 之第二端間連接有該廢棄蓄電池模組,於該待儲能電池二極體開關 之負極與該第二濾波電容器 之第二端間連接有該待儲能蓄電池模組。 The recovery system converter is tied to the first filter capacitor The battery module is connected in parallel, and the first filter capacitor is First end and first active switch First end and first passive switch diode The negative pole is connected, the first filter capacitor The second end is respectively connected to the second active switch Second end and second passive switch diode Positive pole, third active switch Second end and third passive switch diode Positive electrode, second filter capacitor The second end is connected to make the first active switch Second end and the first passive switch diode Positive pole and the second active switch First end and the second passive switch diode Negative current and energy storage inductance The first end is connected, the energy storage inductor The second end and the third active switch First end and the third passive switch diode The negative pole and the fourth active switch Second end and fourth passive switch diode The positive pole is connected to the fourth active switch First end and the fourth passive switch diode Negative pole and the second filter capacitor The first end is the waste battery diode switch Negative electrode and battery storage diode switch The positive pole is connected to the waste battery diode switch Positive pole and the second filter capacitor The waste battery module is connected between the second end of the battery, and the battery diode switch is to be stored Negative pole and the second filter capacitor The battery module to be stored is connected to the second end.

本發明數位式廢棄電池能源回收系統轉換器的較佳實施例,其中,該回收系統轉換器進一步設有微處理器,於該微處理器連接有界面電路,且於該界面電路連接有觸發電路,該觸發電路對應該第一主動開關 、該第二主動開關 、該第三主動開關 、該第四主動開關 能分別產生觸發訊號 ,以分別用來控制該第一主動開關 、該第二主動開關 、該第三主動開關 、該第四主動開關 之開啟及關閉。 A preferred embodiment of the digital waste battery recovery system converter of the present invention, wherein the recovery system converter is further provided with a microprocessor, an interface circuit is connected to the microprocessor, and a trigger circuit is connected to the interface circuit. The trigger circuit corresponds to the first active switch The second active switch The third active switch The fourth active switch Can generate trigger signals separately , , , To separately control the first active switch The second active switch The third active switch The fourth active switch Turn it on and off.

本發明數位式廢棄電池能源回收系統轉換器的較佳實施例,其中,該回收系統轉換器於責任週期比D<0.5時,該回收系統轉換器操作在降壓模式。A preferred embodiment of the digital waste battery energy recovery system converter of the present invention, wherein the recovery system converter operates in a buck mode when the duty cycle ratio D < 0.5.

本發明數位式廢棄電池能源回收系統轉換器的較佳實施例,其中,該回收系統轉換器於責任週期比D>0.5時,該回收系統轉換器操作在升壓模式。A preferred embodiment of the digital waste battery energy recovery system converter of the present invention, wherein the recovery system converter operates in a boost mode when the duty cycle ratio D > 0.5.

為令本發明所運用之技術內容、發明目的及其達成之功效有更完整且清楚的揭露,茲於下詳細說明之,並請一併參閱所揭之圖式及圖號:For a more complete and clear disclosure of the technical content, the purpose of the invention and the effects thereof achieved by the present invention, it is explained in detail below, and please refer to the drawings and drawings:

首先,請參閱第一圖本發明之電路圖所示,本發明主要係包括回收系統轉換器(1)、蓄電池模組(2)、廢棄蓄電池模組(3)及待儲能蓄電池模組(4);其中:First, please refer to the first diagram of the circuit diagram of the present invention. The present invention mainly includes a recovery system converter (1), a battery module (2), a waste battery module (3), and a battery module to be stored (4). );among them:

該回收系統轉換器(1)係於第一濾波電容器 並聯有該蓄電池模組(2),且於該第一濾波電容器 之第一端與第一主動開關 之第一端及第一被動開關二極體 之負極相連接,該第一濾波電容器 第二端則分別與第二主動開關 之第二端及第二被動開關二極體 之正極、第三主動開關 之第二端及第三被動開關二極體 之正極、第二濾波電容器 之第二端相連接,令該第一主動開關 之第二端及該第一被動開關二極體 之正極與該第二主動開關 之第一端及該第二被動開關二極體 之負極皆和儲能電感 之第一端相連接,該儲能電感 之第二端與該第三主動開關 之第一端及該第三被動開關二極體 之負極皆與第四主動開關 之第二端及第四被動開關二極體 之正極相連接,而於該第四主動開關 之第一端及該第四被動開關二極體 之負極與該第二濾波電容器 之第一端則和廢棄電池二極體開關 之負極及待儲能電池二極體開關 之正極相連接,於該廢棄電池二極體開關 之正極與該第二濾波電容器 之第二端間連接有該廢棄蓄電池模組(3),於該待儲能電池二極體開關 之負極與該第二濾波電容器 之第二端間連接有該待儲能蓄電池模組(4),另設有微處理器(11),於該微處理器(11)連接有界面電路(12),且於該界面電路(12)連接有觸發電路(13),該觸發電路(13)對應該第一主動開關 、該第二主動開關 、該第三主動開關 、該第四主動開關 能分別產生觸發訊號 ,以分別用來控制該第一主動開關 、該第二主動開關 、該第三主動開關 、該第四主動開關 之開啟及關閉。 The recovery system converter (1) is tied to the first filter capacitor The battery module (2) is connected in parallel, and the first filter capacitor is The first end and the first end of the first active switch and the first passive switch diode The negative pole is connected, the first filter capacitor The second end is respectively connected to the second active switch Second end and second passive switch diode Positive pole, third active switch Second end and third passive switch diode Positive electrode, second filter capacitor The second end is connected to make the first active switch Second end and the first passive switch diode Positive pole and the second active switch First end and the second passive switch diode Negative current and energy storage inductance The first end is connected, the energy storage inductor The second end and the third active switch First end and the third passive switch diode The negative pole and the fourth active switch Second end and fourth passive switch diode The positive pole is connected to the fourth active switch First end and the fourth passive switch diode Negative pole and the second filter capacitor The first end is the waste battery diode switch Negative electrode and battery storage diode switch The positive pole is connected to the waste battery diode switch Positive pole and the second filter capacitor The waste battery module (3) is connected between the second end of the battery, and the battery diode switch is to be stored Negative pole and the second filter capacitor The second end is connected with the battery module (4) to be stored, and the microprocessor (11) is further connected to the microprocessor (11) to which the interface circuit (12) is connected, and the interface circuit ( 12) A trigger circuit (13) is connected, and the trigger circuit (13) corresponds to the first active switch The second active switch The third active switch The fourth active switch Can generate trigger signals separately , , , To separately control the first active switch The second active switch The third active switch The fourth active switch Turn it on and off.

該回收系統轉換器(1)主要是依照責任週期比來決定降壓模式或是升壓模式,當任務週期D<0.5時,該回收系統轉換器(1)操作在降壓模式;反之,當任務週期D>0.5時,該回收系統轉換器(1)操作在升壓模式。而微處理器(11)會依據該蓄電池模組(2)的電壓,自動地調整任務週期D所需要的操作區間,以能將該廢棄電池模組(3)中的剩餘能源儲存於該蓄電池模組(2),當該蓄電池模組(2)存飽電量時,再將該蓄電池模組(2)的電能釋放至該待儲能蓄電池模組(4)中,如此,就可將該廢棄電池模組(3)中的電能轉移至該待儲能蓄電池模組(4)中加以利用。The recovery system converter (1) mainly determines the buck mode or the boost mode according to the duty cycle ratio. When the task cycle D<0.5, the recovery system converter (1) operates in the buck mode; When the duty cycle D>0.5, the recovery system converter (1) operates in the boost mode. The microprocessor (11) automatically adjusts the operation interval required for the duty cycle D according to the voltage of the battery module (2), so that the remaining energy in the waste battery module (3) can be stored in the battery. a module (2), when the battery module (2) is fully charged, releasing the electrical energy of the battery module (2) into the battery module (4) to be stored, so that The electric energy in the waste battery module (3) is transferred to the battery module (4) to be used for utilization.

該回收系統轉換器(1)之詳細動作如下,先假設:The detailed action of the recovery system converter (1) is as follows, first assume:

1.該第一主動開關 、該第二主動開關 、該第三主動開關 、該第四主動開關 、該第一被動開關二極體 、該第二被動開關二極體 、該第三被動開關二極體 、該第四被動開關二極體 、該廢棄電池二極體開關 、該待儲能電池二極體開關 皆視為理想,即開關之切換時間、截止電流、導通電阻、順向導通電壓與二極體反向恢復時間均忽略不計。 1. The first active switch The second active switch The third active switch The fourth active switch The first passive switch diode The second passive switch diode The third passive switch diode The fourth passive switch diode The waste battery diode switch The energy storage battery diode switch It is considered ideal, that is, the switch switching time, off current, on-resistance, forward conduction voltage and diode reverse recovery time are negligible.

2.該第一濾波電容器 、該第二濾波電容器 、該儲能電感 皆視為理想無寄生電阻。 2. The first filter capacitor The second filter capacitor The energy storage inductor Both are considered ideal parasitic resistance.

3.該第一主動開關 、該第二主動開關 、該第三主動開關 、該第四主動開關 之切換速度與切換頻率大於該第一濾波電容器 、該第二濾波電容器 之電壓及該儲能電感 電流之變化速度,因此在切換週期內可將輸入電流與輸出電壓視為常數。 3. The first active switch The second active switch The third active switch The fourth active switch The switching speed and the switching frequency are greater than the first filter capacitor The second filter capacitor Voltage and the energy storage inductance The rate of change of the current, so the input current and output voltage can be considered constant during the switching period.

4.該回收系統轉換器(1)操作於連續電感電流模式。4. The recovery system converter (1) operates in a continuous inductor current mode.

首先討論的該回收系統轉換器(1)操作模式是將該廢棄電池模組(3)中的剩餘能源儲存於該蓄電池模組(2)中,而該回收系統轉換器(1)之分析是依據功率電晶體MOSFET開關流過電流,在一個切換週期中同時會有兩顆功率電晶體同時導通,可將電路分為兩個工作模式各別討論之,請再一併參閱第二圖本發明之模式一、二時序圖所示:The operation mode of the recovery system converter (1) discussed first is to store the remaining energy in the waste battery module (3) in the battery module (2), and the analysis of the recovery system converter (1) is According to the current flowing through the power transistor MOSFET switch, two power transistors are simultaneously turned on in one switching cycle, and the circuit can be divided into two working modes, respectively, please refer to the second figure. The mode 1 and 2 timing diagrams are as follows:

模式一[ ]: Mode one [ ]:

請再一併參閱第三圖本發明之模式一等效電路圖所示,在要進入一週期開始前,該第一濾波電容器 及該第二濾波電容器 上的初始電壓為分別為該蓄電池模組(2)與廢棄電池模組(3)端電壓,該第二主動開關 及該第四主動開關 皆為截止狀態,該第一被動開關二極體 及該第三被動開關二極體 為導通狀態。當 時,該第二主動開關 及該第四主動開關 同時由截止狀態切換為導通狀態,此時該第一被動開關二極體 及該第三被動開關二極體 因為反向偏壓而進入截止狀態,該儲能電感 之電壓為正值,因此該儲能電感 上之電流 將會呈現線性上升,而該第一濾波電容器 上會跨一電壓,因此該蓄電池模組(2)將由該第一濾波電容器 來提供能量,此模式就是一個升壓式模式。 Please refer to the third figure of the present invention as shown in the equivalent circuit diagram of the present invention, before the start of a cycle, the first filter capacitor And the second filter capacitor The initial voltage is the voltage of the battery module (2) and the waste battery module (3), respectively, and the second active switch And the fourth active switch The off state, the first passive switch diode And the third passive switch diode It is in the conduction state. when The second active switch And the fourth active switch At the same time, the off state is switched to the on state, and the first passive switch diode is at this time. And the third passive switch diode The energy storage inductor enters the off state due to the reverse bias The voltage is positive, so the energy storage inductor Current Will exhibit a linear rise, and the first filter capacitor There will be a voltage across, so the battery module (2) will be the first filter capacitor To provide energy, this mode is a boost mode.

該模式一的物理電壓電流之關係方程式為:The relationship between the physical voltage and current of the mode one is:

……………………………………………(1) ……………………………………………(1)

由(1)式可計算該儲能電感 電流變化量 The energy storage inductance can be calculated by the formula (1) Current change for

………………………………………………(2) ………………………………………………(2)

該第一濾波電容器 與該蓄電池模組(2)所構成之迴路,可推導求得 The first filter capacitor And the circuit formed by the battery module (2) can be derived and obtained

…………………………………………………(3) ...................................................(3)

其中,各元件上的值為 Where the values on each component are , , , , , , , ,

當該第二主動開關 及該第四主動開關 皆為截止時,該第一被動開關二極體 及該第三被動開關二極體 會由截止狀態進入導通狀態,此時進入模式二。 When the second active switch And the fourth active switch The first passive switch diode is the cutoff And the third passive switch diode It will enter the conduction state from the off state, and enter mode 2 at this time.

模式二[ ]: Mode two [ ]:

請再一併參閱第四圖本發明之模式二等效電路圖所示,當模式二開始時,該第二主動開關 及該第四主動開關 從導通狀態進入截止狀態,此時該第一被動開關二極體 及該第三被動開關二極體 上會有電流而進入為導通狀態,該第一濾波電容器 電壓 其值為 ,而該儲能電感 電流 會將能量傳送至該蓄電池模組(2)上,因此該儲能電感 電壓為負值,該儲能電感 電流 呈現性下降,此模式為降壓式電路。 Please refer to the fourth diagram of the second circuit diagram of the second embodiment of the present invention. When the mode 2 starts, the second active switch is shown. And the fourth active switch From the on state to the off state, the first passive switch diode And the third passive switch diode There is a current on it and enters a conducting state, the first filter capacitor Voltage Its value is And the energy storage inductor Current The energy is transferred to the battery module (2), so the energy storage inductor The voltage is negative, the energy storage inductor Current The rendering is degraded, this mode is a buck circuit.

該儲能電感 、第一被動開關二極體 、該第三被動開關二極體 與該第一濾波電容器 所構成之迴路,可求得方程式為: The energy storage inductor First passive switch diode The third passive switch diode And the first filter capacitor The loop formed can be obtained as:

………………………………………………(4) ................................................(4)

由(4)方程式可得該儲能電感 電流變化量 為: The energy storage inductance can be obtained by the equation (4) Current change for:

………………………………………(5) .............................................(5)

可列出該第一濾波電容器 節點方程式為: The first filter capacitor can be listed The node equation is:

…………………………………………………(6) ...................................................(6)

其中,各元件上的值為 Where the values on each component are , , , , , , , ,

,該第二主動開關 及該第四主動開關 由截止切換為導通時,模式二階段結束,重新進入模式一的階段。 when The second active switch And the fourth active switch When switching from off to on, the second phase of the mode ends and re-enters the mode one.

接著討論的該回收系統轉換器(1)操作模式是將該蓄電池模組(2)的電能釋放至該待儲能蓄電池模組(4)中。而該回收系統轉換器(1)之分析是依據功率電晶體MOSFET開關流過電流,在一個切換週期中同時會有兩顆功率電晶體同時導通,可將電路分為兩個工作模式各別討論之,請再一併參閱第五圖本發明之模式三、四時序圖所示:The operation mode of the recovery system converter (1) discussed next is to release the electrical energy of the battery module (2) into the battery module (4) to be stored. The analysis of the recovery system converter (1) is based on the current flowing through the power transistor MOSFET switch, and two power transistors are simultaneously turned on in one switching cycle, and the circuit can be divided into two working modes. Please refer to the fifth diagram of the third and fourth timing diagrams of the present invention as shown in the following figure:

模式三[ ]: Mode three [ ]:

請再一併參閱第六圖本發明之模式三等效電路圖所示,在要進入一週期開始前,該第一濾波電容器 及該第二濾波電容器 上的初始電壓分別為該蓄電池模組(2)與待儲能蓄電池模組(4)端電壓,該第一主動開關 及該第三主動開關 皆為截止狀態,該第二被動開關二極體 及該第四被動開關二極體 為導通狀態。當 時,該第一主動開關 及該第三主動開關 同時由截止狀態切換為導通狀態,此時該第二被動開關二極體 及該第四被動開關二極體 因為反向偏壓而進入截止狀態,該儲能電感 之電壓為正值,因此該儲能電感 上之電流 將會呈現線性上升,而該第二濾波電容器 上會跨一電壓,因此該待儲能蓄電池模組(4)將由該第二濾波電容器 來提供能量,此模式就是一個升壓式模式。 Please refer to the sixth diagram of the third circuit equivalent circuit diagram of the present invention, before the start of a cycle, the first filter capacitor And the second filter capacitor The initial voltage is the voltage of the battery module (2) and the battery module (4) to be stored, the first active switch And the third active switch The off state, the second passive switch diode And the fourth passive switch diode It is in the conduction state. when The first active switch And the third active switch At the same time, the off state is switched to the on state, and the second passive switch diode is at this time. And the fourth passive switch diode The energy storage inductor enters the off state due to the reverse bias The voltage is positive, so the energy storage inductor Current Will exhibit a linear rise, and the second filter capacitor There will be a voltage across, so the battery module (4) to be stored will be the second filter capacitor. To provide energy, this mode is a boost mode.

該模式三的物理電壓電流之關係方程式為:The relationship between the physical voltage and current of mode three is:

……………………………………………(7) ...................................................(7)

由(7)式可計算該儲能電感 電流變化量 The energy storage inductance can be calculated by equation (7) Current change for

………………………………………………(8) ………………………………………………(8)

該第二濾波電容器 與該待儲能蓄電池模組(4)所構成之迴路,可推導求得 The second filter capacitor And the circuit formed by the battery module (4) to be stored can be derived and obtained

…………………………………………………(9) …………………………………………………(9)

其中,各元件上的值為 Where the values on each component are , , , , , , , ,

當該第一主動開關 及該第三主動開關 皆為截止時,該第二被動開關二極體 及該第四被動開關二極體 會由截止狀態進入導通狀態,此時進入模式四。 When the first active switch And the third active switch The second passive switch diode is the cutoff And the fourth passive switch diode It will enter the conduction state from the cutoff state, and enter mode four at this time.

模式四[ ]: Mode four [ ]:

請再一併參閱第七圖本發明之模式四等效電路圖所示,當進入模式四時,該第一主動開關 及該第三主動開關 由導通狀態進入截止狀態,此時該第二被動開關二極體 及該第四被動開關二極體 上會有電流而進入為導通狀態,該第二濾波電容器 電壓 其值為 ,而該儲能電感 電流 會將能量傳送至該待儲能蓄電池模組(4)上,因此該儲能電感 電壓為負值,該儲能電感 電流 呈現性下降,此模式為降壓式電路。 Please refer to the seventh diagram of the fourth circuit of the present invention as shown in the fourth circuit diagram. When entering mode four, the first active switch And the third active switch From the on state to the off state, the second passive switch diode And the fourth passive switch diode There will be a current and enter a conducting state, the second filter capacitor Voltage Its value is And the energy storage inductor Current The energy is transferred to the battery module (4) to be stored, so the energy storage inductor The voltage is negative, the energy storage inductor Current The rendering is degraded, this mode is a buck circuit.

該儲能電感 、該第二被動開關二極體 、該第四被動開關二極體 與該第二濾波電容器 所構成之迴路,可求得方程式為: The energy storage inductor The second passive switch diode The fourth passive switch diode And the second filter capacitor The loop formed can be obtained as:

……………………………………………(10) .............................................(10)

由(10)方程式可得該儲能電感 電流變化量 為: The energy storage inductance can be obtained by the equation (10) Current change for:

……………………………………(11) ..........................................(11)

可列出該第二濾波電容器 節點方程式為: The second filter capacitor can be listed The node equation is:

…………………………………………………(12) ...................................................(12)

其中,各元件上的值為 Where the values on each component are , , , , , , , ,

,該第一主動開關 及該第三主動開關 由截止狀況切換為導通狀態時,模式四階段結束,重新進入模式三的階段。 when The first active switch And the third active switch When the cutoff state is switched to the on state, the mode four phases ends and the mode three is re-entered.

而該回收系統轉換器(1)經實際硬體電路測試,將其切換頻率操作於70kHz下,使其電路工作在電感性負載連續導通模式狀態。The recovery system converter (1) is tested by the actual hardware circuit, and its switching frequency is operated at 70 kHz, so that the circuit operates in the continuous conduction mode state of the inductive load.

當由該廢棄電池模組(3)將電能傳輸至該蓄電池模組(2)時,輸入蓄電池額定電壓為 ,而實際電壓為 ,輸出蓄電池額定電壓為 ,而實際電壓為 ,請再一併參閱第八圖本發明之第一主動開關 訊號 端與第三主動開關 訊號 端實測波形圖所示,其係為該第一主動開關 及該第三主動開關 的驅動訊號波形,主要提供方波給該第一主動開關 及該第三主動開關 進行ON與OFF動作。請再一併參閱第九圖本發明之第一主動開關 訊號 端與 端實測波形圖、第十圖本發明之第三主動開關 訊號 端與 端實測波形圖及第十一圖本發明之第一主動開關 訊號 端與電流 實測波形圖所示,當開關為零,則輸入電流流過開關開始對該儲能電感 充電,當開關上等於輸入電壓,則無電流通過,因此停止對該儲能電感 提供能量。請再一併參閱第十二圖本發明之儲能電感 電壓 與電流 波形實測波形圖所示,當該儲能電感 的電壓 為正時,該儲能電感 的電流 上升,該儲能電感 的電壓 為負時,該儲能電感 的電流 下降。請再一併參閱第十三圖本發明之第三主動開關 訊號 端與電流 實測波形圖、第十四圖本發明之第四被動開關二極體 電壓 與電流 波形圖、第十五圖本發明之第二被動開關二極體 電壓 與電流 波形圖所示,當二極體電壓為負的輸出電壓時,則電流無法流入二極體,而當二極體電壓為零時,進入導通狀態,電流開始流經二級體。請再一併參閱第十六圖本發明之輸入電壓與輸入電流波形圖及第十七圖本發明之輸出電壓與輸出電流波形圖所示,輸入電壓為 ,輸入電流為 ,輸入功率為 ,輸出電壓為 ,輸出電流為 ,輸出功率為 ,故效率為 When the power is transmitted from the waste battery module (3) to the battery module (2), the input battery rated voltage is And the actual voltage is , the output battery rated voltage is And the actual voltage is Please refer to the eighth diagram of the first active switch of the present invention. Signal End and third active switch Signal The measured waveform is shown as the first active switch. And the third active switch Drive signal waveform, mainly providing a square wave to the first active switch And the third active switch Turn ON and OFF. Please refer to the ninth figure for the first active switch of the present invention. Signal End and Terminal measured waveform diagram, the tenth diagram of the third active switch of the present invention Signal End and The measured waveform diagram of the end and the eleventh diagram of the first active switch of the present invention Signal Terminal and current As shown in the measured waveform diagram, when the switch is zero, the input current flows through the switch to start charging the energy storage inductor. When the switch is equal to the input voltage, no current flows, so stop the energy storage inductor. provide energy. Please refer to the twelfth figure for the energy storage inductor of the present invention. Voltage And current Waveform measured waveform diagram, when the energy storage inductor Voltage For the timing, the energy storage inductor Current Rising, the energy storage inductor Voltage When negative, the energy storage inductor Current decline. Please refer to the thirteenth figure for the third active switch of the present invention. Signal Terminal and current Measured waveform diagram, the fourteenth embodiment of the fourth passive switching diode of the present invention Voltage And current Waveform diagram, fifteenth diagram, the second passive switch diode of the present invention Voltage And current As shown in the waveform diagram, when the diode voltage is a negative output voltage, the current cannot flow into the diode, and when the diode voltage is zero, it enters the conduction state, and the current begins to flow through the diode. Please refer to the sixteenth embodiment of the present invention for the input voltage and input current waveform diagram and the seventeenth diagram of the present invention, the output voltage and output current waveform diagram, the input voltage is , the input current is , input power is , the output voltage is , the output current is , the output power is Therefore, the efficiency is .

當由該蓄電池模組(2)將電能傳輸至該待儲能蓄電池模組(4)時,請再一併參閱第十八圖本發明之第二主動開關 訊號 端與第四主動開關 訊號 端實測波形圖所示,其係為該第二主動開關 及該第四主動開關 的驅動訊號波形,主要提供方波給該第二主動開關 及該第四主動開關 進行ON與OFF動作。請再一併參閱第十九圖本發明之第四主動開關 訊號 端與 端實測波形圖、第二十圖本發明之第二主動開關 訊號 端與 端實測波形圖及第二十一圖本發明之第四主動開關 訊號 端與電流 實測波形圖所示,當開關為零,則輸入電流流過開關開始對該儲能電感 充電,當開關上等於輸入電壓,則無電流通過,因此停止對該儲能電感 提供能量。請再一併參閱第二十二圖本發明之儲能電感 電壓 與電流 波形實測波形圖所示,當該儲能電感 的電壓 為正時,該儲能電感 的電流 上升,該儲能電感 的電壓 為負時,該儲能電感 的電流 下降。請再一併參閱第二十三圖本發明之第二主動開關 訊號 端與電流 實測波形圖、第二十四圖本發明之第一被動開關二極體 電壓 與電流 波形圖、第二十五圖本發明之第三被動開關二極體 電壓 與電流 波形圖所示,當二極體電壓為負的輸出電壓時,則電流無法流入二極體,而當二極體電壓為零時,進入導通狀態,電流開始流經二級體。請再一併參閱第二十六圖本發明之輸入電壓與輸入電流波形圖及第二十七圖本發明之輸出電壓與輸出電流波形圖所示,輸入電壓為 ,輸入電流為 ,輸入功率為 ,輸出電壓為 ,輸出電流為 ,輸出功率為 ,故效率為 When the battery module (2) transfers power to the battery module (4) to be stored, please refer to the eighteenth embodiment of the second active switch of the present invention. Signal End and fourth active switch Signal The measured waveform is shown as the second active switch. And the fourth active switch Drive signal waveform, mainly providing a square wave to the second active switch And the fourth active switch Turn ON and OFF. Please refer to the nineteenth figure for the fourth active switch of the present invention. Signal End and Terminal measured waveform diagram, twentieth diagram, second active switch of the present invention Signal End and The measured waveform diagram of the end and the twenty-first diagram of the fourth active switch of the present invention Signal Terminal and current As shown in the measured waveform diagram, when the switch is zero, the input current flows through the switch to start the energy storage inductor. Charging, when the switch is equal to the input voltage, no current flows, so stop the energy storage inductor provide energy. Please refer to the twenty-second figure for the energy storage inductor of the present invention. Voltage And current Waveform measured waveform diagram, when the energy storage inductor Voltage For the timing, the energy storage inductor Current Rising, the voltage of the energy storage inductor When negative, the energy storage inductor Current decline. Please refer to the twenty-third figure for the second active switch of the present invention. Signal Terminal and current Measured waveform diagram, twenty-fourth embodiment of the first passive switching diode of the present invention Voltage And current Waveform diagram, twenty-fifth diagram, the third passive switch diode of the present invention Voltage And current As shown in the waveform diagram, when the diode voltage is a negative output voltage, the current cannot flow into the diode, and when the diode voltage is zero, it enters the conduction state, and the current begins to flow through the diode. Please refer to the twenty-sixth embodiment of the present invention, the input voltage and input current waveform diagram and the twenty-seventh diagram of the present invention, the output voltage and output current waveform diagram, the input voltage is , the input current is , input power is , the output voltage is , the output current is , the output power is Therefore, the efficiency is .

藉由以上所述,本發明之使用實施說明可知,本發明與現有技術手段相較之下,本發明主要係不僅能有效回收廢棄電池之電能,達到節能減碳的要求,且具有體積縮小、重量減輕以及低成本的優點,能減少開關上的切換損失,和高耐壓大電流應力之問題,而在其整體施行使用上更增實用功效特性者。The above description of the use of the present invention shows that the present invention is mainly capable of efficiently recovering the electric energy of the waste battery, achieving the energy saving and carbon reduction requirements, and having a volume reduction, compared with the prior art means. The advantages of weight reduction and low cost can reduce the switching loss on the switch, and the problem of high withstand voltage and high current stress, and more practical performance characteristics in its overall implementation.

然而前述之實施例或圖式並非限定本發明之產品結構或使用方式,任何所屬技術領域中具有通常知識者之適當變化或修飾,皆應視為不脫離本發明之專利範疇。However, the above-described embodiments or drawings are not intended to limit the structure or the use of the present invention, and any suitable variations or modifications of the invention will be apparent to those skilled in the art.

綜上所述,本發明實施例確能達到所預期之使用功效,又其所揭露之具體構造,不僅未曾見諸於同類產品中,亦未曾公開於申請前,誠已完全符合專利法之規定與要求,爰依法提出發明專利之申請,懇請惠予審查,並賜准專利,則實感德便。In summary, the embodiments of the present invention can achieve the expected use efficiency, and the specific structure disclosed therein has not been seen in similar products, nor has it been disclosed before the application, and has completely complied with the provisions of the Patent Law. And the request, the application for the invention of a patent in accordance with the law, please forgive the review, and grant the patent, it is really sensible.

(1)‧‧‧回收系統轉換器(1)‧‧‧Recycling system converter

‧‧‧第一濾波電容器 ‧‧‧First filter capacitor

‧‧‧第二濾波電容器 ‧‧‧Second filter capacitor

‧‧‧第一主動開關 ‧‧‧First active switch

‧‧‧第二主動開關 ‧‧‧Second active switch

‧‧‧第三主動開關 ‧‧‧third active switch

‧‧‧第四主動開關 ‧‧‧fourth active switch

‧‧‧第一被動開關二極體 ‧‧‧First passive switch diode

‧‧‧第二被動開關二極體 ‧‧‧Second passive switch diode

‧‧‧第三被動開關二極體 ‧‧‧third passive switch diode

‧‧‧第四被動開關二極體 ‧‧‧Fourth passive switch diode

‧‧‧儲能電感 ‧‧‧Storage inductance

‧‧‧廢棄電池二極體開關 ‧‧‧Discarded battery diode switch

‧‧‧待儲能電池二極體開關 ‧‧‧Energy storage battery diode switch

(11)‧‧‧微處理器(11)‧‧‧Microprocessor

(12)‧‧‧界面電路(12)‧‧‧ interface circuit

(13)‧‧‧觸發電路(13) ‧‧‧Trigger circuit

(2)‧‧‧蓄電池模組(2) ‧‧‧ battery module

(3)‧‧‧廢棄蓄電池模組(3)‧‧‧Abandoned battery modules

(4)‧‧‧待儲能蓄電池模組(4) ‧‧‧Storage battery module

第一圖:本發明之電路圖First picture: circuit diagram of the invention

第二圖:本發明之模式一、二時序圖Second picture: mode 1 and 2 timing diagram of the present invention

第三圖:本發明之模式一等效電路圖Third figure: mode one equivalent circuit diagram of the present invention

第四圖:本發明之模式二等效電路圖Fourth figure: the equivalent circuit diagram of mode 2 of the present invention

第五圖:本發明之模式三、四時序圖Figure 5: Mode 3 and 4 timing diagram of the present invention

第六圖:本發明之模式三等效電路圖Sixth figure: mode three equivalent circuit diagram of the present invention

第七圖:本發明之模式四等效電路圖Figure 7: Mode 4 equivalent circuit diagram of the present invention

第八圖:本發明之第一主動開關 訊號 端與第三主動開關 訊號 端實測波形圖 Figure 8: The first active switch of the present invention Signal End and third active switch Signal Actual measured waveform

第九圖:本發明之第一主動開關 訊號 端與 端實測波形圖 Ninth diagram: the first active switch of the present invention Signal End and Actual measured waveform

第十圖:本發明之第三主動開關 訊號 端與 端實測波形圖 Figure 10: The third active switch of the present invention Signal End and Actual measured waveform

第十一圖:本發明之第一主動開關 訊號 端與電流 實測波形圖 Figure 11: The first active switch of the present invention Signal Terminal and current Measured waveform

第十二圖:本發明之儲能電感 電壓 與電流 波形實測波形圖 Figure 12: Energy storage inductor of the present invention Voltage And current Waveform measured waveform

第十三圖:本發明之第三主動開關 訊號 端與電流 實測波形圖 Thirteenth figure: the third active switch of the present invention Signal Terminal and current Measured waveform

第十四圖:本發明之第四被動開關二極體 電壓 與電流 波形圖 Figure 14: The fourth passive switch diode of the present invention Voltage And current Waveform

第十五圖:本發明之第二被動開關二極體 電壓 與電流 波形圖 Figure 15: The second passive switching diode of the present invention Voltage And current Waveform

第十六圖:本發明之輸入電壓與輸入電流波形圖Figure 16: Waveform of input voltage and input current of the present invention

第十七圖:本發明之輸出電壓與輸出電流波形圖所Figure 17: The output voltage and output current waveform diagram of the present invention

第十八圖:本發明之第二主動開關 訊號 端與第四主動開關 訊號 端實測波形圖 Figure 18: The second active switch of the present invention Signal End and fourth active switch Signal Actual measured waveform

第十九圖:本發明之第四主動開關 訊號 端與 端實測波形圖 Figure 19: The fourth active switch of the present invention Signal End and Actual measured waveform

第二十圖:本發明之第二主動開關 訊號 端與 端實測波形圖 Figure 20: The second active switch of the present invention Signal End and Actual measured waveform

第二十一圖:本發明之第四主動開關 訊號 端與電流 實測波形圖 21: The fourth active switch of the present invention Signal Terminal and current Measured waveform

第二十二圖:本發明之儲能電感 電壓 與電流 波形實測波形圖 Figure 22: Energy storage inductor of the present invention Voltage And current Waveform measured waveform

第二十三圖:本發明之第二主動開關 訊號 端與電流 實測波形圖 Twenty-third figure: the second active switch of the present invention Signal Terminal and current Measured waveform

第二十四圖:本發明之第一被動開關二極體 電壓 與電流 波形圖 Figure 24: The first passive switching diode of the present invention Voltage And current Waveform

第二十五圖:本發明之第三被動開關二極體 電壓 與電流 波形圖 Figure 25: The third passive switch diode of the present invention Voltage And current Waveform

第二十六圖:本發明之輸入電壓與輸入電流波形圖Figure 26: Input voltage and input current waveform diagram of the present invention

第二十七圖:本發明之輸出電壓與輸出電流波形圖Figure 27: Waveform of output voltage and output current of the present invention

Claims (4)

一種數位式廢棄電池能源回收系統轉換器,其主要係包括回收系統轉換器、蓄電池模組、廢棄蓄電池模組及待儲能蓄電池模組;其中: 該回收系統轉換器係於第一濾波電容器 並聯有該蓄電池模組,且於該第一濾波電容器 之第一端與第一主動開關 之第一端及第一被動開關二極體 之負極相連接,該第一濾波電容器 第二端則分別與第二主動開關 之第二端及第二被動開關二極體 之正極、第三主動開關 之第二端及第三被動開關二極體 之正極、第二濾波電容器 之第二端相連接,令該第一主動開關 之第二端及該第一被動開關二極體 之正極與該第二主動開關 之第一端及該第二被動開關二極體 之負極皆和儲能電感 之第一端相連接,該儲能電感 之第二端與該第三主動開關 之第一端及該第三被動開關二極體 之負極皆與第四主動開關 之第二端及第四被動開關二極體 之正極相連接,而於該第四主動開關 之第一端及該第四被動開關二極體 之負極與該第二濾波電容器 之第一端則和廢棄電池二極體開關 之負極及待儲能電池二極體開關 之正極相連接,於該廢棄電池二極體開關 之正極與該第二濾波電容器 之第二端間連接有該廢棄蓄電池模組,於該待儲能電池二極體開關 之負極與該第二濾波電容器 之第二端間連接有該待儲能蓄電池模組。 The utility model relates to a digital waste battery energy recovery system converter, which mainly comprises a recycling system converter, a battery module, a waste battery module and a battery module to be stored; wherein: the recovery system converter is connected to the first filter capacitor The battery module is connected in parallel, and the first filter capacitor is First end and first active switch First end and first passive switch diode The negative pole is connected, the first filter capacitor The second end is respectively connected to the second active switch Second end and second passive switch diode Positive pole, third active switch Second end and third passive switch diode Positive electrode, second filter capacitor The second end is connected to make the first active switch Second end and the first passive switch diode Positive pole and the second active switch First end and the second passive switch diode Negative current and energy storage inductance The first end is connected, the energy storage inductor The second end and the third active switch First end and the third passive switch diode The negative pole and the fourth active switch Second end and fourth passive switch diode The positive pole is connected to the fourth active switch First end and the fourth passive switch diode Negative pole and the second filter capacitor The first end is the waste battery diode switch Negative electrode and battery storage diode switch The positive pole is connected to the waste battery diode switch Positive pole and the second filter capacitor The waste battery module is connected between the second end of the battery, and the battery diode switch is to be stored Negative pole and the second filter capacitor The battery module to be stored is connected to the second end. 如申請專利範圍第1項所述數位式廢棄電池能源回收系統轉換器,其中,該回收系統轉換器進一步設有微處理器,於該微處理器連接有界面電路,且於該界面電路連接有觸發電路,該觸發電路對應該第一主動開關 、該第二主動開關 、該第三主動開關 、該第四主動開關 能分別產生觸發訊號 ,以分別用來控制該第一主動開關 、該第二主動開關 、該第三主動開關 、該第四主動開關 之開啟及關閉。 The digital waste battery energy recovery system converter according to claim 1, wherein the recovery system converter is further provided with a microprocessor, an interface circuit is connected to the microprocessor, and the interface circuit is connected a trigger circuit corresponding to the first active switch The second active switch The third active switch The fourth active switch Can generate trigger signals separately , , , To separately control the first active switch The second active switch The third active switch The fourth active switch Turn it on and off. 如申請專利範圍第1項所述數位式廢棄電池能源回收系統轉換器,其中,該回收系統轉換器於責任週期比D<0.5時,該回收系統轉換器操作在降壓模式。The digital waste battery energy recovery system converter according to claim 1, wherein the recovery system converter operates in a buck mode when the duty cycle ratio D<0.5. 如申請專利範圍第1項所述數位式廢棄電池能源回收系統轉換器,其中,該回收系統轉換器於責任週期比D>0.5時,該回收系統轉換器操作在升壓模式。The digital waste battery energy recovery system converter according to claim 1, wherein the recovery system converter operates in a boost mode when the duty cycle ratio D>0.5.
TW106108334A 2017-03-14 2017-03-14 Energy recovery system converter for digital waste batteries TWI617114B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106108334A TWI617114B (en) 2017-03-14 2017-03-14 Energy recovery system converter for digital waste batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106108334A TWI617114B (en) 2017-03-14 2017-03-14 Energy recovery system converter for digital waste batteries

Publications (2)

Publication Number Publication Date
TWI617114B true TWI617114B (en) 2018-03-01
TW201834354A TW201834354A (en) 2018-09-16

Family

ID=62188997

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106108334A TWI617114B (en) 2017-03-14 2017-03-14 Energy recovery system converter for digital waste batteries

Country Status (1)

Country Link
TW (1) TWI617114B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110417036A (en) * 2019-06-17 2019-11-05 都世元 A kind of confluence distribution system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM414669U (en) * 2011-04-13 2011-10-21 Tsint Wasted battery electric energy recycle system
TWM487566U (en) * 2014-06-16 2014-10-01 You-Xuan Lin Energy recycle device for used up batteries
CN103227486B (en) * 2013-03-22 2015-07-01 浙江海锂子新能源有限公司 Battery testing energy recovery device and control method
CN205076321U (en) * 2015-08-10 2016-03-09 深圳承轩浩业科技发展有限公司 Waste battery electric energy recovery type intelligence garbage bin
CN104111424B (en) * 2013-04-16 2017-01-11 固纬电子实业股份有限公司 Energy recovery type battery test system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM414669U (en) * 2011-04-13 2011-10-21 Tsint Wasted battery electric energy recycle system
CN103227486B (en) * 2013-03-22 2015-07-01 浙江海锂子新能源有限公司 Battery testing energy recovery device and control method
CN104111424B (en) * 2013-04-16 2017-01-11 固纬电子实业股份有限公司 Energy recovery type battery test system
TWM487566U (en) * 2014-06-16 2014-10-01 You-Xuan Lin Energy recycle device for used up batteries
CN205076321U (en) * 2015-08-10 2016-03-09 深圳承轩浩业科技发展有限公司 Waste battery electric energy recovery type intelligence garbage bin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110417036A (en) * 2019-06-17 2019-11-05 都世元 A kind of confluence distribution system
CN110417036B (en) * 2019-06-17 2021-10-15 都世元 Distribution system converges

Also Published As

Publication number Publication date
TW201834354A (en) 2018-09-16

Similar Documents

Publication Publication Date Title
Nachinarkiniyan et al. Off‐board electric vehicle battery charger using PV array
CN105162236A (en) Composite energy power distribution system
TWI617114B (en) Energy recovery system converter for digital waste batteries
CN202995616U (en) Computer intelligence self-protection power supply power source
CN204992735U (en) Electronic equipment&#39;s charging device and electronic equipment
Hu et al. Design and application of power lithium-ion battery management system: from the perspective of system optimization
CN212796560U (en) Integrated control device and new energy automobile
Zhou et al. Research on liquid metal energy storage battery equalization management system in power PSS
CN216648528U (en) Battery and electronic device using same
CN205304364U (en) Solar photovoltaic phone -charging device
Jun et al. Characteristics analysis of ultracapacitor-battery hybrid energy storage system
CN203617768U (en) Large-scale electric vehicle rapid charging system
CN203596610U (en) Charge and discharge protection circuit for two lithium batteries
CN209001652U (en) A kind of two-way temperature difference charging unit
CN203368370U (en) Wireless data-collecting system capable of collecting thermal energy
CN202839814U (en) Novel polymer lithium battery connecting device
Lin et al. Series-resonant battery charger with synchronous rectifiers for LiFePO 4 battery pack
Tiezhou et al. Research on the fast charging of VRLA
CN108649626A (en) A kind of lithium battery charging current Voltage Feedback system
CN204095561U (en) A kind of power-supply system of electric dispensing vehicle
CN215474590U (en) Electric bicycle lithium cell cabinet that trades with energy storage inverter function
CN213879328U (en) From rapping bar with two kinds of charge modes
Hua et al. Study of a charge/discharge equalizer
Liu et al. A series-parallel switched-capacitor equalizer for the hybrid energy storage system
Ghuge et al. Optimization Of Fast Charging System For Electric Bicycle

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees