TWI616612B - Heating control system and method for liquefied gas distribution system - Google Patents

Heating control system and method for liquefied gas distribution system Download PDF

Info

Publication number
TWI616612B
TWI616612B TW105120510A TW105120510A TWI616612B TW I616612 B TWI616612 B TW I616612B TW 105120510 A TW105120510 A TW 105120510A TW 105120510 A TW105120510 A TW 105120510A TW I616612 B TWI616612 B TW I616612B
Authority
TW
Taiwan
Prior art keywords
temperature
heater
gas
liquid gas
weight
Prior art date
Application number
TW105120510A
Other languages
Chinese (zh)
Other versions
TW201800693A (en
Inventor
古崇新
黃文昌
賴葦芸
柯淳勛
楊嘉明
潘立凱
廖佑達
Original Assignee
法液空電子設備股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 法液空電子設備股份有限公司 filed Critical 法液空電子設備股份有限公司
Priority to TW105120510A priority Critical patent/TWI616612B/en
Priority to CN201710498420.0A priority patent/CN107543031B/en
Publication of TW201800693A publication Critical patent/TW201800693A/en
Application granted granted Critical
Publication of TWI616612B publication Critical patent/TWI616612B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

本文描述一種用於為液化氣體供給系統或大宗氣體供給系統(BGDS)提供加熱控制以保證輸送從液化狀態下的液態氣體生成的蒸發氣體的壓力保持恆定及控制蒸發氣體的溫度接近環境溫度並且避免過度加熱導致容器乾涸的同時確保在容器內的液態氣體的最大利用率的輸送氣體的系統,該蒸發氣體是適合用作半導體製程的氣體,其包含:一個液態氣體氣罐放置在一個平臺重量秤上,所述平臺重量秤讀取儲存在所述液態氣體氣罐裡的液態氣體的重量(Wt),一個加熱器放置在所述液態氣體氣罐的底部與所述液態氣體氣罐的外壁直接接觸,所述加熱器根據需要用於加熱所述液態氣體氣罐,及一個可編程邏輯控制器應用蒸發氣體溫度,加熱器動作所產生的溫度,環境溫度和所述液態氣體的重量(Wt)來計算所述加熱器用於加熱所述液態氣體氣罐所需要的電能,其中,所述加熱器具有多個溫度設定點,依據預先設定的液態氣體的重量範圍設置設定,並且所述加熱器在每個溫度設定點恒溫加熱液態氣體氣罐,由此形成一個階梯式溫度控制模式。本文描述一種用於為液化氣體供給系統或大宗氣體供給系統(BGDS) 提供加熱控制以保證輸送從液化狀態下的液態氣體生成的蒸發氣體的壓力保持恆定並且避免過度加熱導致容器乾涸的同時確保在容器內的液態氣體的最大利用率的輸送氣體的方法。 Described herein is a method for providing heating control for a liquefied gas supply system or a bulk gas supply system (BGDS) to ensure that the pressure of the boil-off gas generated from the liquid gas delivered from the liquefied state is kept constant and that the temperature of the boil-off gas is controlled to be close to the ambient temperature and is avoided A system for transporting gas that causes the container to dry up while ensuring maximum utilization of liquid gas within the container, the vaporized gas being a gas suitable for use in a semiconductor process, comprising: a liquid gas canister placed on a platform weight scale The platform weight scale reads the weight (Wt) of the liquid gas stored in the liquid gas cylinder, and a heater is placed directly at the bottom of the liquid gas cylinder and the outer wall of the liquid gas cylinder Contact, the heater is used to heat the liquid gas cylinder as needed, and a programmable logic controller applies the temperature of the evaporation gas, the temperature generated by the heater action, the ambient temperature, and the weight of the liquid gas (Wt) Calculating the electric energy required for the heater to heat the liquid gas cylinder, wherein Said heater having a plurality of temperature set points, based on the weight range setting is set to a predetermined liquid gas and liquid gas tank heated by the heater set point temperature at each temperature, thereby forming a stepped temperature control mode. This article describes a method for supplying a liquefied gas or a bulk gas supply system (BGDS). A method of providing heating control to ensure that the pressure of the boil-off gas generated from the liquid gas in the liquefied state is kept constant and that the overheating causes the container to dry up while ensuring the maximum utilization of the liquid gas in the vessel is ensured.

Description

液化氣體供給系統的加熱控制系統和方法 Heating control system and method for liquefied gas supply system

本文係關於一種為液化氣體供給系統提供加熱控制以保證從液體狀態下的液態氣體生成的蒸發氣體的壓力保持恆定並且避免過度加熱導致液態氣體容器乾涸同時確保在液態氣體容器內的液體的最大利用率的系統和方法。所述蒸發氣體是適合用作半導體製造工業的氣體。 This paper relates to providing a heating control for a liquefied gas supply system to ensure that the pressure of the vaporized gas generated from the liquid gas in a liquid state is kept constant and avoiding excessive heating causes the liquid gas container to dry up while ensuring maximum use of liquid in the liquid gas container. Rate system and method. The vaporized gas is a gas suitable for use in the semiconductor manufacturing industry.

高純度氣體和特種氣體是在半導體製造工業中不可缺少的原料。它們通常存儲在氣瓶或氣罐裡,例如,臥式氣缸,並提供給處理工具應用於半導體製造製程。這些半導體製造製程包括薄膜,擴散,化學氣相沉積(CVD),原子層沉積(ALD),蝕刻,摻雜,濺射和離子注入等。所述氣瓶通常儲存在氣櫃內。更大的容器如氣缸通常存儲在適用於使用氣體專門設計的儲存場地。 High purity gases and specialty gases are indispensable materials in the semiconductor manufacturing industry. They are typically stored in cylinders or gas cylinders, for example, horizontal cylinders, and are supplied to processing tools for use in semiconductor manufacturing processes. These semiconductor fabrication processes include thin film, diffusion, chemical vapor deposition (CVD), atomic layer deposition (ALD), etching, doping, sputtering, and ion implantation. The gas cylinders are typically stored in a gas cabinet. Larger containers, such as cylinders, are typically stored in storage areas that are specifically designed for use with gas.

高純度氣體和特種氣體的實例包括氨氣(NH3),砷化氫(AsH3),三氯化硼(BCl3),二氧化碳(CO2),氯氣(Cl2),二氯矽烷(SiH2Cl2),乙矽烷(Si2H6),溴化氫(HBr),氯化氫(HCl),氟化氫(HF),一氧化二氮(N2O),全氟丙烷(C3F8),六氟化硫(SF6),磷化氫(PH3)和六氟化鎢(WF6)。這些高純度氣體和特種氣體在通常環境溫度下呈液化狀態導致它們在半導 體製造製程的供給中的困難。這些困難直接鏈接到其壓力和/或其使用的效率。 Examples of high purity gases and specialty gases include ammonia (NH 3 ), arsine (AsH 3 ), boron trichloride (BCl 3 ), carbon dioxide (CO 2 ), chlorine (Cl 2 ), and dichlorosilane (SiH). 2 Cl 2 ), acetane (Si 2 H 6 ), hydrogen bromide (HBr), hydrogen chloride (HCl), hydrogen fluoride (HF), nitrous oxide (N 2 O), perfluoropropane (C 3 F 8 ) , sulfur hexafluoride (SF 6 ), phosphine (PH 3 ) and tungsten hexafluoride (WF 6 ). The liquefaction of these high purity gases and specialty gases at typical ambient temperatures causes their difficulties in the supply of semiconductor manufacturing processes. These difficulties are directly linked to the pressure and/or the efficiency of their use.

液態氣體是由液相和氣相兩個相構成的,彼此達到平衡。這種平衡意味著在給定的溫度下,根據每種液態氣體所特有的關係,每種液態氣體具有明確的壓力(即,蒸汽壓力),並且該壓力作為溫度的函數而變化(即,蒸汽溫度)。已經知道,該壓力隨著溫度的增加而增加,反之,該壓力隨著溫度的減小而減小。 The liquid gas is composed of two phases of a liquid phase and a gas phase, and is balanced with each other. This balance means that at a given temperature, each liquid gas has a defined pressure (ie, vapor pressure) depending on the relationship unique to each liquid gas, and the pressure varies as a function of temperature (ie, steam) temperature). It is known that this pressure increases as the temperature increases, whereas the pressure decreases as the temperature decreases.

當液態氣體的氣相從一個液態氣體氣罐排出時,液態氣體的液相(即液體)的一部分為了保持平衡應該被轉換為氣體,即蒸發氣體。這是再生氣體的過程。液體部分然後開始利用可用的能量(即,圍繞氣罐的外部環境的能量)煮沸以保持平衡。然而,蒸發氣體排出的越多,能量需要的越多,液體沸騰的就越猛越快,這會造成蒸發氣體的壓力增高,從而造成壓力失控的風險。相反,如果可用的能量不足以將液體變成氣體來產生氣相,由於必須保持氣液平衡,蒸發氣體的溫度將會下降(即,冷卻),因此蒸發氣體的壓力也將下降。為了在使用蒸發氣體的過程中保持其壓力恆定,有必要保持蒸發氣體溫度恆定。為了這個目的,有必要向液態氣體氣罐提供至少相當於產生上述冷卻的熱量以限制冷卻。 When the gas phase of the liquid gas is discharged from a liquid gas cylinder, a portion of the liquid phase (i.e., liquid) of the liquid gas should be converted to a gas, that is, an evaporating gas, in order to maintain equilibrium. This is the process of regenerating gas. The liquid portion then begins to boil with available energy (ie, energy surrounding the external environment of the gas canister) to maintain equilibrium. However, the more the evaporating gas is discharged, the more energy is needed, and the faster and faster the liquid boils, which causes the pressure of the evaporating gas to increase, thereby causing the risk of pressure loss. Conversely, if the available energy is not sufficient to turn the liquid into a gas to produce a gas phase, the temperature of the vaporized gas will decrease (ie, cool) as the gas-liquid equilibrium must be maintained, and thus the pressure of the vaporized gas will also decrease. In order to keep the pressure constant during the use of the boil-off gas, it is necessary to keep the temperature of the boil-off gas constant. For this purpose, it is necessary to provide the liquid gas cylinder with at least the equivalent of the heat generated by the above cooling to limit the cooling.

通過外部能量加熱使限制冷卻和可觀察到的壓力下降成為可能。但同時也可能產生壓力過高失控和過度加熱的風險。當液態氣體氣罐裡只剩下少量液態氣體時,外部能量加熱可能過度加熱液態氣體至使液態氣體氣罐乾涸導致液態氣體不能最大程度地有效地利用。 Limiting cooling and observable pressure drop are possible by external energy heating. At the same time, however, there is a risk of excessive pressure and overheating. When only a small amount of liquid gas remains in the liquid gas cylinder, external energy heating may overheat the liquid gas to dry the liquid gas cylinder, resulting in the liquid gas not being utilized to the maximum extent.

US6363728公開了一種用於液化液態氣體供應裝置的受控 輸送的系統和方法。所述系統和方法包含一個熱交換器和一個壓力控制器控制一個液化液態氣體氣罐的液態氣體氣體的輸送。 US 6,636,728 discloses a controlled use of a liquefied liquid gas supply device Systems and methods of delivery. The system and method include a heat exchanger and a pressure controller for controlling the delivery of liquid gas gas from a liquefied liquid gas cylinder.

US8244116公開了一種應用位於存儲系統外邊的熱源加熱存儲系統控制液態氣體的溫度的方法,其包含在使用蒸發氣體時維持蒸發氣體的恆定壓力的加熱裝置,其中所述加熱裝置涉及內置於氣罐的表面上的一個電路裡的熱流體的循環。 No. 8,424,116 discloses a method of controlling the temperature of a liquid gas using a heat source heating storage system located outside the storage system, comprising a heating device that maintains a constant pressure of the boil-off gas when using the boil-off gas, wherein the heating device relates to a built-in gas cylinder The circulation of hot fluid in a circuit on the surface.

US6076359和US5761911公開了一種從液化狀態輸送液態氣體的系統和方法,包括提高環境和氣罐之間的傳熱速率而不增加在氣罐裡在環境溫度以上的液體的溫度的步驟,其中一加熱器放置在氣罐的下邊,加熱器輸出的熱量基於氣罐裡蒸發氣體的壓力和氣罐裡液態氣體和蒸發氣體的重量的輸入來控制。 US Pat. No. 6,076,359 and US Pat. No. 5,719,911 disclose a system and method for delivering liquid gas from a liquefied state, including the step of increasing the rate of heat transfer between the environment and the gas tank without increasing the temperature of the liquid above the ambient temperature in the gas cylinder, wherein a heater Placed under the gas cylinder, the heat output by the heater is controlled based on the pressure of the vaporized gas in the gas cylinder and the input of the weight of the liquid gas and the vaporized gas in the gas cylinder.

專利申請EP1538390的磁波加熱裝置描述的是用於容納液態氣體的氣罐。磁波加熱器303放置在氣罐下面和氣罐緊密接觸以加熱氣罐。 The magnetic wave heating device of the patent application EP 1 538 390 describes a gas cylinder for containing a liquid gas. The magnetic wave heater 303 is placed under the gas cylinder in close contact with the gas cylinder to heat the gas cylinder.

專利申請EP1298381描述了一種用於加熱液態氣體氣罐輸送高純度液態氣體的蒸發氣體的系統,其中所述加熱系統是永久地安裝在所述氣罐上與所述氣罐接觸並且包括電加熱方式的系統。 Patent application EP1298381 describes a system for heating a liquid gas cylinder to deliver an evaporating gas of a high purity liquid gas, wherein the heating system is permanently mounted on the gas cylinder in contact with the gas cylinder and comprises an electrical heating method system.

然而,這些系統和方法仍不能令人滿意。在蒸發氣體的運輸過程的操作期間,當液化氣水準降至低於某個點時,蒸發氣體的壓力過壓或壓力失控,或過度加熱容器,可能導致嚴重的安全問題。而且,確保在容器內的液態氣體的最大利用率也是在半導體製造工業中一個具有挑戰性的問題。具備安全保障,成本低廉且在蒸發氣體的輸運過程中沒有壓力失 控,沒有過度加熱容器等問題的液態氣體的蒸發氣體的輸送系統和方法仍在不斷地研發中,以滿足半導體產業實現優質製造製程的需求。 However, these systems and methods are still unsatisfactory. During operation of the vaporized gas transport process, when the liquefied gas level falls below a certain point, the pressure overpressure or pressure of the boil-off gas is out of control, or overheating the vessel may cause serious safety problems. Moreover, ensuring maximum utilization of liquid gases within the vessel is also a challenging problem in the semiconductor manufacturing industry. Safe and secure, low cost and no pressure loss during the transport of boil-off gas Control systems, methods and methods for evaporating gases of liquid gases without overheating the vessel are still being developed to meet the needs of the semiconductor industry to achieve quality manufacturing processes.

本文之目的在於提供一種用於為液化氣體供給系統或大宗氣體供給系統(BGDS)提供加熱控制以保證輸送從液化狀態下的液態氣體生成的蒸發氣體的壓力保持恆定,控制蒸發氣體的溫度接近環境溫度及避免在容器中沒有更多的液體剩餘時加熱和/或過度加熱容器及確保在容器內的液態氣體的最大利用率的輸送氣體的系統。該蒸發氣體是適合用作半導體製程的氣體。其系統包含:一個液態氣體氣罐放置在一個平臺重量秤上,所述平臺重量秤讀取儲存在所述液態氣體氣罐裡的液態氣體的重量(Wt),一個加熱器放置在所述液態氣體氣罐的底部與所述液態氣體氣罐的外壁直接接觸,所述加熱器根據需要用於加熱所述液態氣體氣罐,及一個可編程邏輯控制器應用蒸發氣體溫度,加熱器動作所產生的溫度,環境溫度和所述液態氣體的重量(Wt)來計算所述加熱器用於加熱所述液態氣體氣罐所需要的電能,其中,所述加熱器具有多個溫度設定點依據等數量的預先設定的液態氣體的重量範圍設置設定,並且所述加熱器在每個溫度設定點恒溫加熱液態氣體氣罐,由此形成一個階梯式溫度控制模式。 The purpose of this paper is to provide a heating control for a liquefied gas supply system or a bulk gas supply system (BGDS) to ensure that the pressure of the vaporized gas generated by the liquid gas from the liquefied state is kept constant, and the temperature of the evaporated gas is controlled to be close to the environment. Temperature and system for transporting gases that avoid heating and/or overheating the container when there is no more liquid remaining in the container and ensuring maximum utilization of liquid gas within the container. The vaporized gas is a gas suitable for use as a semiconductor process. The system comprises: a liquid gas cylinder placed on a platform weight scale, the platform weight scale reading the weight (Wt) of the liquid gas stored in the liquid gas cylinder, a heater being placed in the liquid The bottom of the gas cylinder is in direct contact with the outer wall of the liquid gas cylinder, the heater is used to heat the liquid gas cylinder as needed, and a programmable logic controller applies the temperature of the evaporation gas, and the heater operates a temperature, an ambient temperature, and a weight (Wt) of the liquid gas to calculate electrical energy required by the heater to heat the liquid gas cylinder, wherein the heater has a plurality of temperature set points according to an equal amount The preset weight range setting of the liquid gas is set, and the heater thermostatically heats the liquid gas cylinder at each temperature set point, thereby forming a stepped temperature control mode.

本文之目的在於提供一種用於為液化氣體供給系統或大宗氣體供給系統(BGDS)提供加熱控制以保證輸送從液化狀態下的液態氣體生成的蒸發氣體的壓力保持恆定,控制蒸發氣體的溫度接近環境溫度及避免在容器中沒有更多的液體剩餘時加熱和/或過度加熱容器及確保在容器內的液體的最大利用率的輸送氣體的方法。該蒸發氣體是適合用作半導體製 程的氣體。其方法包括以下步驟:在一個液態氣體氣罐中提供液態氣體,將所述液態氣體氣罐放置在一個平臺重量秤上,所述重量秤讀取所述液態氣體的重量(Wt),將一個加熱器放置在所述液態氣體氣罐的底部與所述液態氣體氣罐的外壁直接接觸,所述加熱器根據需要用於加熱所述液態氣體氣罐,及用一個可編程邏輯控制器來計算所述加熱器用於加熱所述液態氣體氣罐所需要的電能,其中,所述液態氣體氣罐裡的蒸發氣體溫度,加熱器動作所產生的溫度,環境溫度和所述液態氣體的重量(Wt)輸入到所述可編程邏輯控制器中進行比較並計算出所述加熱器加熱所述液態氣體氣罐所需要的電能,其中,所述加熱器具有多個溫度設定點依據等數量的預先設定的液態氣體的重量範圍設置設定,並且所述加熱器在每個溫度設定點恒溫加熱液態氣體氣罐,由此形成一個階梯式溫度控制模式。 The purpose of this paper is to provide a heating control for a liquefied gas supply system or a bulk gas supply system (BGDS) to ensure that the pressure of the vaporized gas generated by the liquid gas from the liquefied state is kept constant, and the temperature of the evaporated gas is controlled to be close to the environment. The method of conveying the gas at a temperature and avoiding heating and/or overheating the container while there is no more liquid remaining in the container and ensuring maximum utilization of the liquid within the container. The vaporized gas is suitable for use as a semiconductor The gas of the process. The method comprises the steps of: providing a liquid gas in a liquid gas cylinder, placing the liquid gas cylinder on a platform weight scale, the weight scale reading the weight of the liquid gas (Wt), a A heater is placed in direct contact with an outer wall of the liquid gas cylinder at a bottom of the liquid gas cylinder, the heater being used to heat the liquid gas cylinder as needed, and calculated by a programmable logic controller The heater is used for heating electrical energy required by the liquid gas cylinder, wherein the temperature of the vaporized gas in the liquid gas cylinder, the temperature generated by the heater action, the ambient temperature, and the weight of the liquid gas (Wt Entering into the programmable logic controller for comparison and calculating the electrical energy required by the heater to heat the liquid gas cylinder, wherein the heater has a plurality of temperature set points according to an equal number of presets The weight range of the liquid gas is set, and the heater heats the liquid gas cylinder at each temperature set point, thereby forming a stepped The degree of control mode.

所述加熱器為一個碳纖維加熱毯。 The heater is a carbon fiber heating blanket.

為了進一步瞭解本發明之性質及目的,應結合隨附圖式來參考以下實施方式。 In order to further understand the nature and purpose of the present invention, reference should be made to the accompanying drawings.

102‧‧‧液態氣體氣罐 102‧‧‧Liquid gas cylinders

104a,104b‧‧‧支撐件 104a, 104b‧‧‧Support

106‧‧‧平臺重量秤 106‧‧‧ platform weight scale

108‧‧‧加熱器 108‧‧‧heater

110‧‧‧溫度感測器 110‧‧‧temperature sensor

112‧‧‧氣動閥 112‧‧‧Pneumatic valve

114a,114b,114c‧‧‧壓力感測器 114a, 114b, 114c‧‧‧ pressure sensors

116‧‧‧輔助加熱器 116‧‧‧Auxiliary heater

118a,118b‧‧‧壓力調節閥 118a, 118b‧‧‧pressure regulating valve

120‧‧‧可編程邏輯控制器 120‧‧‧Programmable Logic Controller

200‧‧‧PLC 200‧‧‧PLC

202‧‧‧蒸發氣體壓力控制 202‧‧‧ Evaporative gas pressure control

204‧‧‧蒸發氣體壓力控制演算法 204‧‧‧Evaporation gas pressure control algorithm

206‧‧‧AND邏輯 206‧‧‧AND logic

208‧‧‧AND邏輯 208‧‧‧AND logic

210‧‧‧溫度指示控制器 210‧‧‧Temperature indicator controller

212‧‧‧整流器 212‧‧‧Rectifier

214‧‧‧類比電流信號 214‧‧‧ analog current signal

300‧‧‧方法 300‧‧‧ method

302至330‧‧‧步驟 302 to 330‧‧‧ steps

400‧‧‧演算法流程 400‧‧‧ algorithm flow

402至438‧‧‧步驟 402 to 438 ‧ steps

500‧‧‧裝置 500‧‧‧ device

502‧‧‧液化氣罐 502‧‧‧Liquified gas tank

504a,504b‧‧‧支撐件 504a, 504b‧‧‧support

506‧‧‧平板重量秤 506‧‧‧ flat weight scale

508‧‧‧加熱器 508‧‧‧heater

510‧‧‧溫度感測器 510‧‧‧temperature sensor

512‧‧‧氣動閥 512‧‧‧Pneumatic valve

514a,514b,514c‧‧‧壓力感測器 514a, 514b, 514c‧‧‧ pressure sensor

516a,516b‧‧‧輔助加熱器 516a, 516b‧‧‧ auxiliary heater

518a,518b‧‧‧壓力調節閥 518a, 518b‧‧‧pressure regulating valve

520‧‧‧AND邏輯 520‧‧‧AND logic

522‧‧‧可編程邏輯控制器 522‧‧‧Programmable Logic Controller

524‧‧‧整流器 524‧‧‧Rectifier

526‧‧‧蒸汽氣體輸出 526‧‧‧Steam gas output

600‧‧‧裝置 600‧‧‧ device

602‧‧‧液態氣體氣罐 602‧‧‧Liquid gas cylinder

604a,604b‧‧‧支撐件 604a, 604b‧‧‧support

606‧‧‧平板重量秤 606‧‧‧ flat weight scale

608‧‧‧加熱器 608‧‧‧heater

610‧‧‧氣動閥 610‧‧‧Pneumatic valve

612‧‧‧壓力感測器 612‧‧‧ Pressure Sensor

614‧‧‧壓力感測器 614‧‧‧ Pressure Sensor

616‧‧‧輔助加熱器 616‧‧‧Auxiliary heater

618‧‧‧輔助加熱器 618‧‧‧Auxiliary heater

620‧‧‧蒸汽氣壓控制 620‧‧‧Vapor pressure control

622‧‧‧AND邏輯 622‧‧‧AND logic

624‧‧‧AND邏輯 624‧‧‧AND logic

628‧‧‧蒸汽氣壓控制 628‧‧‧Vapor pressure control

630‧‧‧蒸汽氣體輸出 630‧‧‧Steam gas output

P‧‧‧蒸發氣體壓力 P‧‧‧evaporation gas pressure

P'‧‧‧蒸發氣體在經過輔助加熱器後的壓力 P ' ‧‧‧The pressure of the evaporating gas after passing the auxiliary heater

Ta‧‧‧環境溫度 Ta‧‧‧ ambient temperature

Tb‧‧‧過溫保護溫度感測器的設定溫度 Tb‧‧‧Set temperature for over temperature protection temperature sensor

Tc‧‧‧機械式過溫保護跳脫開關的設定溫度 Tc‧‧‧Set temperature of mechanical over-temperature protection trip switch

Th‧‧‧加熱器動作所產生的溫度 Th‧‧‧The temperature generated by the heater action

T‧‧‧蒸發氣體溫度 T‧‧‧ evaporation gas temperature

Td‧‧‧蒸發氣體溫度T將要預期控制到的溫度值 Td‧‧‧ Evaporation gas temperature T will be expected to control the temperature value

T'‧‧‧蒸發氣體在經過輔助加熱器後的溫度 T ' ‧‧‧The temperature of the evaporating gas after passing through the auxiliary heater

Wt‧‧‧重量 Wt‧‧‧ weight

Auto Mode‧‧‧自動模式 Auto Mode‧‧‧Auto Mode

Manual mode‧‧‧手動模式 Manual mode‧‧‧Manual mode

[圖1]為本發明之用於控制加熱液化氣體供應裝置或大宗氣體供給系統(BGDS)的液態氣體氣罐的智慧AVP控制加熱裝置的實施例方塊圖;[圖2]為本發明之用於計算圖1裝置中加熱器用來加熱氣罐所需要的電能的可編程邏輯控制器的實施例方塊圖;[圖3]為用於圖1和圖2裝置的加熱控制的演算法和方法;[圖4]為用於圖1和圖2裝置的保持液態氣體的蒸發氣體壓力恆定的加 熱控制的演算法和方法的一個最佳實施例的流程圖;[圖5]為圖4實施例的加熱器的溫度設定點對應於液態氣體重量變化的階梯溫度控制模式的曲線圖;[圖6]為圖1和圖2裝置的加熱器溫度,蒸發氣體壓力和液態氣體重量對應於時間函數的曲線圖;[圖7]為用電阻加熱絲加熱器加熱液態氣體氣罐的一個常規PID控制加熱裝置的方塊圖;[圖8]為圖6裝置的加熱器溫度,蒸發氣體壓力和液態氣體重量對應於時間函數的曲線圖;[圖9]為用磁波加熱器加熱液態氣體氣罐的一個現有的感應加熱控制裝置的方塊圖;以及[圖10]為圖9裝置中液態氣體氣罐中的蒸發氣體壓力與磁波加熱器的輸出的熱量對應於時間函數的曲線圖。 1 is a block diagram showing an embodiment of a smart AVP control heating device for controlling a liquid gas cylinder of a heated liquefied gas supply device or a bulk gas supply system (BGDS) according to the present invention; [Fig. 2] is used for the present invention. An embodiment of a programmable logic controller for calculating the electrical energy required by a heater to heat a gas cylinder in the apparatus of FIG. 1; [FIG. 3] is an algorithm and method for heating control of the apparatus of FIGS. 1 and 2; [Fig. 4] is a constant pressure of the evaporation gas for maintaining the liquid gas for the apparatus of Figs. 1 and 2. A flow chart of a preferred embodiment of a thermal control algorithm and method; [Fig. 5] is a graph of a step temperature control mode in which the temperature set point of the heater of the embodiment of Fig. 4 corresponds to a change in liquid gas weight; 6] is a graph of heater temperature, evaporation gas pressure and liquid gas weight corresponding to time function for the apparatus of Figures 1 and 2; [Fig. 7] is a conventional PID control for heating a liquid gas cylinder with a resistance heating filament heater a block diagram of the heating device; [Fig. 8] is a graph of the heater temperature, the evaporation gas pressure, and the liquid gas weight corresponding to the time function of the apparatus of Fig. 6; [Fig. 9] is a one of a liquid gas cylinder heated by a magnetic wave heater. A block diagram of a prior art induction heating control device; and [Fig. 10] is a graph of the amount of heat of the vaporized gas in the liquid gas cylinder and the output of the magnetic wave heater in Fig. 9 as a function of time.

【標記法及命名法】 [Marking method and nomenclature]

貫穿以下描述及申請專利範圍,使用的某些縮寫,符號及術語,其通常是在本領域中公知的。由第一個英文字母定義的術語的縮寫詞,為方便起見,列於表1中。 Certain abbreviations, symbols and terms used throughout the following description and claims are generally known in the art. The abbreviations of the terms defined by the first English letter are listed in Table 1 for convenience.

本文中使用元素週期表中的元素的標準縮寫,例如,Si指的是矽,N指的是氮,O指的是氧,C指的是碳等。 The standard abbreviations of the elements in the periodic table are used herein. For example, Si refers to yttrium, N refers to nitrogen, O refers to oxygen, and C refers to carbon.

本文所使用的術語“環境溫度”一詞指的是圍繞所述液態氣體氣罐的氣氛的溫度。通常是在22℃到26℃之間。在計算過程中,需要預先給定一個環境溫度,比如,預先給定一個環境溫度為24℃。 The term "ambient temperature" as used herein refers to the temperature of the atmosphere surrounding the liquid gas cylinder. It is usually between 22 ° C and 26 ° C. In the calculation process, an ambient temperature is required in advance, for example, an ambient temperature of 24 ° C is predetermined.

本文所用的術語“蒸發氣體”指的是液態氣體的氣相,其可通過加熱或不加熱該液態氣體氣罐產生,並從液態氣體氣罐排出。 The term "evaporating gas" as used herein refers to a gas phase of a liquid gas which can be produced by heating or not heating the liquid gas cylinder and discharged from a liquid gas cylinder.

本文之目的在於提供一種用於為液化氣體供給系統或大宗氣體供給系統(BGDS)提供加熱控制以保證輸送從液化狀態下的液態氣體生成的蒸發氣體的壓力保持恆定,避免在液態氣體容器中沒有更多的液態氣體剩餘時加熱和/或過度加熱容器及確保在液態氣體容器內的液態氣體的最大利用率的輸送氣體的裝置和方法。所述蒸發氣體是適合用作半導體製程的氣體。本文所公開的加熱控制系統和方法解決了傳統的用於半導體工業的氣體的原料罐的加熱方式導致的過壓問題,並且因為加熱器將根據環境條件,流量和剩餘氣體重量自動地調整其加熱溫度從而高效地利用熱 能,達到節能的效果。本文所公開的加熱控制裝置使用電阻式碳纖維加熱器作為加熱元件以加熱所述液態氣體容器或氣罐。控制所述電阻式碳纖維加熱器的熱量輸出是使用智慧恒定蒸氣壓(Smart AVP)的方法,其產生一個恆定的蒸發氣體壓力以及一個加熱器輸出能量的階梯溫度控制模式。所公開的方法,基於液態氣體氣罐裡的蒸發氣體的壓力,液態氣體的重量的變化和環境溫度的連鎖,調節加熱液態氣體氣罐的加熱器的熱量輸出來加熱液態氣體以達到恆壓輸送所述液態氣體的蒸發氣體到半導體製造製程額度應用中。即,所公開的方法(1)集成了液化氣體的壓力-溫度關係;(2)包括了秤重感測器秤量原料氣罐裡的剩餘液化氣的重量;(3)引入了環境條件控制演算法。本發明集成了原料氣罐裡的剩餘液化氣的重量和環境條件,以避免過壓發生。 The purpose of the present invention is to provide a heating control for a liquefied gas supply system or a bulk gas supply system (BGDS) to ensure that the pressure of the vaporized gas generated from the liquid gas supplied from the liquefied state is kept constant, avoiding the absence of a liquid gas container. More apparatus and methods for transporting gas while the liquid gas remains heating and/or overheating the vessel and ensuring maximum utilization of liquid gas within the liquid gas container. The boil-off gas is a gas suitable for use as a semiconductor process. The heating control system and method disclosed herein solves the overpressure problem caused by the heating mode of the conventional raw material tank for the gas used in the semiconductor industry, and because the heater will automatically adjust its heating according to environmental conditions, flow rate and residual gas weight. Temperature to use heat efficiently Can achieve energy-saving effects. The heating control device disclosed herein uses a resistive carbon fiber heater as a heating element to heat the liquid gas container or gas canister. Controlling the heat output of the resistive carbon fiber heater is a method using Smart Constant Vapor Pressure (Smart AVP) which produces a constant vaporizing gas pressure and a step temperature control mode for a heater output energy. The disclosed method is based on the pressure of the vaporized gas in the liquid gas cylinder, the change in the weight of the liquid gas and the ambient temperature, and the heat output of the heater that heats the liquid gas tank is adjusted to heat the liquid gas to achieve constant pressure transport. The vaporized gas of the liquid gas is applied to a semiconductor manufacturing process. That is, the disclosed method (1) integrates the pressure-temperature relationship of the liquefied gas; (2) includes the weight of the remaining liquefied gas in the raw material gas tank by the weighing sensor; (3) the introduction of the environmental condition control calculation law. The present invention integrates the weight and environmental conditions of the remaining liquefied gas in the feed gas tank to avoid overpressure.

所公開的加熱裝置和方法的優點是(1)蒸發氣體的壓力用於控制加熱液態氣體氣罐的加熱器的溫度;(2)環境溫度和液態氣體的重量變化用於控制加熱液態氣體氣罐的加熱器的溫度;(3)液態氣體氣罐裡的蒸發氣體的溫度固定在環境溫度周圍,即環境溫度加1的溫度,使液態氣體氣罐中液態氣體和蒸發氣體的溫度不會升到環境溫度以上太多;及(4)成本低,效率高。 The advantages of the disclosed heating apparatus and method are (1) the pressure of the boil-off gas is used to control the temperature of the heater that heats the liquid gas cylinder; (2) the change in the ambient temperature and the weight of the liquid gas is used to control the heating of the liquid gas cylinder The temperature of the heater; (3) the temperature of the vaporized gas in the liquid gas tank is fixed around the ambient temperature, that is, the temperature of the ambient temperature plus 1, so that the temperature of the liquid gas and the vaporized gas in the liquid gas tank does not rise to Too much above ambient temperature; and (4) low cost and high efficiency.

下文中將根據圖式來描述本發明之具體實例。 Specific examples of the invention will be described below based on the drawings.

圖1為本發明之用於控制加熱液化氣體供應裝置或大宗氣體供給系統(BGDS)的液態氣體氣罐的智慧AVP控制加熱裝置的實施例方塊圖。裝置100具備液態氣體氣罐102,直接安裝放置在平臺重量秤106的上面。平臺重量秤106秤量存留在液態氣體氣罐102中的液態氣體的重量。 液態氣體氣罐102的底部具備至少兩個支撐件104a104b用於在平板重量秤106上支承液態氣體氣罐102。在一個示例性實施例中,氣罐102可以是一個臥式氣缸或其它適於儲存液態氣體的氣罐。平臺重量秤106秤量氣罐102的總重量,減去氣罐本身的自重(或皮重),然後提供存留在氣罐102中的液態氣體的重量。平臺重量秤106可以是一個電阻負載單元,通常設置在儲存液態氣體氣罐的氣櫃的地板上。加熱器108放置在氣罐102的外表面的下部,並與氣罐102直接接觸。在一個示範性實施例中,加熱器108可以是纏繞在氣罐102的下部外表面的加熱毯,加熱毯可覆蓋氣罐102約1/5到1/2的外表面。一個最佳實施外面積是1/4。這種結構目的之一是提高環境和氣罐間的傳熱效率;其二是僅加熱氣罐102裡的液態氣體的底部以便加熱液態氣體的液相部分。另外,這種結構容易更換加熱器。加熱毯本身俱有保溫毯做絕熱保護以避免熱量損失。加熱器108具備溫度感測器110用於測量加熱器108的溫度,並提供加熱器108的溫度讀數Th給可編程邏輯控制器(programmable logic controller PLC)120,用於計算加熱器108加熱氣罐102所需要的電能,以保持從氣罐102輸送到半導體製造製程的蒸發氣體122的蒸汽壓力為常數。連接到氣罐102的蒸發氣體輸送線包括從氣罐102釋放蒸發氣體的氣動閥112,及蒸發氣體的壓力調節閥118a118b。所述蒸發氣體輸送線還包括分別裝在氣動閥112和壓力調節閥118a118b上的壓力計114a114b114c用於測量蒸發氣體在各階段中的壓力,及用於加熱從氣罐102釋放的蒸發氣體的輔助加熱器116a116b。所述蒸發氣體輸送線上的所有部件都是由適於攜帶蒸發氣體的蒸發氣體輸送導管相連接,例如不銹鋼導管或類似的導管。根據氣體性質,所用的部件和導管可 以是鎳,鎳基合金和聚碳材料製成,但不限於此。 BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a block diagram showing an embodiment of a smart AVP controlled heating apparatus for controlling a liquid gas cylinder of a heated liquefied gas supply or bulk gas supply system (BGDS) of the present invention. The apparatus 100 is provided with a liquid gas cylinder 102 that is directly mounted on top of the platform weight scale 106 . The platform weight scale 106 weighs the weight of the liquid gas remaining in the liquid gas cylinder 102 . The bottom of the liquid gas cylinder 102 is provided with at least two supports 104a and 104b for supporting the liquid gas cylinder 102 on the plate weight scale 106 . In an exemplary embodiment, the gas canister 102 can be a horizontal cylinder or other gas cylinder suitable for storing liquid gases. The platform weight scale 106 weighs the total weight of the gas canister 102 , minus the deadweight (or tare weight) of the gas canister itself, and then provides the weight of the liquid gas remaining in the gas canister 102 . The platform weight scale 106 can be a resistive load unit that is typically disposed on the floor of a gas cabinet that stores liquid gas canisters. The heater 108 is placed in the lower portion of the outer surface of the cylinder 102, 102 and in direct contact with the cylinder. In one exemplary embodiment, the heater 108 may be wrapped around the lower portion of the outer surface of the heat blanket cylinder 102, the outer surface of the heat blanket cylinder 102 may cover about 1/5 to 1/2. The optimal area for an implementation is 1/4. One of the structural purposes is to increase the heat transfer efficiency between the environment and the gas cylinder; the second is to heat only the bottom of the liquid gas in the gas tank 102 to heat the liquid phase portion of the liquid gas. In addition, this structure makes it easy to replace the heater. The heating blanket itself has insulation blankets for thermal protection to avoid heat loss. The heater 108 is provided with a temperature sensor 110 for measuring the temperature of the heater 108 , and provides a temperature reading Th of the heater 108 to a programmable logic controller PL C 120 for calculating the heater 108 heating gas. The electrical energy required by the canister 102 is constant to maintain the vapor pressure of the vaporized gas 122 delivered from the gas canister 102 to the semiconductor fabrication process. The boil-off gas delivery line connected to the gas cylinder 102 includes a pneumatic valve 112 that discharges boil-off gas from the gas cylinder 102 , and pressure regulating valves 118a and 118b that evaporate the gas. The boil-off gas delivery line further includes pressure gauges 114a , 114b and 114c respectively mounted on the pneumatic valve 112 and the pressure regulating valves 118a and 118b for measuring the pressure of the boil-off gas in each stage, and for heating from the gas cylinder 102. The auxiliary heaters 116a and 116b of the evaporated gas are released. All components of the evaporative gas delivery line are connected by an evaporative gas delivery conduit adapted to carry boil-off gas, such as a stainless steel conduit or similar conduit. Depending on the nature of the gas, the components and conduits used may be made of nickel, nickel based alloys and polycarbon materials, but are not limited thereto.

所述輔助加熱器116a116b可以是電阻式加熱器纏繞在蒸發氣體輸送導管的外面以避免焦耳湯姆遜效應。任何類型的適合於加熱所述蒸發氣體輸送導管的加熱器都可以應用於本裝置。一些液態氣體可能只需要一個電阻式加熱器;其餘的可能需要兩個電阻式加熱器。依照不同的液態氣體及設計使用的蒸發氣體的流量,決定所述電阻式加熱器的數量及瓦特數。 The auxiliary heaters 116a and 116b may be electrically resistive heaters wound around the evaporation gas delivery conduit to avoid the Joule Thomson effect. Any type of heater suitable for heating the evaporative gas delivery conduit can be applied to the device. Some liquid gases may only require one resistive heater; the rest may require two resistive heaters. The number and wattage of the resistive heater are determined according to different liquid gases and the flow rate of the boil-off gas used in the design.

在氣罐102中的蒸發氣體的壓力P由在所述氣動閥112上的壓力計114a讀取,蒸發氣體的壓力P的讀數然後被輸入到所述PLC120,其中,蒸發氣體的壓力P被換算為蒸發氣體的溫度T用於計算加熱器108用來加熱氣罐102所需要的電能。 The pressure P of the boil-off gas in the gas cylinder 102 is read by the pressure gauge 114a on the pneumatic valve 112 , and the reading of the pressure P of the boil-off gas is then input to the PLC 120 , wherein the pressure P of the boil-off gas is The temperature T converted to the boil-off gas is used to calculate the electrical energy required by the heater 108 to heat the gas cylinder 102 .

在一個最佳實施方式中,加熱器108可以是電阻式的碳纖維的加熱毯。碳纖維或碳絲加熱器的優點是:與鎳合金電熱絲(傳統加熱毯)比較碳絲發熱線抗拉力1000倍;當溫度低時,它的追熱速度快(加熱效率較快較高);貼合性較好,熱傳導佳;纏繞性佳,所以故障率低,等。 In a preferred embodiment, the heater 108 can be a resistive carbon fiber heating blanket. The advantage of carbon fiber or carbon wire heater is: compared with nickel alloy electric heating wire (conventional heating blanket), the tensile strength of carbon wire heating wire is 1000 times; when the temperature is low, its heat chasing speed is fast (heating efficiency is faster and higher) Good fit, good heat transfer; good entanglement, so low failure rate, etc.

系統100還具備一個溫度感測器(圖中未標明)用於過溫保護整個系統。一般,此溫度感測器有一個設定溫度Tb,例如,Tb可以設定在65℃。當系統100中某一部件損壞失靈,造成系統100不能正常工作使加熱器108的加熱溫度失控時,所述溫度感測器感測到加熱器108的加熱溫度或液態氣體氣罐102的溫度達到65℃時,整個系統的電源馬上關閉以保護整個系統不因過熱而發生故障。系統100還具備一個機械式過溫保護跳脫開關(圖中未標明),其溫度為Tc,其溫度設定一般超過所述溫度感測器 的設定溫度Tb,即Tc>Tb。通常Tc設定為70℃。若所述溫度感測器也損壞失靈,所述機械式過溫保護跳脫開關會關掉整個系統以保護整個系統不因過熱而發生故障。 System 100 also has a temperature sensor (not shown) for over temperature protection of the entire system. Typically, this temperature sensor has a set temperature Tb, for example, Tb can be set at 65 °C. When the temperature of a component 100 in system damage failure, the system causes the heater 100 does not work runaway heating temperature of 108, a temperature sensor sensing the temperature of the heater 108 heating the gas or liquid gas tank 102 reaches At 65 ° C, the entire system's power supply is turned off immediately to protect the entire system from overheating. The system 100 also has a mechanical over-temperature protection trip switch (not shown) having a temperature Tc whose temperature setting generally exceeds the set temperature Tb of the temperature sensor, ie Tc > Tb. Usually Tc is set to 70 °C. If the temperature sensor is also damaged, the mechanical over-temperature protection trip switch turns off the entire system to protect the entire system from failure due to overheating.

圖2為本發明之用於計算圖1裝置中加熱器用來加熱氣罐所需要的電能的可編程邏輯控制器(PLC)的實施例方塊圖。PLC 200具備一個蒸發氣體壓力控制202,從壓力感測器114a讀取的蒸發氣體壓力P輸入其中以轉換為蒸發氣體的溫度T。從氣罐102的蒸發氣體壓力P到蒸發氣體溫度T的轉換是蒸發氣體壓力控制202利用演算法204將蒸發氣體壓力P轉換為蒸發氣體溫度T的。所述演算法204具備如下的計算方程式,log10P=A+B/T+Clog10T+DT+ET2,其中A,B,C,D和E是常數,是由每個特定液態氣體的蒸汽壓曲線確定的。不同的液態氣體具備不同的A,B,C,D和E值。液態氣體的A,B,C,D和E值可預先列表編入到所述PLC 200中,以產生每個特定液態氣體的壓力-溫度(P-T)曲線。這裡,蒸發氣體的壓力P的單位是psig由壓力計測得。每個特定液態氣體相應的蒸發氣體溫度T可以從其相應的P-T曲線轉換獲得。所述PLC200還具備自動模式的AND邏輯206,手動模式的AND邏輯208,溫度指示控制器(TIC)210和整流器212。在一個最佳實施例中,所述TIC 210可以是本領域中公知的比例積分微分(PID)控制器。在一個最佳實施例中,所述整流器212可以是一個矽控整流器(SCR)或適合於發送類比電流信號214給加熱器用來加熱氣罐所需要的電能的任何其它整流器。 2 is a block diagram of an embodiment of a programmable logic controller (PLC) of the present invention for calculating the electrical energy required by a heater in the apparatus of FIG. 1 to heat a gas cylinder. The PLC 200 is provided with an evaporation gas pressure control 202 to which the evaporation gas pressure P read from the pressure sensor 114a is input to be converted into the temperature T of the evaporation gas. The transition from the evaporating gas pressure P of the gas cylinder 102 to the evaporating gas temperature T is the evaporating gas pressure control 202 using the algorithm 204 to convert the evaporating gas pressure P to the evaporating gas temperature T. The algorithm 204 has the following calculation equation, log 10 P=A+B/T+Clog 10 T+DT+ET 2 , where A, B, C, D, and E are constants, which are determined by each specific liquid gas. The vapor pressure curve is determined. Different liquid gases have different A, B, C, D and E values. The A, B, C, D and E values of the liquid gas can be pre-listed into the PLC 200 to produce a pressure-temperature (PT) curve for each particular liquid gas. Here, the unit of the pressure P of the boil-off gas is psig measured by a pressure gauge. The corresponding evaporating gas temperature T for each particular liquid gas can be obtained from its corresponding PT curve conversion. The PLC 200 also has an automatic mode AND logic 206 , a manual mode AND logic 208 , a temperature indicating controller (TIC) 210 and a rectifier 212. In a preferred embodiment, the TIC 210 can be a proportional integral derivative (PID) controller as is known in the art. In a preferred embodiment, the rectifier 212 can be a voltage controlled rectifier (SCR) or any other rectifier suitable for transmitting analog current signal 214 to the heater for heating the gas tank.

所述PLC 210應用加熱器加熱液態氣體氣罐所需要的電能的演算法來計算加熱器加熱液態氣體氣罐所需要的電能。圖3為用於圖1 和圖2裝置的加熱控制的演算法和方法。 The PLC 210 applies an algorithm for heating the energy required by the heater to heat the liquid gas cylinder to calculate the electrical energy required by the heater to heat the liquid gas cylinder. 3 is an algorithm and method for heating control of the apparatus of FIGS. 1 and 2.

下面分別描述自動模式和手動模式的演算法和方法。 The algorithms and methods of the automatic mode and the manual mode are separately described below.

自動模式的演算法需要輸入如下變量到所述AND邏輯206,蒸發氣體壓力P,加熱器動作所產生的溫度Th,環境溫度Ta和液態氣體的重量Wt。以圖1和圖2為例,蒸發氣體壓力P壓力由壓力計114a測得,並通過所述蒸發氣體壓力控制202轉換為蒸發氣體溫度T發送到所述AND邏輯206。加熱器動作所產生的溫度Th是通過在所述加熱器108上的溫度感測器110測定,並發送到所述AND邏輯206。液態氣體的重量Wt是由在液態氣體氣罐102下面的平臺重量秤106測得,並輸入到所述AND邏輯206。所述蒸發氣體壓力P,加熱器動作所產生的溫度Th,液態氣體的重量Wt和環境溫度Ta由所述PLC 200讀取用於計算加熱器加熱液態氣體氣罐所需的電能,從而使加熱器加熱液態氣體氣罐所需的電能直接與在液態氣體氣罐中的液態氣體的使用和環境溫度Ta相關聯,即與液態氣體氣罐中的液態氣體的重量變化和環境溫度Ta相關聯,以達到恆溫恆壓控制從液態氣體的氣罐中輸出的蒸發氣體的目的。 The algorithm of the automatic mode requires input of the following variables to the AND logic 206 , the evaporation gas pressure P, the temperature Th generated by the heater action, the ambient temperature Ta, and the weight Wt of the liquid gas. Taking FIGS. 1 and 2 as an example, the vapor pressure P pressure is measured by the pressure gauge 114a and converted to the vapor gas temperature T by the vapor gas pressure control 202 to the AND logic 206 . The temperature Th produced by the heater action is measured by temperature sensor 110 on the heater 108 and sent to the AND logic 206 . The weight Wt of the liquid gas is measured by the platform weight scale 106 below the liquid gas cylinder 102 and is input to the AND logic 206 . The evaporation gas pressure P, the temperature Th generated by the heater action, the weight Wt of the liquid gas, and the ambient temperature Ta are read by the PLC 200 for calculating the electric energy required for the heater to heat the liquid gas cylinder, thereby heating The electrical energy required to heat the liquid gas cylinder is directly related to the use of the liquid gas in the liquid gas cylinder and the ambient temperature Ta, ie to the weight change of the liquid gas in the liquid gas cylinder and the ambient temperature Ta, The purpose of controlling the evaporation gas output from the gas tank of the liquid gas is achieved by constant temperature and constant pressure.

具體地,如圖3所示,在自動模式下,步驟302為提供存儲在液態氣體氣罐中的液態氣體。液態氣體可以是應用於半導體製造製程的高純度氣體和特種氣體。液態氣體的最佳實施例包括甲矽烷(SiH4),三氟化氮(NF3),四氟甲烷(CF4),氨氣(NH3),砷化氫(AsH3),三氯化硼(BCl3),二氧化碳(CO2),氯氣(Cl2),二氯矽烷(SiH2Cl2),乙矽烷(Si2H6),化氫(HBr),氯化氫(HCl),氟化氫(HF),一氧化二氮(N2O),全氟丙烷(C3F8),六氟化硫(SF6),磷化氫(PH3)和六氟化鎢(WF6),但不限於此。步驟304為 測量液態氣體氣罐中的蒸發氣體的壓力P,其由連接到液態氣體氣罐的氣動閥上的壓力計測得。步驟306為計算液態氣體的蒸發氣體溫度T。計算方程式為,log10P=A+B/T+Clog10T+DT+ET2,其中P為步驟304實測的蒸發氣體壓力,其讀數P輸入到PLC;A,B,C,D及E為常數。不同的液態氣體有不同的A,B,C,D和E值,其值被預先列表編入到PLC中以產生每個特定液態氣體的壓力-溫度(P-T)曲線。因為對於不同的液態氣體有不同A,B,C,D和E的值,所以一旦液態氣體在步驟302給定,對於儲存在PLC的這種特定液態氣體的A,B,C,D和E的值即被用於計算該液態氣體的蒸發氣體溫度T。接下來步驟308為環境溫度保溫控制加熱。一般將環境溫度Ta設定於22-26之間已達到最佳的氣體蒸發量,藉由環境溫度設定將蒸發氣體的壓力的轉換的蒸發氣體溫度控制於設定之環境溫度加1,已達到最佳之蒸發量及加熱效能。當設定一個環境溫度Ta後,蒸發氣體溫度T將要預期控制到的溫度值Td為環境溫度Ta加一度,即Td=Ta+1。例如:NH3於24時的蒸汽壓力為125.9PSIG。若Ta設定於24℃,則T'需控制於25℃。這樣蒸發氣體溫度T通過計算優化可以控制在環境溫度Ta或環境溫度Ta周圍,既可以達到蒸發氣體壓力為125.9PSIG的恆壓輸出又可以將蒸發氣體溫度T控制在環境溫度Ta或環境溫度Ta周圍以達到省電節能的效果。在步驟310中,步驟306中計算出的蒸發氣體溫度T與環境溫度Ta進行比較。如果T>Ta,則不需要進一步的計算,沒有電信號輸入給加熱器。這樣可以使蒸發氣體溫度T降到在步驟308中設定的蒸發氣體溫度T將要預期控制到的溫度值Td,同時也可以避免過度加熱氣罐導致蒸發氣體溫度T過高從而使蒸發氣體壓力過高而失控。公開的控制方法是通過加熱或不加 熱使液態氣體氣罐裡的液態氣體的蒸發氣體的溫度保持在環境溫度Ta或環境溫度Ta附近。步驟312為加熱器對液態氣體氣罐不加熱。如果T≦Ta,加熱器需要針對不同情況對液態氣體氣罐加熱以使液態氣體氣罐裡的液態氣體的蒸發氣體的溫度保持在環境溫度Ta或環境溫度Ta附近。在步驟314中,平臺重量秤測量液態氣體的重量Wt。這裡Wt為液態氣體氣罐的總重量減去為液態氣體氣罐的皮重的實際液態氣體重量(Net Weight)。然後Wt和預先設定的液態氣體的重量範圍設置進行比較。每個預先設定的液態氣體的重量範圍設置可以基於存留在液態氣體氣罐中的液態氣體的滿刻度的重量的百分比來設定。例如,所述預先設定的液態氣體的重量範圍設置可以基於存留在液態氣體氣罐中液態氣體的X%,Y%,和Z%來設置,其中0<X≦20,20<Y≦50和50<Z≦100。預先設定的液態氣體的重量範圍設置可以不限於上述示例性範圍,並且可以被分成多個重量範圍。越多的重量範圍就會有越多地計算優化,就會有更精確的蒸發氣體壓力控制。例如,前述的四種示例性液態氣體的重量範圍設置的例子,若給定X,Y,及Z之值,則所述預先設定的液態氣體的重量範圍設置包含(1)0<重量Wt≦X%的滿刻度重量;2)X%的滿刻度重量<重量Wt≦Y%的滿刻度重量;(3)Y%的滿刻度重量<重量Wt≦z%的滿刻度重量;(4)z%的滿刻度重量<重量Wt≦滿刻度重量。在此,“滿刻度重量”指的是在所述液態氣體氣罐裡裝滿液態氣體且未被使用過的液態氣體重量,即,100%滿刻度的液態氣體重量。上述所述四種示例性重量範圍設置的詳細描述如下。當設置(1)發生時,因為0<X≦20,這種情況通常是屬於液態氣體氣罐裡剩餘少量液態氣體的情況,此時不需要PLC計算加熱器所需的電能,沒有電信號輸入給加熱器。 同步驟312,為加熱器對液態氣體氣罐不加熱。在這種情況下,不加熱液態氣體氣罐可以避免過度加熱導致氣罐乾涸,同時確保在氣罐內的液態氣體的最大利用率。其他三種示例性重量範圍設置(2),(3)和(4)在步驟316中進行。步驟316根據所述液態氣體氣罐裡液態氣體重量的變化給每個重量範圍設置一個加熱器的加熱溫度的溫度設定點(temperature setpoint)。所述溫度設定點為依前述不同示例性重量範圍設置由PLC內程式給予的不同的加熱器的加熱溫度的溫度設定點。在一個具體示例性實施例中,所述溫度設定點的設定如下:(1)0<Wt≦x%的滿刻度重量:不加熱,不設定加熱溫度的溫度設定點;(2)x%的滿刻度重量<Wt≦y%的滿刻度重量:加熱溫度的溫度設定點為:T1;(3)y%的滿刻度重量<Wt≦z%的滿刻度重量。加熱溫度的溫度設定點為:T2;(4)z%的滿刻度重量<Wt≦滿刻度重量。加熱溫度的溫度設定點為:T3。這裡,T1<T2<T3<Tb(Tb為前述過熱保護溫度感測器的設定溫度),即液態氣體的重量越大,加熱溫度的溫度設定點越高。用這種方法可以達到依據液態氣體的重量變化來決定加熱器的加熱溫度,即,加熱器的加熱溫度依照液態氣體的重量遞減而遞減。這種遞減的加熱器的加熱溫度在每一個加熱溫度的溫度設定點又為恆溫加熱,故形成一個加熱溫度模式為階梯式溫度控制的模式。通過加熱器的加熱,當T≦Ta時,液態氣體氣罐裡的液態氣體的溫度將保持在環境溫度Ta或環境溫度Ta附近。 Specifically, as shown in FIG., In automatic mode, step 302 provides for the liquid gas in the liquid gas stored in the gas tank 3. The liquid gas can be a high purity gas and a specialty gas used in a semiconductor manufacturing process. Preferred examples of liquid gas include methane (SiH 4 ), nitrogen trifluoride (NF 3 ), tetrafluoromethane (CF 4 ), ammonia (NH 3 ), arsine (AsH 3 ), trichlorination. boron (BCl 3), carbon dioxide (CO 2), chlorine (Cl 2), dichloro Silane (SiH 2 Cl 2), disilane (Si 2 H 6), hydrogen bromide (HBr), hydrogen chloride (HCl), hydrogen fluoride (HF), nitrous oxide (N 2 O), perfluoropropane (C 3 F 8 ), sulfur hexafluoride (SF 6 ), phosphine (PH 3 ) and tungsten hexafluoride (WF 6 ), But it is not limited to this. Step 304 is a measurement of the pressure P of the boil-off gas in the liquid gas cylinder, which is measured by a pressure gauge connected to a pneumatic valve of the liquid gas cylinder. Step 306 is to calculate the evaporation gas temperature T of the liquid gas. The equation is calculated as log 10 P=A+B/T+Clog 10 T+DT+ET 2 , where P is the measured evaporative gas pressure in step 304 , and the reading P is input to the PLC; A, B, C, D, and E Is a constant. Different liquid gases have different A, B, C, D and E values, the values of which are pre-listed into the PLC to produce a pressure-temperature (PT) curve for each particular liquid gas. Since there are different values for A, B, C, D and E for different liquid gases, once liquid gas is given in step 302 , A, B, C, D and E for this particular liquid gas stored in the PLC The value is used to calculate the evaporating gas temperature T of the liquid gas. Next step 308 is to control the ambient temperature holding heat. Generally, the ambient temperature Ta is set to be between 22-26 ° C and the optimum gas evaporation amount is achieved. The ambient temperature is set to control the temperature of the evaporated gas to be converted to the set ambient temperature plus one, which has reached the maximum. Good evaporation and heating efficiency. When an ambient temperature Ta is set, the evaporating gas temperature T is expected to be controlled to a temperature value Td which is one degree of the ambient temperature Ta, that is, Td=Ta+1. For example, the vapor pressure of NH 3 at 24 ° C is 125.9 PSIG. If Ta is set at 24 ° C, T ' needs to be controlled at 25 ° C. Thus, the evaporation gas temperature T can be controlled around the ambient temperature Ta or the ambient temperature Ta by calculation optimization, and can reach a constant pressure output with an evaporation gas pressure of 125.9 PSIG and a temperature T of the evaporation gas around the ambient temperature Ta or the ambient temperature Ta. In order to achieve energy saving and energy saving effects. In step 310 , the evaporated gas temperature T calculated in step 306 is compared to the ambient temperature Ta. If T > Ta, no further calculations are required and no electrical signal is input to the heater. This can lower the evaporation gas temperature T to the temperature value Td to be expected to be controlled by the evaporation gas temperature T set in step 308 , and also avoid excessive heating of the gas cylinder, causing the evaporation gas temperature T to be too high to cause the evaporation gas pressure to be too high. Out of control. The disclosed control method maintains the temperature of the vaporized gas of the liquid gas in the liquid gas cylinder at or near the ambient temperature Ta or the ambient temperature Ta by heating or not. Step 312 is that the heater does not heat the liquid gas cylinder. If T ≦ Ta, the heater needs to heat the liquid gas cylinder for different conditions to maintain the temperature of the vaporized gas of the liquid gas in the liquid gas cylinder near the ambient temperature Ta or the ambient temperature Ta. In step 314 , the platform weight scale measures the weight Wt of the liquid gas. Here Wt is the total weight of the liquid gas cylinder minus the actual liquid gas weight (Net Weight) which is the tare weight of the liquid gas cylinder. The Wt is then compared to a preset weight range setting for the liquid gas. The weight range setting of each predetermined liquid gas can be set based on the percentage of the full scale weight of the liquid gas remaining in the liquid gas cylinder. For example, the predetermined weight range setting of the liquid gas may be set based on X%, Y%, and Z% of the liquid gas remaining in the liquid gas cylinder, where 0<X≦20, 20<Y≦50 and 50<Z≦100. The weight range setting of the liquid gas set in advance may not be limited to the above exemplary range, and may be divided into a plurality of weight ranges. The more weight ranges there are, the more computationally optimized, the more precise the evaporation gas pressure control will be. For example, in the foregoing examples of the weight range setting of the four exemplary liquid gases, if a value of X, Y, and Z is given, the weight range setting of the predetermined liquid gas includes (1) 0 < weight Wt ≦ X% full scale weight; 2) X% full scale weight < weight Wt ≦ Y% full scale weight; (3) Y% full scale weight < weight Wt ≦ z% full scale weight; (4) z % full scale weight < weight Wt ≦ full scale weight. Here, the "full scale weight" refers to the weight of the liquid gas in which the liquid gas cylinder is filled with liquid gas and has not been used, that is, the weight of the liquid gas of 100% full scale. A detailed description of the four exemplary weight range settings described above is as follows. When setting (1) occurs, since 0 < X ≦ 20, this situation usually belongs to the case of a small amount of liquid gas remaining in the liquid gas cylinder. At this time, the PLC does not need to calculate the electric energy required by the heater, and no electric signal is input. Give the heater. In the same step 312 , the liquid gas cylinder is not heated for the heater. In this case, not heating the liquid gas cylinder can avoid excessive heating leading to dryness of the gas tank while ensuring maximum utilization of liquid gas in the gas tank. The other three exemplary weight range settings (2), (3), and (4) are performed in step 316 . Step 316 sets a temperature setpoint of the heating temperature of the heater for each weight range based on the change in weight of the liquid gas in the liquid gas cylinder. The temperature set point is a temperature set point that sets the heating temperature of the different heaters given by the program within the PLC in accordance with the different exemplary weight ranges described above. In a specific exemplary embodiment, the temperature set point is set as follows: (1) 0 < Wt ≦ x% full scale weight: no heating, no temperature set point of the heating temperature; (2) x% Full scale weight <Wt≦y% full scale weight: The heating temperature set point is: T 1 ; (3) y% full scale weight <Wt≦z% full scale weight. The temperature set point of the heating temperature is: T 2 ; (4) z% full scale weight < Wt ≦ full scale weight. The temperature set point for the heating temperature is: T 3 . Here, T 1 <T 2 <T 3 <Tb (Tb is the set temperature of the above-described overheat protection temperature sensor), that is, the greater the weight of the liquid gas, the higher the temperature set point of the heating temperature. In this way, the heating temperature of the heater can be determined according to the change in the weight of the liquid gas, that is, the heating temperature of the heater is decreased in accordance with the weight of the liquid gas. The heating temperature of the decrementing heater is heated at a constant temperature at each of the heating temperature setting points, so that a heating temperature mode is formed in a stepwise temperature control mode. By the heating of the heater, when T ≦ Ta, the temperature of the liquid gas in the liquid gas cylinder will be maintained near the ambient temperature Ta or the ambient temperature Ta.

步驟318計算加熱器加熱液態氣體氣罐所需的電能。在PLD中的PID控制器依照測得的液態氣體的重量Wt應用相對應的液態氣體的重量範圍設置的加熱溫度的溫度設定點計算出加熱器加熱液態氣體氣罐所需 的電能,所述電能以一個類比的電信號形式輸出。例如,所述測得的液態氣體的重量Wt落在“y%的滿刻度重量<Wt≦z%的滿刻度重量”的重量範圍設置,則應用溫度設定點T2計算加熱器加熱液態氣體氣罐所需的電能。然後在步驟320進行過熱保護的溫度比較。加熱器具備的過熱保護溫度感測器測得的加熱器動作所產生的溫度Th與前述溫度感測器的設定溫度Tb相比較。前述溫度感測器的設定溫度Tb是由使用者預先設定的一個溫度。其設定取決於液態氣體的性質和PLC對於控制蒸發氣體壓力及防止過熱的計算的要求。前述溫度感測器的設定溫度Tb不同於環境溫度Ta,可能高於環境溫度Ta。當加熱器動作所產生的溫度Th≧Tb,過熱保護使系統的電源關閉。系統呈不工作狀態,沒有電信號輸入給加熱器。此同步驟312,為加熱器對液態氣體氣罐不加熱。當Th<Tb,在步驟322,由步驟318計算出的所述的類比電信號送到加熱器以加熱液態氣體氣罐。綜上,所述加熱器溫度的階梯溫度控制模式取決於所述環境溫度及所述液態氣體的重量。 Step 318 calculates the electrical energy required by the heater to heat the liquid gas cylinder. The PID controller in the PLD calculates the electric energy required for the heater to heat the liquid gas cylinder according to the measured temperature of the liquid gas Wt and the temperature set point of the heating temperature set by the weight range of the corresponding liquid gas. Output as an analog electrical signal. For example, if the measured weight Wt of the liquid gas falls within the weight range of “y% full scale weight <Wt≦z% full scale weight”, the temperature set point T 2 is applied to calculate the heater heating liquid gas. The electrical energy required for the tank. A temperature comparison of the overheat protection is then performed at step 320 . The temperature Th generated by the heater action measured by the overheat protection temperature sensor provided by the heater is compared with the set temperature Tb of the aforementioned temperature sensor. The set temperature Tb of the aforementioned temperature sensor is a temperature preset by the user. Its setting depends on the nature of the liquid gas and the PLC's requirements for controlling the evaporation gas pressure and preventing overheating. The set temperature Tb of the aforementioned temperature sensor is different from the ambient temperature Ta and may be higher than the ambient temperature Ta. When the temperature of the heater is generated by Th≧Tb, the overheat protection turns off the power of the system. The system is not working and no electrical signal is input to the heater. In the same step 312 , the heater does not heat the liquid gas cylinder. When Th < Tb, in step 322 , the analog electrical signal calculated by step 318 is sent to a heater to heat the liquid gas cylinder. In summary, the step temperature control mode of the heater temperature depends on the ambient temperature and the weight of the liquid gas.

關於手動模式的演算法,只有加熱器動作所產生的溫度Th這個變量需要輸入到如圖2所示的所述AND邏輯208。然後步驟324設定一個加熱器的加熱溫度的溫度設定值,用於PID的控制計算。步驟326為輸入加熱器動作所產生的溫度Th。步驟328和自動模式的步驟320相似,即在步驟328進行過熱保護的溫度比較。當加熱器溫度Th≧Tb,過熱保護使系統的電源關閉。系統呈不工作狀態,沒有電信號輸入給加熱器。此同步驟312,為加熱器對液態氣體氣罐不加熱。當Th<Tb,在步驟330,計算出的一個類比的電信號送到加熱器以加熱液態氣體氣罐。 Regarding the manual mode algorithm, only the temperature Th generated by the heater action needs to be input to the AND logic 208 as shown in FIG. Step 324 then sets the temperature setting of the heating temperature of the heater for the control calculation of the PID. Step 326 is to input the temperature Th generated by the heater action. Step 328 is similar to step 320 of the automatic mode, i.e., at step 328 , the temperature comparison of the overheat protection is performed. When the heater temperature is Th≧Tb, the overheat protection turns off the system's power. The system is not working and no electrical signal is input to the heater. In the same step 312 , the heater does not heat the liquid gas cylinder. When Th < Tb, in step 330 , an analog electrical signal is calculated and sent to the heater to heat the liquid gas cylinder.

當採用自動模式時,根據液態氣體氣罐裡的蒸發氣體的壓 力,環境溫度和液態氣體的重量的變化,加熱器所需的能量被不斷地計算優化,從而自動調節加熱器的溫度用於加熱液態氣體氣罐裡的液態氣體以保持液態氣體氣罐裡的蒸發氣體的溫度在環境溫度或環境溫度附近,達到精確控制加熱裝置從而精確控制輸運到半導體製程過程的蒸發氣體壓力恆定的效果。而手動模式迫使加熱裝置工作去加熱液態氣體氣罐裡的液態氣體。當液態氣體氣罐裡的蒸發氣體的溫度遠低於環境溫度時,啟動手動模式,可以直接強迫加熱器去加熱液態氣體氣罐裡的液態氣體,達到迅速加熱蒸發氣體的效果。但手動模式不與液態氣體氣罐裡的蒸發氣體的壓力,環境溫度和液態氣體的重量的變化相關聯,所以容易造成壓力失控和/或過熱的安全隱患。需要用戶臨場監控,不能做到自動控制。 When using the automatic mode, according to the pressure of the vaporized gas in the liquid gas cylinder The change in force, ambient temperature and weight of the liquid gas, the energy required by the heater is continuously calculated and optimized, thereby automatically adjusting the temperature of the heater for heating the liquid gas in the liquid gas cylinder to maintain the liquid gas in the gas cylinder The temperature of the evaporating gas is near ambient or ambient temperature, achieving the effect of accurately controlling the heating device to precisely control the constant pressure of the evaporating gas transported to the semiconductor process. The manual mode forces the heating device to operate to heat the liquid gas in the liquid gas cylinder. When the temperature of the evaporating gas in the liquid gas cylinder is much lower than the ambient temperature, the manual mode is activated, and the heater can be directly forced to heat the liquid gas in the liquid gas cylinder to achieve the effect of rapidly heating the boil gas. However, the manual mode is not associated with changes in the pressure of the vaporized gas in the liquid gas cylinder, the ambient temperature and the weight of the liquid gas, so that it is liable to cause a safety hazard of pressure runaway and/or overheating. Users need on-site monitoring and cannot control automatically.

實施例 Example

提供以下非限制性實施例以進一步說明本文之具體實例。然而,該等實施例不欲包括全部且不欲限制本文所述之本文之範疇。 The following non-limiting examples are provided to further illustrate specific examples herein. However, the examples are not intended to be exhaustive or to limit the scope of the invention described herein.

實施例1 Example 1

圖4為用於圖1和圖2裝置的保持液態氣體的蒸發氣體壓力恆定的加熱控制的演算法和方法的一個最佳實施例的流程圖。如圖4的流程圖所示,演算法流程400始於開始步驟402。步驟402選擇是否是自動模式。若是自動模式,在步驟404,指定液態氣體氣罐裡的液態氣體,所述液態氣體可以是甲矽烷(SiH4),三氟化氮(NF3),四氟甲烷(CF4),氨氣(NH3),砷化氫(AsH3),三氯化硼(BCl3),二氧化碳(CO2),氯氣(Cl2),二氯矽烷(SiH2Cl2),乙矽烷(Si2H6),溴化氫(HBr),氯化氫(HCl),氟化氫(HF),一氧化二氮(N2O),全氟丙烷(C3F8),六氟化硫(SF6),磷化氫(PH3)和六氟化 鎢(WF6)中的一種,但不限於此。所述液態氣體可以是任何用於半導體製程的高純度氣體和特種氣體。一旦液態氣體確定後,步驟406測量液態氣體的蒸發氣體的壓力P。測得的液態氣體的蒸發氣體的壓力P在步驟408應用方程式log10P=A+B/T+Clog10T+DT+ET2計算液態氣體的蒸發氣體的溫度T。步驟410為環境溫度保溫控制加熱。一般將環境溫度設定於22-26之間可以達到最佳的氣體蒸發量,藉由環境溫度設定將由蒸發氣體壓力轉換的蒸發氣體溫度T控制於設定之環境溫度加1,達到最佳之蒸發量及加熱效能。即設定一個環境溫度後,蒸發氣體溫度T將要預期控制到的溫度值Td為環境溫度加一度,即Td=Ta+1。例如:NH3於24時的蒸汽壓力為125.9PSIG。若Ta設定於24℃,則T'需控制於25℃。這樣蒸發氣體溫度T可以控制在環境溫度或環境溫度周圍既可以達到蒸發氣體壓力為125.9PSIG的恒壓輸出又可以達到省電節能的效果。在步驟412換算出的蒸發氣體的溫度T與環境溫度Ta進行比較,當T>Ta,則不需要加熱液態氣體氣罐。沒有電信號在步驟426輸入給加熱器。步驟426為加熱器對液態氣體氣罐不加熱。當T≦Ta,加熱器需要對液態氣體氣罐加熱。在步驟414-420中,平臺重量測量的液態氣體的重量Wt然後和預先設定的液態氣體的重量範圍設置進行比較。在圖4的實施例中,所述預先設定的液態氣體的重量範圍設置包含(1)0<重量Wt≦10%的滿刻度重量;(2)10%的滿刻度重量<重量Wt≦35%的滿刻度重量;(3)35%的滿刻度重量<重量Wt≦75%的滿刻度重量;(4)75%的滿刻度重量<重量Wt≦滿刻度重量。上述所述四種液態氣體的重量範圍設置的詳細描述如下。當設置(1)發生時,步驟414給出不需要計算加熱器所需的電能,沒有電信號或電信號0輸入給所述加熱器。對於一個類比 的電信號,0%電信號輸入到所述加熱器。同步驟426,為加熱器對液態氣體氣罐不加熱。這種情況是液態氣體重量Wt≦10%,屬於液態氣體氣罐裡剩餘少量液態氣體的情況。在這種情況下,不加熱液態氣體氣罐可以避免過度加熱導致液態氣體氣罐乾涸,同時確保在液態氣體氣罐內的液態氣體的最大利用率。其他三個液態氣體的重量範圍設置(2),(3)和(4)均為加熱器對液態氣體氣罐加熱。步驟414-420根據所述液態氣體氣罐裡液態氣體重量的變化將分別給每個液態氣體的重量範圍設置一個加熱器的加熱溫度的溫度設定點(temperature setpoint 1,temperature setpoint 2,temperature setpoint 3)。對於所述三個液態氣體的重量範圍設置(2),(3)和(4),其溫度設定點依次為temperature setpoint 1=28℃,temperature setpoint 2=35℃,temperature setpoint 3=50℃。即所述液態氣體的重量越大,所述加熱溫度的溫度設定點越高。用這種方法可以達到依據液態氣體的重量變化來決定加熱器的加熱溫度,即,加熱器的加熱溫度依照液態氣體的重量遞減而遞減。這種遞減的加熱器的加熱溫度在每一個加熱溫度的溫度設定點為恒溫加熱。比如,當液態氣體的重量Wt落在"75%的滿刻度重量<重量Wt≦滿刻度重量"的範圍內時,其加熱器的溫度設定點為50℃,即所述加熱器在50℃恒溫加熱所述液態氣體氣罐。再比如,當液態氣體的重量Wt落在"35%的滿刻度重量<重量Wt≦75%的滿刻度重量"的範圍內時,其加熱器的溫度設定點為35℃,即所述加熱器在35℃恒溫加熱所述液態氣體氣罐。通過加熱器的加熱,當T≦Ta時,液態氣體氣罐裡的液態氣體的溫度將保持在環境溫度Ta或環境溫度Ta附近。這種階梯式溫度控制模式示於圖5。圖5為此實施例的加熱器的溫度設定點對應於液態氣體重量變化的階梯溫度控制模式的曲線圖。 4 is a flow diagram of a preferred embodiment of an algorithm and method for heating control of a constant vapor pressure of a liquid gas for the apparatus of FIGS. 1 and 2. As shown in the flow chart of FIG. 4, algorithm flow 400 begins at start step 402 . Step 402 selects whether it is an automatic mode. In the automatic mode, in step 404 , the liquid gas in the liquid gas tank may be specified, which may be methanthan (SiH 4 ), nitrogen trifluoride (NF 3 ), tetrafluoromethane (CF 4 ), ammonia. (NH 3 ), arsine (AsH 3 ), boron trichloride (BCl 3 ), carbon dioxide (CO 2 ), chlorine (Cl 2 ), dichlorodecane (SiH 2 Cl 2 ), ethane oxide (Si 2 H 6 ), hydrogen bromide (HBr), hydrogen chloride (HCl), hydrogen fluoride (HF), nitrous oxide (N 2 O), perfluoropropane (C 3 F 8 ), sulfur hexafluoride (SF 6 ), phosphorus One of hydrogen (PH 3 ) and tungsten hexafluoride (WF 6 ), but is not limited thereto. The liquid gas can be any high purity gas and specialty gas used in semiconductor processes. Once the liquid gas is determined, step 406 measures the pressure P of the vaporized gas of the liquid gas. The measured pressure P of the vaporized gas of the liquid gas is used in step 408 to calculate the temperature T of the vaporized gas of the liquid gas using the equation log 10 P = A + B / T + Clog 10 T + DT + ET 2 . Step 410 is to control the heating of the ambient temperature insulation. Generally, the ambient temperature is set between 22-26 °C to achieve the best gas evaporation. The ambient temperature is set to control the evaporation gas temperature T from the evaporation gas pressure to the set ambient temperature plus 1 to achieve the best evaporation. Quantity and heating efficiency. That is, after setting an ambient temperature, the evaporating gas temperature T is expected to be controlled to a temperature value Td which is an ambient temperature plus one degree, that is, Td=Ta+1. For example, the vapor pressure of NH 3 at 24 ° C is 125.9 PSIG. If Ta is set at 24 ° C, T ' needs to be controlled at 25 ° C. In this way, the temperature T of the evaporating gas can control the constant pressure output of the evaporation gas pressure of 125.9 PSIG and the energy saving effect of the energy around the ambient temperature or the ambient temperature. The temperature T of the boil-off gas converted in step 412 is compared with the ambient temperature Ta. When T > Ta, it is not necessary to heat the liquid gas cylinder. No electrical signal is input to the heater at step 426 . Step 426 is that the heater does not heat the liquid gas cylinder. When T≦Ta, the heater needs to heat the liquid gas cylinder. In steps 414-420 , the weight Wt of the liquid gas measured by the platform weight is then compared to a predetermined weight range setting of the liquid gas. In the embodiment of FIG. 4, the predetermined weight range of the liquid gas is set to include (1) 0 < weight Wt ≦ 10% of full scale weight; (2) 10% full scale weight < weight Wt ≦ 35% Full scale weight; (3) 35% full scale weight < weight Wt ≦ 75% full scale weight; (4) 75% full scale weight < weight Wt ≦ full scale weight. A detailed description of the weight range setting of the above four liquid gases is as follows. When setting (1) occurs, step 414 gives the electrical energy required to calculate the heater, no electrical signal or electrical signal 0 is input to the heater. For an analog electrical signal, a 0% electrical signal is input to the heater. In the same step 426 , the liquid gas cylinder is not heated for the heater. In this case, the liquid gas has a weight of Wt ≦ 10%, which is a case where a small amount of liquid gas remains in the liquid gas tank. In this case, the non-heating of the liquid gas cylinder avoids overheating and causes the liquid gas cylinder to dry up while ensuring maximum utilization of the liquid gas in the liquid gas cylinder. The weight ranges of the other three liquid gases (2), (3) and (4) are all heated by the heater to the liquid gas cylinder. Steps 414-420 will set a temperature set point of the heating temperature of the heater to the weight range of each liquid gas according to the change of the weight of the liquid gas in the liquid gas cylinder (temperature setpoint 1, temperature setpoint 2, temperature setpoint 3 ). For the weight ranges of the three liquid gases (2), (3) and (4), the temperature set points are temperature setpoint 1 = 28 ° C, temperature setpoint 2 = 35 ° C, temperature setpoint 3 = 50 ° C. That is, the greater the weight of the liquid gas, the higher the temperature set point of the heating temperature. In this way, the heating temperature of the heater can be determined according to the change in the weight of the liquid gas, that is, the heating temperature of the heater is decreased in accordance with the weight of the liquid gas. The heating temperature of such a decreasing heater is constant temperature heating at a temperature set point of each heating temperature. For example, when the weight Wt of the liquid gas falls within the range of " 75% full scale weight <weight Wt≦ full scale weight " , the temperature setting point of the heater is 50 ° C, that is, the heater is thermostated at 50 ° C. The liquid gas cylinder is heated. For another example, when the weight Wt of the liquid gas falls within the range of " 35% full scale weight < weight Wt ≦ 75% full scale weight " , the temperature setting point of the heater is 35 ° C, that is, the heater The liquid gas cylinder was heated at a constant temperature of 35 °C. By the heating of the heater, when T ≦ Ta, the temperature of the liquid gas in the liquid gas cylinder will be maintained near the ambient temperature Ta or the ambient temperature Ta. This stepped temperature control mode is shown in Figure 5. Figure 5 is a graph of the temperature set point of the heater of this embodiment corresponding to the step temperature control mode of the change in liquid gas weight.

接下來,在步驟422,PLD中的PID控制器依據液態氣體的重量所設定的加熱器的溫度設定點計算加熱器加熱液態氣體氣罐所需的電能,所述電能以一個類比的電信號形式輸出。在上述條件下,計算出的加熱器加熱液態氣體氣罐所需的所述的類比電信號是4mA(0%)到20mA(100%)的類比電信號。步驟424為過溫保護的溫度比較,加熱器具備的溫度感測器測得的加熱器動作所產生的溫度Th與前述過溫保護的溫度感測器的設定溫度Tb相比較。在此實施例中,Tb=65℃。當Th≧65℃,過熱保護使系統的電源關閉。系統呈不工作狀態,沒有電信號輸入給加熱器。同步驟426,為加熱器對液態氣體氣罐不加熱。當Th<65℃,步驟428將在步驟422中PID控制器計算出的加熱器加熱液態氣體氣罐所需的類比電信號4mA(0%)到20mA(100%)送到加熱器以加熱液態氣體氣罐。 Next, in step 422 , the PID controller in the PLD calculates the electrical energy required by the heater to heat the liquid gas cylinder according to the temperature set point of the heater set by the weight of the liquid gas, and the electrical energy is in the form of an analog electrical signal. Output. Under the above conditions, the calculated analog electric signal required for the heater to heat the liquid gas cylinder is an analog electrical signal of 4 mA (0%) to 20 mA (100%). Step 424 is a comparison of the temperature of the over-temperature protection, and the temperature Th generated by the heater action measured by the temperature sensor provided by the heater is compared with the set temperature Tb of the over-temperature-protected temperature sensor. In this embodiment, Tb = 65 °C. When Th ≧ 65 ° C, overheat protection turns the system's power off. The system is not working and no electrical signal is input to the heater. In the same step 426 , the liquid gas cylinder is not heated for the heater. When Th < 65 ° C, step 428 sends the analog electrical signal required by the PID controller to heat the liquid gas cylinder at step 422 to 4 mA (0%) to 20 mA (100%) to the heater to heat the liquid. Gas cylinders.

回到開始步驟402,若演算法流程400不是始於自動模式,則演算法流程400是始於手動模式。在手動模式中,步驟430設定一個加熱器的加熱溫度的溫度設定點,用於PID的控制計算。步驟432為輸入加熱器具備的溫度感測器測得的加熱器動作所產生的溫度Th。步驟434和自動模式的步驟424相似,即在步驟434進行過溫保護的溫度比較。加熱器動作所產生的溫度Th與所述過溫保護的溫度感測器的設定溫度Tb(Tb=65℃)進行比較。當Th≧65℃,過熱保護使系統的電源關閉。系統呈不工作狀態,沒有電信號輸入給加熱器。同步驟426,為加熱器對液態氣體氣罐不加熱。此時步驟436沒有電信號或電信號0輸入給加熱器。當Th<65℃,在步驟438,在PLD中的PID控制器計算出加熱器加熱液態氣體氣罐所需的電能,所述電能以一個電信號形式輸出。計算出的所述電信號是4mA(0%)到 20mA(100%)的類比電信號。同自動模式的步驟428,計算出的4mA(0%)到20mA(100%)的類比電信號送到加熱器以加熱液態氣體氣罐。 Returning to the start step 402 , if the algorithm flow 400 does not begin in the automatic mode, the algorithm flow 400 begins in the manual mode. In the manual mode, step 430 sets a temperature set point for the heating temperature of the heater for control calculation of the PID. Step 432 is to input the temperature Th generated by the heater action measured by the temperature sensor provided by the heater. Step 434 is similar to step 424 of the automatic mode, i.e., the temperature comparison of the over temperature protection is performed at step 434 . The temperature Th generated by the heater operation is compared with the set temperature Tb (Tb = 65 ° C) of the overtemperature-protected temperature sensor. When Th ≧ 65 ° C, overheat protection turns the system's power off. The system is not working and no electrical signal is input to the heater. In the same step 426 , the liquid gas cylinder is not heated for the heater. At this point, step 436 has no electrical signal or electrical signal 0 is input to the heater. When Th < 65 ° C, at step 438 , the PID controller in the PLD calculates the electrical energy required by the heater to heat the liquid gas cylinder, which is output as an electrical signal. The calculated electrical signal is an analog electrical signal of 4 mA (0%) to 20 mA (100%). In step 428 of the automatic mode, the calculated analog electrical signal of 4 mA (0%) to 20 mA (100%) is sent to the heater to heat the liquid gas cylinder.

圖6為圖1和圖2裝置的加熱器的加熱溫度,蒸發氣體壓力和液態氣體重量對應於時間函數的曲線圖。如圖所示,隨著液態氣體氣罐裏的蒸發氣體的釋出,液態氣體的重量逐漸減小,加熱器開始加熱液態氣體氣罐。最初,加熱器動作所產生的溫度Th從環境溫度升到最高,然後隨著所述液態氣體的重量逐漸減小,加熱器動作所產生的溫度Th呈階梯型逐漸下降直到約40分鐘時回到其原始的溫度(環境溫度),既液態氣體的重量減小到只有少量液態氣體存留在液態氣體氣罐裡時,加熱器動作所產生的溫度Th回到其原始的溫度,然後保持在該溫度不變,也就是加熱器不加熱液態氣體氣罐。而所述蒸發氣體壓力P在前40分鐘有一點點波動,約40分鐘後,所述蒸發氣體壓力P也回到其原始的壓力值保持不變。這種階梯式溫度控制模式達到了恒溫恒壓控制蒸發氣體的輸送,也克服了以下描述的傳統的加熱器或磁波加熱的缺陷。 Figure 6 is a graph of the heating temperature of the heater of the apparatus of Figures 1 and 2, the evaporation gas pressure and the liquid gas weight corresponding to a function of time. As shown, as the vaporized gas in the liquid gas cylinder is released, the weight of the liquid gas gradually decreases and the heater begins to heat the liquid gas cylinder. Initially, the temperature Th generated by the heater action rises from the ambient temperature to the highest, and then as the weight of the liquid gas gradually decreases, the temperature Th generated by the heater action gradually decreases in a stepwise manner until returning to about 40 minutes. The original temperature (ambient temperature), when the weight of the liquid gas is reduced until only a small amount of liquid gas remains in the liquid gas cylinder, the temperature Th generated by the heater action returns to its original temperature and then remains at the temperature. The same, that is, the heater does not heat the liquid gas cylinder. The evaporation gas pressure P fluctuated a little during the first 40 minutes, and after about 40 minutes, the evaporation gas pressure P also returned to its original pressure value. This stepped temperature control mode achieves constant temperature and constant pressure control of the delivery of boil-off gas and also overcomes the drawbacks of conventional heater or magnetic wave heating described below.

比較實施例1 (非本發明之一部分) Comparative Example 1 (not part of the invention)

圖7為用電阻加熱絲加熱器加熱液態氣體氣罐的一個常規PID控制加熱裝置的方塊圖。圖1和圖2所公開的裝置100/200和圖6所示的現有的裝置500之間的差異是:裝置100/200的自動模式具備蒸發氣體壓力控制202和蒸發氣體壓力控制演算法204,液態氣體的重量Wt和環境溫度Ta關聯到AND邏輯206用於計算,並且裝置100/200的加熱元件是碳纖維加熱毯。圖7的裝置500是類似於圖1和圖2所示的裝置100/200的手動模式,即,只有加熱器動作所產生的溫度Th輸入給AND邏輯520,且裝置 500的加熱器是矽膠加熱毯,其不同於裝置100/200的碳纖維加熱器。如圖7所示,502為液化氣罐,504a504b為兩個支撐件用於在平板重量秤506上支承液態氣體氣罐502508為加熱器。510為溫度感測器。512為氣動閥。514a、514b514c為壓力感測器。516a、516b為輔助加熱器。518a518b為壓力調節閥。520為AND邏輯。522為可編程邏輯控制器。524為整流器。526為蒸汽氣體輸出。 Figure 7 is a block diagram of a conventional PID controlled heating device for heating a liquid gas cylinder with a resistance heating wire heater. The difference between the apparatus 100/200 disclosed in Figures 1 and 2 and the prior art apparatus 500 shown in Figure 6 is that the automatic mode of the apparatus 100/200 is provided with an evaporative gas pressure control 202 and an evaporative gas pressure control algorithm 204 , The weight Wt of the liquid gas and the ambient temperature Ta are associated to the AND logic 206 for calculation, and the heating element of the apparatus 100/200 is a carbon fiber heating blanket. The apparatus 500 of FIG. 7 is a manual mode similar to the apparatus 100/200 shown in FIGS. 1 and 2, that is, only the temperature Th generated by the heater action is input to the AND logic 520 , and the heater of the apparatus 500 is silicone heating. A carpet, which is different from the carbon fiber heater of the device 100/200 . As shown in FIG. 7, 502 is a liquefied gas tank, and 504a and 504b are two supports for supporting the liquid gas cylinder 502 on the flat weight scale 506 . 508 is a heater. 510 is a temperature sensor. 512 is a pneumatic valve. 514a, 514b, and 514c are pressure sensors. 516a, 516b are auxiliary heaters. 518a and 518b are pressure regulating valves. 520 is AND logic. 522 is a programmable logic controller. 524 is a rectifier. 526 is a steam gas output.

圖8為圖7裝置的加熱器的溫度,蒸發氣體壓力和液態氣體重量對應於時間函數的曲線圖。如圖所示,雖然裝置500為恒溫加熱,即加熱器的溫度保持不變,但在液態氣體的重量減到低重量時,繼續加熱氣罐,蒸發氣體壓力隨時間的增長而增高,從而造成壓力失控的風險,有可能導致嚴重的安全後果。在此比較實施例中,加熱器加熱氣罐所需的電能的計算與氣罐中所剩的液態氣體的重量無關,當氣罐中剩餘少量液態氣體時,繼續加熱氣罐,將導致過度加熱氣罐致使氣罐乾涸,從而不能確保在氣罐內的液態氣體的最大利用率。 Figure 8 is a graph of the temperature of the heater of the apparatus of Figure 7, the vaporization gas pressure and the liquid gas weight as a function of time. As shown in the figure, although the device 500 is heated at a constant temperature, that is, the temperature of the heater remains unchanged, when the weight of the liquid gas is reduced to a low weight, the gas tank is continuously heated, and the pressure of the vaporized gas increases with time, thereby causing The risk of loss of control can have serious safety consequences. In this comparative embodiment, the calculation of the electric energy required for the heater to heat the gas tank is independent of the weight of the liquid gas remaining in the gas tank. When a small amount of liquid gas remains in the gas tank, continuing to heat the gas tank will result in excessive heating. The gas tank causes the gas tank to dry up, thereby failing to ensure maximum utilization of liquid gas in the gas tank.

比較實施例2 (非本發明之一部分) Comparative Example 2 (not part of the invention)

圖9為用磁波加熱器加熱液態氣體氣罐的一個現有的磁波加熱控制裝置的方塊圖。如圖所示,602為液化氣罐,604a604b為兩個支撐件用於在平板重量秤606上支承液態氣體氣罐602608為加熱器。610為氣動閥。612614為壓力感測器。616618為輔助加熱器。622624為AND邏輯。620628為蒸汽氣壓控制。630為蒸汽氣體輸出。圖1和圖2所公開的裝置100/200和圖9所示的現有的裝置600之間的差異是:圖9所示的裝置600不具備TIC PID控制以用於計算加熱器所需的電能,並且也 不具備將液態氣體的重量Wt關聯到計算控制加熱器溫度的功能。相反,所述裝置600的AND邏輯624用於比較由蒸發氣體壓力控制628從蒸發氣體壓力轉換來得到蒸發氣體溫度T和環境溫度Ta,然後把比較的結果送至加熱器608。當T≧Ta時,磁波加熱器不加熱液態氣體氣罐;當T<Ta時,磁波加熱器608加熱液態氣體氣罐602。所述蒸發氣體溫度T利用前述之公式:log10P=A+B/T+Clog10T+DT+ET2轉換得到。此外,所述裝置600具備一個溫度優化迴圈由附加的AND邏輯622,輔助加熱器616618,壓力感測器614及蒸汽氣壓控制620構成。從所述裝置600輸出的由壓力感測器614讀取的蒸發氣體壓力P'通過所述蒸汽氣壓控制620轉換成蒸發氣體溫度T',蒸發氣體溫度T'利用前述之公式:log10P=A+B/T+Clog10T+DT+ET2轉換得到。所述蒸發氣體溫度T'和所述輔助加熱器616618的溫度在所述AND邏輯622上進行比較,然後回饋到所述輔助加熱器616618上,以優化液態氣體的蒸發氣體630的輸出溫度T'Fig. 9 is a block diagram showing a conventional magnetic wave heating control device for heating a liquid gas cylinder by a magnetic wave heater. As shown, 602 is a liquefied gas tank, and 604a and 604b are two supports for supporting a liquid gas cylinder 602 on a plate weight scale 606 . 608 is a heater. 610 is a pneumatic valve. 612 and 614 are pressure sensors. 616 and 618 are auxiliary heaters. 622 and 624 are AND logic. 620 and 628 are steam pressure controls. 630 is a steam gas output. The difference between the apparatus 100/200 disclosed in Figures 1 and 2 and the prior art apparatus 600 shown in Figure 9 is that the apparatus 600 shown in Figure 9 does not have TIC PID control for calculating the electrical energy required by the heater. And there is no function of associating the weight Wt of the liquid gas to the calculation of the temperature of the control heater. Instead, the AND logic 624 of the apparatus 600 is used to compare the evaporation gas pressure control 628 from the evaporation gas pressure to obtain the evaporation gas temperature T and the ambient temperature Ta, and then send the result of the comparison to the heater 608 . When T ≧ Ta, the magnetic wave heater does not heat the liquid gas cylinder; when T < Ta, the magnetic wave heater 608 heats the liquid gas cylinder 602 . The evaporation gas temperature T is obtained by converting the above formula: log 10 P=A+B/T+Clog 10 T+DT+ET 2 . Additionally, the apparatus 600 is provided with a temperature optimized loop comprised of additional AND logic 622 , auxiliary heaters 616 and 618 , pressure sensor 614 and vapor pressure control 620 . The vapor pressure P ' read by the pressure sensor 614 output from the apparatus 600 is converted into an evaporating gas temperature T ' by the vapor pressure control 620 , and the evaporating gas temperature T ' is determined by the aforementioned formula: log 10 P = A+B/T+Clog 10 T+DT+ET 2 conversion is obtained. The vaporized gas temperature T ' and the temperatures of the auxiliary heaters 616 and 618 are compared on the AND logic 622 and then fed back to the auxiliary heaters 616 and 618 to optimize the vapor gas 630 of the liquid gas. Output temperature T ' .

圖10為圖9裝置中液態氣體氣罐中的蒸發氣體壓力與磁波加熱器的輸出至磁波加熱帶的能量對應於時間函數的曲線圖。如圖所示。蒸發氣體壓力有些波動,但基本上隨時間的增長保持穩定。所述磁波加熱器的輸出至磁波加熱帶的能量可以快速升高,然後訊速回零。所述磁波加熱器的輸出至磁波加熱帶的能量基本上隨著時間在0和一個固定熱量值之間上下跳動。磁波加熱器加熱快。雖然,所述裝置600是一個固定壓力(AVP)控制模式(恒壓控制,即,蒸發氣體壓力不變),具有效率高加熱速度快的特性,但磁波加熱器具有較高的成本和較高的故障率,在半導體製造製程應用中不是理想的加熱控制方法。 Figure 10 is a graph of the evaporative gas pressure in the liquid gas cylinder of Figure 9 versus the energy of the magnetic wave heater output to the magnetic heating band as a function of time. as the picture shows. The evaporation gas pressure fluctuates somewhat, but remains stable over time. The energy of the output of the magnetic wave heater to the magnetic heating band can be rapidly increased, and then the speed of the light is returned to zero. The energy of the output of the magnetic wave heater to the magnetic heating band substantially jumps up and down between 0 and a fixed heat value over time. The magnetic wave heater heats up quickly. Although the apparatus 600 is in a fixed pressure (AVP) control mode (constant pressure control, that is, the evaporation gas pressure is constant), it has the characteristics of high efficiency and high heating speed, but the magnetic wave heater has higher cost and higher speed. The failure rate is not an ideal heating control method in semiconductor manufacturing process applications.

【表2】提供了傳統的電阻式加熱絲加熱毯,磁波加熱和碳纖維加熱毯智慧AVP加熱之性能比較。 [Table 2] provides a comparison of the performance of a conventional resistive heating wire heating blanket, magnetic wave heating and carbon fiber heating blanket intelligent AVP heating.

【表2】的結果顯示碳纖維加熱毯智慧AVP加熱的性能優於傳統的電阻式加熱絲加熱毯和磁波加熱。通常,傳統加熱毯的成本約為2300USD,磁波加熱的成本約為27,000USD,約為傳統加熱毯的成本的約12倍,而碳纖維加熱毯智能AVP加熱的成本約為4,000USD,約為傳統加熱毯的成本的2倍。雖然碳纖維加熱毯智能AVP加熱略低於磁波加熱,但碳纖維加熱毯智能AVP加熱的壽命和故障率遠優於磁波加熱。碳纖維加熱毯智能AVP加熱的優越性除了過溫保護和遠端監控外,碳纖維加熱毯智能AVP 加熱還具備恒溫與恒壓(AVP)控制,階梯溫度控制模式,環境溫度連鎖,環境溫度控制加熱,氣體重量連鎖,等優點。 [Table 2] The results show that the carbon fiber heating blanket wisdom AVP heating performance is better than the traditional resistance heating wire heating blanket and magnetic wave heating. Generally, the cost of a conventional heating blanket is about 2300 USD, the cost of magnetic heating is about 27,000 USD, which is about 12 times the cost of a conventional heating blanket, and the cost of a smart AVP heating of a carbon fiber heating blanket is about 4,000 USD, which is about the traditional heating. The cost of the blanket is 2 times. Although the intelligent AVP heating of the carbon fiber heating blanket is slightly lower than the magnetic heating, the life and failure rate of the intelligent AVP heating of the carbon fiber heating blanket is much better than the magnetic heating. Advantages of intelligent AVP heating of carbon fiber heating blanket In addition to over-temperature protection and remote monitoring, carbon fiber heating blanket intelligent AVP Heating also has the advantages of constant temperature and constant pressure (AVP) control, step temperature control mode, interlocking ambient temperature, ambient temperature control heating, gas weight linkage, and so on.

雖然已展示及描述本發明之具體實例,但在不脫離本發明之精神或教示的情況下由熟悉此項技術著對其作出修改。本文所述之具體實例僅為例示性的而非限制性的。系統及方法之許多變更及修改可能存在且在本發明之範疇內。因此,保護範疇不限於本文所述之具體實例,而僅由隨附申請專利範圍限制,其範疇應包括申請專利範圍中之標的物之所有等效物。 While the invention has been shown and described with reference to the embodiments of the invention The specific examples described herein are illustrative only and not limiting. Many variations and modifications of the systems and methods are possible and are within the scope of the invention. Therefore, the scope of protection is not limited to the specific examples described herein, but only by the scope of the accompanying claims, the scope of which is intended to include all equivalents of the subject matter.

Claims (30)

一種用於為液化氣體供給系統或大宗氣體供給系統(BGDS)提供加熱控制以保證輸送從液化狀態下的液態氣體生成的蒸發氣體的壓力保持恆定及控制蒸發氣體的溫度接近環境溫度並且避免過度加熱導致容器乾涸的同時確保在容器內的液態氣體的最大利用率的輸送氣體的系統,該蒸發氣體是適合用作半導體製程的氣體,其包含:一個液態氣體氣罐放置在一個平臺重量秤上,所述平臺重量秤讀取儲存在所述液態氣體氣罐裡的液態氣體的重量(Wt);一個加熱器放置在所述液態氣體氣罐的底部與所述液態氣體氣罐的外壁直接接觸,所述加熱器根據需要用於加熱所述液態氣體氣罐;及一個可編程邏輯控制器應用蒸發氣體溫度、加熱器動作所產生的溫度、環境溫度和所述液態氣體的重量(Wt)來計算所述加熱器用於加熱所述液態氣體氣罐所需要的電能,其中,所述加熱器具有多個溫度設定點依據等數量的預先設定的液態氣體的重量範圍設置來設定,並且所述加熱器在每個溫度設定點恒溫加熱所述液態氣體氣罐,由此形成一個階梯式溫度控制模式,其中,所述液態氣體的重量越大,所述溫度設定點越高。 A method for providing heating control for a liquefied gas supply system or a bulk gas supply system (BGDS) to ensure that the pressure of the boil-off gas generated from the liquid gas supplied from the liquefied state is kept constant and that the temperature of the boil-off gas is controlled to be close to the ambient temperature and excessive heating is avoided. a system for transporting a gas that causes the container to dry while ensuring maximum utilization of liquid gas within the container, the vaporized gas being a gas suitable for use in a semiconductor process, comprising: a liquid gas canister placed on a platform weight scale, The platform weight scale reads the weight (Wt) of the liquid gas stored in the liquid gas cylinder; a heater is placed at the bottom of the liquid gas cylinder to directly contact the outer wall of the liquid gas cylinder, The heater is used to heat the liquid gas cylinder as needed; and a programmable logic controller calculates the temperature of the evaporation gas, the temperature generated by the heater action, the ambient temperature, and the weight (Wt) of the liquid gas. The heater is used to heat electric energy required by the liquid gas cylinder, wherein the heating Having a plurality of temperature set points is set according to an equal number of preset weight range settings of the liquid gas, and the heater thermostatically heats the liquid gas cylinder at each temperature set point, thereby forming a stepped temperature control A mode wherein the greater the weight of the liquid gas, the higher the temperature set point. 如申請專利範圍第1項之系統,其進一步包含:一個壓力感測器,其連接到所述液態氣體氣罐的一個氣動閥上,測量從所述液態氣體氣罐釋出的蒸發氣體的壓力。 The system of claim 1, further comprising: a pressure sensor coupled to a pneumatic valve of the liquid gas cylinder to measure a pressure of the vaporized gas released from the liquid gas cylinder . 如申請專利範圍第2項之系統,其中所述可編程邏輯控制器包含:一個蒸發氣體壓力控制,其用於把測量的所述蒸發氣體壓力變換為 所述蒸發氣體溫度;一個AND邏輯,其用於比較所述蒸發氣體溫度和所述環境溫度,並用於比較所述液態氣體的重量(Wt)和所述預先設定的液態氣體的重量範圍設置,並設定所述加熱器的多個溫度設定點;一個PID控制器,依據所述加熱器的每個溫度設定點,其用於計算所述加熱器用於加熱所述液態氣體氣罐所需的電能;及一個整流器,其用於向所述加熱器發送從所述PID控制器產生的電能信號。 The system of claim 2, wherein the programmable logic controller comprises: an evaporation gas pressure control for converting the measured evaporation gas pressure to The evaporation gas temperature; an AND logic for comparing the evaporation gas temperature and the ambient temperature, and for comparing a weight (Wt) of the liquid gas and a weight range setting of the predetermined liquid gas, And setting a plurality of temperature set points of the heater; a PID controller, based on each temperature set point of the heater, for calculating the electrical energy required by the heater to heat the liquid gas cylinder And a rectifier for transmitting a power signal generated from the PID controller to the heater. 如申請專利範圍第3項之系統,其中所述蒸發氣體溫度應用方程式log10P=A+B/T+Clog10T+DT+ET2計算得到,其中A,B,C,D和E是從每個特定的液態氣體的蒸氣壓曲線確定的常數並用一個表格預先編程到所述可編程邏輯控制器中,P為所述壓力感測器測量的所述蒸發氣體壓力。 The system of claim 3, wherein the evaporation gas temperature is calculated by applying the equation log 10 P=A+B/T+Clog 10 T+DT+ET 2 , wherein A, B, C, D and E are The constant determined from the vapor pressure curve for each particular liquid gas is preprogrammed into the programmable logic controller using a table, P being the vapor pressure of the vapor pressure measured by the pressure sensor. 如申請專利範圍第3項之系統,其中所述電能信號是4mA(0%)到20mA(100%)的類比形式的電信號。 The system of claim 3, wherein the electrical energy signal is an analog electrical signal of 4 mA (0%) to 20 mA (100%). 如申請專利範圍第1項之系統,其中所述液態氣體為甲矽烷(SiH4),三氟化氮(NF3),四氟甲烷(CF4),氨氣(NH3),砷化氫(AsH3),三氯化硼(BCl3),二氧化碳(CO2),氯氣(Cl2),二氯矽烷(SiH2Cl2),乙矽烷(Si2H6),溴化氫(HBr),氯化氫(HCl),氟化氫(HF),一氧化二氮(N2O),全氟丙烷(C3F8),六氟化硫(SF6),磷化氫(PH3)或六氟化鎢(WF6)。 The system of claim 1, wherein the liquid gas is methanthan (SiH 4 ), nitrogen trifluoride (NF 3 ), tetrafluoromethane (CF 4 ), ammonia (NH 3 ), and arsine. (AsH 3 ), boron trichloride (BCl 3 ), carbon dioxide (CO 2 ), chlorine (Cl 2 ), dichlorodecane (SiH 2 Cl 2 ), ethane oxide (Si 2 H 6 ), hydrogen bromide (HBr) ), hydrogen chloride (HCl), hydrogen fluoride (HF), nitrous oxide (N 2 O), perfluoropropane (C 3 F 8 ), sulfur hexafluoride (SF 6 ), phosphine (PH 3 ) or six Tungsten fluoride (WF 6 ). 如申請專利範圍第1項之系統,其中所述加熱器為一個碳纖維加熱毯。 The system of claim 1, wherein the heater is a carbon fiber heating blanket. 如申請專利範圍第1項之系統,其中所述預先設定的液態氣體的重量 範圍設置是依據所述液態氣體氣罐滿刻度重量的百分比來劃分。 The system of claim 1, wherein the predetermined weight of the liquid gas The range setting is based on the percentage of the full scale weight of the liquid gas cylinder. 如申請專利範圍第8項之系統,其中所述預先設定的液態氣體的重量範圍設置包含:(1)0<Wt≦x%的滿刻度重量;(2)x%的滿刻度重量<Wt≦y%的滿刻度重量;(3)y%的滿刻度重量<Wt≦z%的滿刻度重量;及(4)z%的滿刻度重量<Wt≦滿刻度重量,其中,0<X≦20,20<Y≦50和50<Z≦100。 The system of claim 8 wherein the predetermined weight range setting of the liquid gas comprises: (1) 0 < Wt ≦ x% full scale weight; (2) x% full scale weight < Wt ≦ y% full scale weight; (3) y% full scale weight <Wt≦z% full scale weight; and (4) z% full scale weight <Wt ≦ full scale weight, where 0<X≦20 , 20 < Y ≦ 50 and 50 < Z ≦ 100. 如申請專利範圍第9項之系統,其中所述預先設定的液態氣體的重量範圍設置包含:(1)0<Wt≦10%的滿刻度重量;(2)10%的滿刻度重量<Wt≦35%的滿刻度重量;(3)35%的滿刻度重量<Wt≦75%的滿刻度重量;及(4)75%的滿刻度重量<Wt≦滿刻度重量。 The system of claim 9, wherein the predetermined weight range setting of the liquid gas comprises: (1) 0 < Wt ≦ 10% of full scale weight; (2) 10% of full scale weight < Wt ≦ 35% full scale weight; (3) 35% full scale weight <Wt ≦ 75% full scale weight; and (4) 75% full scale weight <Wt ≦ full scale weight. 如申請專利範圍第9項之系統,其中所述加熱器的多個溫度設定點為T1,T2,T3,及不加熱四階段模式,其中T1<T2<T3,其中所述四階段模式為:(1)0<Wt≦x%的滿刻度重量:加熱器不加熱;(2)x%的滿刻度重量<Wt≦y%的滿刻度重:加熱器溫度設定點為T1;(3)y%的滿刻度重量<Wt≦z%的滿刻度重量:加熱器溫度設定點為T2;及 (4)z%的滿刻度重量<Wt≦滿刻度重量:加熱器溫度設定點為T3The system of claim 9, wherein the plurality of temperature set points of the heater are T 1 , T 2 , T 3 , and a four-stage mode without heating, wherein T 1 <T 2 <T 3 , wherein The four-stage mode is: (1) 0<Wt≦x% full scale weight: heater is not heated; (2) x% full scale weight <Wt≦y% full scale weight: heater temperature set point is T 1 ; (3) y% full scale weight <Wt≦z% full scale weight: heater temperature set point is T 2 ; and (4) z% full scale weight <Wt ≦ full scale weight: heater The temperature set point is T 3 . 如申請專利範圍第10項之系統,其中所述加熱器的多個溫度設定點為攝氏28,35,50度,及不加熱四階段模式,其中所述四階段模式為:(1)0<Wt≦10%的滿刻度重量:加熱器不加熱;(2)10%的滿刻度重量<Wt≦35%的滿刻度重量:加熱器溫度設定點為攝氏28度;(3)35%的滿刻度重量<Wt≦75%的滿刻度重量:加熱器溫度設定點為攝氏35度;及(4)75%的滿刻度重量<Wt≦滿刻度重量:加熱器溫度設定點為攝氏50度。 The system of claim 10, wherein the plurality of temperature set points of the heater are 28, 35, 50 degrees Celsius, and the four-stage mode without heating, wherein the four-stage mode is: (1) 0 < Wt≦ 10% full scale weight: heater does not heat; (2) 10% full scale weight <Wt ≦ 35% full scale weight: heater temperature set point is 28 degrees Celsius; (3) 35% full Scale weight <Wt ≦ 75% of full scale weight: heater temperature set point is 35 degrees Celsius; and (4) 75% full scale weight <Wt ≦ full scale weight: heater temperature set point is 50 degrees Celsius. 一種用於為液化氣體供給系統或大宗氣體供給系統(BGDS)提供加熱控制以保證輸送從液化狀態下的液態氣體生成的蒸發氣體的壓力保持恆定及控制蒸發氣體的溫度接近環境溫度並且避免過度加熱導致容器乾涸同時確保在容器內的液態氣體的最大利用率的輸送氣體的方法,該蒸發氣體是適合用作半導體製程的氣體,其包括以下步驟:在一個液態氣體氣罐中提供液態氣體;將所述液態氣體氣罐放置在一個平臺重量秤上,所述平臺重量秤讀取所述液態氣體的重量(Wt);將一個加熱器放置在所述液態氣體氣罐的底部與所述液態氣體氣罐的外壁直接接觸,所述加熱器根據需要用於加熱所述液態氣體氣罐;及用一個可編程邏輯控制器來計算所述加熱器用於加熱所述液態氣 體氣罐所需要的電能,其中,所述液態氣體氣罐裡的蒸發氣體溫度、加熱器動作所產生的溫度、環境溫度和所述液態氣體的重量(Wt)輸入到所述可編程邏輯控制器中進行比較並計算出所述加熱器加熱所述液態氣體氣罐所需要的電能,其中,所述加熱器具有多個溫度設定點依據等數量的預先設定的液態氣體的重量範圍設置來設定,並且所述加熱器在每個溫度設定點恆溫加熱所述液態氣體氣罐,由此形成一個階梯式溫度控制模式,其中,所述液態氣體的重量越大,所述溫度設定點越高。 A method for providing heating control for a liquefied gas supply system or a bulk gas supply system (BGDS) to ensure that the pressure of the boil-off gas generated from the liquid gas supplied from the liquefied state is kept constant and that the temperature of the boil-off gas is controlled to be close to the ambient temperature and excessive heating is avoided. a method of transporting a gas that causes the container to dry while ensuring maximum utilization of liquid gas within the container, the vaporized gas being a gas suitable for use in a semiconductor process, comprising the steps of: providing a liquid gas in a liquid gas cylinder; The liquid gas cylinder is placed on a platform weight scale, the platform weight scale reads the weight (Wt) of the liquid gas; a heater is placed at the bottom of the liquid gas cylinder and the liquid gas The outer wall of the gas tank is in direct contact, the heater is used to heat the liquid gas cylinder as needed; and a programmable logic controller is used to calculate the heater for heating the liquid gas The electric energy required for the gas cylinder, wherein the temperature of the evaporation gas in the liquid gas cylinder, the temperature generated by the action of the heater, the ambient temperature, and the weight (Wt) of the liquid gas are input to the programmable logic control Comparing and calculating the electrical energy required by the heater to heat the liquid gas cylinder, wherein the heater has a plurality of temperature set points set according to an equal number of predetermined liquid gas weight range settings And the heater thermostatically heats the liquid gas cylinder at each temperature set point, thereby forming a stepped temperature control mode, wherein the greater the weight of the liquid gas, the higher the temperature set point. 如申請專利範圍第13項之方法,其進一步包含:應用方程式:log10P=A+B/T+Clog10T+DT+ET2計算所述蒸發氣體溫度,其中A,B,C,D和E是由每個特定液態氣體的蒸氣壓曲線確定的常數,並用一個表格預先編程到所述可編程邏輯控制器中;其中P為蒸發氣體的壓力,是由一個與所述液態氣體氣罐相連的壓力感測器測得的。 The method of claim 13, further comprising: calculating the temperature of the evaporation gas using an equation: log 10 P=A+B/T+Clog 10 T+DT+ET 2 , wherein A, B, C, D And E are constants determined by the vapor pressure curve of each particular liquid gas, and are pre-programmed into the programmable logic controller with a table; wherein P is the pressure of the vaporized gas, and is a gas cylinder with the liquid gas Connected pressure sensor measured. 如申請專利範圍第14項之方法,其進一步包含:設定一個將要預期控制達到的蒸發氣體溫度,其為所述環境溫度加1。 The method of claim 14, further comprising: setting a temperature of the boil-off gas to be expected to be controlled, which is 1 for the ambient temperature. 如申請專利範圍第13項之方法,其中所述蒸發氣體溫度、加熱器動所產生的溫度、所述環境溫度和所述液態氣體的重量(Wt)輸入到所述可編程邏輯控制器裡的一個AND邏輯。 The method of claim 13, wherein the temperature of the evaporation gas, the temperature generated by the heater, the ambient temperature, and the weight (Wt) of the liquid gas are input to the programmable logic controller. An AND logic. 如申請專利範圍第16項之方法,其中所述AND邏輯比較所述蒸發氣體溫度與所述環境溫度: 如果所述蒸發氣體溫度大於所述環境溫度,加熱器不加熱所述液態氣體氣罐;如果所述蒸發氣體溫度小於或等於所述環境溫度,加熱器加熱所述液態氣體氣罐,其中,所述液態氣體的重量(Wt)與所述預先設定的液態氣體的重量範圍設置相比較,來計算所述加熱器加熱所述液態氣體氣罐所需的能量。 The method of claim 16, wherein the AND logic compares the temperature of the boil-off gas with the ambient temperature: If the temperature of the boil-off gas is greater than the ambient temperature, the heater does not heat the liquid gas cylinder; if the temperature of the boil-off gas is less than or equal to the ambient temperature, the heater heats the liquid gas cylinder, wherein The weight (Wt) of the liquid gas is compared with the preset weight range setting of the liquid gas to calculate the energy required by the heater to heat the liquid gas cylinder. 如申請專利範圍第17項之方法,其中所述預先設定的液態氣體的重量範圍設置包含在0與所述液態氣體的重量的滿刻度重量(100%)之間的多個分刻度。 The method of claim 17, wherein the predetermined weight range of the liquid gas comprises a plurality of sub-scales between 0 and a full scale weight (100%) of the weight of the liquid gas. 如申請專利範圍第18項之方法,其中所述多個分刻度包含X%,Y%,Z%,其中0<X≦20,20<Y≦50和50<Z≦100,則所述預先設定的液態氣體的重量範圍設置包含:(1)0<Wt≦x%的滿刻度重量;(2)x%的滿刻度重量<Wt≦y%的滿刻度重量;(3)y%的滿刻度重量<Wt≦z%的滿刻度重量;及(4)z%的滿刻度重量<Wt≦滿刻度重量。 The method of claim 18, wherein the plurality of sub-scales comprise X%, Y%, Z%, wherein 0<X≦20, 20<Y≦50 and 50<Z≦100, then the advance The set weight range setting of the liquid gas includes: (1) 0<Wt≦x% full scale weight; (2) x% full scale weight <Wt≦y% full scale weight; (3) y% full Scale weight <Wt≦z% of full scale weight; and (4) z% full scale weight <Wt≦ full scale weight. 如申請專利範圍第19項之方法,其中,X=10,Y=35,及Z=75,所述預先設定的液態氣體的重量範圍設置包含:(1)0<Wt≦10%的滿刻度重量;(2)10%的滿刻度重量<Wt≦35%的滿刻度重量;(3)35%的滿刻度重量<Wt≦75%的滿刻度重量;及(4)75%的滿刻度重量<Wt≦滿刻度重量。 The method of claim 19, wherein X=10, Y=35, and Z=75, the predetermined weight range setting of the liquid gas comprises: (1) 0 < Wt ≦ 10% of full scale Weight; (2) 10% full scale weight <Wt ≦ 35% full scale weight; (3) 35% full scale weight <Wt ≦ 75% full scale weight; and (4) 75% full scale weight <Wt≦ full scale weight. 如申請專利範圍第13項之方法,其中所述加熱器的多個溫度設定點為T1,T2,T3,及不加熱四階段模式,其中T1<T2<T3,其中所述四階段模式為:(1)0<Wt≦x%的滿刻度重量:加熱器不加熱;(2)x%的滿刻度重量<Wt≦y%的滿刻度重:加熱器溫度設定點為T1;(3)y%的滿刻度重量<Wt≦z%的滿刻度重量:加熱器溫度設定點為T2;及(4)z%的滿刻度重量<Wt≦滿刻度重量:加熱器溫度設定點為T3,其中0<X≦20,20<Y≦50和50<Z≦100。 The method of claim 13, wherein the plurality of temperature set points of the heater are T 1 , T 2 , T 3 , and a four-stage mode without heating, wherein T 1 <T 2 <T 3 , wherein The four-stage mode is: (1) 0<Wt≦x% full scale weight: heater is not heated; (2) x% full scale weight <Wt≦y% full scale weight: heater temperature set point is T 1 ; (3) y% full scale weight <Wt≦z% full scale weight: heater temperature set point is T 2 ; and (4) z% full scale weight <Wt ≦ full scale weight: heater The temperature set point is T 3 , where 0 < X ≦ 20, 20 < Y ≦ 50 and 50 < Z ≦ 100. 如申請專利範圍第20項之方法,其中所述加熱器的多個溫度設定點為攝氏28,35,50度,及不加熱四階段模式,其中所述四階段模式為:(1)0<Wt≦10%的滿刻度重量:加熱器不加熱;(2)10%的滿刻度重量<Wt≦35%的滿刻度重量:加熱器溫度設定點為攝氏28度;(3)35%的滿刻度重量<Wt≦75%的滿刻度重量:加熱器溫度設定點為攝氏35度;及(4)75%的滿刻度重量<Wt≦滿刻度重量:加熱器溫度設定點為攝氏50度。 The method of claim 20, wherein the plurality of temperature set points of the heater are 28, 35, 50 degrees Celsius, and the four-stage mode without heating, wherein the four-stage mode is: (1) 0 < Wt≦ 10% full scale weight: heater does not heat; (2) 10% full scale weight <Wt ≦ 35% full scale weight: heater temperature set point is 28 degrees Celsius; (3) 35% full Scale weight <Wt ≦ 75% of full scale weight: heater temperature set point is 35 degrees Celsius; and (4) 75% full scale weight <Wt ≦ full scale weight: heater temperature set point is 50 degrees Celsius. 如申請專利範圍第13項之方法,所述可編程邏輯控制器中的一個PID控制器計算所述加熱器加熱所述液態氣體氣罐所需的電能。 A method of claim 13, wherein a PID controller of the programmable logic controller calculates the electrical energy required by the heater to heat the liquid gas cylinder. 如申請專利範圍第23項之方法,所述電能為一個類比電流信號。 The method of claim 23, wherein the electrical energy is an analog current signal. 如申請專利範圍第24項之方法,其中所述類比電流信號是一個4mA(0%)到20mA(100%)的類比電流信號。 The method of claim 24, wherein the analog current signal is an analog current signal of 4 mA (0%) to 20 mA (100%). 如申請專利範圍第25項之方法,包含所述加熱器動作所產生的溫度與一個預先設定的過溫保護溫度比較,當所述加熱器溫度大於或等於所述預先設定的過溫保護溫度時,加熱器不加熱所述液態氣體氣罐;當所述加熱器溫度小於所述預先設定的過溫保護溫度時,加熱器加熱所述液態氣體氣罐。 The method of claim 25, wherein the temperature generated by the action of the heater is compared with a preset over-temperature protection temperature, when the heater temperature is greater than or equal to the predetermined over-temperature protection temperature. The heater does not heat the liquid gas cylinder; when the heater temperature is less than the predetermined over-temperature protection temperature, the heater heats the liquid gas cylinder. 如申請專利範圍第26項之方法,其中所述預先設定的過溫保護溫度大於所述環境溫度。 The method of claim 26, wherein the predetermined over-temperature protection temperature is greater than the ambient temperature. 如申請專利範圍第27項之方法,其中所述預先設定的過溫保護溫度為攝氏65度。 The method of claim 27, wherein the predetermined over-temperature protection temperature is 65 degrees Celsius. 如申請專利範圍第13項之方法,其中該液態氣體為甲矽烷(SiH4),三氟化氮(NF3),四氟甲烷(CF4),氨氣(NH3),砷化氫(AsH3),三氯化硼(BCl3),二氧化碳(CO2),氯氣(Cl2),二氯矽烷(SiH2Cl2),乙矽烷(Si2H6),溴化氫(HBr),氯化氫(HCl),氟化氫(HF),一氧化二氮(N2O),全氟丙烷(C3F8),六氟化硫(SF6),磷化氫(PH3)或六氟化鎢(WF6)。 The method of claim 13, wherein the liquid gas is methane (SiH 4 ), nitrogen trifluoride (NF 3 ), tetrafluoromethane (CF 4 ), ammonia (NH 3 ), and arsine ( AsH 3 ), boron trichloride (BCl 3 ), carbon dioxide (CO 2 ), chlorine (Cl 2 ), dichlorodecane (SiH 2 Cl 2 ), ethane oxide (Si 2 H 6 ), hydrogen bromide (HBr) , hydrogen chloride (HCl), hydrogen fluoride (HF), nitrous oxide (N 2 O), perfluoropropane (C 3 F 8 ), sulfur hexafluoride (SF 6 ), phosphine (PH 3 ) or hexafluoride Tungsten (WF 6 ). 如申請專利範圍第13項之方法,其中所述加熱器為一個碳纖維加熱毯。 The method of claim 13, wherein the heater is a carbon fiber heating blanket.
TW105120510A 2016-06-29 2016-06-29 Heating control system and method for liquefied gas distribution system TWI616612B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW105120510A TWI616612B (en) 2016-06-29 2016-06-29 Heating control system and method for liquefied gas distribution system
CN201710498420.0A CN107543031B (en) 2016-06-29 2017-06-27 Heating control system and method for liquefied gas supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105120510A TWI616612B (en) 2016-06-29 2016-06-29 Heating control system and method for liquefied gas distribution system

Publications (2)

Publication Number Publication Date
TW201800693A TW201800693A (en) 2018-01-01
TWI616612B true TWI616612B (en) 2018-03-01

Family

ID=60970563

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105120510A TWI616612B (en) 2016-06-29 2016-06-29 Heating control system and method for liquefied gas distribution system

Country Status (2)

Country Link
CN (1) CN107543031B (en)
TW (1) TWI616612B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111306436A (en) * 2020-01-20 2020-06-19 上海正帆科技股份有限公司 Steel cylinder heating system, method and device, computer equipment and storage medium
CN114893716A (en) * 2022-05-18 2022-08-12 长兴云腾新能源科技有限公司 Liquid gas supply heating control system and control method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1637336A (en) * 2003-12-04 2005-07-13 液体空气乔治洛德方法利用和研究的具有监督和管理委员会的有限公司 System for heating tanks of liquefied gas by induction
US20080282709A1 (en) * 2007-05-17 2008-11-20 Nec Electronics Corporation Liquified gas supply system and method thereof
JP2009052596A (en) * 2007-08-23 2009-03-12 Air Liquide Japan Ltd Vaporizing method for liquefied gas, vaporizing device and liquefied gas supply device using it
US20100018249A1 (en) * 2008-07-24 2010-01-28 Kenneth Leroy Burgers Simultaneous gas supply from multiple bsgs
CN201661842U (en) * 2010-03-25 2010-12-01 陈允瑞 Carbon fiber liquefied gas residue exciter

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04181100A (en) * 1990-11-14 1992-06-29 Osaka Gas Co Ltd Cooling standby holding method for shell-and-tube type liquefied gas vaporizer using intermediate heat medium
CN2289125Y (en) * 1996-08-27 1998-08-26 陈鸿飞 Constant-pressure cylinder for gasifying light hydrocarbon by direct electric heating
US6076359A (en) * 1996-11-25 2000-06-20 American Air Liquide Inc. System and method for controlled delivery of liquified gases
JP3619964B2 (en) * 2002-02-01 2005-02-16 大陽日酸株式会社 Gas supply method
JP5090031B2 (en) * 2007-03-19 2012-12-05 日本エア・リキード株式会社 Liquefied gas supply apparatus and supply method
KR101105839B1 (en) * 2010-01-08 2012-01-13 코아텍주식회사 A Gas Supply Equipment with vaporizer
US20110225986A1 (en) * 2010-03-22 2011-09-22 Justin Cole Germond Systems and methods for gas supply and usage

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1637336A (en) * 2003-12-04 2005-07-13 液体空气乔治洛德方法利用和研究的具有监督和管理委员会的有限公司 System for heating tanks of liquefied gas by induction
US20080282709A1 (en) * 2007-05-17 2008-11-20 Nec Electronics Corporation Liquified gas supply system and method thereof
JP2009052596A (en) * 2007-08-23 2009-03-12 Air Liquide Japan Ltd Vaporizing method for liquefied gas, vaporizing device and liquefied gas supply device using it
US20100018249A1 (en) * 2008-07-24 2010-01-28 Kenneth Leroy Burgers Simultaneous gas supply from multiple bsgs
CN201661842U (en) * 2010-03-25 2010-12-01 陈允瑞 Carbon fiber liquefied gas residue exciter

Also Published As

Publication number Publication date
CN107543031A (en) 2018-01-05
CN107543031B (en) 2021-11-05
TW201800693A (en) 2018-01-01

Similar Documents

Publication Publication Date Title
KR100796841B1 (en) Gas delivery at high flow rates
JP4611497B2 (en) System and method for controlled delivery of liquefied gas, including control features
US6363728B1 (en) System and method for controlled delivery of liquefied gases from a bulk source
KR20110106238A (en) Systems and methods for gas supply and usage
US6076359A (en) System and method for controlled delivery of liquified gases
JP6784711B2 (en) Liquefied gas supply device and liquefied gas supply method
JP6745825B2 (en) Gas supply device and gas supply method
TWI460370B (en) A liquefied gas vaporization method, vaporization device and a liquefied gas supply device using the vaporization method and device
TWI616612B (en) Heating control system and method for liquefied gas distribution system
US6789583B2 (en) Gas supply apparatus and gas supply method
US8447175B2 (en) Energy delivery system for a gas transport vessel containing low vapor pressure gas
JP5111962B2 (en) Liquefied gas supply method and apparatus
EP2307786B1 (en) Enhanced energy delivery mechanism for bulk specialty gas supply systems
TWM636433U (en) Stable liquefied gas supply heating equipment
Silva et al. Cryogenic systems for optical elements cooling at Sirius/LNLS
CN206587426U (en) A kind of low-boiling point material vapourizing unit
CN113833984A (en) Three-phase liquid SF6 gasification evaporation device and multiple temperature control protection method
JP5262295B2 (en) Hydrogen chloride gas supply method and hydrogen chloride gas supply device
JPH04132300U (en) Liquefied gas vaporizer
CN106823425A (en) A kind of low-boiling point material vapourizing unit
JPH0567840B2 (en)
JP2005307314A (en) Substrate heater