TWI613727B - 薄膜形成方法及薄膜形成裝置 - Google Patents

薄膜形成方法及薄膜形成裝置 Download PDF

Info

Publication number
TWI613727B
TWI613727B TW104109124A TW104109124A TWI613727B TW I613727 B TWI613727 B TW I613727B TW 104109124 A TW104109124 A TW 104109124A TW 104109124 A TW104109124 A TW 104109124A TW I613727 B TWI613727 B TW I613727B
Authority
TW
Taiwan
Prior art keywords
oxidant
reaction chamber
thin film
film
predetermined temperature
Prior art date
Application number
TW104109124A
Other languages
English (en)
Other versions
TW201608637A (zh
Inventor
原田豪繁
高田獎
Original Assignee
東京威力科創股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京威力科創股份有限公司 filed Critical 東京威力科創股份有限公司
Publication of TW201608637A publication Critical patent/TW201608637A/zh
Application granted granted Critical
Publication of TWI613727B publication Critical patent/TWI613727B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45546Atomic layer deposition [ALD] characterized by the apparatus specially adapted for a substrate stack in the ALD reactor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • C23C16/463Cooling of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

一種薄膜形成方法,包含: 第1成膜程序,其重複進行吸附步驟及氧化步驟多數次,該吸附步驟在將收容被處理體之反應室內加熱至既定溫度之狀態下供給有機金屬化合物氣體,使有機金屬化合物吸附在前述被處理體上,而該氧化步驟在將前述反應室內加熱至既定溫度之狀態下供給第1氧化劑,使吸附在前述被處理體上之有機金屬化合物氧化而形成薄膜; 退火程序,其在前述第1成膜程序結束後,在將前述反應室內加熱至既定溫度之狀態下供應氧化力比前述第1氧化劑強之第2氧化劑;及 第2成膜程序,其在前述退火程序後,重複進行吸附步驟及氧化步驟多數次,該吸附步驟在將前述反應室內加熱至既定溫度之狀態下供給前述有機金屬化合物氣體,使前述有機金屬化合物吸附在前述第1成膜程序中形成之前述薄膜上,而該氧化步驟在將前述反應室內加熱至既定溫度之狀態下供給前述第2氧化劑,使吸附在前述第1成膜程序中形成之前述薄膜上的前述有機金屬化合物氧化而形成薄膜。

Description

薄膜形成方法及薄膜形成裝置
本發明係關於薄膜形成方法及薄膜形成裝置
作為如AlO膜、HfO膜、ZrO膜之類的High-k膜(金屬氧化膜)的形成方法,已有人提出在低溫下,在被處理體,例如,半導體晶圓上,可形成良質之High-k膜的ALD(原子層沉積)法。
[發明所欲解決的問題]
又,形成High-k膜之ALD法,雖然交互地供給有機金屬化合物氣體及氧化劑,但為抑制基底層之氧化,使用H2 O作為氧化劑。另一方面,在ALD法中具有去除無機物、有機物之效果的氧化劑係臭氧(O3 )。因此,為抑制界面氧化,且形成膜中雜質少之膜質良好的High-k膜,採用形成使用H2 O作為初始層之氧化劑之High-k膜,且形成使用O3 作為主要層之氧化劑之High-k膜的積層膜。
但是,形成使用H2 O之High-k膜後,若形成使用O3 之High-k膜,則High-k膜之膜厚減少或膜厚之均一性惡化,有無法形成良好High-k膜之問題。
本發明提供可形成良好薄膜之薄膜形成方法及薄膜形成裝置。 [解決問題的手段]
本發明之第1觀點的薄膜形成方法包含: 第1成膜程序,其重複進行吸附步驟及氧化步驟多數次,該吸附步驟在將收容被處理體之反應室內加熱至既定溫度之狀態下供給有機金屬化合物氣體,使有機金屬化合物吸附在前述被處理體上,而該氧化步驟在將前述反應室內加熱至既定溫度之狀態下供給第1氧化劑,使吸附在前述被處理體上之有機金屬化合物氧化而形成薄膜; 退火程序,其在前述第1成膜程序結束後,在將前述反應室內加熱至既定溫度之狀態下供應氧化力比前述第1氧化劑強之第2氧化劑;及 第2成膜程序,其在前述退火程序後,重複進行吸附步驟及氧化步驟多數次,該吸附步驟在將前述反應室內加熱至既定溫度之狀態下供給前述有機金屬化合物氣體,使有機金屬化合物吸附在前述第1成膜程序中形成之前述薄膜上,而該氧化步驟在將前述反應室內加熱至既定溫度之狀態下供給前述第2氧化劑,使吸附在前述第1成膜程序中形成之薄膜上的有機金屬化合物氧化而形成薄膜。
本發明之第2觀點的薄膜形成裝置包含: 加熱機構,其將收容被處理體之反應室內加熱至既定溫度; 有機金屬化合物氣體供給機構,其供給有機金屬化合物氣體至前述反應室內; 氧化劑供給機構,其供給第1氧化劑及第2氧化劑至前述反應室內;及 控制機構,其控制裝置之各部, 前述控制機構重複進行以下程序: 在控制前述加熱機構而將前述反應室內加熱至既定溫度之狀態下,控制前述有機金屬化合物氣體供給機構而供給有機金屬化合物氣體至前述反應室內,使有機金屬化合物吸附在前述被處理體上後,控制前述氧化劑供給機構而供給前述第1氧化劑至前述反應室內,使吸附在前述被處理體上之有機金屬化合物氧化而形成薄膜, 然後,在控制前述加熱機構而將前述反應室內加熱至既定溫度之狀態下,控制前述氧化劑供給機構而供給前述第2氧化劑至前述反應室內, 進一步,重複進行以下程序: 在控制前述加熱機構而將前述反應室內加熱至既定溫度之狀態下,控制前述有機金屬化合物氣體供給機構而供給有機金屬化合物氣體至前述反應室內,使有機金屬化合物吸附在前述形成之薄膜上後,控制前述氧化劑供給機構而供給前述第2氧化劑至前述反應室內,使吸附在前述薄膜上之有機金屬化合物氧化而形成薄膜。
以下,說明本發明實施形態之薄膜形成方法及薄膜形成裝置。在下述之詳細說明中,為可充分理解本發明,提供許多具體之細節。但是,在沒有如此詳細說明之情形下所屬技術領域中具有通常知識者可完成本發明是顯而易見的事。在其他例中,為避免難以了解各種實施形態,不詳細顯示習知之方法、步驟、系統或構成要件。
在本實施形態中,以使用批式縱型處理裝置,作為本發明之薄膜形成裝置的情形為例進行說明。圖1中顯示本實施形態之處理裝置的結構。
如圖1所示地,處理裝置1具有長邊方向朝向垂直方向之反應管2。反應管2具有由內管2a及有頂板之外管2b構成之雙管構造,而該外管2b係以包覆內管2a並且與內管2a具有預定間隔之方式形成。內管2a與外管2b之側壁,如圖1中箭號所示地,具有多數開口。內管2a及外管2b係由具優異耐熱及耐腐蝕性之石英形成。
在反應管2之其中一側,配置有用以排出反應管2內之氣體之排氣部3。排氣部3係以沿反應管2延伸至上方之方式形成,且透過設置在反應管2之側壁的開口,與反應管2連通。排氣部3之上端係與配置於反應管2上部之排氣口4連接。該排氣口4與未圖示之排氣管連接,且排氣管上設有未圖示之閥及後述之真空泵127等的壓力調整機構。藉由該壓力調整機構,由外管2b之其中一側壁側(處理氣體供給管8)供給之氣體,透過內管2a、外管2b之另一側壁側、排氣部3、排氣口4,排氣至排氣管,可控制反應管2內至所希望之壓力(真空度)。
在反應管2之下方,配置有蓋體5。蓋體5係由具優異耐熱及耐腐蝕性之材料,例如,石英形成。此外,蓋體5係構造成可藉由後述之晶舟升降機128上下移動。而且,若蓋體5藉由晶舟升降機128上升,則閉鎖反應管2之下方側(爐口部分),而若蓋體5藉由晶舟升降機128下降,則使反應管2之下方側(爐口部分)開口。
在蓋體5上,載置有晶舟6。晶舟6係,例如,由石英形成。晶舟6係構造成可在垂直方向上以預定間隔收容多數片半導體晶圓W。此外,在蓋體5之上部,亦可設有防止反應管2內之溫度由反應管2之爐口部分開始降低之保溫筒,及將收容半導體晶圓W之晶舟6載置成可旋轉之旋轉檯等,並在其上載置晶舟6。在該等情形下,可輕易將晶舟6所收容之半導體晶圓W控制在均一之溫度。
在反應管2之周圍,以包圍反應管2之方式,例如,設有由電阻發熱體形成之升溫用加熱器7。藉由該升溫用加熱器7加熱該反應管2之內部至既定溫度,結果,加熱反應管2之內部所收容的半導體晶圓W至既定溫度。
在反應管2之下端附近的側面,插穿有供給處理氣體至反應管2(外管2b)內之處理氣體供給管8。在處理氣體供給管8上,垂直方向上每預定間隔設有供給孔,且由供給孔供給處理氣體至反應管2(外管2b)內。因此,如圖1中箭號所示地,由垂直方向上多數地方供給處理氣體至反應管2內。
處理氣體包括用以在半導體晶圓W上形成薄膜(High-k膜)之成膜用氣體等。成膜用氣體可舉有機金屬化合物氣體及氧化劑為例。有機金屬化合物氣體可舉例如:三甲基鋁(TMA)、四二甲胺鉿(TDMAH)、四乙基甲胺鉿(TEMAH)、四乙基甲胺鋯(TEMAZ)、四二甲胺鈦(TDMAT)等。氧化劑可舉H2 O、臭氧(O3 )為例。
此外,在反應管2之下端附近的側面,插穿有氮氣供給管10,而該氮氣供給管10供給作為稀釋氣體及沖洗氣體之氮(N2 )至反應管2(外管2b)內。
處理氣體供給管8及氮氣供給管10,透過後述之質量流控制器(MFC:Mass Flow Controller)125,與未圖示之源氣體供給源連接。
此外,反應管2內,配置有多數支測量反應管2內之溫度的,例如,由熱電偶形成之溫度感測器122,及測量反應管2內之壓力的壓力計123。
此外,處理裝置1具有進行裝置各部之控制的控制部100。圖2中顯示控制部100之結構。如圖2所示地,控制部100與操作面板121、溫度感測器122、壓力計123、加熱器控制器124、MFC 125、閥控制部126、真空泵127、晶舟升降機128等連接。
操作面板121具有顯示畫面及操作按鈕,且將操作者之操作指示傳送至控制部100,且,將來自控制部100之各種資訊顯示在顯示畫面上。
溫度感測器122測量反應管2內及排氣管內等之各部的溫度,並將該測量值通知控制部100。
壓力計123測量反應管2內及排氣管內等之各部的壓力,並將該測量值通知控制部100。
加熱器控制器124係用以個別地控制升溫用加熱器7者,且根據來自控制部100之指示,通電至升溫用加熱器7以加熱該等升溫用加熱器7,且,個別地測量升溫用加熱器7之消耗電力,並通知控制部100。
MFC 125配置於處理氣體供給管8、氮氣供給管10等之各配管中,將流過各配管之氣體的流量控制在由控制部100指示之量,同時測量實際流動之氣體的流量,並通知控制部100。
閥控制部126配置於各配管,且將配置於各配管之閥的開度控制在由控制部100指示之值。
真空泵127與排氣管連接,且將反應管2內之氣體排出。
晶舟升降機128,藉由使蓋體5上升,將晶舟6(半導體晶圓W)載入反應管2內,且藉由使蓋體5下降,將晶舟6(半導體晶圓W)由反應管2內卸載。
控制部100係由配方記憶部111、ROM(唯讀記憶體)112、RAM(隨機存取記憶體)113、I/O埠(輸入/輸出埠)114、CPU(中央處理單元)115、及互相連接該等元件之匯流排116構成。
配方記憶部111中記憶有設置用配方及多數製程用配方。處理裝置1之製造初期,只儲存設置用配方。設置用配方係生成按照各處理裝置之熱模型等時實行者。製程用配方係使用者實際進行之每一熱處理(製程)所準備的配方,且規定由半導體晶圓W載入反應管2,到卸載已處理之半導體晶圓W為止之各部的溫度變化、反應管2內之壓力變化、各種氣體供給之開始及停止時間及供給量。
ROM 112係由EEPROM(電子可抹除可程式化唯讀記憶體)、快閃記憶體、硬式磁碟機等構成,且記憶CPU 115之動作程式等的記錄媒體。
RAM 113具有作為CPU 115之工作區等之功能。
I/O埠114與操作面板121、溫度感測器122、壓力計123、加熱器控制器124、MFC 125、閥控制部126、真空泵127、晶舟升降機128等連接,且控制資料或信號之輸出入。
CPU 115構成控制部100之中樞,且執行ROM 112記憶之控制程式。此外,CPU 115依據來自操作面板121之指示,並按照配方記憶部111所記憶之配方(製程用配方),控制處理裝置1之動作。即,CPU 115使溫度感測器122、壓力計123、MFC 125等測量反應管2內及排氣管內等之各部的溫度、壓力、流量等,並依據該測量資料,輸出控制信號等至加熱器控制器124、MFC 125、閥控制部126、真空泵127等,且以依照製程用配方之方式控制上述各部。
匯流排116在各部之間傳送資訊。
接著,說明使用如上述地構成之處理裝置1的薄膜形成方法。此外,在以下說明中,構成處理裝置1之各部的動作係藉由控制部100(CPU 115)控制。再者,各處理中之反應管2內的溫度、壓力、氣體流量等,如前所述地,藉由控制部100(CPU 115)控制加熱器控制器124(升溫用加熱器7)、MFC 125、閥控制部126等,設定成,例如,按照如圖3所示之配方(時序)的條件。
圖3係用以說明薄膜形成方法之圖。如圖3所示地,薄膜形成方法包含第1成膜程序、臭氧(O3 )退火程序、及使用氧化力比第1成膜程序強之氧化劑而形成薄膜的第2成膜程序。此外,在本例中,以使用四二甲胺鉿(TDMAH)作為成膜用氣體及H2 O、O3 作為氧化劑而形成HfO膜之情形為例進行說明。
首先,如圖3(a)所示地,將反應管2內設定於既定溫度,例如,250℃。此外,如圖3(b)所示地,由氮氣供給管10供給預定量之氮至反應管2內。接著,將收容有半導體晶圓W之晶舟6載置於蓋體5上。而且,藉由晶舟升降機128使蓋體5上升,將半導體晶圓W(晶舟6)載入反應管2內(載入步驟)。
接著,如圖3(b)所示地,由氮氣供給管10供給預定量之氮至反應管2內,同時如圖3(a)所示地,將反應管2內設定於既定溫度,例如,250℃。而且,使反應管2內安定在該溫度(安定化步驟)。
在此,反應管2內之溫度宜為150℃至400℃,且以200℃至300℃更佳。這是因為藉由令反應管2內之溫度在該範圍內,可提高形成之薄膜的膜質或膜厚均一性。
若反應管2內安定在既定溫度,便實施第1成膜程序。首先,停止由氮氣供給管10供給氮,接著供給成膜用氣體至反應管2內。具體而言,如圖3(c)所示地,由處理氣體供給管8供給預定量之四二甲胺鉿(TDMAH)(原料流步驟)。
供給至反應管2內之四二甲胺鉿(TDMAH)在反應管2內被加熱而活化。因此,若供給四二甲胺鉿(TDMAH)至反應管2內,則半導體晶圓W與經活化之Hf等反應,而在半導體晶圓W上吸附預定量之Hf。
若在半導體晶圓W上吸附預定量之Hf,則停止由處理氣體供給管8供給四二甲胺鉿(TDMAH)。而且,排出反應管2內之氣體,同時如圖3(b)所示地,由氮氣供給管10供給預定量之氮至反應管2內,接著排出反應管2內之氣體至反應管2外(真空/沖洗步驟)。
接著,停止由氮氣供給管10供給氮,並供給氧化劑至反應管2內。具體而言,如圖3(d)所示地,由處理氣體供給管8供給預定量之H2 O(H2 O氧化步驟)。
供給至反應管2內之H2 O在反應管2內被加熱而活化。因此,若供給H2 O至反應管2內,則氧化已吸附在半導體晶圓W上之Hf,而在半導體晶圓W上形成預定量之HfO膜。
若在半導體晶圓W上形成預定量之HfO膜,則停止由處理氣體供給管8供給H2 O。而且,排出反應管2內之氣體,同時如圖3(b)所示地,由氮氣供給管10供給預定量之氮至反應管2內,接著排出反應管2內之氣體至反應管2外(真空/沖洗步驟)。
藉此,第1成膜程序之1循環結束。接著,再開始由原料流步驟開始之1循環。而且,重複該循環預定次數,接著藉由在半導體晶圓W上形成所希望厚度之HfO膜,第1成膜程序結束。
若第1成膜程序結束,則如圖3(a)所示地,將反應管2內設定於既定溫度,例如,250℃後,如圖3(e)所示地,由處理氣體供給管8供給預定量之臭氧(O3 ),使反應管2內退火(O3 退火程序)。
若供給臭氧至反應管2內,臭氧氧化藉由第1成膜程序成膜之HfO膜,使成膜後之HfO膜改質。藉此,在此後進行之第2成膜程序中供給至反應管2內的臭氧,供給至在第2成膜程序中吸附之Hf上,可在第2成膜程序中亦形成HfO膜。
吾人認為這是因為習知之High-k膜之膜厚減少或膜厚之均一性惡化,無法形成良好High-k膜的問題係由於在第1成膜程序中成膜之使用H2 O的HfO膜(High-k膜)氧化不完全,故若在第2成膜程序中供給O3 至反應管2內,使用於在第1成膜程序中成膜之HfO膜的改質等,而在第2成膜程序中未供給充分之O3 至半導體晶圓上。在本實施形態中,因為在第1成膜程序後,實施O3 退火程序,故在此後進行之第2成膜程序中供給至反應管2內的臭氧供給至在第2成膜程序中吸附之Hf上,可在第2成膜程序中亦形成HfO膜。結果,沒有膜厚減少或膜厚之均一性惡化之情形,可形成良好之HfO膜(High-k膜)。
若供給充分之臭氧至反應管2內,則停止由處理氣體供給管8供給臭氧。而且,如圖3(b)所示地,由氮氣供給管10供給預定量之氮至反應管2內,接著排出反應管2內之氣體至反應管2外(沖洗步驟)。此外,將反應管2內之既定溫度設定於,例如,如圖3(a)所示地,250℃。
若將反應管2內設定於既定溫度,則實施第2成膜程序。在第2成膜程序中,使用氧化力比第1成膜程序之氧化劑(H2 O)強之氧化劑(O3 )而形成薄膜。這是因為為抑制基底層(半導體晶圓W之表面)之氧化而供給氧化力比第2成膜程序之氧化劑弱之氧化劑的關係。
首先,停止由氮氣供給管10供給氮,接著供給成膜用氣體至反應管2內。具體而言,如圖3(c)所示地,由處理氣體供給管8供給預定量之四二甲胺鉿(TDMAH)(原料流步驟)。
供給至反應管2內之四二甲胺鉿(TDMAH)在反應管2內被加熱而活化。因此,若供給四二甲胺鉿(TDMAH)至反應管2內,則在第1成膜程序中成膜之HfO膜上吸附預定量之Hf。
若吸附預定量之Hf,則停止由處理氣體供給管8供給四二甲胺鉿(TDMAH)。而且,排出反應管2內之氣體,同時如圖3(b)所示地,由氮氣供給管10供給預定量之氮至反應管2內,接著排出反應管2內之氣體至反應管2外(真空/沖洗步驟)。
接著,停止由氮氣供給管10供給氮,並供給氧化劑至反應管2內。具體而言,如圖3(d)所示地,由處理氣體供給管8供給預定量之氧化力比第1成膜程序之H2 O強的臭氧(O3 )(O3 氧化步驟)。
供給至反應管2內之O3 在反應管2內被加熱而活化。因此,若供給O3 至反應管2內,則氧化已吸附之Hf,而形成預定量之HfO膜。
在此,由於在第2成膜程序前實施O3 退火程序,故在第2成膜程序中供給至反應管2內之臭氧供給至在第2成膜程序中吸附之Hf上。因此,不會產生習知之High-k膜之膜厚減少或膜厚之均一性惡化,無法形成良好High-k膜的問題。因此,沒有膜厚減少或膜厚之均一性惡化之情形,可形成良好之HfO膜(High-k膜)。
若形成預定量之HfO膜,則停止由處理氣體供給管8供給O3 。而且,排出反應管2內之氣體,同時如圖3(b)所示地,由氮氣供給管10供給預定量之氮至反應管2內,接著排出反應管2內之氣體至反應管2外(真空/沖洗步驟)。
藉此,第2成膜程序之1循環結束。接著,再開始由原料流步驟開始之1循環。而且,重複該循環預定次數,接著藉由在半導體晶圓W上形成所希望厚度之HfO膜,第2成膜程序結束。
若第2成膜程序結束,如圖3(b)所示地,由氮氣供給管10供給預定量之氮至反應管2內,同時如圖3(a)所示地,將反應管2內設定於既定溫度,例如,250℃。此外,由氮氣供給管10供給預定量之氮至反應管2內以藉氮循環沖洗反應管2內而返回常壓(回復常壓步驟)。接著,藉由晶舟升降機128使蓋體5下降,使半導體晶圓W卸載(卸載步驟)。
接著,為確認本發明之效果,在與上述實施形態相同之條件下,就實施O3 退火程序之情形與未實施之情形,測量形成之HfO膜的膜厚及面內均一性。結果,若未實施O3 退火程序,則產生膜厚及面內均一性之惡化,且可確認藉由實施O3 退火程序提高膜厚及面內均一性。此外,藉由X射線光電子光譜分析法(XPS:X-ray Photoelectron Spectroscopy)測量所形成之HfO膜的元素組成,結果確認藉由實施O3 退火程序,可減少HfO膜中含有之雜質。
如以上說明地,依據本實施形態,由於在第1成膜程序與第2成膜程序之間實施O3 退火程序,故不會產生習知之High-k膜之膜厚減少或膜厚之均一性惡化,無法形成良好High-k膜的問題。因此,沒有膜厚減少或膜厚之均一性惡化之情形,可形成良好之HfO膜(High-k膜)。
此外,本發明不限於上述實施形態,可有各種變形、應用。以下,說明可適用於本發明之其他實施形態。
上述實施形態中,雖然以HfO膜之情形為例說明了本發明,但例如,只要是如藉由交互地供給有機金屬化合物氣體及氧化劑而形成之AlO膜、ZrO膜之類的High-k膜,即可適用本發明。
在上述實施形態中,雖然以使用H2 O及O3 作為氧化劑之情形為例說明了本發明,但本發明只要使用氧化力不同之2種氧化劑即可,且可使用各種氧化劑。
處理氣體供給時,可只供給處理氣體,亦可供給處理氣體與作為稀釋氣體之氮的混合氣體。在供給混合氣體之情形下,可輕易地設定處理時間。稀釋氣體宜為惰性氣體,除了氮以外,可使用,例如,氦(He)、氖(Ne)、氬(Ar)、氪(Ke)、氙(Xe)。
在本實施形態中,雖然以雙管構造之批式處理裝置作為處理裝置1之情形為例說明了本發明,但例如,單管構造之批式處理裝置亦可適用本發明。此外,批式橫型處理裝置或單片式處理裝置亦可適用本發明。
本發明之實施形態的控制部100,不論是否專用之系統,都可使用一般之電腦系統實現。例如,在通用電腦中,由儲存有用以實行上述處理之程式的記錄媒體(軟磁碟、CD-ROM(光碟唯讀記憶體)等)安裝該程式,藉此可構成實行上述處理之控制部100。
而且,用以供給該等程式之手段係任意的。除了可如上所述地透過預定記錄媒體供給以外,例如,亦可透過通信迴路、通信網路、通信系統等供給。在此情形下,例如,亦可將該程式佈告於通信網路之佈告欄(BBS:電子佈告欄系統),而透過網路提供該程式。而且,啟動如此提供之程式,且在OS(操作系統)之控制下,與其他應用程式同樣地執行,藉此可實行上述之處理。
本發明對薄膜形成方法及薄膜形成裝置而言是有用的。
依據本發明,可在沒有膜厚減少或膜厚之均一性惡化之情形下,形成薄膜。
此次揭示之實施形態在所有方面均應考慮是舉例顯示而不是限制。實質上,上述實施形態可藉各式各樣之形態具體表現。此外,在不脫離附加之申請範圍及其主旨之情形下,亦可藉各種形態省略、置換、變更上述實施形態。本發明之範圍意圖包含在附加之申請專利範圍及其均等之意味及範圍內的所有變更。
1‧‧‧處理裝置
2‧‧‧反應管
2a‧‧‧內管
2b‧‧‧外管
3‧‧‧排氣部
4‧‧‧排氣口
5‧‧‧蓋體
6‧‧‧晶舟
7‧‧‧升溫用加熱器
8‧‧‧處理氣體供給管
10‧‧‧氮氣供給管
100‧‧‧控制部
111‧‧‧配方記憶部
112‧‧‧ROM(唯讀記憶體)
113‧‧‧RAM(隨機存取記憶體)
114‧‧‧I/O埠(輸入/輸出)埠
115‧‧‧CPU(中央處理單元)
116‧‧‧匯流排
121‧‧‧操作面板
122‧‧‧溫度感測器
123‧‧‧壓力計
124‧‧‧加熱器控制器
125‧‧‧質量流控制器(MFC)
126‧‧‧閥控制部
127‧‧‧真空泵
128‧‧‧晶舟升降機
W‧‧‧半導體晶圓
附加之圖式加入作為本說明書之一部份以顯示本發明之實施形態,且與上述之一般性說明及後述之實施形態的細節一起,說明本發明之概念。
[圖1] 係顯示本發明實施形態之處理裝置的圖。
[圖2] 係顯示圖1之控制部之結構的圖。
[圖3] 係用以說明薄膜形成方法的圖。

Claims (6)

  1. 一種薄膜形成方法,包含:第1成膜程序,重複進行吸附步驟及氧化步驟多數次;該吸附步驟在將收容被處理體之反應室內加熱至既定溫度之狀態下供給有機金屬化合物氣體,使有機金屬化合物吸附在該被處理體上;而該氧化步驟在將該反應室內加熱至既定溫度之狀態下供給第1氧化劑,使吸附在該被處理體上之有機金屬化合物氧化而形成薄膜;退火程序,在該第1成膜程序結束後,在將該反應室內加熱至既定溫度之狀態下供應氧化力比該第1氧化劑強之第2氧化劑;及第2成膜程序,其在該退火程序後,重複進行吸附步驟及氧化步驟多數次;該吸附步驟在將該反應室內加熱至既定溫度之狀態下供給該有機金屬化合物氣體,使該有機金屬化合物吸附在該第1成膜程序中形成之該薄膜上;而該氧化步驟在將該反應室內加熱至既定溫度之狀態下供給該第2氧化劑,使吸附在該第1成膜程序中形成之該薄膜上的該有機金屬化合物氧化而形成薄膜。
  2. 如申請專利範圍第1項之薄膜形成方法,其中該既定溫度係200℃至300℃。
  3. 如申請專利範圍第1項之薄膜形成方法,其中該第1氧化劑使用H2O,而該第2氧化劑使用臭氧。
  4. 一種薄膜形成裝置,包含:加熱機構,其將收容被處理體之反應室內加熱至既定溫度;有機金屬化合物氣體供給機構,其供給有機金屬化合物氣體至該反應室內; 氧化劑供給機構,其供給第1氧化劑及第2氧化劑至該反應室內,其中該第2氧化劑之氧化力比該第1氧化劑強;及控制機構,其控制本薄膜形成裝置之各部分,該控制機構重複進行以下程序:在控制該加熱機構而將該反應室內加熱至既定溫度之狀態下,控制該有機金屬化合物氣體供給機構而供給該有機金屬化合物氣體至該反應室內,使有機金屬化合物吸附在該被處理體上後,控制該氧化劑供給機構而供給該第1氧化劑至該反應室內,使吸附在該被處理體上之該有機金屬化合物氧化而形成薄膜,然後,執行退火程序,在控制該加熱機構而將該反應室內加熱至既定溫度之狀態下,控制該氧化劑供給機構而供給該第2氧化劑至該反應室內,進一步,重複進行以下程序:在控制該加熱機構而將該反應室內加熱至既定溫度之狀態下,控制該有機金屬化合物氣體供給機構而供給該有機金屬化合物氣體至該反應室內,使該有機金屬化合物吸附在該形成之薄膜上後,控制該氧化劑供給機構而供給該第2氧化劑至該反應室內,使吸附在該薄膜上之該有機金屬化合物氧化而形成薄膜。
  5. 如申請專利範圍第4項之薄膜形成裝置,其中該既定溫度係200℃至300℃。
  6. 如申請專利範圍第4項之薄膜形成裝置,其中該第1氧化劑係H2O,該第2氧化劑係臭氧。
TW104109124A 2014-03-27 2015-03-23 薄膜形成方法及薄膜形成裝置 TWI613727B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-065142 2014-03-27
JP2014065142A JP2015188028A (ja) 2014-03-27 2014-03-27 薄膜形成方法、及び、薄膜形成装置

Publications (2)

Publication Number Publication Date
TW201608637A TW201608637A (zh) 2016-03-01
TWI613727B true TWI613727B (zh) 2018-02-01

Family

ID=54343970

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104109124A TWI613727B (zh) 2014-03-27 2015-03-23 薄膜形成方法及薄膜形成裝置

Country Status (4)

Country Link
US (1) US9574269B2 (zh)
JP (1) JP2015188028A (zh)
KR (1) KR20150112843A (zh)
TW (1) TWI613727B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11718030B2 (en) * 2016-12-29 2023-08-08 3D Systems, Inc Spatial light modulation of powder-based additive manufacturing with temperature control including by sensor feedback
KR20190005741A (ko) * 2017-07-07 2019-01-16 도쿄엘렉트론가부시키가이샤 반도체 장치의 제조 방법 및 금속 산화물 막의 형성 방법
JP7158337B2 (ja) * 2019-05-20 2022-10-21 東京エレクトロン株式会社 成膜方法
JP7345787B2 (ja) * 2020-04-30 2023-09-19 東京エレクトロン株式会社 選択成膜方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6124158A (en) * 1999-06-08 2000-09-26 Lucent Technologies Inc. Method of reducing carbon contamination of a thin dielectric film by using gaseous organic precursors, inert gas, and ozone to react with carbon contaminants
TW201215702A (en) * 2010-05-28 2012-04-16 Tokyo Electron Ltd Film formation method and film formation apparatus
US20120219710A1 (en) * 2011-02-28 2012-08-30 Tokyo Electron Limited Method of forming titanium nitride film, apparatus for forming titanium nitride film, and program
US20130200491A1 (en) * 2012-02-06 2013-08-08 Tokyo Electron Limited Method of manufacturing capacitor, capacitor and method of forming dielectric film for use in capacitor

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001098376A (ja) 1999-09-28 2001-04-10 Ebara Corp 酸化物薄膜の製造方法及びその装置
US6649502B2 (en) * 2000-05-16 2003-11-18 Samsung Electronics Co., Ltd. Methods of forming multilayer dielectric regions using varied deposition parameters
JP4476880B2 (ja) 2005-06-24 2010-06-09 株式会社東芝 絶縁膜の形成方法、半導体装置の製造方法、半導体装置
US20070065578A1 (en) * 2005-09-21 2007-03-22 Applied Materials, Inc. Treatment processes for a batch ALD reactor
JP4836761B2 (ja) 2006-11-29 2011-12-14 株式会社日立国際電気 半導体デバイスの製造方法
US7816278B2 (en) 2008-03-28 2010-10-19 Tokyo Electron Limited In-situ hybrid deposition of high dielectric constant films using atomic layer deposition and chemical vapor deposition
JP5131601B2 (ja) 2009-06-09 2013-01-30 アンリツ株式会社 光変調信号発生装置
JP5770892B2 (ja) 2009-11-20 2015-08-26 株式会社日立国際電気 半導体装置の製造方法、基板処理方法および基板処理装置
JP2012059833A (ja) * 2010-09-07 2012-03-22 Hitachi Kokusai Electric Inc 半導体装置の製造方法及び基板処理装置
JP2012134311A (ja) 2010-12-21 2012-07-12 Hitachi Kokusai Electric Inc 半導体デバイスの製造方法及び基板処理装置
US20140130860A1 (en) * 2011-06-30 2014-05-15 Kyocera Corporation Method for forming alumina film and solar cell element
US9464352B2 (en) * 2014-05-02 2016-10-11 Asm Ip Holding B.V. Low-oxidation plasma-assisted process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6124158A (en) * 1999-06-08 2000-09-26 Lucent Technologies Inc. Method of reducing carbon contamination of a thin dielectric film by using gaseous organic precursors, inert gas, and ozone to react with carbon contaminants
TW201215702A (en) * 2010-05-28 2012-04-16 Tokyo Electron Ltd Film formation method and film formation apparatus
US20120219710A1 (en) * 2011-02-28 2012-08-30 Tokyo Electron Limited Method of forming titanium nitride film, apparatus for forming titanium nitride film, and program
US20130200491A1 (en) * 2012-02-06 2013-08-08 Tokyo Electron Limited Method of manufacturing capacitor, capacitor and method of forming dielectric film for use in capacitor

Also Published As

Publication number Publication date
US20160281224A1 (en) 2016-09-29
JP2015188028A (ja) 2015-10-29
US9574269B2 (en) 2017-02-21
KR20150112843A (ko) 2015-10-07
TW201608637A (zh) 2016-03-01

Similar Documents

Publication Publication Date Title
JP4959733B2 (ja) 薄膜形成方法、薄膜形成装置及びプログラム
TWI591200B (zh) 薄膜形成方法及薄膜形成裝置
JP4456533B2 (ja) シリコン酸化膜の形成方法、シリコン酸化膜の形成装置及びプログラム
JP4916257B2 (ja) 酸化膜の形成方法、酸化膜の形成装置及びプログラム
JP2007019145A (ja) シリコン酸窒化膜の形成方法、シリコン酸窒化膜の形成装置及びプログラム
TWI613727B (zh) 薄膜形成方法及薄膜形成裝置
JP2008140864A (ja) シリコン窒化膜の形成方法、形成装置、形成装置の処理方法及びプログラム
JP5692850B2 (ja) 薄膜形成方法、薄膜形成装置及びプログラム
JP5193527B2 (ja) シリコン酸化膜の形成方法、シリコン酸化膜の形成装置及びプログラム
US9234275B2 (en) Method and apparatus of forming metal compound film, and electronic product
JP2014209558A (ja) シリコン酸化膜の形成方法、及び、シリコン酸化膜の形成装置
JP2015179729A (ja) シリコン酸化膜の形成方法およびその形成装置
JP2015192063A (ja) アモルファスシリコン膜形成装置の洗浄方法、アモルファスシリコン膜の形成方法およびアモルファスシリコン膜形成装置
TWI608118B (zh) 矽氧化膜之形成方法及矽氧化膜之形成裝置
US20150267292A1 (en) Cleaning method of silicon oxide film forming apparatus, silicon oxide film forming method, and silicon oxide film forming apparatus
JP2010021378A (ja) シリコン酸窒化膜の形成方法および形成装置
TW201708595A (zh) 矽氮化膜之形成方法及矽氮化膜之形成裝置
JP5661444B2 (ja) 薄膜形成装置、薄膜形成装置の洗浄方法及びプログラム
JP6196925B2 (ja) 薄膜形成装置の立ち上げ方法、及び、薄膜形成装置
KR20220086483A (ko) 성막 방법 및 성막 장치
US20150243492A1 (en) Apparatus and method of forming silicon nitride film
US9425040B2 (en) Method of forming laminated film and forming apparatus thereof
JP2015080001A (ja) 薄膜形成方法、薄膜形成装置及びプログラム