TWI579395B - Gas growth method - Google Patents

Gas growth method Download PDF

Info

Publication number
TWI579395B
TWI579395B TW105109146A TW105109146A TWI579395B TW I579395 B TWI579395 B TW I579395B TW 105109146 A TW105109146 A TW 105109146A TW 105109146 A TW105109146 A TW 105109146A TW I579395 B TWI579395 B TW I579395B
Authority
TW
Taiwan
Prior art keywords
nitride film
gallium nitride
aluminum
film
gallium
Prior art date
Application number
TW105109146A
Other languages
Chinese (zh)
Other versions
TW201638372A (en
Inventor
Hideshi Takahashi
Yuusuke Sato
Original Assignee
Nuflare Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuflare Technology Inc filed Critical Nuflare Technology Inc
Publication of TW201638372A publication Critical patent/TW201638372A/en
Application granted granted Critical
Publication of TWI579395B publication Critical patent/TWI579395B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02293Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process formation of epitaxial layers by a deposition process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/049Nitrides composed of metals from groups of the periodic table
    • H01L2924/050313th Group
    • H01L2924/05032AlN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10323Aluminium nitride [AlN]

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical Vapour Deposition (AREA)
  • Recrystallisation Techniques (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

氣相成長方法 Gas phase growth method

本發明是有關於一種於矽基板上形成氮化鎵的氣相成長方法。 The present invention relates to a vapor phase growth method for forming gallium nitride on a tantalum substrate.

作為形成高品質的半導體膜的方法,有藉由氣相成長使單晶膜於晶圓(wafer)等基板上進行成長的磊晶成長(epitaxial growth)技術。磊晶成長是一面對晶圓進行加熱,一面將成為成膜原料的來源氣體(source gas)等處理氣體(process gas)供給至晶圓表面。於晶圓表面發生來源氣體的熱反應等,而於晶圓表面形成磊晶單晶膜。 As a method of forming a high-quality semiconductor film, there is an epitaxial growth technique in which a single crystal film is grown on a substrate such as a wafer by vapor phase growth. The epitaxial growth is to supply a process gas such as a source gas which is a film forming material to the wafer surface while heating the wafer. An epitaxial single crystal film is formed on the surface of the wafer by thermal reaction of the source gas on the surface of the wafer.

近年來,作為發光元件(device)或功率元件(power device)的材料,氮化鎵(GaN)系的半導體元件受到矚目。作為形成GaN系的半導體膜的磊晶成長技術,存在有機金屬氣相成長法(MOCVD(Metallo Organic Chemical Vapor Deposition)法)。 In recent years, a gallium nitride (GaN)-based semiconductor element has attracted attention as a material of a light-emitting device or a power device. As an epitaxial growth technique for forming a GaN-based semiconductor film, there is a MOCVD (Metallo Organic Chemical Vapor Deposition) method.

例如,當在矽(Si)基板上形成氮化鎵膜時,若氮化鎵膜的膜厚變厚,則有因矽與氮化鎵的熱膨脹係數等的不同而於氮化鎵膜產生裂紋(crack)的問題。例如日本專利公開公報專利2006-128626號中記載有如下方法:為了解決所述問題,於將氮化鋁(AlN)的緩衝層(buffer layer)形成在矽基板上之後,在第1壓力下形成第1氮化鎵,在較第1壓力更低的第2壓力下形成氮 化鎵。 For example, when a gallium nitride film is formed on a germanium (Si) substrate, if the film thickness of the gallium nitride film is increased, cracks may occur in the gallium nitride film due to a difference in thermal expansion coefficient between germanium and gallium nitride. (crack) problem. For example, Japanese Patent Laid-Open Publication No. 2006-128626 discloses a method in which a buffer layer of aluminum nitride (AlN) is formed on a tantalum substrate and formed under a first pressure in order to solve the above problem. The first gallium nitride forms nitrogen at a second pressure lower than the first pressure Gallium.

本發明提供一種可抑制於矽基板上形成氮化鎵時產生裂紋的氣相成長方法。 The present invention provides a vapor phase growth method capable of suppressing generation of cracks when gallium nitride is formed on a tantalum substrate.

本發明的一實施方式的氣相成長方法是於矽基板上形成單晶的氮化鋁膜,於所述氮化鋁膜上形成單晶的氮化鋁鎵膜,於所述氮化鋁鎵膜上形成單晶的第1氮化鎵膜,於所述第1氮化鎵膜上,以較所述第1氮化鎵膜的形成更高的溫度且更高的成長速度形成單晶的第2氮化鎵。 A vapor phase growth method according to an embodiment of the present invention is to form a single crystal aluminum nitride film on a tantalum substrate, and form a single crystal aluminum gallium nitride film on the aluminum nitride film, and the aluminum gallium nitride film is formed on the aluminum nitride film. Forming a single crystal first gallium nitride film on the film, forming a single crystal on the first gallium nitride film at a higher temperature and higher growth rate than the first gallium nitride film The second gallium nitride.

所述實施方式的氣相成長方法中,理想的是將所述第1氮化鎵膜形成為島狀,且將所述第1氮化鎵膜的高度的平均設為10nm以上且100nm以下。 In the vapor phase growth method of the embodiment, it is preferable that the first gallium nitride film is formed in an island shape, and an average height of the first gallium nitride film is 10 nm or more and 100 nm or less.

所述實施方式的氣相成長方法中,理想的是所述第1氮化鎵膜形成時的V/III比大於所述第2氮化鎵膜形成時的V/III比。 In the vapor phase growth method of the above embodiment, it is preferable that the V/III ratio at the time of forming the first gallium nitride film is larger than the V/III ratio at the time of forming the second gallium nitride film.

所述實施方式的氣相成長方法中,理想的是所述第1氮化鎵膜形成時的成長速度為3μm/hour以下。 In the vapor phase growth method of the above embodiment, it is preferable that the growth rate at the time of forming the first gallium nitride film is 3 μm/hour or less.

所述實施方式的氣相成長方法中,理想的是所述第1氮化鎵膜形成時的溫度為950℃以上且小於1050℃,所述第2氮化鎵膜形成時的溫度為1000℃以上且小於1100℃。 In the vapor phase growth method of the embodiment, it is preferable that a temperature at which the first gallium nitride film is formed is 950 ° C or more and less than 1050 ° C, and a temperature at which the second gallium nitride film is formed is 1000 ° C. Above and less than 1100 °C.

根據本發明,可提供抑制於矽基板上形成氮化鎵膜時產生裂紋的氣相成長方法。 According to the present invention, it is possible to provide a vapor phase growth method which suppresses generation of cracks when a gallium nitride film is formed on a tantalum substrate.

10‧‧‧矽基板 10‧‧‧矽 substrate

12‧‧‧氮化鋁膜 12‧‧‧Aluminum nitride film

14‧‧‧氮化鋁鎵膜 14‧‧‧Aluminum nitride film

16‧‧‧第1氮化鎵膜 16‧‧‧1st gallium nitride film

18‧‧‧第2氮化鎵膜 18‧‧‧2nd GaN film

h‧‧‧第1氮化鎵膜的高度 H‧‧‧ Height of the first gallium nitride film

w‧‧‧第1氮化鎵膜的寬度 w‧‧‧The width of the first gallium nitride film

S100~S140‧‧‧步驟 S100~S140‧‧‧Steps

圖1是實施方式的氣相成長方法的製程流程圖。 1 is a process flow diagram of a vapor phase growth method of an embodiment.

圖2是表示實施方式的氣相成長方法的示意剖面圖。 Fig. 2 is a schematic cross-sectional view showing a vapor phase growth method of the embodiment.

圖3是表示實施方式的氣相成長方法的示意剖面圖。 3 is a schematic cross-sectional view showing a vapor phase growth method of the embodiment.

圖4是表示實施方式的氣相成長方法的示意剖面圖。 4 is a schematic cross-sectional view showing a vapor phase growth method of the embodiment.

以下,一面參照圖式一面對本發明的實施方式進行說明。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

實施方式的氣相成長方法是於矽基板上形成單晶的氮化鋁膜,於氮化鋁膜上形成單晶的氮化鋁鎵膜,於氮化鋁膜上形成單晶的第1氮化鎵膜,於第1氮化鎵膜上,以較第1氮化鎵的形成更高的溫度且更高的成長速度形成單晶的第2氮化鎵膜。 In the vapor phase growth method of the embodiment, a single crystal aluminum nitride film is formed on the tantalum substrate, a single crystal aluminum gallium nitride film is formed on the aluminum nitride film, and a single crystal first nitrogen is formed on the aluminum nitride film. The gallium nitride film forms a single crystal second gallium nitride film on the first gallium nitride film at a higher temperature and higher growth rate than the first gallium nitride film.

圖1是實施方式的氣相成長方法的製程流程圖。另外,圖2~圖4是表示實施方式的氣相成長方法的示意剖面圖。 1 is a process flow diagram of a vapor phase growth method of an embodiment. 2 to 4 are schematic cross-sectional views showing a vapor phase growth method of the embodiment.

本實施方式的氣相成長方法具備矽(Si)基板準備步驟(S100)、氮化鋁膜(AlN)形成步驟(S110)、氮化鋁鎵膜(AlGaN)形成步驟(S120)、第1氮化鎵膜(GaN)形成步驟(S130)、以及第2氮化鎵膜(GaN)形成步驟(S140)。本實施方式中,藉由MOCVD法進行成膜。 The vapor phase growth method of the present embodiment includes a bismuth (Si) substrate preparation step (S100), an aluminum nitride film (AlN) formation step (S110), an aluminum gallium nitride film (AlGaN) formation step (S120), and a first nitrogen. A gallium nitride film (GaN) forming step (S130) and a second gallium nitride film (GaN) forming step (S140). In the present embodiment, film formation is performed by an MOCVD method.

首先,準備例如於氫氣(H2)中且於1100℃下進行烘烤(bake)而去除自然氧化膜的(111)面的單晶的矽基板10(步驟S100)。矽基板10的厚度例如為300μm以上且1500μm以下。 First, a single-crystal substrate 10 of a (111) plane in which a natural oxide film is removed by baking in hydrogen (H 2 ) at 1,100 ° C is prepared (step S100). The thickness of the tantalum substrate 10 is, for example, 300 μm or more and 1500 μm or less.

其次,於矽基板10上形成單晶的氮化鋁(AlN)膜12(步驟S110)。氮化鋁膜12是於矽基板10上進行磊晶成長。 Next, a single crystal aluminum nitride (AlN) film 12 is formed on the tantalum substrate 10 (step S110). The aluminum nitride film 12 is epitaxially grown on the tantalum substrate 10.

氮化鋁膜12是藉由如下方式進行成長:對矽基板10進行加熱,且供給例如經氫氣(H2)稀釋的三甲基鋁(Trimethylaluminium,TMA)與經氫氣(H2)稀釋的氨氣(NH3)作為來源氣體。TMA為鋁(Al)的來源氣體,氨氣為氮(N)的來源氣體。 Aluminum nitride film 12 is grown by the following manner: The silicon substrate 10 is heated, and is supplied to e.g. (H 2) (H 2) dilution of the diluted trimethylaluminum (Trimethylaluminium, TMA) and ammonia via hydrogen from the hydrogen Gas (NH 3 ) is used as the source gas. TMA is a source gas of aluminum (Al), and ammonia gas is a source gas of nitrogen (N).

氮化鋁膜12的成長溫度例如設為1000℃以上且1200℃以下。就使氮化鋁膜12的結晶性提昇的觀點而言,成長溫度理想的是1000℃以上。氮化鋁膜12的膜厚例如設為200nm以上且300nm以下。 The growth temperature of the aluminum nitride film 12 is, for example, 1000 ° C or more and 1200 ° C or less. From the viewpoint of improving the crystallinity of the aluminum nitride film 12, the growth temperature is preferably 1000 ° C or higher. The film thickness of the aluminum nitride film 12 is, for example, 200 nm or more and 300 nm or less.

氮化鋁膜12抑制如下情況:當使含有鎵(Ga)的單晶膜於矽基板10上進行磊晶成長時,發生矽與鎵的反應,含有鎵的單晶膜的膜質劣化或矽基板回熔(meltback)。而且,作為緩和矽與含有鎵的單晶膜的晶格失配的緩衝層發揮功能。 The aluminum nitride film 12 suppresses a reaction between germanium and gallium when a single crystal film containing gallium (Ga) is epitaxially grown on the germanium substrate 10, and the film quality of the single crystal film containing gallium is deteriorated or the germanium substrate is deteriorated. Meltback. Further, it functions as a buffer layer for retarding lattice mismatch with a single crystal film containing gallium.

繼而,於氮化鋁膜12上形成單晶的氮化鋁鎵(AlXGa(1-X)N,其中0<X<1)膜14(步驟S120,圖2)。氮化鋁鎵膜14於氮化鋁膜12上進行磊晶成長。 Then, a single crystal aluminum gallium nitride (Al X Ga (1-X) N, where 0 < X < 1) film 14 is formed on the aluminum nitride film 12 (step S120, Fig. 2). The aluminum gallium nitride film 14 is epitaxially grown on the aluminum nitride film 12.

氮化鋁鎵膜14是藉由如下方式進行成長:對矽基板10進行加熱,且供給例如經氫氣(H2)稀釋的三甲基鋁(TMA)與三甲基鎵(Trimethylgallium,TMG)、以及經氫氣(H2)稀釋的氨氣(NH3)作為來源氣體。TMA為鋁(Al)的來源氣體,TMG為 鎵(Ga)的來源氣體,氨氣為氮(N)的來源氣體。 The aluminum gallium nitride film 14 is grown by heating the tantalum substrate 10 and supplying, for example, trimethylaluminum (TMA) and trimethylgallium (TMG) diluted with hydrogen (H 2 ), And ammonia gas (NH 3 ) diluted with hydrogen (H 2 ) as a source gas. TMA is a source gas of aluminum (Al), TMG is a source gas of gallium (Ga), and ammonia gas is a source gas of nitrogen (N).

氮化鋁鎵膜14的成長溫度例如設為1000℃以上且1200℃以下。氮化鋁鎵膜14的膜厚例如設為150nm以上且500nm以下。 The growth temperature of the aluminum gallium nitride film 14 is, for example, 1000 ° C or more and 1200 ° C or less. The film thickness of the aluminum gallium nitride film 14 is, for example, 150 nm or more and 500 nm or less.

氮化鋁鎵膜14作為緩和氮化鋁膜12與形成於氮化鋁鎵膜14的上層的單晶鎵膜的晶格失配的緩衝層發揮功能。就緩和晶格失配的觀點而言,理想的是使氮化鋁鎵膜14中的鋁含量沿自氮化鋁鎵膜14朝向形成於氮化鋁鎵膜14的上層的單晶鎵膜的方向減少。而且,氮化鋁鎵膜14具備如下功能:使自氮化鋁膜12延伸的錯位的朝向彎曲,而抑制錯位向形成於上層的單晶鎵膜延伸。 The aluminum gallium nitride film 14 functions as a buffer layer for retarding the lattice mismatch of the aluminum nitride film 12 and the single crystal gallium film formed on the upper layer of the aluminum gallium nitride film 14. From the viewpoint of relaxing the lattice mismatch, it is desirable to make the aluminum content in the aluminum gallium nitride film 14 from the aluminum nitride gallium film 14 toward the single crystal gallium film formed on the upper layer of the aluminum gallium nitride film 14. The direction is reduced. Further, the aluminum gallium nitride film 14 has a function of bending the orientation of the displacement from the aluminum nitride film 12 and suppressing the displacement to the single crystal gallium film formed on the upper layer.

然後,於氮化鋁鎵膜14上形成單晶的第1氮化鎵(GaN)膜16(步驟S130,圖3)。第1氮化鎵膜16為於氮化鋁鎵膜14上呈島狀磊晶成長而成的島狀膜。 Then, a single crystal first gallium nitride (GaN) film 16 is formed on the aluminum gallium nitride film 14 (step S130, FIG. 3). The first gallium nitride film 16 is an island-like film formed by epitaxial growth of an island on the aluminum gallium nitride film 14.

第1氮化鎵膜16是藉由如下方式進行成長:對矽基板10進行加熱,且供給例如經氫氣(H2)稀釋的三甲基鎵(TMG)與經氫氣(H2)稀釋的氨氣(NH3)作為來源氣體。TMG為鎵(Ga)的來源氣體,氨氣為氮(N)的來源氣體。 The first gallium nitride film 16 is grown by the following manner: The silicon substrate 10 is heated, and is supplied to e.g. (H 2) (H 2) dilution of the diluted trimethyl gallium (TMG) and ammonia via hydrogen from the hydrogen Gas (NH 3 ) is used as the source gas. TMG is a source gas of gallium (Ga), and ammonia gas is a source gas of nitrogen (N).

此時,將島狀的第1氮化鎵膜16的高度(圖3中的h)的平均例如設為10nm以上且100nm以下,將寬度(圖3中的w)的平均設為10nm以上且50nm以下。第1氮化鎵膜16的高度例如可藉由利用掃描式電子顯微鏡(Scanning Electron Microscope,SEM)觀察第1氮化鎵膜16成長後的剖面而求出。 In this case, the average of the height (h in FIG. 3 ) of the island-shaped first gallium nitride film 16 is, for example, 10 nm or more and 100 nm or less, and the average of the width (w in FIG. 3 ) is 10 nm or more. Below 50 nm. The height of the first gallium nitride film 16 can be obtained, for example, by observing a cross section of the first gallium nitride film 16 after growth by a scanning electron microscope (SEM).

而且,將第1氮化鎵膜16形成時的V/III比例如設為1000以上。此處,所謂V/III比是指將氮化鎵進行磊晶成長時的作為鎵(III族元素)的來源氣體的TMG與作為氮(V族元素)的來源氣體的氨氣的流量比。各來源氣體的流量單位為μmol/min。 Further, the V/III ratio at the time of forming the first gallium nitride film 16 is, for example, 1000 or more. Here, the V/III ratio refers to a flow ratio of TMG which is a source gas of gallium (Group III element) to ammonia gas which is a source gas of nitrogen (Group V element) when epitaxial growth of gallium nitride is performed. The flow rate of each source gas is μmol/min.

此外,將第1氮化鎵膜16形成時的成長速度例如設為3μm/hour以下,將溫度例如設為950℃以上且小於1050℃,將壓力例如設為20kPa以上且35kPa以下。 In addition, the growth rate at the time of forming the first gallium nitride film 16 is, for example, 3 μm/hour or less, and the temperature is, for example, 950° C. or more and less than 1050° C., and the pressure is, for example, 20 kPa or more and 35 kPa or less.

繼而,於島狀的第1氮化鎵膜16上,以較第1氮化鎵膜16的形成更高的溫度且更高的成長速度形成單晶的第2氮化鎵(GaN)膜18(步驟S140,圖4)。第2氮化鎵膜18於第1氮化鎵膜16上呈層狀地進行磊晶成長。 Then, a single crystal second gallium nitride (GaN) film 18 is formed on the island-shaped first gallium nitride film 16 at a higher temperature and higher growth rate than the first gallium nitride film 16. (Step S140, Fig. 4). The second gallium nitride film 18 is epitaxially grown in a layered manner on the first gallium nitride film 16.

第2氮化鎵膜18是藉由如下方式進行成長:對矽基板10進行加熱,且供給例如經氫氣(H2)稀釋的三甲基鎵(TMG)與經氫氣(H2)稀釋的氨氣(NH3)作為來源氣體。TMG為鎵(Ga)的來源氣體,氨氣為氮(N)的來源氣體。 Ammonia on the silicon substrate 10 is heated, for example, and is supplied (H 2) A dilute trimethyl gallium (TMG) and hydrogen from the hydrogen by the (H 2): The second gallium nitride film 18 is grown by the following manner Gas (NH 3 ) is used as the source gas. TMG is a source gas of gallium (Ga), and ammonia gas is a source gas of nitrogen (N).

第2氮化鎵膜18的膜厚例如設為3μm以上且10μm以下。第2氮化鎵膜18的膜厚例如可藉由利用SEM觀察第2氮化鎵膜18的成長後的剖面而求出。 The film thickness of the second gallium nitride film 18 is, for example, 3 μm or more and 10 μm or less. The film thickness of the second gallium nitride film 18 can be obtained, for example, by observing the grown cross section of the second gallium nitride film 18 by SEM.

將第2氮化鎵膜18形成時的V/III比設為1000以下。而且,將第2氮化鎵膜18形成時的成長速度設為高於第1氮化鎵膜16形成時的成長速度,例如設為3μm/hour以上。此外,將第2氮化鎵膜18形成時的溫度例如設為1000℃以上且小於1100℃, 將壓力例如設為20kPa以上且35kPa以下,且設為與第1氮化鎵膜16形成時的壓力相同。 The V/III ratio when the second gallium nitride film 18 is formed is set to 1000 or less. In addition, the growth rate at the time of forming the second gallium nitride film 18 is higher than the growth rate at the time of formation of the first gallium nitride film 16, and is, for example, 3 μm/hour or more. Further, the temperature at which the second gallium nitride film 18 is formed is, for example, 1000 ° C or more and less than 1100 ° C, The pressure is, for example, 20 kPa or more and 35 kPa or less, and is set to be the same as the pressure when the first gallium nitride film 16 is formed.

另外,可於第2氮化鎵膜18的一部分或全部中添加例如矽(Si)、鎂(Mg)等摻雜劑(dopant)。 Further, a dopant such as bismuth (Si) or magnesium (Mg) may be added to a part or all of the second gallium nitride film 18.

接下來,對實施方式的作用及效果進行說明。 Next, the action and effect of the embodiment will be described.

當於矽基板上形成氮化鎵膜時,若氮化鎵膜的膜厚變厚,則有因矽與氮化鎵的熱膨脹係數等的不同而於氮化鎵膜產生裂紋的擔憂。認為此情況是因氮化鎵膜的形成中於氮化鎵膜產生拉伸應力而引起。尤其是於加快氮化鎵膜的成長速度的情況下易產生裂紋。 When a gallium nitride film is formed on a germanium substrate, if the film thickness of the gallium nitride film is increased, cracks may occur in the gallium nitride film due to the difference in thermal expansion coefficient between germanium and gallium nitride. This is considered to be caused by the tensile stress generated in the gallium nitride film during the formation of the gallium nitride film. In particular, cracks are likely to occur in the case of accelerating the growth rate of the gallium nitride film.

本實施方式中,使第1氮化鎵膜16呈島狀地進行三維成長。此時,以使島狀的第1氮化鎵膜16在成長至充分的高度之前不會於側面接觸的方式對氮化鋁鎵膜14表面的核形成的密度進行控制。其後,使第2氮化鎵膜18以較第1氮化鎵膜16更快的成長速度呈層狀地進行成長。藉由該方法,可於對氮化鎵膜施加有壓縮應力的狀態下進行氮化鎵膜的形成。因此,可抑制裂紋的產生,並實現氮化鎵膜的高速成長。而且,可形成結晶缺陷減少的氮化鎵膜。 In the present embodiment, the first gallium nitride film 16 is three-dimensionally grown in an island shape. At this time, the density of the nucleation of the surface of the aluminum gallium nitride film 14 is controlled so that the island-shaped first gallium nitride film 16 does not contact the side surface before growing to a sufficient height. Thereafter, the second gallium nitride film 18 is grown in a layered manner at a faster growth rate than the first gallium nitride film 16. According to this method, the formation of the gallium nitride film can be performed in a state where the compressive stress is applied to the gallium nitride film. Therefore, generation of cracks can be suppressed, and high-speed growth of the gallium nitride film can be achieved. Moreover, a gallium nitride film with reduced crystal defects can be formed.

當將第1氮化鎵膜16呈島狀形成時,理想的是將島狀的第1氮化鎵膜16的高度(圖3中的h)的平均設為10nm以上且100nm以下,將寬度(圖3中的w)的平均設為10nm以上且50nm以下。若低於所述範圍,則於第2氮化鎵膜18的成膜時, 有第2氮化鎵膜18的應力未成為壓縮應力的擔憂。而且,有第2氮化鎵膜18的結晶性劣化的擔憂。若超過所述範圍,則有第2氮化鎵膜18的表面形態(morphology)劣化的擔憂。就使第2氮化鎵膜18的表面平坦的觀點而言,理想的是第1氮化鎵膜16的高度的平均為50nm以下。 When the first gallium nitride film 16 is formed in an island shape, it is preferable that the average height (h in FIG. 3) of the island-shaped first gallium nitride film 16 is 10 nm or more and 100 nm or less. The average of (w in FIG. 3) is 10 nm or more and 50 nm or less. When it is less than the above range, when the second gallium nitride film 18 is formed, The stress of the second gallium nitride film 18 does not become a compressive stress. Further, there is a concern that the crystallinity of the second gallium nitride film 18 is deteriorated. If it exceeds the above range, the surface morphology of the second gallium nitride film 18 may be deteriorated. From the viewpoint of making the surface of the second gallium nitride film 18 flat, it is preferable that the average height of the first gallium nitride film 16 is 50 nm or less.

就抑制第1氮化鎵膜16的成長速度,使結晶性提昇,且呈島狀地進行三維成長的觀點而言,理想的是第1氮化鎵膜16形成時的V/III比為1000以上。就使第1氮化鎵膜16的結晶性提昇,且呈島狀地進行三維成長的觀點而言,理想的是第1氮化鎵膜16形成時的成長速度為3μm/hour以下,溫度為950℃以上且小於1050℃,壓力為20kPa以上且35kPa以下。 From the viewpoint of suppressing the growth rate of the first gallium nitride film 16 and improving the crystallinity and three-dimensionally growing in an island shape, it is preferable that the V/III ratio at the time of forming the first gallium nitride film 16 is 1000. the above. From the viewpoint of improving the crystallinity of the first gallium nitride film 16 and three-dimensionally growing in an island shape, it is preferable that the growth rate at the time of forming the first gallium nitride film 16 is 3 μm/hour or less, and the temperature is 950 ° C or more and less than 1050 ° C, the pressure is 20 kPa or more and 35 kPa or less.

此外,就加快第2氮化鎵膜18的成長速度,提昇生產性的觀點而言,第2氮化鎵膜18形成時的V/III比理想的是1000以下,更理想的是500以下。第2氮化鎵膜18形成時的V/III比理想的是小於第1氮化鎵膜16形成時的V/III比。而且,就提昇生產性的觀點而言,第2氮化鎵膜18的成長速度理想的是3μm/hour以上。 In addition, the V/III ratio at the time of forming the second gallium nitride film 18 is preferably 1000 or less, and more preferably 500 or less, from the viewpoint of accelerating the growth rate of the second gallium nitride film 18 and improving productivity. The V/III ratio at the time of forming the second gallium nitride film 18 is preferably smaller than the V/III ratio at the time of formation of the first gallium nitride film 16. Further, from the viewpoint of improving productivity, the growth rate of the second gallium nitride film 18 is preferably 3 μm/hour or more.

此外,於使第2氮化鎵膜18的成長速度快於第1氮化鎵膜16的成長速度的觀點而言,在1000℃以上且小於1100℃,並且較第1氮化鎵膜16的形成更高的溫度下進行第2氮化鎵膜18的形成。而且,就使生產性提昇的觀點而言,關於第2氮化鎵膜18形成時的壓力,理想的是壓力為20kPa以上且35kPa以下,並 且與第1氮化鎵膜16形成時的壓力大致相同。 Further, from the viewpoint of making the growth rate of the second gallium nitride film 18 faster than the growth rate of the first gallium nitride film 16, it is 1000 ° C or more and less than 1100 ° C, and is higher than the first gallium nitride film 16 The formation of the second gallium nitride film 18 is performed at a higher temperature. In view of the improvement in productivity, the pressure at the time of forming the second gallium nitride film 18 is preferably 20 kPa or more and 35 kPa or less. The pressure at the time of forming the first gallium nitride film 16 is substantially the same.

根據本實施方式的氣相成長方法,可抑制於矽基板上形成膜厚較厚的氮化鎵時產生裂紋。而且,能以高速形成結晶缺陷減少且膜厚較厚的氮化鎵膜。 According to the vapor phase growth method of the present embodiment, it is possible to suppress the occurrence of cracks when a gallium nitride having a large thickness is formed on the tantalum substrate. Further, a gallium nitride film having reduced crystal defects and a thick film thickness can be formed at a high speed.

以上,已一面參照具體例一面對本發明的實施方式進行了說明。所述實施方式僅是作為示例而舉出,並不限定本發明。此外,可將各實施方式的構成要素適當組合。 Hereinabove, the embodiment of the present invention has been described with reference to the specific example 1. The embodiments are given by way of example only and are not intended to limit the invention. Further, the constituent elements of the respective embodiments can be combined as appropriate.

實施方式中,對氣相成長方法等中在本發明的說明上無直接必要的部分等省略了記載,但可適當選擇設為必要等而使用。此外,具備本發明的要素且本領域技術人員可適當進行設計變更的所有氣相成長方法包含於本發明的範圍內。本發明的範圍是由申請專利範圍及其均等物的範圍而定義。 In the embodiment, the description of the portion of the gas phase growth method or the like that is not essential to the description of the present invention is omitted, but it may be appropriately selected and used. Further, all vapor phase growth methods including the elements of the present invention and those skilled in the art can appropriately make design changes are included in the scope of the present invention. The scope of the invention is defined by the scope of the claims and their equivalents.

S100~S140‧‧‧步驟 S100~S140‧‧‧Steps

Claims (5)

一種氣相成長方法,於矽基板上形成單晶的氮化鋁膜, 於所述氮化鋁膜上形成單晶的氮化鋁鎵膜, 於所述氮化鋁鎵膜上形成單晶的第1氮化鎵膜,且 於所述第1氮化鎵膜上,以較所述第1氮化鎵膜的形成更高的溫度且更高的成長速度形成單晶的第2氮化鎵膜。A vapor phase growth method for forming a single crystal aluminum nitride film on a tantalum substrate, forming a single crystal aluminum gallium nitride film on the aluminum nitride film, and forming a single crystal on the aluminum gallium nitride film a first gallium nitride film, and a second single gallium nitride formed on the first gallium nitride film at a higher temperature and a higher growth rate than the first gallium nitride film membrane. 如申請專利範圍第1項所述的氣相成長方法,其中將所述第1氮化鎵膜形成為島狀,且將所述第1氮化鎵膜的高度的平均設為10 nm以上且100 nm以下。The vapor phase growth method according to claim 1, wherein the first gallium nitride film is formed in an island shape, and an average height of the first gallium nitride film is 10 nm or more. Below 100 nm. 如申請專利範圍第1項或第2項所述的氣相成長方法,其中所述第1氮化鎵膜形成時的V/III比大於所述第2氮化鎵膜形成時的V/III比。The vapor phase growth method according to claim 1 or 2, wherein a V/III ratio at the time of forming the first gallium nitride film is larger than a V/III at the time of forming the second gallium nitride film ratio. 如申請專利範圍第1項或第2項所述的氣相成長方法,其中所述第1氮化鎵膜形成時的成長速度為3 μm/小時以下。The vapor phase growth method according to the first or second aspect of the invention, wherein the growth rate of the first gallium nitride film is 3 μm/hour or less. 如申請專利範圍第1項或第2項所述的氣相成長方法,其中所述第1氮化鎵膜形成時的溫度為950℃以上且小於1050℃,所述第2氮化鎵膜形成時的溫度為1000℃以上且小於1100℃。The vapor phase growth method according to claim 1 or 2, wherein the temperature at which the first gallium nitride film is formed is 950 ° C or more and less than 1050 ° C, and the second gallium nitride film is formed. The temperature at the time is 1000 ° C or more and less than 1100 ° C.
TW105109146A 2015-04-10 2016-03-24 Gas growth method TWI579395B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015081146A JP6480244B2 (en) 2015-04-10 2015-04-10 Vapor growth method

Publications (2)

Publication Number Publication Date
TW201638372A TW201638372A (en) 2016-11-01
TWI579395B true TWI579395B (en) 2017-04-21

Family

ID=57250867

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105109146A TWI579395B (en) 2015-04-10 2016-03-24 Gas growth method

Country Status (4)

Country Link
JP (1) JP6480244B2 (en)
KR (1) KR20160121424A (en)
CN (1) CN106057658B (en)
TW (1) TWI579395B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10388518B2 (en) 2017-03-31 2019-08-20 Globalwafers Co., Ltd. Epitaxial substrate and method of manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103199168A (en) * 2012-01-10 2013-07-10 三星电子株式会社 Method of growing nitride semiconductor layer

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277441A (en) * 1999-03-26 2000-10-06 Nagoya Kogyo Univ Semiconductor structure, semiconductor element comprising the same and crystal growth method
US6649287B2 (en) * 2000-12-14 2003-11-18 Nitronex Corporation Gallium nitride materials and methods
JP3956637B2 (en) * 2001-04-12 2007-08-08 ソニー株式会社 Nitride semiconductor crystal growth method and semiconductor element formation method
JP2004363500A (en) * 2003-06-06 2004-12-24 Satoru Tanaka Nitride-based compound semiconductor and method for manufacturing the same
KR100674829B1 (en) * 2004-10-29 2007-01-25 삼성전기주식회사 Nitride based semiconductor device and method for manufacturing the same
KR101220826B1 (en) * 2005-11-22 2013-01-10 삼성코닝정밀소재 주식회사 Process for the preparation of single crystalline gallium nitride thick layer
JP5383974B2 (en) * 2006-12-27 2014-01-08 住友電工デバイス・イノベーション株式会社 Semiconductor substrate and semiconductor device
GB2485418B (en) * 2010-11-15 2014-10-01 Dandan Zhu Semiconductor materials
US20130026480A1 (en) * 2011-07-25 2013-01-31 Bridgelux, Inc. Nucleation of Aluminum Nitride on a Silicon Substrate Using an Ammonia Preflow
US20140158976A1 (en) * 2012-12-06 2014-06-12 Sansaptak DASGUPTA Iii-n semiconductor-on-silicon structures and techniques
CN103165771B (en) * 2013-03-28 2015-07-15 天津三安光电有限公司 Nitride bottom layer with embedded hole structure and preparation method of nitride bottom layer
JP6270536B2 (en) * 2013-06-27 2018-01-31 株式会社東芝 Nitride semiconductor device, nitride semiconductor wafer, and method of forming nitride semiconductor layer
CN104037284B (en) * 2014-06-10 2016-11-02 广州市众拓光电科技有限公司 A kind of growth GaN film on a si substrate and preparation method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103199168A (en) * 2012-01-10 2013-07-10 三星电子株式会社 Method of growing nitride semiconductor layer

Also Published As

Publication number Publication date
KR20160121424A (en) 2016-10-19
JP6480244B2 (en) 2019-03-06
JP2016199436A (en) 2016-12-01
CN106057658A (en) 2016-10-26
CN106057658B (en) 2019-09-06
TW201638372A (en) 2016-11-01

Similar Documents

Publication Publication Date Title
JP4335187B2 (en) Nitride semiconductor device manufacturing method
JP5785103B2 (en) Epitaxial wafers for heterojunction field effect transistors.
US20060191474A1 (en) Method and structure for fabricating III-V nitride layers on silicon substrates
TWI569328B (en) A silicon-based substrate, a semiconductor device, and a semiconductor device
KR101672213B1 (en) Method for manufacturing semiconductor device
TW201411699A (en) Epitaxial wafer, method of producing the same, and ultraviolet light emitting device
WO2019119589A1 (en) N-polar plane high-frequency gan rectifier epitaxial structure on silicon substrate and manufacturing method therefor
JP2014009156A (en) Method for producing gallium nitride substrate and gallium nitride substrate produced thereby
JP7260089B2 (en) nitride semiconductor
JP5914999B2 (en) Manufacturing method of semiconductor device
TW201543548A (en) Semiconductor substrate, method of manufacturing semiconductor substrate, and semiconductor device
JP5139567B1 (en) Substrate having a buffer layer structure for growing a nitride semiconductor layer
WO2019123763A1 (en) Method for producing group iii nitride semiconductor substrate
TWI579395B (en) Gas growth method
CN107039237A (en) Method for manufacturing substrate for epitaxy
JP2012174705A (en) Epitaxial wafer for nitride semiconductor device and manufacturing method of the same
WO2015198492A1 (en) Epitaxial wafer manufacturing method and epitaxial wafer
CN104979377A (en) III nitride/foreign substrate composite template and preparation method thereof
JP6108609B2 (en) Nitride semiconductor substrate
JP6156833B2 (en) Manufacturing method of semiconductor substrate
JP6848584B2 (en) Growth method of nitride semiconductor layer
JP2016082200A (en) Crystal laminate structure and manufacturing method thereof, and semiconductor device
TWI752256B (en) Substrate and method of making the same
TW201513176A (en) A semiconductor wafer and a method for producing the semiconductor wafer
KR101006701B1 (en) single crystal thin film of using metal silicide seed layer, and manufacturing method thereof