TWI577822B - Multilayer hard coating film structure and method for producing the same - Google Patents

Multilayer hard coating film structure and method for producing the same Download PDF

Info

Publication number
TWI577822B
TWI577822B TW102148973A TW102148973A TWI577822B TW I577822 B TWI577822 B TW I577822B TW 102148973 A TW102148973 A TW 102148973A TW 102148973 A TW102148973 A TW 102148973A TW I577822 B TWI577822 B TW I577822B
Authority
TW
Taiwan
Prior art keywords
layer
bond
carbon oxide
oxide layer
hardened
Prior art date
Application number
TW102148973A
Other languages
Chinese (zh)
Other versions
TW201525177A (en
Inventor
林昆蔚
張均豪
陳泰宏
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW102148973A priority Critical patent/TWI577822B/en
Publication of TW201525177A publication Critical patent/TW201525177A/en
Application granted granted Critical
Publication of TWI577822B publication Critical patent/TWI577822B/en

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Description

複層硬化膜結構及其製法 Multilayer hardened film structure and preparation method thereof

本揭露係關於一種複層硬化膜結構,尤其是,一種包括碳氧化矽層之複層硬化膜結構。 The present disclosure relates to a multi-layer hardened film structure, and more particularly to a multi-layer hardened film structure including a ruthenium carbon oxide layer.

高分子材料由於重量輕、低成本及耐摔與可撓曲等特性,在工業應用上已廣泛取代厚重的玻璃作為為光電元件等的基板材料。例如,在PET(聚對苯二甲酸乙二醇酯)基板上鍍製透明導電膜材料銦錫氧化物(Indium Tin Oxide,ITO),即可成為透明導電膜,此可應用在可撓式觸控面板、平面顯示器和有機發光二極體等光電元件上。但與玻璃基板相比,高分子基板具有不耐磨損與薄膜附著性不佳等缺點,因此,通常會在其最外層鍍上一層表面硬化膜來改進此缺陷。 Polymer materials have been widely used in industrial applications as a substrate material for photovoltaic elements due to their light weight, low cost, and resistance to deflection and flexibility. For example, a transparent conductive film material, Indium Tin Oxide (ITO), is plated on a PET (polyethylene terephthalate) substrate to form a transparent conductive film, which can be applied to a flexible touch. On the optoelectronic components such as control panels, flat panel displays and organic light-emitting diodes. However, compared with the glass substrate, the polymer substrate has disadvantages such as resistance to abrasion and poor adhesion of the film. Therefore, a surface-hardened film is usually plated on the outermost layer to improve the defect.

習知的硬化層,多為無機材料(例如,二氧化矽膜)。然而,無機材料硬且脆,因此,當鍍製無機材料薄膜達到一定膜厚度時,容易產生微裂痕而使得整體抗刮能力下降。並且,使用無機材料作為硬化層,亦會有鍍膜/基板形狀之限制。因此,如何獲得具有改良之特性的硬化層,仍為本技術領域之重要課題。 Conventional hardened layers are mostly inorganic materials (for example, ruthenium dioxide films). However, the inorganic material is hard and brittle, and therefore, when the film of the inorganic material is plated to a certain film thickness, microcracks are liable to occur and the overall scratch resistance is lowered. Moreover, the use of an inorganic material as the hardened layer also has limitations in the shape of the coating/substrate. Therefore, how to obtain a hardened layer having improved characteristics is still an important subject in the technical field.

本揭露提供一種複層硬化膜結構,包括基板以及形成於該基板上的硬化層,其中,該硬化層包含第一碳氧化矽子層及第二碳氧化矽子層。該第一碳氧化矽子層的Si-O-Si鍵結與Si-(CH3)x鍵結之比值係不同於該第二碳氧化矽子層的Si-O-Si鍵結與Si-(CH3)x鍵結之比值,其中,x表示1至3的整數。 The present disclosure provides a multi-layer hardened film structure comprising a substrate and a hardened layer formed on the substrate, wherein the hardened layer comprises a first carbon oxide layer and a second carbon oxide layer. The ratio of the Si-O-Si bond to the Si-(CH 3 )x bond of the first carbon oxide oxide layer is different from the Si-O-Si bond and Si- of the second carbon oxide oxide layer. The ratio of the (CH 3 )x bond, where x represents an integer from 1 to 3.

再者,本揭露提供一種複層硬化膜結構之製法。該複層硬化膜結構包括基板以及形成於該基板上之包含第一碳氧化矽子層及第二碳氧化矽子層的硬化層。該製法包括:提供供氧氣體及有機矽化合物之氣體,形成該第一碳氧化矽子層;以及,改變該供氧氣體之流量,形成該第二碳氧化矽子層;其中,係藉由電漿輔助化學氣相沈積(plasma enhanced chemical vapor depositon,PECVD)以於基板上形成該第一碳氧化矽子層及該第二碳氧化矽子層。根據一具體實施例,該第一碳氧化矽子層的Si-O-Si鍵結與Si-(CH3)x鍵結之比值係不同於該第二碳氧化矽子層的Si-O-Si鍵結與Si-(CH3)x鍵結之比值,其中,x表示1至3的整數。 Furthermore, the present disclosure provides a method of fabricating a double-layered cured film structure. The double-layer cured film structure includes a substrate and a hardened layer formed on the substrate and including a first carbon oxide layer and a second carbon oxide layer. The method includes: providing a gas for supplying an oxygen gas and an organic germanium compound to form the first carbon oxide oxide layer; and changing a flow rate of the oxygen supply gas to form the second carbon oxide oxide layer; A plasma enhanced chemical vapor deposition (PECVD) is formed on the substrate to form the first carbon oxide layer and the second carbon oxide layer. According to a specific embodiment, the ratio of the Si—O—Si bond to the Si—(CH 3 )x bond of the first carbon oxide oxide layer is different from the Si—O— of the second carbon oxide oxide layer. The ratio of the Si bond to the Si-(CH 3 )x bond, wherein x represents an integer from 1 to 3.

此外,本揭露提供一種複層硬化膜結構之製法。該複層硬化膜結構包括基板以及形成於該基板上之包含第一碳氧化矽子層及第二碳氧化矽子層的硬化層。該製法包括:提供有機矽化合物之氣體及具有第一流量的供氧氣體,形成該第一碳氧化矽子層;以及,提供有機矽化合物之氣體及具有第二流量的供氧氣體,形成該第二碳氧化矽子層;其中,該第一流量係與該第二流量不同,以及其中,係藉由電漿輔助化學氣相沈積以於基板上形成該第一碳氧化矽子層及該第二碳氧化矽子層。根據一具體實施例,該第一碳氧化矽子層的Si-O-Si鍵結與Si-(CH3)x鍵結之比值係不同於 該第二碳氧化矽子層的Si-O-Si鍵結與Si-(CH3)x鍵結之比值,其中,x表示1至3的整數。 In addition, the present disclosure provides a method of fabricating a double-layered cured film structure. The double-layer cured film structure includes a substrate and a hardened layer formed on the substrate and including a first carbon oxide layer and a second carbon oxide layer. The method includes: providing a gas of an organic germanium compound and an oxygen supply gas having a first flow rate to form the first carbon oxide oxide layer; and providing a gas of an organic germanium compound and an oxygen supply gas having a second flow rate to form the gas a second carbon oxide oxide layer; wherein the first flow rate is different from the second flow rate, and wherein the first carbon oxide oxide layer is formed on the substrate by plasma assisted chemical vapor deposition The second carbon oxide layer is oxidized. According to a specific embodiment, the ratio of the Si—O—Si bond to the Si—(CH 3 )x bond of the first carbon oxide oxide layer is different from the Si—O— of the second carbon oxide oxide layer. The ratio of the Si bond to the Si-(CH 3 )x bond, wherein x represents an integer from 1 to 3.

1‧‧‧複層硬化膜結構 1‧‧‧Multilayer hardened membrane structure

10‧‧‧基板 10‧‧‧Substrate

20‧‧‧硬化層 20‧‧‧ hardened layer

21‧‧‧第一碳氧化矽子層 21‧‧‧First carbon oxide raft layer

22‧‧‧第二碳氧化矽子層 22‧‧‧Second carbon oxide raft layer

30‧‧‧硬化層 30‧‧‧ hardened layer

31‧‧‧第一碳氧化矽子層 31‧‧‧First carbon oxide raft layer

32‧‧‧第二碳氧化矽子層 32‧‧‧Second carbon oxide raft layer

第1A及1B圖係根據一具體實施例之複層硬化膜結構的示意圖;第2圖係根據一具體實施例之SIMS分析圖;第3圖係根據一具體實施例之FTIR分析圖;第4圖係根據一具體實施例之FTIR分析圖;第5圖係根據一具體實施例之Si-O-Si鍵結/Si-CH3鍵結比例與N2O流量分析圖;第6圖係根據一具體實施例之水滴接觸角分析圖;第7圖係根據一比較例之鍍膜外觀圖;以及第8圖係根據一具體實施例之複層硬化膜結構外觀圖。 1A and 1B are schematic views of a multilayer hardened film structure according to a specific embodiment; FIG. 2 is a SIMS analysis chart according to a specific embodiment; and FIG. 3 is a FTIR analysis chart according to a specific embodiment; The figure is based on an FTIR analysis chart of a specific embodiment; the fifth figure is a Si-O-Si bond/Si-CH 3 bond ratio and N 2 O flow rate analysis chart according to a specific embodiment; A water droplet contact angle analysis chart of a specific embodiment; Fig. 7 is an appearance view of a plating film according to a comparative example; and Fig. 8 is an external view of a composite hardened film structure according to a specific embodiment.

以下係藉由特定的具體實施例說明本揭露之實施方式,熟習此技藝之人士可由本說明書所揭示之內容瞭解本揭露之其他優點與功效。本揭露也可藉由其他不同的具體實施例加以施行或應用,本說明書中的各項細節亦可基於不同觀點與應用,在不悖離本創作之精神下進行各種修飾與變更。 The embodiments of the present disclosure are described by way of specific examples, and those skilled in the art can understand the advantages and advantages of the disclosure. The present disclosure may also be implemented or applied by other different embodiments. The details of the present specification can also be modified and changed without departing from the spirit and scope of the present invention.

除非文中另有說明,否則說明書及所附申請專利範圍中所使用之單數形式「一」及「該」包括複數個體。 The singular <RTI ID=0.0>"1" </ RTI> </ RTI> and <RTIgt;

除非文中另有說明,否則說明書及所附申請專利範圍中所使用之術語「或」包括「及/或」之含義。 The term "or" as used in the specification and the appended claims is intended to include the meaning of "and/or".

複層硬化膜結構,包括基板以及形成於該基板上的硬化層。 硬化層包含第一碳氧化矽子層及第二碳氧化矽子層,其中,該第一碳氧化矽子層的Si-O-Si鍵結與Si-(CH3)x鍵結之比值係與該第二碳氧化矽子層的Si-O-Si鍵結與Si-(CH3)x鍵結之比值不同(x為1至3的整數)。根據部分具體實施例,第一碳氧化矽子層係與第二碳氧化矽子層相鄰。亦即,第一碳氧化矽子層係與第二碳氧化矽子層接觸。根據部分具體實施例,第二碳氧化矽子層係形成於第一碳氧化矽子層上。根據部分具體實施例,第二碳氧化矽子層係直接形成於第一碳氧化矽子層上。於部分實例中,第二碳氧化矽子層的Si-O-Si鍵結與Si-(CH3)x鍵結之比值係高於第一碳氧化矽子層的Si-O-Si鍵結與Si-(CH3)x鍵結之比值。 A multi-layer hardened film structure comprising a substrate and a hardened layer formed on the substrate. The hardened layer comprises a first carbon oxide layer and a second carbon oxide layer, wherein a ratio of Si—O—Si bonding to Si—(CH 3 )× bonding of the first carbon oxide layer is The ratio of the Si—O—Si bond to the Si—(CH 3 )x bond to the second carbon oxide oxide layer is different (x is an integer of 1 to 3). According to some embodiments, the first carbon oxide oxide layer is adjacent to the second carbon oxide oxide layer. That is, the first carbon oxide oxide layer is in contact with the second carbon oxide oxide layer. According to some embodiments, the second carbon oxide oxide layer is formed on the first carbon oxide oxide layer. According to some embodiments, the second carbon oxide oxide layer is formed directly on the first carbon oxide oxide layer. In some examples, the ratio of the Si—O—Si bond to the Si—(CH 3 )x bond of the second carbon oxide layer is higher than the Si—O—Si bond of the first carbon oxide layer. The ratio of the bond to the Si-(CH 3 )x bond.

請參見第1A圖,其係根據一具體實施例之複層硬化膜結構的示意圖。複層硬化膜結構1,包括基板10,以及形成於該基板10上的硬化層20。硬化層20包含第一碳氧化矽子層21及第二碳氧化矽子層22,其中,該第一碳氧化矽子層21的Si-O-Si鍵結與Si-(CH3)x鍵結之比值係與該第二碳氧化矽子層22的Si-O-Si鍵結與Si-(CH3)x鍵結之比值不同(x為1至3的整數)。 Please refer to FIG. 1A, which is a schematic view of a multilayer hardened film structure according to a specific embodiment. The double-layer hardened film structure 1 includes a substrate 10, and a hardened layer 20 formed on the substrate 10. The hardened layer 20 includes a first carbon oxide oxide layer 21 and a second carbon oxide oxide layer 22, wherein the first carbon oxide oxide layer 21 has a Si-O-Si bond and a Si-(CH 3 )x bond. The ratio of the junction is different from the ratio of the Si-O-Si bond to the Si-(CH 3 )x bond of the second carbon oxide oxide layer 22 (x is an integer of 1 to 3).

於此具體實施例中,第一碳氧化矽子層21係與第二碳氧化矽子層22相鄰。亦即,第一碳氧化矽子層21係與第二碳氧化矽子層22接觸。於此具體實施例中,第二碳氧化矽子層22係形成於第一碳氧化矽子層21上。於部分實例中,第二碳氧化矽子層22係直接形成於第一碳氧化矽子層21上。於部分實例中,第二碳氧化矽子層22的Si-O-Si鍵結與Si-(CH3)x鍵結之比值係高於第一碳氧化矽子層21的Si-O-Si鍵結與Si-(CH3)x鍵結之比值。 In this embodiment, the first carbon oxide oxide layer 21 is adjacent to the second carbon oxide oxide layer 22. That is, the first carbon oxide oxide layer 21 is in contact with the second carbon oxide oxide layer 22. In this embodiment, the second carbon oxide layer 22 is formed on the first carbon oxide layer 21 . In some examples, the second carbon oxide layer 22 is formed directly on the first carbon oxide layer 21 . In some examples, the ratio of the Si—O—Si bond to the Si—(CH 3 )x bond of the second carbon oxide layer 22 is higher than the Si—O—Si of the first carbon oxide layer 21 . The ratio of the bond to the Si-(CH 3 )x bond.

複層硬化膜結構可包括一個以上的硬化層。舉例來說,複層 硬化膜結構可包括二個、三個、四個、五個、六個或更多個硬化層(換言之,複層硬化膜結構可包括二個或更多個(例如,四個、六個、八個、十個、十二個)碳氧化矽子層)。根據部分具體實施例,於複層硬化膜結構中,複數個硬化層係相鄰。 The multi-layer hardened film structure may include more than one hardened layer. For example, complex The hardened film structure may include two, three, four, five, six or more hardened layers (in other words, the double hardened film structure may include two or more (eg, four, six, Eight, ten, twelve) carbon oxide ruthenium layers). According to some embodiments, in the multi-layer hardened film structure, a plurality of hardened layers are adjacent.

請參見第1B圖,其係根據一具體實施例之複層硬化膜結構的示意圖。複層硬化膜結構1,包括基板10,以及形成於該基板10上的二個硬化層20、30。於此具體實施例中,硬化層30係與硬化層20相鄰。亦即,硬化層30係與硬化層20接觸。 Please refer to FIG. 1B, which is a schematic view of a multilayer hardened film structure according to a specific embodiment. The double-layer hardened film structure 1 includes a substrate 10, and two hardened layers 20, 30 formed on the substrate 10. In this particular embodiment, the hardened layer 30 is adjacent to the hardened layer 20. That is, the hardened layer 30 is in contact with the hardened layer 20.

硬化層20,包含第一碳氧化矽子層21及第二碳氧化矽子層22,其中,該第一碳氧化矽子層21的Si-O-Si鍵結與Si-(CH3)x鍵結之比值係與該第二碳氧化矽子層22的Si-O-Si鍵結與Si-(CH3)x鍵結之比值不同。於此具體實施例中,第一碳氧化矽子層21係與第二碳氧化矽子層22相鄰。亦即,第一碳氧化矽子層21係與第二碳氧化矽子層22接觸。於此具體實施例中,第二碳氧化矽子層22係形成於第一碳氧化矽子層21上。於部分實例中,第二碳氧化矽子層22係直接形成於第一碳氧化矽子層21上。於部分實例中,第二碳氧化矽子層22的Si-O-Si鍵結與Si-(CH3)x鍵結之比值係高於第一碳氧化矽子層21的Si-O-Si鍵結與Si-(CH3)x鍵結之比值。 The hardened layer 20 includes a first carbon oxide layer 21 and a second carbon oxide layer 22, wherein the first carbon oxide layer 21 has a Si-O-Si bond and Si-(CH 3 )x The ratio of the bond is different from the ratio of the Si-O-Si bond to the Si-(CH 3 )x bond of the second carbon oxide layer 22 . In this embodiment, the first carbon oxide oxide layer 21 is adjacent to the second carbon oxide oxide layer 22. That is, the first carbon oxide oxide layer 21 is in contact with the second carbon oxide oxide layer 22. In this embodiment, the second carbon oxide layer 22 is formed on the first carbon oxide layer 21 . In some examples, the second carbon oxide layer 22 is formed directly on the first carbon oxide layer 21 . In some examples, the ratio of the Si—O—Si bond to the Si—(CH 3 )x bond of the second carbon oxide layer 22 is higher than the Si—O—Si of the first carbon oxide layer 21 . The ratio of the bond to the Si-(CH 3 )x bond.

硬化層30,包含第一碳氧化矽子層31及第二碳氧化矽子層32,其中,該第一碳氧化矽子層31的Si-O-Si鍵結與Si-(CH3)x鍵結之比值係與該第二碳氧化矽子層32的Si-O-Si鍵結與Si-(CH3)x鍵結之比值不同。於此具體實施例中,第一碳氧化矽子層31係與第二碳氧化矽子層32相鄰。亦即,第一碳氧化矽子層31係與第 二碳氧化矽子層32接觸。於此具體實施例中,第二碳氧化矽子層32係形成於第一碳氧化矽子層31上。於部分實例中,第二碳氧化矽子層32係直接形成於第一碳氧化矽子層31上。於部分實例中,第二碳氧化矽子層32的Si-O-Si鍵結與Si-(CH3)x鍵結之比值係高於第一碳氧化矽子層31的Si-O-Si鍵結與Si-(CH3)x鍵結之比值。 The hardened layer 30 includes a first carbon oxide layer 31 and a second carbon oxide layer 32, wherein the first carbon oxide layer 31 has a Si-O-Si bond and Si-(CH 3 )x The ratio of the bond is different from the ratio of the Si-O-Si bond to the Si-(CH 3 )x bond of the second carbon oxide layer 32. In this embodiment, the first carbon oxide layer 31 is adjacent to the second carbon oxide layer 32. That is, the first carbon oxide layer 31 is in contact with the second carbon oxide layer 32. In this embodiment, the second carbon oxide layer 32 is formed on the first carbon oxide layer 31. In some examples, the second carbon oxide layer 32 is formed directly on the first carbon oxide layer 31. In some examples, the ratio of the Si—O—Si bond to the Si—(CH 3 )x bond of the second carbon oxide oxide layer 32 is higher than the Si—O—Si of the first carbon oxide oxide layer 31 . The ratio of the bond to the Si-(CH 3 )x bond.

根據部分具體實施例,複層硬化膜結構包括至少二個硬化層,各該硬化層包含第一碳氧化矽子層及第二碳氧化矽子層,且該第一碳氧化矽子層的Si-O-Si鍵結與Si-(CH3)x鍵結之比值係與該第二碳氧化矽子層的Si-O-Si鍵結與Si-(CH3)x鍵結之比值不同。於部分實例中,第一碳氧化矽子層係與第二碳氧化矽子層相鄰(亦即,第一碳氧化矽子層係與第二碳氧化矽子層接觸)。於部分實例中,第二碳氧化矽子層係形成於第一碳氧化矽子層上。於部分實例中,第二碳氧化矽子層係直接形成於第一碳氧化矽子層上。於部分實例中,第二碳氧化矽子層的Si-O-Si鍵結與Si-(CH3)x鍵結之比值係高於第一碳氧化矽子層的Si-O-Si鍵結與Si-(CH3)x鍵結之比值。於部分實例中,複層硬化膜結構包括二個硬化層,其中,該二個硬化層係相鄰(亦即,二個硬化層係相接觸)。 According to some embodiments, the double-layer hardened film structure includes at least two hardened layers, each of the hardened layers including a first carbon oxide layer and a second carbon oxide layer, and the first carbon oxide layer is Si The ratio of the -O-Si bond to the Si-(CH 3 )x bond is different from the ratio of the Si-O-Si bond to the Si-(CH 3 )x bond of the second carbon oxide layer. In some examples, the first carbon oxide oxide layer is adjacent to the second carbon oxide oxide layer (ie, the first carbon oxide layer is in contact with the second carbon oxide layer). In some examples, the second carbon oxide ruthenium layer is formed on the first ruthenium oxide layer. In some examples, the second carbon oxide layer is formed directly on the first carbon oxide layer. In some examples, the ratio of the Si—O—Si bond to the Si—(CH 3 )x bond of the second carbon oxide layer is higher than the Si—O—Si bond of the first carbon oxide layer. The ratio of the bond to the Si-(CH 3 )x bond. In some examples, the multi-layer hardened film structure comprises two hardened layers, wherein the two hardened layers are adjacent (ie, the two hardened layers are in contact).

根據部分具體實施例,複層硬化膜結構包括至少四個硬化層,各該硬化層包含第一碳氧化矽子層及第二碳氧化矽子層,且該第一碳氧化矽子層的Si-O-Si鍵結與Si-(CH3)x鍵結之比值係與該第二碳氧化矽子層的Si-O-Si鍵結與Si-(CH3)x鍵結之比值不同。於部分實例中,第一碳氧化矽子層係與第二碳氧化矽子層相鄰(亦即,第一碳氧化矽子層係與第二碳氧化矽子層接觸)。於部 分實例中,第二碳氧化矽子層係形成於第一碳氧化矽子層上。於部分實例中,第二碳氧化矽子層係直接形成於第一碳氧化矽子層上。於部分實例中,第二碳氧化矽子層的Si-O-Si鍵結與Si-(CH3)x鍵結之比值係高於第一碳氧化矽子層的Si-O-Si鍵結與Si-(CH3)x鍵結之比值。於部分實例中,複層硬化膜結構包括四個硬化層,其中,該四個硬化層係相鄰。 According to some embodiments, the multi-layer hardened film structure comprises at least four hardened layers, each of the hardened layers comprising a first carbon oxide germanium layer and a second carbon oxide germanium layer, and the first carbon oxide germanium layer Si The ratio of the -O-Si bond to the Si-(CH 3 )x bond is different from the ratio of the Si-O-Si bond to the Si-(CH 3 )x bond of the second carbon oxide layer. In some examples, the first carbon oxide oxide layer is adjacent to the second carbon oxide oxide layer (ie, the first carbon oxide layer is in contact with the second carbon oxide layer). In some examples, the second carbon oxide ruthenium layer is formed on the first ruthenium oxide layer. In some examples, the second carbon oxide layer is formed directly on the first carbon oxide layer. In some examples, the ratio of the Si—O—Si bond to the Si—(CH 3 )x bond of the second carbon oxide layer is higher than the Si—O—Si bond of the first carbon oxide layer. The ratio of the bond to the Si-(CH 3 )x bond. In some examples, the multi-layer hardened film structure includes four hardened layers, wherein the four hardened layers are adjacent.

根據部分具體實施例,複層硬化膜結構包括至少六個硬化層,各該硬化層包含第一碳氧化矽子層及第二碳氧化矽子層,且該第一碳氧化矽子層的Si-O-Si鍵結與Si-(CH3)x鍵結之比值係與該第二碳氧化矽子層的Si-O-Si鍵結與Si-(CH3)x鍵結之比值不同。於部分實例中,第一碳氧化矽子層係與第二碳氧化矽子層相鄰(亦即,第一碳氧化矽子層係與第二碳氧化矽子層接觸)。於部分實例中,第二碳氧化矽子層係形成於第一碳氧化矽子層上。於部分實例中,第二碳氧化矽子層係直接形成於第一碳氧化矽子層上。於部分實例中,第二碳氧化矽子層的Si-O-Si鍵結與Si-(CH3)x鍵結之比值係高於第一碳氧化矽子層的Si-O-Si鍵結與Si-(CH3)x鍵結之比值。於部分實例中,複層硬化膜結構包括六個硬化層,其中,該六個硬化層係相鄰。 According to some embodiments, the double-layer hardened film structure includes at least six hardened layers, each of the hardened layers including a first carbon oxide layer and a second carbon oxide layer, and the first carbon oxide layer is Si The ratio of the -O-Si bond to the Si-(CH 3 )x bond is different from the ratio of the Si-O-Si bond to the Si-(CH 3 )x bond of the second carbon oxide layer. In some examples, the first carbon oxide oxide layer is adjacent to the second carbon oxide oxide layer (ie, the first carbon oxide layer is in contact with the second carbon oxide layer). In some examples, the second carbon oxide ruthenium layer is formed on the first ruthenium oxide layer. In some examples, the second carbon oxide layer is formed directly on the first carbon oxide layer. In some examples, the ratio of the Si—O—Si bond to the Si—(CH 3 )x bond of the second carbon oxide layer is higher than the Si—O—Si bond of the first carbon oxide layer. The ratio of the bond to the Si-(CH 3 )x bond. In some examples, the multi-layer hardened film structure comprises six hardened layers, wherein the six hardened layers are adjacent.

可視需要選擇基板的材料,例如,但不限於:高分子材料及玻璃。高分子材料的實例包括,但不限於:聚甲基丙烯酸甲酯(Polymethylmethacrylate,PMMA)、聚乙烯(Polyethylene,PE)、聚碳酸酯(Poly Carbonate,PC)、環狀石蠟共聚合樹脂(Cyclic block copolymer,CBC)、聚對苯二甲酸乙二酯(Polyethylene terephthalate,PET)及其類似物、其衍生物,及其組合。 The material of the substrate can be selected as needed, such as, but not limited to, a polymer material and glass. Examples of polymer materials include, but are not limited to, polymethylmethacrylate (PMMA), polyethylene (Polyethylene, PE), polycarbonate (Poly Carbonate, PC), and cyclic paraffin copolymer resin (Cyclic block). Copolymer, CBC), polyethylene terephthalate (PET) and the like, derivatives thereof, and combinations thereof.

硬化層包含第一碳氧化矽子層及第二碳氧化矽子層。第一碳氧化矽子層及第二碳氧化矽子層具有不同的Si-O-Si鍵結與Si-(CH3)x鍵結之比值。可視需要選擇/調整各碳氧化矽子層的Si-O-Si鍵結與Si-(CH3)x鍵結之比值。 The hardened layer comprises a first carbon oxide layer and a second carbon oxide layer. The first carbon oxide layer and the second carbon oxide layer have different ratios of Si-O-Si bonds to Si-(CH 3 )x bonds. The ratio of the Si-O-Si bond to the Si-(CH 3 )x bond of each carbon oxide layer can be selected/adjusted as needed.

根據部分具體實施例,第二碳氧化矽子層係形成於第一碳氧化矽子層上。根據部分具體實施例,第二碳氧化矽子層係直接形成於第一碳氧化矽子層上。於部分實例中,第二碳氧化矽子層的Si-O-Si鍵結與Si-(CH3)x鍵結之比值係高於第一碳氧化矽子層的Si-O-Si鍵結與Si-(CH3)x鍵結之比值。舉例來說,第一碳氧化矽子層的Si-O-Si鍵結與Si-(CH3)x鍵結之比值係小於或等於14,而第二碳氧化矽子層的Si-O-Si鍵結與Si-(CH3)x鍵結之比值係超過14。 According to some embodiments, the second carbon oxide oxide layer is formed on the first carbon oxide oxide layer. According to some embodiments, the second carbon oxide oxide layer is formed directly on the first carbon oxide oxide layer. In some examples, the ratio of the Si—O—Si bond to the Si—(CH 3 )x bond of the second carbon oxide layer is higher than the Si—O—Si bond of the first carbon oxide layer. The ratio of the bond to the Si-(CH 3 )x bond. For example, the ratio of the Si—O—Si bond of the first carbon oxide layer to the Si—(CH 3 )x bond is less than or equal to 14, and the Si—O— of the second carbon oxide layer The ratio of the Si bond to the Si-(CH 3 )x bond is more than 14.

複層硬化膜結構中硬化層的厚度沒有特別限制,可視需要選擇及調整。硬化層中第一碳氧化矽子層或第二碳氧化矽子層的厚度,也可視需要選擇。舉例來說,第一碳氧化矽子層之厚度可為20奈米(nm)至500奈米,例如,75nm至450nm。舉例來說,第二碳氧化矽子層之厚度可為,50nm至500nm,例如,75nm至450nm。 The thickness of the hardened layer in the multilayer hardened film structure is not particularly limited and may be selected and adjusted as needed. The thickness of the first carbon oxide layer or the second carbon oxide layer in the hardened layer may also be selected as needed. For example, the first carbon oxide raft layer may have a thickness of from 20 nanometers (nm) to 500 nm, for example, from 75 nm to 450 nm. For example, the thickness of the second carbon oxide layer may be from 50 nm to 500 nm, for example, from 75 nm to 450 nm.

根據部分具體實施例,硬化層包含第一碳氧化矽子層及第二碳氧化矽子層,其中,該第一碳氧化矽子層及該第二碳氧化矽子層係具有不同含氧量。於部分實例中,含氧量較低之碳氧化矽(SiOC)子層的Si-O-Si鍵結與Si-(CH3)x鍵結之比值,係低於含氧量較高之SiOC子層的Si-O-Si鍵結與Si-(CH3)x鍵結之比值。於部分實例中,含氧量較低之碳氧化矽(SiOC)子層,其Si-O-Si鍵結與Si-(CH3)x鍵結之比值係小於或等於14;含氧量較高之SiOC子層, 其Si-O-Si鍵結與Si-(CH3)x鍵結之比值係超過14。 According to some embodiments, the hardened layer comprises a first carbon oxide layer and a second carbon oxide layer, wherein the first carbon oxide layer and the second carbon oxide layer have different oxygen contents . In some examples, the ratio of the Si-O-Si bond to the Si-(CH 3 )x bond of the lower oxygen-containing cerium oxide (SiOC) sub-layer is lower than the higher oxygen content of SiOC. The ratio of the Si-O-Si bond of the sublayer to the Si-(CH 3 )x bond. In some examples, the carbon oxide cerium (SiOC) sub-layer having a lower oxygen content has a ratio of Si-O-Si bond to Si-(CH 3 )x bond of less than or equal to 14; The high SiOC sublayer has a ratio of Si-O-Si bond to Si-(CH 3 )x bond of more than 14.

根據部分具體實施例,硬化層包含第一碳氧化矽子層及第二碳氧化矽子層,其中,第二碳氧化矽子層的含氧量係高於第一碳氧化矽子層的含氧量。於部分實例中,含氧量較高之第二碳氧化矽子層中的Si-O-Si鍵結與Si-(CH3)x鍵結之比值,係高於含氧量較低之第一碳氧化矽(SiOC)子層中的Si-O-Si鍵結與Si-(CH3)x鍵結之比值。於部分實例中,含氧量較低之第一碳氧化矽(SiOC)子層中的Si-O-Si鍵結與Si-(CH3)x鍵結之比值係小於或等於14;含氧量較高之第二碳氧化矽子層中的Si-O-Si鍵結與Si-(CH3)x鍵結之比值係超過14。 According to some embodiments, the hardened layer comprises a first carbon oxide layer and a second carbon oxide layer, wherein the second carbon oxide layer has a higher oxygen content than the first carbon oxide layer Oxygen content. In some examples, the ratio of Si-O-Si bond to Si-(CH 3 )x bond in the second carbon cerium oxide layer having a higher oxygen content is higher than the lower oxygen content. The ratio of Si-O-Si bonding to Si-(CH 3 )x bonding in a cerium oxide (SiOC) sublayer. In some examples, the ratio of the Si-O-Si bond to the Si-(CH 3 )x bond in the first oxygen-containing cerium oxide (SiOC) sub-layer having a lower oxygen content is less than or equal to 14; The ratio of the Si-O-Si bond to the Si-(CH 3 )x bond in the second carbon ruthenium oxide layer is higher than 14.

複層硬化膜結構包括基板及形成於該基板上的硬化層,其包含具有不同的Si-O-Si鍵結與Si-(CH3)x鍵結之比值的第一碳氧化矽子層及第二碳氧化矽子層。 The double-layer hardened film structure includes a substrate and a hardened layer formed on the substrate, the first carbon oxidized germanium layer having a ratio of different Si—O—Si bonds to Si—(CH 3 )× bonds and The second carbon oxide layer is oxidized.

於一態樣中,可藉由下列方法製造上述複層硬化膜結構,包括:提供供氧氣體及有機矽化合物之氣體;形成該第一碳氧化矽子層,其中該供氧氣體具有第一流量;以及,形成該第二碳氧化矽子層,其中該供氧氣體具有第二流量。其中,係藉由電漿輔助化學氣相沈積以形成該第一碳氧化矽子層及該第二碳氧化矽子層。該第一流量係與該第二流量不同。 In one aspect, the above-mentioned multi-layer hardened film structure can be manufactured by the following method, comprising: providing a gas for supplying an oxygen gas and an organic germanium compound; forming the first carbon oxide oxide layer, wherein the oxygen supply gas has the first a flow rate; and forming the second carbon oxide layer, wherein the oxygen supply gas has a second flow rate. Wherein, the first carbon oxide layer and the second carbon oxide layer are formed by plasma assisted chemical vapor deposition. The first flow rate is different from the second flow rate.

根據部分具體實施例,可藉由下列方法製造上述複層硬化膜結構,包括:提供有機矽化合物之氣體及具有第一流量的供氧氣體,形成該第一碳氧化矽子層;以及,提供有機矽化合物之氣體及具有第二流量的供氧氣體,形成該第二碳氧化矽子層;其中,該第一流量係與該第二流量不同,以及其中,係藉由電漿輔助化 學氣相沈積以於基板上形成該第一碳氧化矽子層及該第二碳氧化矽子層。 According to some embodiments, the above-mentioned multi-layer hardened film structure can be manufactured by the following method, comprising: providing a gas of an organic germanium compound and an oxygen supply gas having a first flow rate to form the first carbon oxide oxide layer; and providing a gas of an organic germanium compound and an oxygen supply gas having a second flow rate to form the second carbon oxide oxide layer; wherein the first flow rate is different from the second flow rate, and wherein the plasma is assisted by plasma The vapor deposition is performed to form the first carbon oxide layer and the second carbon oxide layer on the substrate.

根據部分具體實施例,該第一碳氧化矽子層的Si-O-Si鍵結與Si-(CH3)x鍵結之比值係不同於該第二碳氧化矽子層的Si-O-Si鍵結與Si-(CH3)x鍵結之比值。於部分實例中,第一碳氧化矽子層的含氧量係與該第二碳氧化矽子層的含氧量不同。 According to some embodiments, the ratio of the Si—O—Si bond to the Si—(CH 3 )x bond of the first carbon oxide oxide layer is different from the Si—O— of the second carbon oxide oxide layer. The ratio of Si bond to Si-(CH 3 )x bond. In some examples, the oxygen content of the first carbon oxide layer is different from the oxygen content of the second carbon oxide layer.

可藉由不同的供氧氣體流量以形成具有不同的Si-O-Si鍵結與Si-(CH3)x鍵結之比值的第一碳氧化矽子層及第二碳氧化矽子層。舉例來說,可使用較低流量(可為0)之供氧氣體以形成具較低Si-O-Si鍵結與Si-(CH3)x鍵結之比值的碳氧化矽子層,並且使用較高流量(不為0)之供氧氣體以形成具較高Si-O-Si鍵結與Si-(CH3)x鍵結之比值的碳氧化矽子層。 The first carbon oxidized cerium layer and the second carbon oxidized cerium layer having different ratios of Si-O-Si bonding and Si-(CH 3 )x bonding can be formed by different oxygen supply gas flows. For example, a lower flow rate (which may be 0) of oxygen supply gas may be used to form a carbon oxide ruthenium layer having a lower Si-O-Si bond to Si-(CH 3 )x bond ratio, and use higher flow (not 0) of oxygen having a high ratio of gas to form Si-O-Si bond and Si- (CH 3) x is the carbon bonded to the silicon oxide sublayer.

於部分實例中,第二碳氧化矽子層係形成於該第一碳氧化矽子層上。於部分實例中,係提供供氧氣體及有機矽化合物之氣體,利用電漿輔助化學氣相沈積,以於基板上形成第一碳氧化矽子層(該供氧氣體具有第一流量),以及改變該供氧氣體之流量,於第一碳氧化矽子層上形成第二碳氧化矽子層(該供氧氣體具有第二流量)。 In some examples, a second carbon oxide ruthenium layer is formed on the first ruthenium oxide layer. In some examples, a gas for supplying an oxygen gas and an organic cerium compound is provided, and plasma-assisted chemical vapor deposition is used to form a first carbon oxide raft layer on the substrate (the oxygen supply gas has a first flow rate), and The flow rate of the oxygen supply gas is changed to form a second carbon oxide oxide layer on the first carbon oxide oxide layer (the oxygen supply gas has a second flow rate).

於部分實例中,第二碳氧化矽子層的Si-O-Si鍵結與Si-(CH3)x鍵結之比值係高於第一碳氧化矽子層的Si-O-Si鍵結與Si-(CH3)x鍵結之比值。於此等實例中,第二流量係高於第一流量。也就是說,藉由電漿輔助化學氣相沈積形成該第一碳氧化矽子層及該第二碳氧化矽子層時,係使用具有第一流量(較低)之供氧氣體以形成具較低Si-O-Si鍵結與Si-(CH3)x鍵結之比值的第一碳氧化矽子 層,並且使用具有第二流量(較高)之供氧氣體以形成具較高Si-O-Si鍵結與Si-(CH3)x鍵結之比值的第二碳氧化矽子層。於部分實例中,第一流量可為0。 In some examples, the ratio of the Si—O—Si bond to the Si—(CH 3 )x bond of the second carbon oxide layer is higher than the Si—O—Si bond of the first carbon oxide layer. The ratio of the bond to the Si-(CH 3 )x bond. In these examples, the second flow rate is higher than the first flow rate. That is, when the first carbon oxide oxide layer and the second carbon oxide oxide layer are formed by plasma-assisted chemical vapor deposition, an oxygen supply gas having a first flow rate (lower) is used to form a device. a first carbon oxidized germanium layer having a lower Si-O-Si bond to Si-(CH 3 )x bond ratio, and using an oxygen supply gas having a second flow rate (higher) to form a higher Si a second carbon oxidized hafnium layer having a ratio of -O-Si bonding to Si-(CH 3 )x bonding. In some examples, the first flow rate can be zero.

於部分實例中,可藉由下列方法製造上述複層硬化膜結構,包括:提供有機矽化合物之氣體;形成該第一碳氧化矽子層;以及,提供供氧氣體及有機矽化合物之氣體,以形成該第二碳氧化矽子層。其中,係藉由電漿輔助化學氣相沈積以形成該第一碳氧化矽子層及該第二碳氧化矽子層。 In some examples, the above-mentioned multi-layer hardened film structure can be produced by the following method, comprising: providing a gas of an organic germanium compound; forming the first carbon oxide germanium layer; and providing a gas for supplying an oxygen gas and an organic germanium compound, To form the second carbon oxide oxide layer. Wherein, the first carbon oxide layer and the second carbon oxide layer are formed by plasma assisted chemical vapor deposition.

於一態樣中,可藉由下列方法製造該複層硬化膜結構,包括:提供供氧氣體及有機矽化合物之氣體,形成該第一碳氧化矽子層;以及,改變該供氧氣體之流量,形成該第二碳氧化矽子層。其中,係藉由電漿輔助化學氣相沈積以於基板上形成該第一碳氧化矽子層及該第二碳氧化矽子層。第一碳氧化矽子層的Si-O-Si鍵結與Si-(CH3)x鍵結之比值係與該第二碳氧化矽子層的Si-O-Si鍵結與Si-(CH3)x鍵結之比值不同。 In one aspect, the multi-layer hardened film structure can be manufactured by the following method, comprising: providing a gas for supplying an oxygen gas and an organic germanium compound to form the first carbon oxide germanium layer; and changing the oxygen supply gas The flow rate forms the second carbon oxide raft layer. Wherein, the first carbon oxide layer and the second carbon oxide layer are formed on the substrate by plasma-assisted chemical vapor deposition. The ratio of Si-O-Si bond to Si-(CH 3 )x bond of the first carbon oxide ruthenium layer is Si-O-Si bond and Si-(CH) of the second carbon oxide ruthenium layer 3 ) The ratio of x bond is different.

可藉由改變供氧氣體之流量以形成具有不同的Si-O-Si鍵結與Si-(CH3)x鍵結之比值的第一碳氧化矽子層及第二碳氧化矽子層。舉例來說,可使用較低流量之供氧氣體以形成具較低Si-O-Si鍵結與Si-(CH3)x鍵結之比值的碳氧化矽子層,並且使用較高流量之供氧氣體以形成具較高Si-O-Si鍵結與Si-(CH3)x鍵結之比值的碳氧化矽子層。於部分實例中,較低流量之供氧氣體係包含供氧氣體流量為0的情況。於部分實例中,係提供有機矽化合物之氣體以形成具較低Si-O-Si鍵結與Si-(CH3)x鍵結之比值的碳氧化矽子層,並且提供供氧氣體及有機矽化合物之氣體以形成具較高 Si-O-Si鍵結與Si-(CH3)x鍵結之比值的碳氧化矽子層。 The first carbon oxidized cerium layer and the second carbon oxidized cerium layer having different ratios of Si-O-Si bonds to Si-(CH 3 )x bonds can be formed by changing the flow rate of the oxygen supply gas. For example, a lower flow rate oxygen supply gas can be used to form a carbon oxide ruthenium layer having a lower Si-(O—Si—Si bond to Si—(CH 3 )x bond ratio and use a higher flow rate The oxygen gas is supplied to form a carbon oxide ruthenium layer having a higher ratio of Si-O-Si bond to Si-(CH 3 )x bond. In some examples, the lower flow oxygen supply system includes a condition in which the oxygen supply gas flow rate is zero. In the example section, silicon-based organic compound to provide a gas having a lower ratio of to form Si-O-Si bond and Si- (CH 3) x is the carbon bonded to the silicon oxide sub-layer, and provides oxygen and organic gas The gas of the ruthenium compound is formed to form a ruthenium oxycarbide layer having a higher ratio of Si-O-Si bond to Si-(CH 3 )x bond.

根據部分具體實施例,第二碳氧化矽子層係形成於該第一碳氧化矽子層上。於部分實例中,係提供供氧氣體及有機矽化合物之氣體,利用電漿輔助化學氣相沈積,於基板上形成第一碳氧化矽子層,以及改變該供氧氣體之流量,於第一碳氧化矽子層上形成第二碳氧化矽子層。 According to some embodiments, a second carbon oxide ruthenium layer is formed on the first ruthenium oxide layer. In some examples, a gas for supplying an oxygen gas and an organic cerium compound is provided, and a first carbon oxidized cerium layer is formed on the substrate by plasma-assisted chemical vapor deposition, and the flow rate of the oxygen-supplying gas is changed. A second carbon oxide ruthenium layer is formed on the carbon oxide ruthenium layer.

於部分實例中,第二碳氧化矽子層的Si-O-Si鍵結與Si-(CH3)x鍵結之比值係高於第一碳氧化矽子層的Si-O-Si鍵結與Si-(CH3)x鍵結之比值。於此等實例中,係藉由提高該供氧氣體之流量,以形成第二碳氧化矽子層。舉例來說,藉由電漿輔助化學氣相沈積形成該第一碳氧化矽子層及該第二碳氧化矽子層時,係使用較低流量(可為0)之供氧氣體以形成具較低Si-O-Si鍵結與Si-(CH3)x鍵結之比值的第一碳氧化矽子層,並且使用較高流量(不為0)之供氧氣體以形成具較高Si-O-Si鍵結與Si-(CH3)x鍵結之比值的第二碳氧化矽子層。於部分實例中,係提供有機矽化合物之氣體,利用電漿輔助化學氣相沈積,於供氧氣體之流量為0時在基板上形成第一碳氧化矽子層,以及改變該供氧氣體之流量(供氧氣體之流量不為0),以於第一碳氧化矽子層上形成第二碳氧化矽子層。 In some examples, the ratio of the Si—O—Si bond to the Si—(CH 3 )x bond of the second carbon oxide layer is higher than the Si—O—Si bond of the first carbon oxide layer. The ratio of the bond to the Si-(CH 3 )x bond. In these examples, the second carbon oxidized hafnium layer is formed by increasing the flow rate of the oxygen supply gas. For example, when the first carbon oxide layer and the second carbon oxide layer are formed by plasma assisted chemical vapor deposition, a lower flow rate (may be 0) of oxygen supply gas is used to form the a lower carbon-germanium layer having a lower Si-O-Si bond to Si-(CH 3 )x bond ratio and using a higher flow rate (not 0) of oxygen supply gas to form a higher Si a second carbon oxidized hafnium layer having a ratio of -O-Si bonding to Si-(CH 3 )x bonding. In some examples, a gas of an organic germanium compound is provided, and plasma-assisted chemical vapor deposition is used to form a first carbon oxide layer on the substrate when the flow rate of the oxygen supply gas is 0, and to change the oxygen supply gas. The flow rate (the flow rate of the oxygen supply gas is not 0) forms a second carbon oxide ruthenium layer on the first carbon oxide ruthenium layer.

根據上述複層硬化膜結構之製法,係利用電漿輔助化學氣相沈積以形成第一碳氧化矽子層及第二碳氧化矽子層。進行電漿輔助化學氣相沈積時,係將反應氣體(例如供氧氣體、有機矽化合物之氣體)導入腔室中,以於腔室中的基板上沈積形成碳氧化矽層。根據部分具體實施例,係藉由電漿輔助化學氣相沈積,以於腔室中的基板上連續沈積具有不同的Si-O-Si鍵結與Si-(CH3)x鍵結之 比值的多層碳氧化矽層。於部分實例中,係藉由電漿輔助化學氣相沈積,以於腔室中的基板上連續沈積第一碳氧化矽子層及第二碳氧化矽子層。 According to the above-described method for forming a double-layered hardened film, plasma-assisted chemical vapor deposition is used to form a first carbon oxide layer and a second carbon oxide layer. In the plasma-assisted chemical vapor deposition, a reaction gas (for example, an oxygen supply gas, a gas of an organic ruthenium compound) is introduced into the chamber to deposit a carbon ruthenium oxide layer on the substrate in the chamber. According to some embodiments, plasma-assisted chemical vapor deposition is used to continuously deposit a ratio of different Si-O-Si bonds to Si-(CH 3 ) x bonds on a substrate in a chamber. Multilayered cerium oxide layer. In some examples, the first carbon oxide layer and the second carbon oxide layer are successively deposited on the substrate in the chamber by plasma assisted chemical vapor deposition.

可藉由調整供氧氣體之流量以形成具有不同Si-O-Si鍵結與Si-(CH3)x鍵結之比值的碳氧化矽子層。舉例來說,可使用較低流量(可為0)之供氧氣體以形成具較低Si-O-Si鍵結與Si-(CH3)x鍵結之比值的碳氧化矽子層,並且使用較高流量(不為0)之供氧氣體以形成具較高Si-O-Si鍵結與Si-(CH3)x鍵結之比值的碳氧化矽子層。於部分實例中,係藉由電漿輔助化學氣相沈積,以於腔室中的基板上連續沈積第一碳氧化矽子層及第二碳氧化矽子層,其中,於沈積第一碳氧化矽子層時係使用較低流量(可為0)的供氧氣體以形成具較低Si-O-Si鍵結與Si-(CH3)x鍵結之比值的第一碳氧化矽子層,以及於沈積第二碳氧化矽子層時係改變(提高)供氧氣體的流量,以使用較高流量(不為0)的供氧氣體來形成具較高Si-O-Si鍵結與Si-(CH3)x鍵結之比值的第二碳氧化矽子層。 The carbon oxide oxide layer having a ratio of different Si-O-Si bonds to Si-(CH 3 ) x bonds can be formed by adjusting the flow rate of the oxygen supply gas. For example, a lower flow rate (which may be 0) of oxygen supply gas may be used to form a carbon oxide ruthenium layer having a lower Si-O-Si bond to Si-(CH 3 )x bond ratio, and use higher flow (not 0) of oxygen having a high ratio of gas to form Si-O-Si bond and Si- (CH 3) x is the carbon bonded to the silicon oxide sublayer. In some examples, the first carbon oxidized cerium layer and the second carbon oxidized cerium layer are successively deposited on the substrate in the chamber by plasma-assisted chemical vapor deposition, wherein the first carbon oxidized during deposition the first carbon-based silicon oxide sublayer using a lower flow rate (may be 0) when the oxygen gas to form a silicon sub-layer having a lower ratio of Si-O-Si bond and (CH 3) x bonded to the Si- And changing (increasing) the flow rate of the oxygen supply gas when depositing the second carbon oxide ruthenium layer to form a higher Si-O-Si bond with a higher flow rate (not 0) of the oxygen supply gas A second carbon oxidized hafnium layer having a Si-(CH 3 )x bond ratio.

電漿輔助化學氣相沈積裝置的電漿產生方式並無特別限制。導入腔室中的氣體,除了上述供氧氣體及有機矽化合物之氣體外,亦可含有其他視需要的氣體。 The plasma generation mode of the plasma-assisted chemical vapor deposition apparatus is not particularly limited. The gas introduced into the chamber may contain other gases as needed in addition to the gas of the oxygen supply gas and the organic hydrazine compound.

根據上述複層硬化膜結構之製法,係提供供氧氣體及/或有機矽化合物之氣體,以藉由電漿輔助化學氣相沈積形成碳氧化矽層。 According to the above-described method for forming a double-layered cured film, a gas for supplying an oxygen gas and/or an organic cerium compound is provided to form a cerium oxide layer by plasma-assisted chemical vapor deposition.

供氧氣體的實例包括,但不限於:一氧化二氮(nitrous oxide,N2O)、氧氣、空氣、氧化氮、過氧化物、二氧化硫、一氧化碳、二氧化碳及其組合。較佳地,係使用一氧化二氮及/或氧氣作為供氧氣體。根據部分具體實施例,供氧氣體係一氧化二氮。可視需 要調整一氧化二氮的量。 Examples of oxygen supply gases include, but are not limited to, nitrous oxide (N 2 O), oxygen, air, nitrogen oxides, peroxides, sulfur dioxide, carbon monoxide, carbon dioxide, and combinations thereof. Preferably, nitrous oxide and/or oxygen is used as the oxygen supply gas. According to some embodiments, the oxygen system is supplied with nitrous oxide. The amount of nitrous oxide can be adjusted as needed.

有機矽化合物的實例包括,但不限於:六甲基矽氧烷(Hexamethyldisiloxane,C6H18Si2O,HMDSO)、三甲基矽烷(trimethyl silane,TMS)、六甲基二矽氮烷(hexamethyldisilazane,HMDS)、四乙氧基矽烷(tetraethoxysilane,TEOS),其類似物、衍生物,及其組合。可視需要選擇有機矽化合物之氣體的量。根據部分具體實施例,有機矽化合物係六甲基矽氧烷。 Examples of the organic ruthenium compound include, but are not limited to, Hexamethyldisiloxane (C 6 H 18 Si 2 O, HMDSO), trimethyl silane (TMS), hexamethyldioxane ( Hexamethyldisilazane, HMDS), tetraethoxysilane (TEOS), analogs, derivatives thereof, and combinations thereof. The amount of gas of the organic cerium compound can be selected as needed. According to some embodiments, the organotellurium compound is hexamethyloxirane.

根據部分具體實施例,係提供六甲基矽氧烷之氣體以形成碳氧化矽層。根據部分具體實施例,係提供六甲基矽氧烷之氣體與供氧氣體以形成碳氧化矽層。於部分實例中,係提供一氧化二氮及六甲基矽氧烷之氣體,藉由電漿輔助化學氣相沈積以形成碳氧化矽層。於部分實例中,係提供六甲基矽氧烷之氣體,藉由電漿輔助化學氣相沈積以形成一個碳氧化矽子層,以及,除了六甲基矽氧烷之氣體,再提供一氧化二氮,以形成另一個碳氧化矽子層。於部分實例中,係提供六甲基矽氧烷之氣體,藉由電漿輔助化學氣相沈積以形成第一碳氧化矽子層,以及,除了六甲基矽氧烷之氣體,再提供一氧化二氮,以形成第二碳氧化矽子層。 According to some embodiments, a gas of hexamethyloxirane is provided to form a ruthenium oxycarbide layer. According to some embodiments, a gas of hexamethyloxirane and an oxygen supply gas are provided to form a layer of tantalum carbon oxide. In some examples, a gas of nitrous oxide and hexamethyl decane is provided by plasma assisted chemical vapor deposition to form a ruthenium oxycarbide layer. In some examples, a gas of hexamethyloxane is provided by plasma-assisted chemical vapor deposition to form a carbonium oxide layer, and a gas other than hexamethyloxane is provided for oxidation. Dinitrogen to form another layer of carbon oxide oxide. In some examples, a gas of hexamethyloxirane is provided, which is formed by plasma-assisted chemical vapor deposition to form a first carbonium oxide layer, and a gas other than hexamethyloxane is provided. Nitrogen oxide is formed to form a second carbon oxide layer.

如前文所述,提供六甲基矽氧烷之氣體以藉由電漿輔助化學氣相沈積形成碳氧化矽層時,可搭配使用不同流量的供氧氣體(例如,一氧化二氮),以形成具有不同Si-O-Si鍵結與Si-(CH3)x鍵結之比值的碳氧化矽子層。舉例來說,藉由電漿輔助化學氣相沈積形成碳氧化矽層時,可透過改變腔室中一氧化二氮的流量,以形成具有不同Si-O-Si鍵結與Si-(CH3)x鍵結之比值的碳氧化矽層。 As described above, when a gas of hexamethyloxirane is provided to form a ruthenium oxyhydroxide layer by plasma-assisted chemical vapor deposition, a different flow rate of an oxygen supply gas (for example, nitrous oxide) may be used in combination. A carbon oxide ruthenium layer having a ratio of different Si-O-Si bonds to Si-(CH 3 )x bonds is formed. For example, when a carbonium oxide layer is formed by plasma-assisted chemical vapor deposition, the flow rate of nitrous oxide in the chamber can be changed to form a Si-O-Si bond with Si-(CH 3 ). a carbon ruthenium oxide layer having a ratio of x bond junctions.

根據本揭露之部分具體實施例,係提供一氧化二氮(N2O)、反 應前驅物六甲基矽氧烷(Hexamethyldisiloxane,C6H18Si2O,HMDSO),以藉由電漿輔助化學氣相沉積(PECVD),於基板上鍍製具有不同的Si-O-Si鍵結與Si-(CH3)x鍵結之比值的碳氧化矽(SiOC)子層。具體而言,將基板放置於電漿輔助化學氣相沉積之腔體中,通入HMDSO及N2O,藉由調整N2O的流量以形成具有不同Si-O-Si鍵結與Si-(CH3)x鍵結之比值的碳氧化矽子層。例如,可通入流量由低至高的N2O,以於腔體中連續形成Si-O-Si鍵結與Si-(CH3)x鍵結之比值由低至高的碳氧化矽子層。在N2O流量較低時(可為0)可形成具較低Si-O-Si鍵結與Si-(CH3)x鍵結之比值的SiOC子層,在N2O流量較高時(不為0)可形成具較高Si-O-Si鍵結與Si-(CH3)x鍵結之比值的SiOC子層。 According to some embodiments of the present disclosure, nitrous oxide (N 2 O) and a reaction precursor Hexamethyldisiloxane (C 6 H 18 Si 2 O, HMDSO) are provided for assisting by plasma Chemical vapor deposition (PECVD), a sub-layer of carbon cerium oxide (SiOC) having different ratios of Si-O-Si bonds to Si-(CH 3 ) x bonds is plated on the substrate. Specifically, the substrate is placed in a cavity of plasma-assisted chemical vapor deposition, and HMDSO and N 2 O are introduced, and the flow rate of N 2 O is adjusted to form a bond with different Si—O—Si and Si— A carbon oxide ruthenium layer having a ratio of (CH 3 )x bonds. For example, a low to high flow rate of N 2 O can be introduced to continuously form a carbon oxide oxide layer in the cavity from a low to high ratio of Si—O—Si bonding to Si—(CH 3 )x bonding. When the N 2 O flow rate is low (may be 0), a SiOC sub-layer having a lower ratio of Si—O—Si bond to Si—(CH 3 )x bond can be formed, when the flow rate of N 2 O is high (Not 0) An SiOC sublayer having a higher ratio of Si-O-Si bond to Si-(CH 3 )x bond can be formed.

藉由上述方法,可於腔室中透過調整供氧氣體的流量而連續沈積具不同Si-O-Si鍵結與Si-(CH3)x鍵結之比值的碳氧化矽子層。藉由上述方法,可以在基板上鍍製含氧量漸變之多個SiOC子層。同樣地,藉由上述方法,可以透過調整供氧氣體的流量連續形成多個硬化層,其中,各硬化層係包含具有不同Si-O-Si鍵結與Si-(CH3)x鍵結之比值的至少兩個碳氧化矽子層。 By the above method, the carbon oxide oxide layer having a ratio of different Si-O-Si bonds to Si-(CH 3 ) x bonds can be continuously deposited in the chamber by adjusting the flow rate of the oxygen supply gas. By the above method, a plurality of SiOC sublayers having a gradual change in oxygen content can be plated on the substrate. Similarly, by the above method, a plurality of hardened layers can be continuously formed by adjusting the flow rate of the oxygen supply gas, wherein each hardened layer contains different Si—O—Si bonds and Si—(CH 3 )x bonds. The ratio of at least two carbon oxide cerium layers.

於部分實例中,係將基板放置於電漿輔助化學氣相沉積之腔體中,通入HMDSO以形成具有較低Si-O-Si鍵結與Si-(CH3)x鍵結之比值的碳氧化矽子層,以及除了HMDSO外再通入N2O,以形成具有較高Si-O-Si鍵結與Si-(CH3)x鍵結之比值的碳氧化矽子層。 In some examples, the substrate is placed in a plasma-assisted chemical vapor deposition chamber, and HMDSO is introduced to form a ratio of lower Si-O-Si bonding to Si-(CH 3 )x bonding. The carbon oxide ruthenium layer, and in addition to HMDSO, N 2 O is introduced to form a carbon oxide ruthenium layer having a higher ratio of Si-O-Si bond to Si-(CH 3 )x bond.

根據部分具體實施例,第二碳氧化矽子層的Si-O-Si鍵結與Si-(CH3)x鍵結之比值係高於該第一碳氧化矽子層的Si-O-Si鍵結與Si-(CH3)x鍵結之比值。於部分實例中,第一碳氧化矽子層之 Si-O-Si鍵結與Si-(CH3)x鍵結之比值為小於或等於14。於部分實例中,第二碳氧化矽子層之Si-O-Si鍵結與Si-(CH3)x鍵結之比值為超過14。 According to some embodiments, the ratio of the Si—O—Si bond to the Si—(CH 3 )x bond of the second carbon oxide oxide layer is higher than the Si—O—Si of the first carbon oxide layer. The ratio of the bond to the Si-(CH 3 )x bond. In some examples, the ratio of the Si—O—Si bond to the Si—(CH 3 ) x bond of the first carbon oxide ruthenium layer is less than or equal to 14. In some examples, the ratio of the Si—O—Si bond to the Si—(CH 3 ) x bond of the second carbon oxide oxide layer exceeds 14.

於部分實例中,提供具第一流量之供氧氣體(例如,一氧化二氮)及六甲基矽氧烷之氣體,以形成第一碳氧化矽子層,其中,該第一流量可為0;以及,提供具第二流量之供氧氣體(例如,一氧化二氮)及六甲基矽氧烷之氣體,以形成第二碳氧化矽子層,其中,該第二流量係高於該第一流量,且該第二流量為該六甲基矽氧烷之氣體的流量的2倍或2倍以上。 In some examples, a gas having a first flow rate of an oxygen supply gas (eg, nitrous oxide) and hexamethyl decane is provided to form a first carbon oxide raft layer, wherein the first flow rate can be And providing a gas having a second flow rate of an oxygen supply gas (for example, nitrous oxide) and hexamethyloxane to form a second carbon oxide layer, wherein the second flow rate is higher than The first flow rate is 2 times or more of the flow rate of the gas of the hexamethyloxane.

於部分實例中,係提供供氧氣體(例如,一氧化二氮)及六甲基矽氧烷之氣體,以形成第一碳氧化矽子層;以及,改變該供氧氣體之流量,以形成第二碳氧化矽子層。其中,形成該第一碳氧化矽層時,該供氧氣體之流量可為0,以及其中,形成該第二碳氧化矽層時,該供氧氣體之流量為該六甲基矽氧烷之氣體的流量的2倍或2倍以上。 In some examples, a gas for supplying an oxygen gas (for example, nitrous oxide) and hexamethyloxirane is provided to form a first carbon oxide ruthenium layer; and, a flow rate of the oxygen supply gas is changed to form The second carbon oxide layer is oxidized. Wherein, when the first carbonium oxide layer is formed, the flow rate of the oxygen supply gas may be 0, and wherein, when the second carbonium oxide layer is formed, the flow rate of the oxygen supply gas is the hexamethyloxane The flow rate of the gas is 2 times or more.

於部分實例中,係提供六甲基矽氧烷之氣體以形成第一碳氧化矽子層,以及,提供供氧氣體(例如,一氧化二氮)及六甲基矽氧烷之氣體以形成第二碳氧化矽子層。其中,形成該第二碳氧化矽層時,該供氧氣體之流量為該六甲基矽氧烷之氣體的流量的2倍或2倍以上。 In some examples, a gas of hexamethyloxirane is provided to form a first carbonium oxide layer, and a gas for supplying an oxygen gas (eg, nitrous oxide) and hexamethyloxane is formed to form The second carbon oxide layer is oxidized. Wherein, when the second carbonium oxyhydroxide layer is formed, the flow rate of the oxygen supply gas is twice or more than the flow rate of the gas of the hexamethyloxane.

本揭露之複層硬化膜結構,包括基板以及形成於該基板上的硬化層。硬化層包含第一碳氧化矽子層及第二碳氧化矽子層,其中,該第一碳氧化矽子層的Si-O-Si鍵結與Si-(CH3)x鍵結之比值係與該第二碳氧化矽子層的Si-O-Si鍵結與Si-(CH3)x鍵結之比值 不同。根據部分具體實施例,第二碳氧化矽子層係形成於第一碳氧化矽子層上。於部分實例中,第二碳氧化矽子層的Si-O-Si鍵結與Si-(CH3)x鍵結之比值係高於第一碳氧化矽子層的Si-O-Si鍵結與Si-(CH3)x鍵結之比值。於此實例中,高氧SiOC子層(Si-O-Si鍵結與Si-(CH3)x鍵結之比值較高)係成長於低氧SiOC子層(Si-O-Si鍵結與Si-(CH3)x鍵結之比值較低)上。 The multi-layer hardened film structure of the present disclosure comprises a substrate and a hardened layer formed on the substrate. The hardened layer comprises a first carbon oxide layer and a second carbon oxide layer, wherein a ratio of Si—O—Si bonding to Si—(CH 3 )× bonding of the first carbon oxide layer is The ratio of the Si—O—Si bond to the Si—(CH 3 )x bond to the second carbon oxide oxide layer is different. According to some embodiments, the second carbon oxide oxide layer is formed on the first carbon oxide oxide layer. In some examples, the ratio of the Si—O—Si bond to the Si—(CH 3 )x bond of the second carbon oxide layer is higher than the Si—O—Si bond of the first carbon oxide layer. The ratio of the bond to the Si-(CH 3 )x bond. In this example, the high-oxygen SiOC sub-layer (higher ratio of Si-O-Si bond to Si-(CH 3 )x bond) grows in the low-oxygen SiOC sub-layer (Si-O-Si bond and The ratio of Si-(CH 3 )x bonds is low).

可經多層堆疊以形成具有多個SiOC子層之結構。藉由上述製法,可連續堆疊成分漸變之多個SiOC子層。換言之,可連續堆疊具有不同Si-O-Si鍵結與Si-(CH3)x鍵結之比值/含氧量的SiOC子層。舉例來說,具有多個SiOC子層之結構其成分如第2圖之二次離子質譜儀(Secondary ion mass spectrometer,SIMS)分析及第3圖之傅立葉轉換紅外線光譜分析(Fourier-Transform Infrared Spectrometer,FTIR)分析所示,該結構之硬化層係具有成份連續漸變之多個SiOC子層。如第2圖所示(「microns指微米」),該結構之硬化層具有為高含氧量之SiOC子層及為低含氧量之SiOC子層。又如第3圖所示,該結構之硬化層具有Si-O-Si鍵結與Si-(CH3)x鍵結之比值較高之SiOC子層,及Si-O-Si鍵結與Si-(CH3)x鍵結之比值較低之SiOC子層。 The structure may be formed by stacking a plurality of layers to form a plurality of SiOC sublayers. By the above-described production method, a plurality of SiOC sub-layers having a compositional gradation can be continuously stacked. In other words, the SiOC sublayer having a ratio of different Si-O-Si bonds to Si-(CH 3 )x bonds/oxygen content can be continuously stacked. For example, a structure having a plurality of SiOC sublayers has a composition such as a secondary ion mass spectrometer (SIMS) analysis of FIG. 2 and a Fourier-Transform Infrared Spectrometer (Fig. 3). The FTIR) analysis shows that the hardened layer of the structure has a plurality of SiOC sublayers with continuously gradual composition. As shown in Fig. 2 ("microns means micron"), the hardened layer of the structure has a high oxygen content SiOC sublayer and a low oxygen content SiOC sublayer. As shown in Fig. 3, the hardened layer of the structure has a SiOC sublayer having a high ratio of Si-O-Si bond to Si-(CH 3 )x bond, and Si-O-Si bond and Si. A SiOC sublayer having a lower ratio of -(CH 3 )x linkages.

與具較高Si-O-Si鍵結與Si-(CH3)x鍵結之比值的SiOC子層相比,具較低Si-O-Si鍵結與Si-(CH3)x鍵結之比值的SiOC子層的化學組成以矽碳氫(Si-CH)為主,Si-O-Si鍵結含量相對較低。因此,具較低Si-O-Si鍵結與Si-(CH3)x鍵結之比值的SiOC子層,可用於幫助後續鍍製之具較高Si-O-Si鍵結與Si-(CH3)x鍵結之比值的SiOC子層的應力釋放。如前文所述,在N2O流量較高時可形成具 較高Si-O-Si鍵結與Si-(CH3)x鍵結之比值的SiOC子層,具較高Si-O-Si鍵結與Si-(CH3)x鍵結之比值的SiOC子層的氧原子含量較高,層中之Si-O-Si鍵結含量相對較高(鍵結強度較大),其組成類似於二氧化矽(SiO2),因而具有較佳之抗刮及耐磨耗的功效。 Lower Si-O-Si bond and Si-(CH 3 )x bond than SiOC sub-layer with higher Si-O-Si bond and Si-(CH 3 )x bond ratio The chemical composition of the ratio of the SiOC sublayer is mainly ruthenium hydrocarbon (Si-CH), and the Si-O-Si bond content is relatively low. Therefore, a SiOC sublayer with a lower ratio of Si-O-Si bond to Si-(CH 3 )x bond can be used to assist in subsequent Si-O-Si bonding and Si-( The stress release of the SiOC sublayer of the ratio of CH 3 )x bonds. As described above, when the flow rate of N 2 O is high, a SiOC sub-layer having a higher ratio of Si—O—Si bond to Si—(CH 3 )x bond can be formed, which has a higher Si—O—Si The SiOC sublayer of the ratio of the bond to the Si-(CH 3 )x bond has a higher oxygen atom content, and the Si-O-Si bond content in the layer is relatively higher (the bond strength is larger), and its composition is similar. It is used in cerium oxide (SiO 2 ) and thus has better scratch and abrasion resistance.

本揭露之複層硬化膜結構包括包含第一碳氧化矽子層及第二碳氧化矽子層,其中,該第一碳氧化矽子層的Si-O-Si鍵結與Si-(CH3)x鍵結之比值係與該第二碳氧化矽子層的Si-O-Si鍵結與Si-(CH3)x鍵結之比值不同。根據本揭露之複層硬化膜結構,具較低Si-O-Si鍵結與Si-(CH3)x鍵結之比值的碳氧化矽子層可用於幫助具較高Si-O-Si鍵結與Si-(CH3)x鍵結之比值的碳氧化矽子層的應力釋放。於部分實例中,第二碳氧化矽子層的Si-O-Si鍵結與Si-(CH3)x鍵結之比值係高於第一碳氧化矽子層的Si-O-Si鍵結與Si-(CH3)x鍵結之比值,因此,具較低Si-O-Si鍵結與Si-(CH3)x鍵結之比值的第一碳氧化矽子層可用於幫助具較高Si-O-Si鍵結與Si-(CH3)x鍵結之比值的第二碳氧化矽子層的應力釋放。換言之,利用Si-O-Si鍵結與Si-(CH3)x鍵結之比值較低之第一碳氧化矽子層的應力釋放,可以達到降低Si-O-Si鍵結與Si-(CH3)x鍵結之比值較高的第二碳氧化矽子層的內應力的效果,使得該硬化層有更佳之膜質,且不易碎裂。同時,由於包含具不同Si-O-Si鍵結與Si-(CH3)x鍵結之比值的碳氧化矽子層,該硬化層具有較佳之膜質(例如,不易彎曲變形、不易產生裂痕),因而可以依所欲的增加厚度,以提升抗刮特性。因此,包含具不同Si-O-Si鍵結與Si-(CH3)x鍵結之比值的碳氧化矽子層的硬化層,可應用於基板上,達到提升基板之抗刮特性的功效。由此可知,本揭露之複層硬化膜結構, 具有提升之抗刮特性。 The multi-layer hardened film structure of the present disclosure includes a first carbon oxide layer and a second carbon oxide layer, wherein the first carbon oxide layer is Si-O-Si bonded with Si-(CH 3 ) The ratio of the x bond is different from the ratio of the Si-O-Si bond to the Si-(CH 3 ) x bond of the second carbon oxide layer. According to the multi-layer hardened film structure of the present disclosure, a carbon oxide hafnium layer having a lower ratio of Si-O-Si bond to Si-(CH 3 )x bond can be used to help have a higher Si-O-Si bond. The stress release of the carbon oxide raft layer of the ratio of the junction to the Si-(CH 3 )x bond. In some examples, the ratio of the Si—O—Si bond to the Si—(CH 3 )x bond of the second carbon oxide layer is higher than the Si—O—Si bond of the first carbon oxide layer. The ratio of the bond to the Si-(CH 3 )x bond, therefore, the first carbon oxide ruthenium layer having a lower ratio of Si-O-Si bond to Si-(CH 3 )x bond can be used to help Stress release of the second carbon oxide cerium layer in a ratio of high Si-O-Si bond to Si-(CH 3 )x bond. In other words, by using the ratio of Si-O-Si bond and Si- (CH 3) x bonded to the first carbon of the lower sub-layer of silicon oxide stress relief, can be to reduce Si-O-Si bond and Si- ( The effect of the internal stress of the second carbon oxidized cerium layer having a higher ratio of CH 3 )x bonds makes the hardened layer more membranous and less susceptible to chipping. At the same time, since the carbon oxide oxide layer having a ratio of different Si-O-Si bonds to Si-(CH 3 )x bonds is contained, the hardened layer has a better film quality (for example, it is not easily bent and is not easily cracked). Therefore, the thickness can be increased as desired to improve the scratch resistance. Therefore, the hardened layer containing the carbon oxide ytterbium layer having a ratio of different Si-O-Si bonds to Si-(CH 3 )x bonds can be applied to the substrate to improve the scratch resistance of the substrate. It can be seen from the above that the multilayer cured film structure of the present invention has improved scratch resistance.

根據部分具體實施例,上述製程係於真空腔體內以真空電漿鍍膜方式進行,可藉由鍍膜氣氛N2O流量的改變(包括從流量為0改變成流量不為0),於同一腔室中,連續鍍製具有不同Si-O-Si鍵結與Si-(CH3)x鍵結之比值的碳氧化矽子層。同時,藉由上述製法,可於同一腔室中連續形成Si-O-Si鍵結與Si-(CH3)x鍵結之比值漸變的多層碳氧化矽子層。請參見第4圖之FTIR全譜分析,其係將HMDSO的流量固定為30sccm時,以不同的N2O的流量(分別為0、10、20、60、160sccm)進行分析。如圖所示,改變鍍膜氣氛N2O之流量(0sccm至160sccm)可以形成具有不同Si-O-Si鍵結與Si-(CH3)x鍵結之比值的SiOC層。反應氣氛N2O之添加會使原本電漿聚合轉變成氧化還原反應。以Si-O-Si鍵結(1072cm-1)作為SiOC層之鍵結代表,隨著N2O流量的增加,代表高氧SiOC層之Si-O-Si鍵結強度隨之增加。復參見第5圖,該圖為改變鍍膜氣氛N2O流量之Si-O-Si鍵結/Si-CH3鍵結比例分析。其係將HMDSO的流量固定於30sccm,以不同的N2O的流量(圖中黑點所示分別係流量為0、10、20、60、160sccm)進行觀察。如圖所示,N2O之加入使原本以Si-CH3鍵結為主之電漿聚合轉化成以Si-O-Si鍵結為主之電漿氧化還原反應,隨著N2O流量的增加,Si-O-Si鍵結即成為影響SiOC層之Si-O-Si鍵結與Si-(CH3)x鍵結之比值高低之代表鍵結。另參見第6圖,其為改變鍍膜氣氛N2O流量(圖中方塊所示分別係流量為0、10、20、60、160sccm)製作之SiOC層之水滴接觸角之分析。SiOC層係以Si-CH3鍵結及Si-O-Si鍵結為該層之架構,其中Si-CH3鍵結為疏水表面性質,而Si-O-Si鍵結為親水表面性質。 由圖中可以發現,N2O之加入使SiOC層之水滴接觸角快速下降,此即表示電漿反應由聚合轉為氧化還原為主。隨著N2O流量的增加,代表高氧SiOC層之親水表面特性(Si-O-Si)逐漸明顯。由上述可知,透過改變N2O之流量即可連續製作成份漸變的硬化層(亦即,連續製作具有不同Si-O-Si鍵結與Si-(CH3)x鍵結之比值的多個SiOC子層。例如,連續製作Si-O-Si鍵結與Si-(CH3)x鍵結之比值由低至高的多個SiOC子層),以製作複層硬化膜結構。 According to some embodiments, the above process is performed in a vacuum chamber by a vacuum plasma coating method, and the flow rate of the N 2 O in the coating atmosphere can be changed (including changing from a flow rate of 0 to a flow rate of not 0) in the same chamber. In the middle, a carbon oxide ruthenium layer having a ratio of different Si-O-Si bonds to Si-(CH 3 )x bonds is continuously plated. At the same time, by the above-mentioned preparation method, a multi-layered ruthenium oxide sub-layer having a ratio of Si-O-Si bond and Si-(CH 3 )x bond gradation can be continuously formed in the same chamber. Please refer to the FTIR full spectrum analysis in Fig. 4, which is analyzed with different flow rates of N 2 O (0, 10, 20, 60, 160 sccm, respectively) when the flow rate of HMDSO is fixed at 30 sccm. As shown, changing the flow rate of the coating atmosphere N 2 O (0 sccm to 160 sccm) can form a SiOC layer having a ratio of different Si-O-Si bonds to Si-(CH 3 ) x bonds. The addition of the reaction atmosphere N 2 O causes the original plasma polymerization to be converted into a redox reaction. The Si-O-Si bond (1072 cm -1 ) is used as the bond of the SiOC layer. As the flow rate of N 2 O increases, the Si-O-Si bond strength representing the high oxygen SiOC layer increases. Referring to Figure 5, the figure shows the Si-O-Si bond/Si-CH 3 bond ratio analysis for changing the N 2 O flow rate of the coating atmosphere. The flow rate of the HMDSO was fixed at 30 sccm, and the flow rate of different N 2 O (the flow rate was 0, 10, 20, 60, 160 sccm as indicated by the black dots in the figure) was observed. As shown in the figure, the addition of N 2 O converts the plasma polymerization originally composed of Si-CH 3 bonds into a plasma redox reaction mainly composed of Si-O-Si bonds, with N 2 O flow. The increase of the Si-O-Si bond becomes a representative bond that affects the ratio of the Si-O-Si bond to the Si-(CH 3 )x bond of the SiOC layer. See also Fig. 6, which is an analysis of the contact angle of the water droplets of the SiOC layer produced by changing the N 2 O flow rate of the coating atmosphere (the flow rates are 0, 10, 20, 60, 160 sccm shown in the squares in the figure). The SiOC layer is Si-CH 3 bonded and Si-O-Si bonded to the structure of the layer, wherein Si-CH 3 bonds are hydrophobic surface properties, and Si-O-Si bonds are hydrophilic surface properties. It can be seen from the figure that the addition of N 2 O causes the contact angle of the water droplets of the SiOC layer to rapidly decrease, which means that the plasma reaction is converted from polymerization to redox. As the flow rate of N 2 O increases, the hydrophilic surface characteristics (Si-O-Si) representing the high-oxygen SiOC layer become increasingly apparent. As can be seen from the above, the hardened layer of the composition gradation can be continuously produced by changing the flow rate of N 2 O (that is, a plurality of ratios of different Si—O—Si bonds to Si—(CH 3 )× bonds are continuously produced. The SiOC sub-layer, for example, continuously produces a plurality of SiOC sub-layers having a Si-O-Si bond to a Si-(CH 3 )x bond ratio from low to high to form a multi-layer hardened film structure.

詳細的複層硬化膜結構之製法,係例示於後文之實施例中,也可使用與實施例類似之方法進行製備。咸了解,實施例中製備方法及使用的材料,僅用以例示,並非限於此。 The preparation of the detailed composite hardened film structure is exemplified in the examples below, and can also be carried out by a method similar to that of the examples. It should be understood that the preparation methods and materials used in the examples are merely illustrative and not limited thereto.

本揭露將藉由實施例更具體地說明,但該等實施例並非用於限制本揭露之範疇。 The disclosure will be more specifically described by the embodiments, but the embodiments are not intended to limit the scope of the disclosure.

於下列實施例與比較例中用於表示氣體流量之單位sccm,全名為standard cubic centimeter per minute。1sccm代表在標準狀態(溫度273K,壓力760托(torr))下,每分鐘有1立方公分(cm3)的氣體流量)。 The unit sccm used to indicate the gas flow rate in the following examples and comparative examples, the full name is standard cubic centimeter per minute. 1 sccm represents a gas flow rate of 1 cubic centimeter (cm 3 ) per minute in a standard state (temperature 273 K, pressure 760 torr).

實施例:實施例1 Embodiment: Embodiment 1

以反應前驅物六甲基矽氧烷(Hexamethyldisiloxane,C6H18Si2O,HMDSO)搭配電漿輔助化學氣相沉積(PECVD)來製作不同成份(含氧量不同/Si-O-Si鍵結與Si-(CH3)x鍵結之比值不同)之多層SiOC子層。 The reaction precursor Hexamethyldisiloxane (C6H18Si2O, HMDSO) was combined with plasma-assisted chemical vapor deposition (PECVD) to prepare different components (different oxygen content/Si-O-Si bonding and Si-(CH) 3 ) The multi-layer SiOC sublayer of the x) bond ratio is different.

製作如第1A圖所示之複層硬化膜結構。將基板(10)放置於電漿輔助化學氣相沉積腔體中,抽真空至10毫托(mtorr),通入40 sccm的氬(Ar)氣體,控制壓力在30mtorr後,以100瓦(W)的RF電漿功率,表面處理1分鐘。通入30sccm之HMDSO,在40mtorr的壓力下,以400W的RF電漿功率進行鍍膜,以鍍製低氧之SiOC子層(21),膜厚為450nm,該低氧SiOC子層的Si-O-Si鍵結與Si-(CH3)x鍵結之比值為1.2;維持30sccm之HMDSO,再通入N2O流量160sccm,在40mtorr的壓力以2000W的RF電漿功率進行鍍膜,以鍍製高氧SiOC子層(22),膜厚450nm,該高氧SiOC子層的Si-O-Si鍵結與Si-(CH3)x鍵結之比值為16。藉由上述方法可在基板(10)上形成具低氧之SiOC子層(21)與高氧之SiOC子層(22)的硬化層(20),以獲得複層硬化膜結構。完成之複層硬化膜結構表面平整,無龜裂痕跡。 A multilayer cured film structure as shown in Fig. 1A was produced. The substrate (10) was placed in a plasma-assisted chemical vapor deposition chamber, evacuated to 10 mTorr, and a 40 sccm argon (Ar) gas was introduced, and the pressure was controlled at 30 mtorr to 100 watts (W). The RF plasma power is surface treated for 1 minute. A 30 sccm HMDSO was applied, and a coating of 400 W of RF plasma power was applied under a pressure of 40 mtorr to plate a low-oxygen SiOC sub-layer (21) having a film thickness of 450 nm, and the Si-O of the low-oxygen SiOC sub-layer. The ratio of the -Si bond to the Si-(CH 3 )x bond is 1.2; the HMDSO at 30 sccm is maintained, and the flow rate of N 2 O is 160 sccm, and the film is applied at a pressure of 40 mtorr at a voltage of 2000 W of RF plasma for plating. The high oxygen SiOC sublayer (22) has a film thickness of 450 nm, and the ratio of the Si—O—Si bond to the Si—(CH 3 ) x bond of the high oxygen SiOC sublayer is 16. A hardened layer (20) having a low oxygen SiOC sublayer (21) and a high oxygen SiOC sublayer (22) can be formed on the substrate (10) by the above method to obtain a double layer hardened film structure. The finished composite hardened film has a smooth surface and no crack marks.

實施例2 Example 2

製作如第1B圖所示之具有兩個硬化層的複層硬化膜結構。以與實施例1相同的方法,在基板(10)上先鍍製第一個硬化層(20),惟其中,低氧SiOC子層(21)的膜厚為225nm(Si-O-Si鍵結與Si-(CH3)x鍵結之比值為1.2),而高氧SiOC子層(22)的膜厚為225nm(Si-O-Si鍵結與Si-(CH3)x鍵結之比值為16)。 A double-layered cured film structure having two hardened layers as shown in Fig. 1B was produced. In the same manner as in the first embodiment, the first hardened layer (20) is first plated on the substrate (10), except that the film thickness of the low-oxygen SiOC sub-layer (21) is 225 nm (Si-O-Si bond) The ratio of the junction to the Si-(CH 3 )x bond is 1.2), and the film thickness of the high oxygen SiOC sublayer (22) is 225 nm (Si-O-Si bond and Si-(CH 3 )x bond The ratio is 16).

接著,於第一個硬化層(20)上再以相同方法鍍製第二個硬化層(30)。通入30sccm之HMDSO,在40mtorr的壓力下,以400W的RF電漿功率進行鍍膜,以鍍製低氧之SiOC子層(31),膜厚225nm,Si-O-Si鍵結與Si-(CH3)x鍵結之比值為1.2;維持30sccm之HMDSO,再通入N2O流量160sccm,在40mtorr的壓力以2000W的RF電漿功率進行鍍膜,以鍍製高氧SiOC子層(32),膜厚225nm,Si-O-Si鍵結與Si-(CH3)x鍵結之比值為16。藉由上述方法可獲得 在基板(10)上形成有兩個硬化層(20,30)的複層硬化膜結構,其中,第一個硬化層(20)具低氧之SiOC子層(21)與高氧之SiOC子層(22);第二個硬化層(30)亦具低氧之SiOC子層(31)與高氧之SiOC子層(32)。完成之複層硬化膜結構表面平整,無龜裂痕跡。 Next, a second hardened layer (30) is plated on the first hardened layer (20) in the same manner. A 30 sccm HMDSO was applied, and a coating of 400 W RF plasma power was applied under a pressure of 40 mtorr to plate a low-oxygen SiOC sub-layer (31) with a film thickness of 225 nm, Si-O-Si bonding and Si-( The ratio of the CH 3 )x bond is 1.2; the HMDSO of 30 sccm is maintained, and the flow rate of N 2 O is 160 sccm, and the film is coated at a pressure of 40 mtorr with an RF plasma power of 2000 W to plate a high oxygen SiOC sublayer (32). The film thickness was 225 nm, and the ratio of the Si-O-Si bond to the Si-(CH 3 )x bond was 16. A multi-layer hardened film structure in which two hardened layers (20, 30) are formed on the substrate (10) can be obtained by the above method, wherein the first hardened layer (20) has a low-oxygen SiOC sub-layer (21) The SiOC sublayer (22) with high oxygen; the second hardened layer (30) also has a low oxygen SiOC sublayer (31) and a high oxygen SiOC sublayer (32). The finished composite hardened film has a smooth surface and no crack marks.

實施例3 Example 3

製作具有四個硬化層的複層硬化膜結構。 A multi-layer hardened film structure having four hardened layers was produced.

以與實施例2相同的方法,在基板10上鍍製第一個硬化層及第二個硬化層,惟其中,各硬化層中的各SiOC層的膜厚為112.5nm(各硬化層中,低氧SiOC子層之Si-O-Si鍵結與Si-(CH3)x鍵結之比值為1.2,高氧SiOC子層之Si-O-Si鍵結與Si-(CH3)x鍵結之比值為16)。接著,重複相同步驟,於該第一個硬化層及第二個硬化層上,再形成兩個硬化層,其中,各硬化層係含有低氧SiOC子層與高氧SiOC子層;亦即,於該第一個硬化層及第二個硬化層上再堆疊鍍製共4個SiOC子層,以完成共具有四個硬化層(8個SiOC子層)的複層硬化膜結構。鍍膜後基板表面平整,無龜裂痕跡。 In the same manner as in the second embodiment, the first hardened layer and the second hardened layer are plated on the substrate 10, wherein the thickness of each of the SiOC layers in each hardened layer is 112.5 nm (in each hardened layer, the ratio of Si-O-Si bond SiOC sublayer of hypoxia and Si- (CH 3) x is a bond of 1.2, Si-O-Si bond SiOC sublayer high oxygen Si- (CH 3) x bond The knot ratio is 16). Then, repeating the same step, forming two hardened layers on the first hardened layer and the second hardened layer, wherein each hardened layer contains a low-oxygen SiOC sub-layer and a high-oxygen SiOC sub-layer; that is, A total of four SiOC sub-layers are further deposited on the first hardened layer and the second hardened layer to complete a multi-layer hardened film structure having four hardened layers (eight SiOC sub-layers). After coating, the surface of the substrate is flat and there is no crack marks.

實施例4 Example 4

製作具有六個硬化層的複層硬化膜結構。 A multi-layer hardened film structure having six hardened layers was produced.

以與實施例2相同的方法,在基板10上鍍製第一個硬化層及第二個硬化層,惟其中,各硬化層中的各SiOC子層的膜厚為75nm(各硬化層中,低氧SiOC子層之Si-O-Si鍵結與Si-(CH3)x鍵結之比值為1.2,高氧SiOC子層之Si-O-Si鍵結與Si-(CH3)x鍵結之比值為16)。接著,重複上述步驟,於該第一個硬化層及第二個硬化層上,再形成四個硬化層,其中,各硬化層係含有低氧SiOC 子層與高氧SiOC子層;亦即,於該第一個硬化層及第二個硬化層上再堆疊鍍製8個SiOC子層,以完成共具有六個硬化層(12個SiOC子層)的複層硬化膜結構。鍍膜後基板表面平整,無龜裂痕跡。 In the same manner as in the second embodiment, the first hardened layer and the second hardened layer are plated on the substrate 10, wherein the thickness of each of the SiOC sublayers in each hardened layer is 75 nm (in each hardened layer, the ratio of Si-O-Si bond SiOC sublayer of hypoxia and Si- (CH 3) x is a bond of 1.2, Si-O-Si bond SiOC sublayer high oxygen Si- (CH 3) x bond The knot ratio is 16). Then, repeating the above steps, forming four hardened layers on the first hardened layer and the second hardened layer, wherein each hardened layer contains a low-oxygen SiOC sub-layer and a high-oxygen SiOC sub-layer; that is, 8 SiOC sub-layers are further deposited on the first hardened layer and the second hardened layer to complete a double-layered hardened film structure having a total of six hardened layers (12 SiOC sub-layers). After coating, the surface of the substrate is flat and there is no crack marks.

比較例1 Comparative example 1

在基板上鍍製單一SiOC層。將基板放置於電漿輔助化學氣相沉積(PECVD)腔體中,抽真空至10mtorr後,通入40sccm的Ar氣體,控制壓力在30mtorr後,以100W的RF電漿功率表面處理1分鐘。通入N2O流量160sccm,及流量30sccm之HMDSO,以40mtorr的壓力,以2000W的RF電漿功率進行鍍膜,以鍍製單一高氧SiOC膜層,膜厚為900nm,該高氧SiOC膜層之Si-O-Si鍵結與Si-(CH3)x鍵結之比值為16。鍍膜後基板表面翹曲,並產生龜裂痕跡。 A single SiOC layer is plated on the substrate. The substrate was placed in a plasma-assisted chemical vapor deposition (PECVD) chamber. After evacuating to 10 mtorr, 40 sccm of Ar gas was introduced. After the control pressure was 30 mtorr, the surface was treated with 100 W of RF plasma power for 1 minute. An N 2 O flow rate of 160 sccm and a flow rate of 30 sccm of HMDSO were applied to coat at a pressure of 40 mtorr at a voltage of 2000 W of RF plasma to form a single high oxygen SiOC film layer having a film thickness of 900 nm. The high oxygen SiOC film layer was applied. The ratio of the Si-O-Si bond to the Si-(CH 3 )x bond is 16. After coating, the surface of the substrate is warped and crack marks are generated.

對上述實施例與比較例所得產物進行應力分析(如下表1所示)及鉛筆硬度測試(如下表2所示)。 The products obtained in the above examples and comparative examples were subjected to stress analysis (as shown in Table 1 below) and pencil hardness test (shown in Table 2 below).

根據Stoney’s equation可以計算出薄膜應力: The film stress can be calculated according to Stoney's equation:

其中,Es為基板的楊氏係數(Young Modulus) Where Es is the Young's modulus of the substrate (Young Modulus)

Vs為基板的波松比(Poisson's ratio) Vs is the Poisson's ratio of the substrate.

ts為基板厚度 Ts is the thickness of the substrate

tf為薄膜厚度 Tf is the film thickness

Rs為鍍膜前平均(基板)曲率 Rs is the average (substrate) curvature before coating

Rf為鍍膜後平均(整體)曲率。 Rf is the average (integral) curvature after coating.

僅具單一高氧SiOC層(比較例)者之應力相當大。相對地,堆疊多層具有不同Si-O-Si鍵結與Si-(CH3)x鍵結之比值的SiOC子層後(例如,實施例1、2、3、4),可令應力降低,例如降至100MPa以內(例如,實施例2、3、4)。 The stress of a single high oxygen SiOC layer (comparative example) is quite large. In contrast, after stacking a plurality of SiOC sublayers having different ratios of Si—O—Si bonds to Si—(CH 3 )x bonds (eg, Examples 1, 2, 3, and 4), stress can be reduced, For example, it is reduced to within 100 MPa (for example, Examples 2, 3, and 4).

比較例鍍膜(僅具單一高氧SiOC層)後之外觀如第7圖所示,單一高氧SiOC層(厚度為900nm),在外觀上可明顯看出鍍膜後膜產生明顯的彎曲、變形及裂痕。相對地,本揭露之複層硬化膜結構,其硬化層包含具有不同Si-O-Si鍵結與Si-(CH3)x鍵結之比值的碳氧化矽子層,其鍍膜後基板表面平整,無龜裂痕跡。如第8圖所示,實施例4之試片無裂痕產生。 The appearance of the comparative coating (only a single high-oxygen SiOC layer) is as shown in Fig. 7, a single high-oxygen SiOC layer (thickness: 900 nm), and it is apparent in appearance that the film is significantly bent and deformed after coating. crack. In contrast, in the multilayer cured film structure of the present disclosure, the hardened layer comprises a carbon oxide germanium layer having a ratio of different Si—O—Si bonds to Si—(CH 3 )x bonds, and the surface of the substrate is flat after coating. No cracks. As shown in Fig. 8, the test piece of Example 4 was produced without cracks.

鉛筆硬度測試(4ASTM D3363-7)的結果如表2所示。無鍍膜之基板(表中所示之「原CBC基板」),經鉛筆硬度測試後,硬度為 HB等級。比較例(具單一高氧SiOC膜)之硬度測試為1H之等級。相對地,本揭露之包括具不同Si-O-Si鍵結與Si-(CH3)x鍵結之比值的多層碳氧化矽子層的複層硬化膜結構,則可提高鉛筆硬度。例如,實施例3至4的試片,可提高鉛筆硬度至高達3H至4H之等級。 The results of the pencil hardness test (4ASTM D3363-7) are shown in Table 2. The uncoated substrate (the "original CBC substrate" shown in the table) has a hardness of HB grade after being tested by pencil hardness. The hardness test of the comparative example (with a single high oxygen SiOC film) was on the order of 1H. In contrast, the present invention includes a multilayer hardened film structure having a multi-layered yttria layer having a ratio of different Si-O-Si bonds to Si-(CH 3 )x bonds, thereby improving pencil hardness. For example, the test pieces of Examples 3 to 4 can increase the pencil hardness to a level of up to 3H to 4H.

上述實施例僅例示性說明複層硬化膜結構與複層硬化膜結構之製法,而非用於限制本揭露。任何熟習此項技藝之人士均可在不違背本揭露之精神及範疇下,對上述實施例進行修飾與改變。因此,本揭露之權利保護範圍,應如後述之申請專利範圍所載。 The above embodiments are merely illustrative of the fabrication of the double-layered cured film structure and the double-layered cured film structure, and are not intended to limit the disclosure. Any of the above-described embodiments may be modified and altered by those skilled in the art without departing from the spirit and scope of the disclosure. Therefore, the scope of protection of the present disclosure should be as set forth in the scope of the patent application described below.

1‧‧‧複層硬化膜結構 1‧‧‧Multilayer hardened membrane structure

10‧‧‧基板 10‧‧‧Substrate

20‧‧‧硬化層 20‧‧‧ hardened layer

21‧‧‧第一碳氧化矽子層 21‧‧‧First carbon oxide raft layer

22‧‧‧第二碳氧化矽子層 22‧‧‧Second carbon oxide raft layer

Claims (14)

一種複層硬化膜結構,包括基板以及形成於該基板上的硬化層,其中,該硬化層包含第一碳氧化矽子層及第二碳氧化矽子層,且該第一碳氧化矽子層的Si-O-Si鍵結與Si-(CH3)x鍵結之比值係不同於該第二碳氧化矽子層的Si-O-Si鍵結與Si-(CH3)x鍵結之比值,以及其中,x表示1至3的整數,其中,該第二碳氧化矽子層係形成於該第一碳氧化矽子層上,該第一碳氧化矽子層之Si-O-Si鍵結與Si-(CH3)x鍵結之比值為小於或等於14,且該第二碳氧化矽子層之Si-O-Si鍵結與Si-(CH3)x鍵結之比值為超過14。 A multi-layer hardened film structure comprising a substrate and a hardened layer formed on the substrate, wherein the hardened layer comprises a first carbon oxide layer and a second carbon oxide layer, and the first carbon oxide layer the Si-O-Si bond ratio of Si- (CH 3) x bonded to the carbon-based silicon oxide is different from the second sub-layer of Si-O-Si bond and Si- (CH 3) x of bonding a ratio, and wherein x represents an integer from 1 to 3, wherein the second carbon oxide ruthenium layer is formed on the first ruthenium oxide layer, and the first ruthenium oxide layer is Si-O-Si The ratio of the bond to the Si—(CH 3 )x bond is less than or equal to 14, and the ratio of the Si—O—Si bond to the Si—(CH 3 )x bond of the second carbon oxide layer is More than 14. 如申請專利範圍第1項所述之複層硬化膜結構,其中,該硬化層為至少二層。 The multi-layer hardened film structure according to claim 1, wherein the hardened layer is at least two layers. 如申請專利範圍第1項所述之複層硬化膜結構,其中,該硬化層為至少四層。 The multi-layer hardened film structure according to claim 1, wherein the hardened layer is at least four layers. 如申請專利範圍第1項所述之複層硬化膜結構,其中,該第一碳氧化矽子層之厚度為20nm至500nm。 The multi-layer hardened film structure according to claim 1, wherein the first carbon oxide hazel layer has a thickness of 20 nm to 500 nm. 如申請專利範圍第1項所述之複層硬化膜結構,其中,該第二碳氧化矽子層之厚度為50nm至500nm。 The multi-layer hardened film structure according to claim 1, wherein the second carbon oxide hafnium layer has a thickness of 50 nm to 500 nm. 一種複層硬化膜結構之製法,該複層硬化膜結構包括基板以及形成於該基板上之包含第一碳氧化矽子層及第二碳氧化矽子層的硬化層,其中,該第一碳氧化矽子層之Si-O-Si鍵結與Si-(CH3)x鍵結之比值為小於或等於14,該第二碳氧化矽子層之Si-O-Si鍵結與Si-(CH3)x鍵結之比值為超過14,且x表示1至3的整數,該製法包括: 提供供氧氣體及有機矽化合物之氣體,形成該第一碳氧化矽子層;以及改變該供氧氣體之流量,形成該第二碳氧化矽子層;其中,係藉由電漿輔助化學氣相沈積以於基板上形成該第一碳氧化矽子層及該第二碳氧化矽子層。 A method for fabricating a composite hardened film structure, comprising: a substrate; and a hardened layer comprising a first carbon oxide layer and a second carbon oxide layer formed on the substrate, wherein the first carbon The ratio of Si-O-Si bond to Si-(CH 3 )x bond of the ruthenium oxide layer is less than or equal to 14, and the Si-O-Si bond of the second carbon oxide ruthenium layer is Si-( The ratio of the CH 3 )x bond is more than 14, and x represents an integer from 1 to 3. The process comprises: providing a gas for supplying an oxygen gas and an organic germanium compound to form the first carbon oxide layer; and changing the supply The flow of the oxygen gas forms the second carbon oxide oxide layer; wherein the first carbon oxide layer and the second carbon oxide layer are formed on the substrate by plasma assisted chemical vapor deposition. 一種複層硬化膜結構之製法,該複層硬化膜結構包括基板以及形成於該基板上之包含第一碳氧化矽子層及第二碳氧化矽子層的硬化層,其中,該第一碳氧化矽子層之Si-O-Si鍵結與Si-(CH3)x鍵結之比值為小於或等於14,該第二碳氧化矽子層之Si-O-Si鍵結與Si-(CH3)x鍵結之比值為超過14,且x表示1至3的整數,該製法包括:提供有機矽化合物之氣體及具有第一流量的供氧氣體,形成該第一碳氧化矽子層;以及提供有機矽化合物之氣體及具有第二流量的供氧氣體,形成該第二碳氧化矽子層;其中,該第一流量係與該第二流量不同,以及其中,係藉由電漿輔助化學氣相沈積以於基板上形成該第一碳氧化矽子層及該第二碳氧化矽子層。 A method for fabricating a composite hardened film structure, comprising: a substrate; and a hardened layer comprising a first carbon oxide layer and a second carbon oxide layer formed on the substrate, wherein the first carbon The ratio of Si-O-Si bond to Si-(CH 3 )x bond of the ruthenium oxide layer is less than or equal to 14, and the Si-O-Si bond of the second carbon oxide ruthenium layer is Si-( The ratio of the CH 3 )x bond is more than 14, and x represents an integer of 1 to 3. The process comprises: providing a gas of an organic germanium compound and an oxygen supply gas having a first flow rate to form the first carbon oxide oxide layer And a gas for providing an organic cerium compound and an oxygen supply gas having a second flow rate to form the second carbon oxidized cerium layer; wherein the first flow rate is different from the second flow rate, and wherein the plasma is Auxiliary chemical vapor deposition is performed to form the first carbon oxide layer and the second carbon oxide layer on the substrate. 如申請專利範圍第7項所述之複層硬化膜結構之製法,其中,該第二碳氧化矽子層係形成於該第一碳氧化矽子層上,以及其中,該第二流量係高於該第一流量。 The method of fabricating a multi-layer hardened film structure according to claim 7, wherein the second carbon oxide layer is formed on the first carbon oxide layer, and wherein the second flow rate is high At the first flow rate. 如申請專利範圍第6或7項所述之複層硬化膜結構之製法,其中,該供氧氣體係一氧化二氮或氧氣。 The method for producing a multi-layer hardened film structure according to claim 6 or 7, wherein the oxygen supply system is nitrous oxide or oxygen. 如申請專利範圍第6或7項所述之複層硬化膜結構之製法,其 中,該有機矽化合物係選自由六甲基矽氧烷(Hexamethyldisiloxane,C6H18Si2O,HMDSO)、三甲基矽烷(trimethyl silane,TMS)、六甲基二矽氮烷(hexamethyldisilazane,HMDS)及四乙氧基矽烷(tetraethoxysilane,TEOS)所組成之群組中的至少一者。 The method for preparing a multi-layered cured film structure according to claim 6 or 7, wherein the organic antimony compound is selected from the group consisting of Hexamethyldisiloxane (C 6 H 18 Si 2 O, HMDSO), At least one of a group consisting of trimethyl silane (TMS), hexamethyldisilazane (HMDS), and tetraethoxysilane (TEOS). 如申請專利範圍第10項所述之複層硬化膜結構之製法,其中,該有機矽化合物為六甲基矽氧烷。 The method for producing a multi-layered cured film structure according to claim 10, wherein the organic antimony compound is hexamethyloxime. 如申請專利範圍第6或7項所述之複層硬化膜結構之製法,其中,該複層硬化膜結構包括至少二個該硬化層。 The method of fabricating a multi-layer hardened film structure according to claim 6 or claim 7, wherein the multi-layer hardened film structure comprises at least two of the hardened layers. 如申請專利範圍第7項所述之複層硬化膜結構之製法,其中,該第一流量為0。 The method of fabricating a multi-layer hardened film structure according to claim 7, wherein the first flow rate is zero. 如申請專利範圍第6項所述之複層硬化膜結構之製法,其中,形成該第一碳氧化矽層時,該供氧氣體之流量為0。 The method for producing a composite hardened film structure according to claim 6, wherein when the first carbonium oxide layer is formed, the flow rate of the oxygen supply gas is zero.
TW102148973A 2013-12-30 2013-12-30 Multilayer hard coating film structure and method for producing the same TWI577822B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102148973A TWI577822B (en) 2013-12-30 2013-12-30 Multilayer hard coating film structure and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102148973A TWI577822B (en) 2013-12-30 2013-12-30 Multilayer hard coating film structure and method for producing the same

Publications (2)

Publication Number Publication Date
TW201525177A TW201525177A (en) 2015-07-01
TWI577822B true TWI577822B (en) 2017-04-11

Family

ID=54197452

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102148973A TWI577822B (en) 2013-12-30 2013-12-30 Multilayer hard coating film structure and method for producing the same

Country Status (1)

Country Link
TW (1) TWI577822B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI562296B (en) * 2015-12-07 2016-12-11 Ind Tech Res Inst Composite barrier layer and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120098022A1 (en) * 2010-10-21 2012-04-26 Institute Of Nuclear Energy Research Atomic Energy Council, Executive Yuan Packaging structure and method for oled
TW201249266A (en) * 2011-05-16 2012-12-01 Ind Tech Res Inst Flexible base and flexible electronic device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120098022A1 (en) * 2010-10-21 2012-04-26 Institute Of Nuclear Energy Research Atomic Energy Council, Executive Yuan Packaging structure and method for oled
TW201249266A (en) * 2011-05-16 2012-12-01 Ind Tech Res Inst Flexible base and flexible electronic device

Also Published As

Publication number Publication date
TW201525177A (en) 2015-07-01

Similar Documents

Publication Publication Date Title
KR101013413B1 (en) Method for the fabrication of transparent gas barrier film using plasma surface treatment
KR101210859B1 (en) Coated substrates and methods for their preparation
KR101452680B1 (en) Gas barrier film, manufacturing process for gas barrier film, and electronic device
US20080102206A1 (en) Multilayered coatings for use on electronic devices or other articles
EP1799877B1 (en) Sioc:h coated substrates and methods for their preparation
TW200832776A (en) Hybrid layers for use in coatings on electronic devices or other articles
JP2011063851A (en) Gas barrier coating and gas barrier film
WO2007140377A3 (en) A novel deposition-plasma cure cycle process to enhance film quality of silicon dioxide
Wang et al. A novel nucleation inducer for ultrathin au anodes in high efficiency and flexible organic optoelectronic devices
TWI577822B (en) Multilayer hard coating film structure and method for producing the same
KR102139077B1 (en) Gas barrier film and method for manufacturing the same
CN108164734A (en) A kind of gas barrier film and its application
CN108137832A (en) Multilayer barrier stacks
JP2018020540A (en) Barrier film
CN110268810A (en) Protective coating
JP3840080B2 (en) Gas barrier film
KR20200075796A (en) Thin film encapsulation for organic photonic and electronic devices and method for fabricating the same
CN108137204A (en) Multilayer barrier stacks
KR100927964B1 (en) Manufacturing method of plastic substrate
KR20200067025A (en) Thin film encapsulation for organic photonic and electronic devices and method for fabricating the same
KR101494883B1 (en) Gas barrier film and its preparation method
JP4300977B2 (en) Barrier plastic container
JP7005256B2 (en) Gas barrier container
JP4153185B2 (en) Polymer resin film and gas barrier film using the same
KR20080041399A (en) Process for preparing plastic substrate