TWI571328B - Gauge controller for rolling mill - Google Patents

Gauge controller for rolling mill Download PDF

Info

Publication number
TWI571328B
TWI571328B TW102138636A TW102138636A TWI571328B TW I571328 B TWI571328 B TW I571328B TW 102138636 A TW102138636 A TW 102138636A TW 102138636 A TW102138636 A TW 102138636A TW I571328 B TWI571328 B TW I571328B
Authority
TW
Taiwan
Prior art keywords
rolling
calender
constant
stand
calendering
Prior art date
Application number
TW102138636A
Other languages
Chinese (zh)
Other versions
TW201507786A (en
Inventor
今成宏幸
堀川德二郎
金子修
大村和暉
山本茂
Original Assignee
東芝三菱電機產業系統股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機產業系統股份有限公司 filed Critical 東芝三菱電機產業系統股份有限公司
Publication of TW201507786A publication Critical patent/TW201507786A/en
Application granted granted Critical
Publication of TWI571328B publication Critical patent/TWI571328B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • B21B37/18Automatic gauge control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Description

壓延機的板厚控制裝置 Calender thickness control device

本發明係關於一種壓延機的板厚控制裝置。 The present invention relates to a plate thickness control device for a calender.

在專利文獻1中揭示了一種壓延機的板厚控制裝置。該板厚控制裝置係根據在壓延機座之上游側所量測之壓延材的板厚之資訊、該壓延機座之上游側的壓延機座的壓延負荷之資訊等,識別該壓延機座的塑性係數。該板厚控制裝置係根據識別之塑性係數進行由該壓延機座之壓延材的板厚控制。 Patent Document 1 discloses a plate thickness control device for a calender. The thickness control device identifies the calender base based on information on the thickness of the rolled material measured on the upstream side of the calender base, information on the calendering load of the calender base on the upstream side of the calender base, and the like. Plasticity coefficient. The thickness control device controls the thickness of the rolled material from the calender base based on the identified plasticity coefficient.

(先前技術文獻) (previous technical literature) (專利文獻) (Patent Literature)

專利文獻1:日本特開2008-126307號公報 Patent Document 1: Japanese Laid-Open Patent Publication No. 2008-126307

然而,於專利文獻1所記載者係於下游側追蹤該壓延機座之上游側之壓延機座的資訊而識別該壓延機座的塑性係數。因此,並無法正確地識別壓延材的塑性係數。 However, the document described in Patent Document 1 identifies the plasticity coefficient of the rolling stand by tracking the information of the rolling stand on the upstream side of the rolling stand. Therefore, the plasticity coefficient of the rolled material cannot be correctly recognized.

本發明為有鑑於前述之問題點所開發者。本發明之目的係在於提供一種壓延機的板厚控制裝置,係能夠正確地識別 壓延材的塑性係數。 The present invention has been developed in view of the foregoing problems. The object of the present invention is to provide a plate thickness control device for a calender that can correctly recognize The plastic coefficient of the rolled material.

本發明之壓延機的板厚控制裝置,係具備塑性係數識別裝置,根據操作對象之壓延機座的壓延負荷實績值、輥間隙實績值、及壓延常數,識別用以表示壓延材之硬度的塑性係數。 The plate thickness control device of the calender of the present invention is provided with a plastic coefficient recognizing device for recognizing the plasticity for indicating the hardness of the rolled material based on the calendering load actual value, the roll gap actual value, and the calendering constant of the rolling stand of the operation target. coefficient.

根據本發明,能夠正確地識別壓延材的塑性係數。 According to the present invention, the plastic coefficient of the rolled material can be correctly identified.

1‧‧‧機殼 1‧‧‧Shell

2a‧‧‧上側工作輥 2a‧‧‧Upper work roll

2b‧‧‧下側工作輥 2b‧‧‧lower work rolls

3a‧‧‧上側補強輥 3a‧‧‧Upper reinforcing roller

3b‧‧‧下側補強輥 3b‧‧‧Bottom reinforcing roller

4‧‧‧壓下裝置 4‧‧‧Repression device

4a‧‧‧驅動側壓下裝置 4a‧‧‧Drive side reduction device

4b‧‧‧工作側壓下裝置 4b‧‧‧Working side pressing device

5‧‧‧負荷檢測器 5‧‧‧Load detector

5a‧‧‧驅動側負荷檢測器 5a‧‧‧Drive side load detector

5b‧‧‧工作側負荷檢測器 5b‧‧‧Work side load detector

6‧‧‧輥間隙檢測器 6‧‧‧ Roll gap detector

6a‧‧‧驅動側輥間隙檢測器 6a‧‧‧Drive side roller gap detector

6b‧‧‧工作側輥間隙檢測器 6b‧‧‧Working side roll gap detector

7‧‧‧壓延負荷量測器 7‧‧‧Depression load measuring device

8‧‧‧輥間隙量測器 8‧‧‧ Roll gap measuring device

9‧‧‧板厚控制器 9‧‧‧Sheet thickness controller

10‧‧‧輥間隙操作手段 10‧‧‧ Roll gap operation

11‧‧‧輥轉數檢測器 11‧‧‧Rolling speed detector

12‧‧‧板厚計 12‧‧‧ Thickness gauge

13‧‧‧壓延材 13‧‧‧Rolling material

14‧‧‧壓延過程 14‧‧‧Depression process

14a‧‧‧第1影響係數 14a‧‧‧1st influence coefficient

14b‧‧‧第2影響係數 14b‧‧‧2nd influence coefficient

15‧‧‧監測AGC 15‧‧‧Monitoring AGC

16‧‧‧計量器AGC 16‧‧‧Measuring AGC

16a‧‧‧第2控制區塊 16a‧‧‧2nd control block

16b‧‧‧PI控制器 16b‧‧‧PI controller

16c‧‧‧補償增益 16c‧‧‧Compensation gain

17‧‧‧MMC(Mill Modulus Control;壓延常數可變控制) 17‧‧‧MMC (Mill Modulus Control; variable compression constant control)

17a‧‧‧第3控制區塊 17a‧‧‧3rd control block

17b‧‧‧油壓壓下應答 17b‧‧‧Hydraulic pressure response

18‧‧‧第1控制區塊 18‧‧‧1st control block

19‧‧‧壓延常數識別裝置 19‧‧‧Depression constant identification device

20‧‧‧塑性係數識別裝置 20‧‧‧Plastic coefficient identification device

hGM REF‧‧‧板厚目標變更量 h GM REF ‧‧‧ plate thickness target change

△SSET‧‧‧輥間隙指令值 △S SET ‧‧‧ Roll gap command value

△PACT‧‧‧壓延負荷實績變化量 △P ACT ‧‧‧Change in rolling load performance

△SD REF‧‧‧輥偏心補償量 △S D REF ‧‧‧ Roll eccentricity compensation

第1圖係利用本發明之實施形態1之壓延機的板厚控制裝置之壓延機的構成圖。 Fig. 1 is a configuration diagram of a calender using a sheet thickness control device for a calender according to a first embodiment of the present invention.

第2圖係利用本發發明之實施形態1之壓延機的板厚控制裝置之壓延機的控制方塊圖。 Fig. 2 is a control block diagram of a calender using a sheet thickness control device for a calender according to Embodiment 1 of the present invention.

第3圖係用以說明在利用本發明之實施形態1之壓延機的板厚控制裝置的壓延機將壓延材予以壓延時之壓延常數和塑性係數之影響之圖。 Fig. 3 is a view for explaining the influence of the rolling constant and the plastic coefficient of rolling the rolled material by the calender of the plate thickness control device of the calender according to the first embodiment of the present invention.

第4圖係用以說明在利用本發明之實施形態1之壓延機的板厚控制裝置的壓延機將壓延材予以壓延時之壓延常數和塑性係數之影響之圖。 Fig. 4 is a view for explaining the influence of the rolling constant and the plasticity coefficient of rolling the rolled material by the calender of the plate thickness control device of the calender according to the first embodiment of the present invention.

第5圖係本發明之實施形態1之壓延機的板厚控制裝置的主要部分之方塊圖。 Fig. 5 is a block diagram showing the main part of a plate thickness control device for a calender according to Embodiment 1 of the present invention.

第6圖係利用本發明之實施形態1之壓延機的板厚控制裝置之壓延機的控制方塊圖之主要部分。 Fig. 6 is a main part of a control block diagram of a calender using a plate thickness control device for a calender according to Embodiment 1 of the present invention.

第7圖係用以說明本發明之實施形態1之壓延機的板厚控制 裝置之塑性係數識別裝置所具有之塑性係數之表格之圖。 Figure 7 is a view for explaining the thickness control of the calender of Embodiment 1 of the present invention. A diagram of a table of plasticity coefficients possessed by the plastic coefficient identification device of the device.

第8圖係用以說明由本發明之實施形態1之壓延機的板厚控制裝置之輥偏心擾動之推定結果之圖。 Fig. 8 is a view for explaining the results of estimation of the eccentricity of the roller by the thickness control device of the calender according to the first embodiment of the present invention.

第9圖係用以說明由本發明之實施形態1之壓延機的板厚控制裝置之壓延負荷擾動之推定結果之圖。 Fig. 9 is a view for explaining the estimation results of the rolling load disturbance of the plate thickness control device of the calender according to the first embodiment of the present invention.

第10圖係本發明之實施形態2之壓延機的板厚控制裝置之控制方塊圖的主要部分。 Fig. 10 is a main part of a control block diagram of a plate thickness control device for a calender according to a second embodiment of the present invention.

根據檢附圖示針對用以實施本發明之形態加以說明。另外,在各圖中,於相同或相當的部分賦予相同的符號,其重複說明係適當地簡化或省略。 The embodiments for carrying out the invention will be described with reference to the drawings. In the drawings, the same reference numerals are given to the same or corresponding parts, and the repeated description is appropriately simplified or omitted.

實施形態1 Embodiment 1

第1圖係利用本發明之實施形態1之壓延機的板厚控制裝置的壓延機之構成圖。 Fig. 1 is a configuration diagram of a calender using a sheet thickness control device for a calender according to a first embodiment of the present invention.

在第1圖中,熱軋薄板壓延之壓延機座係四重式軋機(four-high mill)。壓延機座具備機殼1。於機殼1內,壓延輥設置有上側工作輥(work roll)2a、及下側工作輥2b。上側工作輥2a之軸的一側係連結於未圖示之電動機,並於上側工作輥2a之他側周邊確保有作業區域。下側工作輥2b之軸的一側係連結於未圖示之電動機,並於下側工作輥2b之他側周邊確保有作業區域。 In Fig. 1, the calender rolling of the hot rolled sheet is a four-high mill. The calender base has a casing 1. In the casing 1, the calender roll is provided with an upper work roll 2a and a lower work roll 2b. One side of the shaft of the upper work roll 2a is coupled to a motor (not shown), and a work area is secured around the other side of the upper work roll 2a. One side of the shaft of the lower work roll 2b is coupled to a motor (not shown), and a work area is secured to the other side of the lower work roll 2b.

於上側工作輥2a的上方,壓延輥設置有上側補強輥(Back up roll)3a。上側補強輥3a係支持上側工作輥2a,且上側補強輥3a被支持於機殼1之上部。上側補強輥3a之軸的一側係連結於未圖式之電動機。並於上側補強輥3a之他側周邊確保有作業 區域。 Above the upper work roll 2a, the calender roll is provided with an upper back up roll 3a. The upper reinforcing roller 3a supports the upper work roll 2a, and the upper reinforcing roller 3a is supported by the upper portion of the casing 1. One side of the shaft of the upper reinforcing roller 3a is coupled to a motor of the same type. And ensuring work at the side of the other side of the upper reinforcing roller 3a region.

於下側工作輥2b的下方,壓延輥設置有下側補強輥3b。下側補強輥3b係支持下側工作輥2b,且下側補強輥3b被支持於機殼1之下部。下側補強輥3b之軸的一側係連結於未圖示之電動機。並於下側補強輥3b之他側周邊確保有作業區域。 Below the lower work roll 2b, the calender roll is provided with a lower side reinforcing roll 3b. The lower side reinforcing roller 3b supports the lower side work roll 2b, and the lower side reinforcing roll 3b is supported by the lower portion of the casing 1. One side of the shaft of the lower reinforcing roller 3b is coupled to a motor (not shown). A working area is ensured on the side of the other side of the lower reinforcing roller 3b.

於上側補強輥3a之上方係設置有壓下裝置4。例如,壓下裝置4由電動壓下裝置所構成。例如,壓下裝置4由利用油壓加以驅動之油壓壓下裝置所構成。油壓壓下裝置係可高速控制,且壓下裝置4具備有驅動側壓下裝置4a、及工作側壓下裝置4b。驅動側壓下裝置4a係設置於上側補強輥3a之一側,而工作側壓下裝置4b係設置於上側補強輥3a之他側。 A pressing device 4 is provided above the upper reinforcing roller 3a. For example, the pressing device 4 is constituted by an electric pressing device. For example, the pressing device 4 is constituted by a hydraulic pressing device that is driven by hydraulic pressure. The hydraulic pressure reduction device can be controlled at a high speed, and the reduction device 4 is provided with a drive side reduction device 4a and a work side reduction device 4b. The driving side pressing device 4a is provided on one side of the upper reinforcing roller 3a, and the working side pressing device 4b is provided on the other side of the upper reinforcing roller 3a.

於下側補強輥3b之下方係設置有負荷檢測器5。負荷檢測器5係具備有驅動側負荷檢測器5a、及工作側負荷檢測器5b。驅動側負荷檢測器5a係設置於下側補強輥3b之一側,而工作側負荷檢測器5b係設置於上側補強輥3a之他側。 A load detector 5 is provided below the lower reinforcing roller 3b. The load detector 5 includes a drive side load detector 5a and a work side load detector 5b. The driving side load detector 5a is provided on one side of the lower reinforcing roller 3b, and the working side load detector 5b is provided on the other side of the upper reinforcing roller 3a.

於壓下裝置4之下方係設置有輥間隙檢測器6。輥間隙檢測器6係具備有驅動側輥間隙檢測器6a、及工作側輥間隙檢測器6b。驅動側輥間隙檢測器6a係設置於上側補強輥3a之一側,而工作側輥間隙檢測器6b係設置於上側補強輥3a之他側。 A roller gap detector 6 is provided below the pressing device 4. The roll gap detector 6 is provided with a drive side roll gap detector 6a and a work side roll gap detector 6b. The drive side roll gap detector 6a is provided on one side of the upper side reinforcing roll 3a, and the work side roll gap detector 6b is provided on the other side of the upper side reinforcing roll 3a.

負荷檢測器5之輸出側係被連接有壓延負荷量測器7之輸入側。輥間隙檢測器6之輸出側係被連接有輥間隙量測器8之輸入側。 The output side of the load detector 5 is connected to the input side of the calendering load measuring device 7. The output side of the roll gap detector 6 is connected to the input side of the roll gap measuring device 8.

壓延負荷量測器7之輸出側係被連接有板厚控制器9之輸入側。輥間隙量測器8之輸出側係被連接板厚控制器9之 輸入側。板厚控制器9之輸出側係被連接輥間隙操作手段10之輸入側。而輥間隙操作手段10之輸出側係被連接至壓下裝置4之輸入側。 The output side of the calendering load measuring device 7 is connected to the input side of the plate thickness controller 9. The output side of the roll gap measuring device 8 is connected to the plate thickness controller 9 Input side. The output side of the plate thickness controller 9 is connected to the input side of the roll gap operating means 10. The output side of the roll gap operating means 10 is connected to the input side of the pressing means 4.

於下側工作輥2b係設置有輥轉數檢測器11。於壓延機座之出口側係設置有板厚計12。 A roller rotation number detector 11 is provided on the lower work roll 2b. A plate thickness gauge 12 is provided on the outlet side of the calender base.

壓延材13係以金屬所形成。壓延材13係被挾持於上側工作輥2a、及下側工作輥2b。結果,使壓延材13延伸。此時,上側補強輥3a係抑制上側工作輥2a之寬度方向的彎曲。下側補強輥3b係抑制下側工作輥2b之寬度方向的彎曲。對壓延材13的壓延負荷係經介上側工作輥2a、下側工作輥2b、上側補強輥3a、及下側補強輥3b而檔止於機殼1。 The rolled material 13 is formed of metal. The rolled material 13 is held by the upper work roll 2a and the lower work roll 2b. As a result, the rolled material 13 is extended. At this time, the upper reinforcing roller 3a suppresses the bending of the upper work roll 2a in the width direction. The lower side reinforcing roller 3b suppresses the bending of the lower side work roll 2b in the width direction. The rolling load on the rolled material 13 is stopped by the upper side work roll 2a, the lower side work roll 2b, the upper side reinforcing roll 3a, and the lower side reinforcing roll 3b.

驅動側負荷檢測器5a係用以檢測於下側補強輥3b之一側所承擔的負荷。工作側負荷檢測器5b係用以檢測於下側補強輥3b之他側所承擔的負荷。壓延負荷量測器7係用以計算驅動側負荷檢測器5a之檢測值與工作側負荷檢測器5b之檢測值之和以作為總和負荷。壓延負荷量測器7係用以計算驅動側負荷檢測器5a之檢測值與工作側負荷檢測器5b之檢測值之差以作為差分負荷。當於壓延機座設置有未圖示之輥彎(roll bending)裝置時,壓延負荷量測器7係用以進行利用輥彎力校正負荷檢測器5之檢測值時的計算。 The drive side load detector 5a is for detecting the load on one side of the lower side reinforcing roller 3b. The working side load detector 5b is for detecting the load on the other side of the lower reinforcing roller 3b. The calendering load measuring device 7 is for calculating the sum of the detected value of the driving side load detector 5a and the detected value of the working side load detector 5b as the total load. The rolling load measuring device 7 is for calculating a difference between the detected value of the driving side load detector 5a and the detected value of the working side load detector 5b as a differential load. When a rolling roll device (not shown) is provided in the rolling stand, the rolling load measuring device 7 is used for calculation when the detected value of the load detector 5 is corrected by the roll bending force.

輥間隙檢測器6係非直接檢測上側工作輥2a與下側工作輥2b之間隙(輥間隙)。輥間隙檢測器6係用以檢測壓下裝置4將上側補強輥3a予以下壓之量。輥間隙量測器8係根據輥間隙檢測器6之檢測值而計算輥間隙。此時,輥間隙量測器8係考慮 上側工作輥2a與下側工作輥2b之距離關係。 The roll gap detector 6 does not directly detect the gap (roll gap) between the upper work roll 2a and the lower work roll 2b. The roll gap detector 6 is for detecting the amount by which the pressing device 4 presses the upper reinforcing roller 3a. The roll gap measuring device 8 calculates the roll gap based on the detected value of the roll gap detector 6. At this time, the roller gap measuring device 8 is considered The distance relationship between the upper work roll 2a and the lower work roll 2b.

板厚控制器9係根據壓延負荷量測器7之計算值、及輥間隙量測器8之計算值,而調整輥間隙之設定值。此時,板厚控制器9係使用藉由在第1圖中未圖示之識別裝置所識別的壓延常數MC、及塑性係數QC而調整輥間隙之設定值。 The plate thickness controller 9 adjusts the set value of the roll gap based on the calculated value of the rolling load measuring device 7 and the calculated value of the roll gap measuring device 8. At this time, the plate thickness controller 9 adjusts the set value of the roll gap using the rolling constant M C and the plastic coefficient Q C recognized by the identification device not shown in Fig. 1 .

輥間隙操作手段10係根據藉由板厚控制器9所調整之設定值而調整輥間隙。結果,壓延材13係形成預定之板厚。壓延材13之板厚係藉由板厚計12加以計量。 The roll gap operation means 10 adjusts the roll gap in accordance with the set value adjusted by the plate thickness controller 9. As a result, the rolled material 13 is formed to have a predetermined plate thickness. The thickness of the rolled material 13 is measured by the thickness gauge 12.

此時,輥轉數檢測器11檢測下側工作輥2b之轉數。輥轉數檢測器11檢測下側工作輥2b之旋轉位置。藉由該檢測,用以特定下側工作輥2b之圓周方向的位置。具體而言,當從側旁觀看而將下側工作輥2b視為圓時,特定圓周上之基準點的位置。例如,特定相對於垂直線之該基準點的旋轉角度。 At this time, the number of revolutions of the roller 11 detects the number of revolutions of the lower work roll 2b. The roller rotation number detector 11 detects the rotational position of the lower side work roll 2b. By this detection, the position in the circumferential direction of the lower work roll 2b is specified. Specifically, the position of the reference point on the specific circumference when the lower side work roll 2b is regarded as a circle as viewed from the side. For example, the angle of rotation of the reference point relative to the vertical line.

接下來,使用第2圖,加以說明板厚控制器9之一例。 Next, an example of the plate thickness controller 9 will be described using FIG.

第2圖係利用本發明之實施形態1之壓延機的板厚控制裝置的壓延機之控制方塊圖。 Fig. 2 is a control block diagram of a calender using a plate thickness control device for a calender according to Embodiment 1 of the present invention.

在第2圖中,控制對象之壓延過程14係受壓延常數M和塑性係數Q的影響。具體而言,壓延過程14係具備有第1影響係數14a、及第2影響係數14b。第1影響係數14a係對應於輥間隙所帶給壓延負荷的影響。第1影響係數14a係為-MQ/(M+Q)。第2影響係數14b係對應於壓延負荷所帶給板厚的影響。第2影響係數14b係為1/M。 In Fig. 2, the rolling process 14 of the controlled object is affected by the rolling constant M and the plastic coefficient Q. Specifically, the rolling process 14 includes a first influence coefficient 14a and a second influence coefficient 14b. The first influence coefficient 14a corresponds to the influence of the roll gap on the rolling load. The first influence coefficient 14a is -MQ/(M+Q). The second influence coefficient 14b corresponds to the influence of the rolling load on the sheet thickness. The second influence coefficient 14b is 1/M.

於壓延過程14中加入輥偏心擾動△SD、及壓延負荷 擾動△PD。輥偏心擾動△SD與及壓延負荷擾動△PD並無法直接量測。 Roll eccentricity disturbance ΔS D and rolling load disturbance ΔP D are added to the rolling process 14. The roller eccentricity disturbance ΔS D and the rolling load disturbance ΔP D cannot be directly measured.

板厚控制器9係用以對於壓延過程14,實施監測AGC(Automatic Gauge Control;自動板厚控制)15、計量器AGC(Gauge meter AGC)16、及MMC(Mill Modulus Control;壓延常數可變控制)17等。 The plate thickness controller 9 is used to perform monitoring AGC (Automatic Gauge Control) 15, gauge AGC (Gauge meter AGC) 16, and MMC (Mill Modulus Control) variable control for the calendering process 14. )17 and so on.

第1控制區塊18係根據於板厚計12所計量之板厚實績變化量△hACT而計算板厚量測值變化量△hMES。此時,第1控制區塊18係考慮從壓延機座至板厚計12為止之壓延材13的搬運延遲時間。 The first control block 18 calculates the plate thickness measurement value change amount Δh MES based on the plate thickness actual value change amount Δh ACT measured by the plate thickness gauge 12. At this time, the first control block 18 considers the conveyance delay time of the rolled material 13 from the rolling stand to the thickness gauge 12.

監測AGC15係根據產品板厚目標值變更量△hxREF與板厚量測值變化量△hMES的偏差而計算GM板厚目標值變更量△hREFThe monitoring AGC 15 calculates the GM plate thickness target value change amount Δh REF based on the deviation between the product plate thickness target value change amount Δhx REF and the plate thickness measurement value change amount Δh MES .

在計量器AGC16中,第2控制區塊16a係表示使用經識別之壓延常數MC。第2控制部16a中附加有供以調整應答之係數α 1。根據第2控制區塊16a之輸出、及輥間隙實績變化量△SACT,以求得GM板厚變化量△hGMIn the gauge AGC 16, the second control block 16a indicates the use of the identified rolling constant M C . A coefficient α 1 for adjusting the response is added to the second control unit 16a. The GM plate thickness variation amount Δh GM is obtained based on the output of the second control block 16a and the roll gap actual value change amount ΔS ACT .

在計量器AGC16中,使計量器板厚目標變更量△hGM AIM與GM板厚目標變更量△hREF加以合計。結果,求得板厚目標變更量△hGM REF。板厚目標變更量△hGM REF與GM板厚變化量△hGM之偏差係輸入至PI控制器16b。PI控制器16b係以比例增益KPG、積分增益KIG、及拉普拉斯運算子S來表示。另外,輥間隙之符號S係設為伴隨有上標字或△等者,而拉普拉斯運算子S係設為以單獨使用者。 In the gauge AGC16, the gauge thickness target change amount Δh GM AIM and the GM plate thickness target change amount Δh REF are totaled. As a result, the plate thickness target change amount Δh GM REF is obtained . The deviation between the plate thickness target change amount Δh GM REF and the GM plate thickness change amount Δh GM is input to the PI controller 16b. The PI controller 16b is represented by a proportional gain K PG , an integral gain K IG , and a Laplacian operator S. Further, the symbol S of the roll gap is set to be accompanied by a superscript or Δ, and the Laplacian S is set to be a separate user.

PI控制器16b之輸出係輸入至補償增益16c。補償增益16c係以識別之壓延常數MC、塑性係數QC、及供以調整應答之係數α 1α 2來表示。補償增益16c係計算輥間隙指令值△SSET。此時,補償增益16c係用以將操作輸出予以標準化。該情形,即便使控制對象之壓延常數M、塑性係數Q、係數α 1α 2改變,亦不需PI控制器16b之調整。 The output of the PI controller 16b is input to the compensation gain 16c. The compensation gain 16c is represented by the identified rolling constant M C , the plastic coefficient Q C , and the coefficients α 1 and α 2 supplied with the adjustment response. The compensation gain 16c is a calculation of the roll gap command value ΔS SET . At this time, the compensation gain 16c is used to normalize the operation output. In this case, even if the rolling constant M, the plastic coefficient Q, the coefficients α 1 , and α 2 of the control target are changed, the adjustment of the PI controller 16b is not required.

MMC17係對壓下裝置4要求高速應答。因此,壓下裝置4非為油壓壓下裝置之情形時,MMC17並不適用。 The MMC 17 requires a high speed response to the pressing device 4. Therefore, when the pressing device 4 is not a hydraulic pressing device, the MMC 17 is not suitable.

在MMC17中,第3控制區塊17a係表示使用經識別之壓延常數MC。MMC17係調整第3控制區塊17a之係數α 2,藉此能夠調整應答。例如,若係數α 2愈增大,愈使應答加速。 In the MMC 17, the third control block 17a indicates the use of the identified rolling constant M C . The MMC 17 adjusts the coefficient α 2 of the third control block 17a, whereby the response can be adjusted. For example, if the coefficient α 2 is increased, the response is accelerated.

在MMC17中,油壓壓下應答17b係與油壓壓下裝置之應答相對應。油壓壓下應答17b係根據將補償增益16c之輸出、及第3控制區塊17a之輸出予以合成之值而決定,結果,調整輥間隙。 In the MMC 17, the response 17b of the hydraulic pressure corresponds to the response of the hydraulic depression device. The hydraulic pressure response 17b is determined based on the value obtained by combining the output of the compensation gain 16c and the output of the third control block 17a, and as a result, the roll gap is adjusted.

接下來,使用第3圖加以說明對於壓延材13之板厚等之壓延常數M和塑性係數Q的影響。 Next, the influence of the rolling constant M and the plastic coefficient Q on the thickness of the rolled material 13 or the like will be described using FIG.

第3圖係用以說明在利用本發明之實施形態1之壓延機的板厚控制裝置的壓延機將壓延材予以壓延時之壓延常數和塑性係數之影響之圖。 Fig. 3 is a view for explaining the influence of the rolling constant and the plastic coefficient of rolling the rolled material by the calender of the plate thickness control device of the calender according to the first embodiment of the present invention.

在第3圖中,壓延曲線係表示壓延拉伸之樣子。壓延拉伸係藉由機殼1等自壓延材13承受巨大的壓延負荷所產生。若壓延負荷愈大,則壓延拉伸亦愈增大。壓延曲線係近似2次曲線或3次曲線。壓延曲線係可加以量測。 In Fig. 3, the calendering curve shows the appearance of calendering and drawing. The calendering stretching is caused by the large rolling load of the self-rolling material 13 such as the casing 1. If the rolling load is larger, the calendering stretching is also increased. The calendering curve is approximately a second-order curve or a third-order curve. The calendering curve can be measured.

壓延常數M係表示壓延拉伸之比率。壓延常數M係以指定之壓延負荷之壓延曲線之斜率來表示。例如,在壓延負荷為600(kN)且壓延拉伸為1(mm)之情形,壓延常數M係600(kN/mm)。 The rolling constant M is a ratio of calendering and stretching. The rolling constant M is expressed by the slope of the rolling curve of the specified rolling load. For example, in the case where the rolling load is 600 (kN) and the rolling stretch is 1 (mm), the rolling constant M is 600 (kN/mm).

在第3圖中,塑性曲線係藉由使壓延材13之板厚變化時之壓延負荷的變化之樣子加以描點而得。壓延材13之強度高時,塑性曲線則上升。壓延材13之溫度低時,塑性曲線則上升。塑性曲線並無法直接量測。 In Fig. 3, the plastic curve is obtained by drawing a change in the rolling load when the thickness of the rolled material 13 is changed. When the strength of the rolled material 13 is high, the plastic curve rises. When the temperature of the rolled material 13 is low, the plastic curve rises. The plastic curve cannot be measured directly.

塑性係數Q係表示壓延材13之硬度。塑性係數Q係以指定之壓延負荷之塑性曲線之斜率來表示。 The plastic coefficient Q indicates the hardness of the rolled material 13. The plastic coefficient Q is expressed as the slope of the plastic curve of the specified rolling load.

在第3圖中,初期狀態係以壓延曲線與塑性曲線之交點(a)來表示。此時,輥間隙係為SG。壓延機座之入口側之壓延材13的板厚係為H。壓延機座之出口側之壓延材13的板厚係為h。 In Fig. 3, the initial state is represented by the intersection (a) of the rolling curve and the plastic curve. At this time, the roll gap is S G . The thickness of the rolled material 13 on the inlet side of the calender base is H. The thickness of the rolled material 13 on the outlet side of the calender base is h.

當壓延材13之溫度下降時,則塑性曲線上升。此時之狀態係以壓延曲線與塑性曲線之交點(b)來表示。結果,出口側之壓延材13的板厚係增加為h+△h。當藉由板厚控制,將輥間隙予以從SG變更為SG-△SG時,則使壓延曲線朝左側移動。此時之狀態係以壓延曲線與塑性曲線之交點(c)來表示。結果,出口側之壓延材13的板厚係較h+△h變薄。 When the temperature of the rolled material 13 drops, the plasticity curve rises. The state at this time is represented by the intersection (b) of the rolling curve and the plastic curve. As a result, the thickness of the rolled material 13 on the outlet side is increased to h + Δh. When the roll gap is changed from S G to S G -ΔS G by the thickness control, the rolling curve is moved to the left side. The state at this time is represented by the intersection (c) of the rolling curve and the plastic curve. As a result, the thickness of the rolled material 13 on the outlet side is thinner than h + Δh.

接下來,使用第4圖加以說明壓延常數M和塑性係數Q之影響細節。 Next, the details of the influence of the rolling constant M and the plastic coefficient Q will be described using FIG.

第4圖係用以說明在利用本發明之實施形態1之壓延機的板厚控制裝置的壓延機將壓延材13予以壓延時之壓延常數和塑性係數之影響之圖。 Fig. 4 is a view for explaining the influence of the rolling constant and the plasticity coefficient of rolling the rolled material 13 by the calender of the plate thickness control device of the calender according to the first embodiment of the present invention.

在第4圖中,壓延常數M係以下述之數式(1)表示。 In Fig. 4, the rolling constant M is expressed by the following formula (1).

數式(1)M=tan α (1) Equation (1) M =tan α (1)

當考量在第4圖之三角形所成立之關係數式時,tan α係以下述之數式(2)表示。 When considering the relational expression established by the triangle in Fig. 4, tan α is expressed by the following formula (2).

根據數式(1)與數式(2),可得到計量器數式。計量器數式係以下述之數式(3)表示。 According to the formula (1) and the formula (2), the gauge number formula can be obtained. The gauge number is expressed by the following formula (3).

在第4圖中,塑性係數Q係以下述之數式(4)表示。 In Fig. 4, the plastic coefficient Q is expressed by the following formula (4).

數式(4)-Q=tan β (4) Equation (4) - Q = tan β (4)

當考量在第4圖之三角形所成立之關係數式時,塑性係數Q係以下述之數式(5)表示。 When considering the relational expression established by the triangle of Fig. 4, the plastic coefficient Q is expressed by the following formula (5).

根據數式(4)與數式(5),可獲得塑性係數Q與入口側之壓延材13之板厚H的關係。塑性係數Q與入口側之壓延材13之板厚H的關係係以下述之數式(6)表示。 According to the formula (4) and the formula (5), the relationship between the plastic coefficient Q and the thickness H of the rolled material 13 on the inlet side can be obtained. The relationship between the plastic coefficient Q and the thickness H of the rolled material 13 on the inlet side is expressed by the following formula (6).

在第4圖中,當輥間隙開啟達△SG時,則状態係從交點(A)移動至交點(B)。此時,壓延常數M係以下述之數式(7)表示。 In Fig. 4, when the roll gap is opened up to ΔS G , the state moves from the intersection point (A) to the intersection point (B). At this time, the rolling constant M is expressed by the following formula (7).

根據數式(7),壓延負荷之變化量△P係以下述之數式(8)表示。 According to the formula (7), the amount of change ΔP in the rolling load is expressed by the following formula (8).

數式(8)-△P=M(△S G -△h) (8) Equation (8) - △P = M ( △S G - Δh ) (8)

塑性係數Q係以下述之數式(9)表示。 The plastic coefficient Q is represented by the following formula (9).

根據數式(9),壓延負荷之變化量△P係以下述之數式(10)表示。 According to the formula (9), the amount of change ΔP in the rolling load is expressed by the following formula (10).

數式(10)△P=-Q△h (10) Equation (10) △P =- Q△ h (10)

根據數式(8)與數式(10),壓延材13之板厚的變化量△h係以下述之數式(11)表示。 According to the equations (8) and (10), the amount of change Δh in the thickness of the rolled material 13 is expressed by the following formula (11).

數式(11) Number (11)

根據數式(10)與數式(11),壓延負荷之變化量△P係以下述之數式(12)表示。 According to the formula (10) and the formula (11), the amount of change ΔP in the rolling load is expressed by the following formula (12).

根據數式(3),板厚之變化量△h係以下述之數式(13)表示。 According to the formula (3), the amount of change Δh in the sheet thickness is expressed by the following formula (13).

接下來,使用第5圖加以說明識別裝置。 Next, the identification device will be described using FIG.

第5圖係本發明之實施形態1之壓延機的板厚控制裝置的主要部分之方塊圖。 Fig. 5 is a block diagram showing the main part of a plate thickness control device for a calender according to Embodiment 1 of the present invention.

如第5圖所示,識別裝置係具備壓延常數識別裝置19、以及塑性係數識別裝置20。 As shown in Fig. 5, the identification device includes a rolling constant identification device 19 and a plastic coefficient recognition device 20.

壓延常數識別裝置19係根據壓延負荷實績變化量△PACT、輥間隙實績變化量△SACT、板厚實績變化量△hACT、以及輥旋轉角實績值ψ1,而計算壓延常數MID。壓延常數MID係輸入至計量器AGC16、及MMC17之壓延常數Mc。此時,壓延常數Mc亦有設為以藉由接觸輥(kiss roll)試驗等等其他之方法所識別之壓延常數MMES之情形。 The rolling constant identification device 19 calculates the rolling constant M ID based on the rolling load actual value change amount ΔP ACT , the roll gap actual value change amount ΔS ACT , the plate thickness actual value change amount Δh ACT , and the roll rotation angle actual value ψ 1 . The rolling constant M ID is input to the calendering constant Mc of the gauges AGC16 and MMC17. At this time, the rolling constant Mc is also set to the case where the rolling constant M MES identified by other methods such as a kiss roll test.

塑性係數識別裝置20係根據壓延負荷實績變化量 △PACT、輥間隙實績變化量△SACT、輥旋轉角實績值φ2、以及經識別之壓延常數,而計算塑性係數QID。此時、經識別之壓延常數係由壓延常數MID或壓延常數MMES所選擇。塑性係數QID係輸入至計量器AGC16之塑性係數QCThe plastic coefficient recognizing device 20 calculates the plastic coefficient Q ID based on the rolling load actual value change amount ΔP ACT , the roll gap actual value change amount ΔS ACT , the roll rotation angle actual value φ 2 , and the identified rolling constant. At this time, the identified calendering constant is selected by the calendering constant M ID or the calendering constant M MES . The plastic coefficient Q ID is the plastic coefficient Q C input to the gauge AGC16.

接下來,使用第6圖,加以說明計算壓延常數MID、及塑性係數QID之方法。 Next, a method of calculating the rolling constant M ID and the plastic coefficient Q ID will be described using FIG.

第6圖係利用本發明之實施形態1之壓延機的板厚控制裝置之壓延機的控制方塊圖之主要部分 Fig. 6 is a main part of a control block diagram of a calender using a plate thickness control device of a calender according to Embodiment 1 of the present invention;

在第6圖中,於第2圖之壓延過程14加入雜訊(noise)Nh,而觀測板厚實績變化量△hACTIn FIG. 6, FIG. 2 to the rolling process of the added noise (noise) N h 14, and the observation performance thickness variation △ h ACT.

在第6圖中,壓延材之板厚的變化量△h係使用因受雜訊Nh之誤差e1並以下述數式(14)表示。 In Fig. 6, the amount of change Δh in the thickness of the rolled material is expressed by the following equation (14) using the error e 1 due to the noise N h .

輥偏心擾動△SD係因受壓延輥之構造、壓延輥的研磨之精密度不良等而產生。例如,當在具有含油軸承(oil bearing)之支持輥中鍵槽受到自數百噸至數千噸之壓延負荷時,會使軸上下地移動。受到該移動,而使輥偏心擾動△SD產生。例如,在無鍵槽之壓延輥中,受熱膨脹之偏差等,而使輥偏心擾動△SD產生。 The eccentricity of the roller ΔS D is caused by the structure of the calender roll and the poor precision of the polishing of the calender roll. For example, when a keyway is subjected to a rolling load of from several hundred tons to several thousand tons in a support roll having an oil bearing, the shaft is moved up and down. Subject to this movement, the eccentricity of the roller ΔS D is generated. For example, in the calender roll without the key groove, the deviation of the thermal expansion is caused, and the eccentricity disturbance ΔS D is generated.

輥偏心擾動△SD係可視為與上側補強輥3a和下側補強輥3b之旋轉週期同步之週期性的擾動。壓延中,壓延速度會改變,因此,輥偏心擾動△SD的週期係隨時間而變化。輥偏心擾動△SD係對於上側工作輥2a、下側工作輥2b、上側補強輥3a、 及下側補強輥3b之旋轉角ψ1(0度~360度)以固定週期進行變化。 The roller eccentricity disturbance ΔS D can be regarded as a periodic disturbance in synchronization with the rotation periods of the upper reinforcing roller 3a and the lower reinforcing roller 3b. In calendering, the calendering speed changes, and therefore, the period of the eccentricity of the roller ΔS D changes with time. The roll eccentricity disturbance ΔS D changes the rotation angle ψ 1 (0 to 360 degrees) of the upper side work roll 2a, the lower side work roll 2b, the upper side reinforcement roll 3a, and the lower side reinforcement roll 3b at a fixed cycle.

該情形,輥偏心擾動△SD係近似於k次之傅利葉級數。具體而言,輥偏心擾動△SD係以下述之數式(15)表示。 In this case, the roll eccentricity disturbance ΔS D is approximately the k-th order Fourier series. Specifically, the roller eccentricity disturbance ΔS D is expressed by the following formula (15).

當將數式(14)變形,且使用數式(15),即獲得下述之數式(16)。 When the equation (14) is deformed and the equation (15) is used, the following equation (16) is obtained.

數式(16)係表示於壓延材13之某時刻之每個變數之關係的數式,一般而言從壓延材13獲得複數個資料集,且每個資料集滿足數式(16)。藉由推定複數個最能夠滿足數式(16)之參數,即可獲得壓延常數M等之參數。 The formula (16) is a formula representing the relationship of each variable at a certain time of the rolled material 13, and generally a plurality of data sets are obtained from the rolled material 13, and each data set satisfies the formula (16). The parameters of the calendering constant M and the like can be obtained by estimating a plurality of parameters which can best satisfy the formula (16).

例如,對於1根壓延材13,而獲得N個的資料集之情形,壓延負荷實績變化量△PACT、輥間隙實績變化量△SACT、板厚量測值變化量△hACT、及輥旋轉角實績值ψ1係可分別獲得N個。 For example, in the case where N pieces of data are obtained for one rolled material 13, the rolling load actual value change amount ΔP ACT , the roll gap actual value change amount ΔS ACT , the plate thickness measurement value change amount Δh ACT , and the roll The rotation angle actual value ψ 1 system can obtain N respectively.

當將N個資料代入數式(16),則獲得N個之聯立方程式。為彙集該等並加以記載,以下,定義以向量及矩陣表示之 變數。 When N data is substituted into the formula (16), N joint equations are obtained. In order to collect these and record them, the following definitions are expressed by vectors and matrices. variable.

△h-△S之資料集係設為:包含N個△hACT-△SACT之要素的行(column)向量Y1。〔△P I cos ψ1 sin ψ1…cos(k ψ1)sin(k ψ1)〕之資料集係設為:包含N個△PACT之要素的行向量、要素僅包含1之N列1行之矩陣INx1、包含根據N個ψ1之sin、cos之值的N列2k行之矩陣x1。在數式(16)之右邊第一項所顯示之〔1/M aS0 aS1 bS1…aSk bSkT設為行向量θ 1The data set of Δh- ΔS is set to a column vector Y 1 including elements of N Δh ACT -ΔS ACT . [△PI cos ψ 1 sin ψ 1 ... cos(k ψ 1 )sin(k ψ 1 )] The data set is set to: the row vector containing the elements of N ΔP ACT , and the element contains only 1 column of 1 I Nx1 matrix of rows, comprising a row of N columns 2k of the N sin ψ 1, the value of cos x 1 matrix according. [1/M a S0 a S1 b S1 ... aS k bS k ] T shown by the first term on the right side of the equation (16) is set as the line vector θ 1 .

將該等彙集,則可獲得下述之數式(17)。在此,以向量E1表示因受雜訊之誤差e1的資料集。 By collecting these, the following formula (17) can be obtained. Here, the data set due to the error e 1 due to noise is represented by a vector E 1 .

數式(17)Y 1=X 1 θ 1+E 1 (17) Equation (17) Y 1 = X 1 θ 1 + E 1 (17)

採用最佳化方法來解數式(17)。雖已提案有數個最佳化方法,惟在此顯示藉由最一般之最小平方法進行識別之例。 The optimization method is used to solve the equation (17). Although several optimization methods have been proposed, the example of identification by the most general minimum flat method is shown here.

θ 1之最小平方解係以下述之數式(18)表示。 The least squares solution of θ 1 is expressed by the following equation (18).

壓延常數識別裝置19係使用數式(18)來計算壓延常數MID。此時,壓延常數識別裝置19係用以對於板厚實績值變化量△hACT,補償因受壓延機座和板厚計12之間之搬運的延遲時間。藉由該補償,板厚實績值變化量△hACT係與壓延負荷實績變化量△PACT、及輥間隙實績變化量△SACT同步。 The rolling constant identification device 19 calculates the rolling constant M ID using the equation (18). At this time, the rolling constant identification means 19 is used to compensate for the delay time of the conveyance between the rolling stand and the thickness gauge 12 with respect to the plate thickness actual value change amount Δh ACT . By this compensation, the plate thickness actual value change amount Δh ACT is synchronized with the rolling load actual value change amount ΔP ACT and the roll gap actual value change amount ΔS ACT .

壓延常數M係高度依存於機殼1、上側工作輥2a、下側工作輥2b、上側補強輥3a、及下側補強輥3b之機械特性。因此,壓延常數MID係相對於每一壓延機座加以計算。 The rolling constant M is highly dependent on the mechanical properties of the casing 1, the upper work rolls 2a, the lower work rolls 2b, the upper side reinforcing rolls 3a, and the lower side reinforcing rolls 3b. Therefore, the calendering constant M ID is calculated relative to each calendering stand.

例如,儲存有壓延機座之資料,並令壓延常數識別為M〔1〕(已儲存,stored)(kN/mm)。獲得同一壓延機座之資料,且令壓延常數識別為M〔1〕(原始,raw)(kN/mm)。該情形,壓延常數識別裝置19係保存M〔1〕(原始)。在板厚控制中,係使用經平滑化之新的壓延常數。藉由平滑化,加以抑制因受資料之不一致的識別結果之不穩定化。新的壓延常數係以下述之數式(19)表示。 For example, the data of the calender stand is stored, and the calendering constant is identified as M[1] (stored) (kN/mm). The data of the same calendering stand was obtained, and the calendering constant was identified as M[1] (raw, raw) (kN/mm). In this case, the calendering constant identifying means 19 stores M[1] (original). In the thickness control, a new calendering constant that is smoothed is used. By smoothing, the instability of the recognition result due to the inconsistency of the data is suppressed. The new calendering constant is expressed by the following formula (19).

數式(19)M[1](要儲存,to be stored)=(1-a)*M[1](已儲存,stored)+a*M[1](原始,raw) (19) Equation (19) M [1] (to be stored, to be stored ) = (1- a ) * M [1] (stored, stored ) + a * M [1] (original, raw ) (19)

在數式(19)中,a係平滑化增益。a係設定為由0至1為止之值。當令a增大,則使壓延常數M〔1〕(原始)易反映在新的壓延常數。 In the equation (19), a is a smoothing gain. a is set to a value from 0 to 1. When a is increased, the calendering constant M[1] (original) is easily reflected in the new calendering constant.

在剛更換上側工作輥2a、下側工作輥2b或上側補強輥3a、下側補強輥3b後之第1根壓延材13中,壓延常數亦會有與更換前之壓延常數些微相異之情形。因此,在剛更換後,壓延常數識別裝置19係提高M〔1〕(原始)的比率。該情形,新的壓延常數係使用大於a之平滑化增益A並以下述之數式(20)表示。 In the first rolled material 13 immediately after the replacement of the upper work roll 2a, the lower work roll 2b, the upper side reinforcing roll 3a, and the lower side reinforcing roll 3b, the rolling constant may be slightly different from the rolling constant before replacement. . Therefore, immediately after replacement, the calendering constant identifying means 19 increases the ratio of M[1] (original). In this case, the new calendering constant is a smoothing gain A greater than a and expressed by the following formula (20).

數式(20)M[1](要儲存,to be stored)=(1-A)*M[1](已儲存,stored)+A*M[1](原始,raw) (20) Equation (20) M [1] (to be stored, to be stored ) = (1- A )* M [1] (stored, stored ) + A * M [1] (original, raw ) (20)

從上側工作輥2a、下側工作輥2b或上側補強輥3a、下側補強輥3b之剛更換後起壓延數根壓延材13,直到資料穩定為止,亦可持續地使用A。該情形,使上側工作輥2a、下側工作輥2b或上側補強輥3a、下側補強輥3b之剛更換後的識別結果容易反映。 A plurality of rolled materials 13 are rolled from the immediately after replacement of the upper work roll 2a, the lower work roll 2b, the upper side reinforcing roll 3a, and the lower side reinforcing roll 3b until the data is stabilized, and A can be used continuously. In this case, the recognition result immediately after the replacement of the upper work roll 2a, the lower work roll 2b, the upper side reinforcing roll 3a, and the lower side reinforcing roll 3b is easily reflected.

接下來,以下顯示識別塑性係數Q之方法。基本的概念,與以上所示之壓延常數M相同。 Next, a method of identifying the plastic coefficient Q is shown below. The basic concept is the same as the calendering constant M shown above.

在第6圖中,壓延負荷之變化量△P係使用因受雜訊Nh之誤差e2並以下述之數式(21)表示。 In Fig. 6, the amount of change ΔP in the rolling load is expressed by the following equation (21) using the error e 2 due to the noise N h .

當將數式(21)變形,即獲得下述之數式(22)。 When the equation (21) is deformed, the following equation (22) is obtained.

此時,w係以下述之數式(23)定義。 At this time, w is defined by the following formula (23).

屬於壓延材13為被壓延前之狀態之板坯(slab)時,該板坯係配置於未圖示之加熱爐內。在該加熱爐中,設置有未圖示之複數個滑件(skid)。複數個滑件係以大致等間隔方式配置。複數個滑件係用以支持板坏。複數個滑件之內部係以水加以冷卻。因此,在板坏上,與滑件接觸之部分的溫度下降。該部分係稱為滑動痕(skid mark)。 When the rolled material 13 is a slab in a state before being rolled, the slab is placed in a heating furnace (not shown). In the heating furnace, a plurality of skids (not shown) are provided. A plurality of sliders are arranged in substantially equal intervals. A plurality of sliders are used to support the board. The interior of the plurality of sliders is cooled with water. Therefore, in the case of the board being broken, the temperature of the portion in contact with the slider is lowered. This part is called a skid mark.

壓延負荷擾動△PD係可視為與滑動痕同步之週期性的擾動。壓延中,壓延速度會改變,因此,壓延負荷擾動△PD的週期係隨時間而變化。壓延負荷擾動△PD係對於上側工作輥2a、 下側工作輥2b、上側補強輥3a、以及下側補強輥3b之旋轉角ψ2(0度~360度)而以固定週期變化。 The calendering load disturbance ΔP D can be regarded as a periodic disturbance synchronized with the sliding mark. In calendering, the calendering speed changes, and therefore, the period of the calendering load disturbance ΔP D changes with time. The rolling load disturbance ΔP D changes at a fixed cycle with respect to the rotation angle ψ 2 (0 to 360 degrees) of the upper work roll 2a, the lower work roll 2b, the upper side reinforcing roll 3a, and the lower side reinforcing roll 3b.

該情形,w係近似於k次之傅利葉級數。具體而言,w係以下述之數式(24)表示。 In this case, w is a Fourier series that approximates k times. Specifically, w is represented by the following formula (24).

當將數式(22)變形,且使用數式(23)、數式(24),即可獲得下述之數式(25)。 When the equation (22) is deformed and the equations (23) and (24) are used, the following equation (25) can be obtained.

將從壓延材13所獲得之N個資料代入數式(25),則獲得N個之聯立方程式。為彙集該等並加以記載,以下,定義以向量及矩陣表示之變數。 By substituting the N data obtained from the rolled material 13 into the equation (25), N simultaneous equations are obtained. In order to collect these and record them, the variables represented by vectors and matrices are defined below.

△P 資料集係設為:包含△PACT之的行向量Y2。〔△S I cos ψ2 sin ψ2…cos(k ψ2)sin(k ψ2)〕之資料集係設為:N個△SACT之的行向量、要素僅包含1之N列1行之矩陣INx1、包含根據N個ψ2之sin、cos之值的N列2k行之矩陣x2。在數式(25)之右邊第一項所顯示之〔-MQ/(M+Q)aw0 aw1 bw1…awk bwkT設為行向量θ 2△P The data set is set to: a row vector Y 2 containing ΔP ACT . [ΔSI cos ψ 2 sin ψ 2 ... cos(k ψ 2 )sin(k ψ 2 )] The data set is set to: N △ S ACT row vectors, elements only contain 1 N columns and 1 row matrix I Nx1, comprising 2k x 2 rows and N columns according to the N-th ψ sin 2, the value of cos matrix. [-MQ/(M+Q)a w0 a w1 b w1 ... a wk b wk ] T is shown as the row vector θ 2 in the first term on the right side of the equation (25).

將該等彙集,則可獲得下述之數式(26)。在此,以向量E2表示因受雜訊之誤差e2的資料集。 By collecting these, the following formula (26) can be obtained. Here, the data set due to the error e 2 of the noise is represented by a vector E 2 .

數式(26)Y 2=X 2 θ 2+E 2 (26) Equation (26) Y 2 = X 2 θ 2 + E 2 (26)

與數式(17)同樣地,藉由最小平方法來解數式(26)。θ 2之最小平方解係以下述之數式(27)表示。 Similarly to the equation (17), the equation (26) is solved by the least squares method. The least squares solution of θ 2 is expressed by the following equation (27).

塑性係數識別裝置20係使用數式(27)來計算塑性係數QID。此時,壓延常數M係由壓延常數MID或者壓延常數MMES選擇。 The plastic coefficient recognizing device 20 calculates the plastic coefficient Q ID using the equation (27). At this time, the rolling constant M is selected by the rolling constant M ID or the rolling constant M MES .

塑性係數Q的識別係在儲存有某數量之資料之時機(timing)實施。塑性係數識別裝置20係將壓延機座編號、鋼種、板厚分類、溫度範圍作為分類指標,而具有塑性係數之表格。表格之1個1個的儲存格(cell)係稱為批次(lot)。各批次中,係使以下之(A)至(D)的資訊賦予關連性。 The identification of the plasticity coefficient Q is carried out at the timing of storing a certain amount of data. The plastic coefficient recognizing device 20 has a table of plasticity coefficients by using a calender frame number, a steel type, a plate thickness classification, and a temperature range as classification indexes. One cell of the table is called a lot. In each batch, the following information (A) to (D) is given relevance.

(A)相當於該儲存格之壓延材13的根數 (A) the number of rolled materials 13 corresponding to the cell

(B)各壓延材13之ID編號和壓延日期時間 (B) ID number and rolling date and time of each rolled material 13

(C)在各材料所獲得之塑性係數之識別所需的資料 (C) Information required for the identification of the plasticity coefficient obtained for each material

(D)前次識別之壓延材13的ID編號 (D) ID number of the previously identified rolled material 13

塑性係數識別裝置20係使用(A)至(D)之資訊並在以下之時機(a)或者時機(b)計算塑性係數QIDThe plastic coefficient recognizing device 20 uses the information of (A) to (D) and calculates the plastic coefficient Q ID at the timing (a) or the timing (b) below.

(a)於儲存有一定數量以上之新設資料之時點計算塑性係數QID(a) Calculate the plasticity coefficient Q ID at the point in time when a certain amount of new data is stored.

(b)每當抽出於一批次所含之壓延材13的資料,將該批次之資料作為對象而計算塑性係數QID(b) The plasticity coefficient Q ID is calculated as the object of the batch, as a result of extracting the data of the rolled material 13 contained in one batch.

時機(a)之情形,工程師亦可視儲存之資料數量,而適當判斷。亦可當達到某資料數量以上自動地計算塑性係數QIDIn the case of timing (a), the engineer may also make appropriate judgments based on the amount of information stored. It is also possible to automatically calculate the plasticity coefficient Q ID when the number of data is reached.

時機(b)之情形,使資料儲存於某批次(壓延機座、鋼種、板厚分類、溫度範圍),並令塑性係數識別為Q〔1、2、3、4〕(已儲存)(kN/mm)。獲得與該批次相同條件之壓延材13的資料,且令塑性係數識別為Q〔1、2、3、4〕(原始)(kN/mm)。塑性係數識別裝置20係將經平滑化之新的塑性係數保存在該批次。在板厚控制中,係使用經平滑化之新的塑性係數。藉由平滑化,加以抑制因受資料之不一致的識別結果之不穩定化。新的塑性係數係以下述之數式(28)表示。 In the case of timing (b), the data is stored in a batch (calender base, steel grade, plate thickness classification, temperature range), and the plasticity coefficient is identified as Q [1, 2, 3, 4] (stored) ( kN/mm). The data of the rolled material 13 having the same conditions as the batch were obtained, and the plasticity coefficient was identified as Q [1, 2, 3, 4] (original) (kN/mm). The plastic coefficient recognizing device 20 holds the smoothed new plastic coefficient in the batch. In the thickness control, a new plasticity coefficient that is smoothed is used. By smoothing, the instability of the recognition result due to the inconsistency of the data is suppressed. The new plastic coefficient is expressed by the following formula (28).

數式(28)Q[1,2,3,4](要儲存,to be stored)=(1-b)*Q[1,2,3,4](已儲存,stored)+b*Q[1,2,3,4](原始,raw) (28) Equation (28) Q [1,2,3,4] (to be stored, to be stored )=(1- b )* Q [1,2,3,4](stored, stored )+ b * Q [1,2,3,4](original, raw ) (28)

在數式(28)中,b係平滑化增益。b係設定為由0至1為止之值。當令b增大,則使塑性係數Q〔1、2、3、4〕(原始)易反映在新的壓延常數 In the equation (28), b is the smoothing gain. b is set to a value from 0 to 1. When b is increased, the plastic coefficient Q[1, 2, 3, 4] (original) is easily reflected in the new calendering constant.

平滑化亦可適用於時機(a)之情形。亦會有適用與數式(28)相異之平滑化之情形。 Smoothing can also be applied to the case of timing (a). There will also be cases where smoothing is different from the equation (28).

接下來,使用第7圖加以說明塑性係數Q之表格。 Next, a table of the plastic coefficient Q will be described using Fig. 7.

第7圖係用以說明本發明之實施形態1之壓延機的板厚控制裝置之塑性係數識別裝置所具有之塑性係數之表格之圖。 Fig. 7 is a view for explaining a table of plasticity coefficients of the plastic coefficient recognizing device of the plate thickness control device for a calender according to the first embodiment of the present invention.

在第7圖中,若指定壓延機座、鋼種、板厚分類、溫度範圍,則僅指定1個批次。結果,該批次,係與其他批次被 區別。 In Fig. 7, if a calender stand, a steel type, a plate thickness classification, and a temperature range are specified, only one batch is designated. As a result, the batch is tied to other batches. the difference.

接下來,使用第8圖、及第9圖加以說明壓延常數MID、及塑性係數QID的有效性。 Next, the validity of the rolling constant M ID and the plastic coefficient Q ID will be described using Figs. 8 and 9.

第8圖係用以說明由本發明之實施形態1之壓延機的板厚控制裝置之輥偏心擾動之推定結果之圖。第9圖係用以說明由本發明之實施形態1之壓延機的板厚控制裝置之壓延負荷擾動之推定結果之圖。 Fig. 8 is a view for explaining the results of estimation of the eccentricity of the roller by the thickness control device of the calender according to the first embodiment of the present invention. Fig. 9 is a view for explaining the estimation results of the rolling load disturbance of the plate thickness control device of the calender according to the first embodiment of the present invention.

如第8圖所示,輥偏心擾動之推定值係與實際之擾動之值大致一致。如第9圖所示,壓延負荷擾動之推定值係與實際之擾動之值大致一致。因此,壓延常數MID、及塑性係數QID係正確地進行計算。 As shown in Fig. 8, the estimated value of the eccentricity of the roller is approximately the same as the value of the actual disturbance. As shown in Fig. 9, the estimated value of the rolling load disturbance is approximately the same as the actual disturbance value. Therefore, the rolling constant M ID and the plastic coefficient Q ID are correctly calculated.

根據以上所說明之實施形態1,塑性係數識別裝置20係根據操作對象之壓延機座之壓延負荷實績值、輥間隙實績值、及壓延常數來識別壓延材13之塑性係數。因此,能夠正確地識別壓延材13之塑性係數。 According to the first embodiment described above, the plastic coefficient identifying device 20 recognizes the plastic coefficient of the rolled material 13 based on the rolling load actual value, the roll gap actual value, and the rolling constant of the rolling stand of the operation target. Therefore, the plastic coefficient of the rolled material 13 can be correctly recognized.

此外,壓延常數識別裝置19係根據控制對象之壓延機座之壓延負荷實績值、輥間隙實績值、以及於該壓延機座之下游側之壓延材的板厚來識別該壓延機座之壓延常數。因此,能夠正確地識別該壓延機座之壓延常數。 Further, the rolling constant identification device 19 identifies the rolling constant of the rolling stand based on the rolling load actual value of the rolling stand to be controlled, the roll gap actual value, and the thickness of the rolled material on the downstream side of the rolling stand. . Therefore, the rolling constant of the calender stand can be correctly identified.

此外,壓延常數識別裝置19係根據該壓延機座之壓延輥之旋轉位置來識別該壓延機座之壓延常數。具體而言,壓延常數識別裝置19係使用數式(18)來計算壓延常數。因此,能夠更正確地識別該壓延機座之壓延常數。 Further, the rolling constant identifying means 19 identifies the rolling constant of the rolling stand based on the rotational position of the rolling roll of the rolling stand. Specifically, the rolling constant identification device 19 calculates the rolling constant using the equation (18). Therefore, the rolling constant of the calender stand can be more accurately recognized.

此外,壓延常數識別裝置19係對於壓延機座,於每 次獲得1根壓延材13之資料即識別壓延常數,且與過去所識別之壓延常數平滑化。壓延機座之壓延輥被更換時,壓延常數識別裝置19係將使用最新之識別資料的比率較通常提高。因此,能夠更正確地識別該壓延機座之壓延常數。 Further, the calendering constant identifying means 19 is for the calendering stand, The data obtained by obtaining one rolled material 13 at a time recognizes the calendering constant and smoothes the calendering constant recognized in the past. When the calender rolls of the calender stand are replaced, the calendering constant recognizing device 19 increases the ratio of using the latest identification data. Therefore, the rolling constant of the calender stand can be more accurately recognized.

此外,塑性係數識別裝置20係根據藉由接觸輥試驗所求得之壓延常數來識別壓延材13之塑性係數。因此,能夠更正確地識別壓延材13之塑性係數。 Further, the plastic coefficient recognizing device 20 recognizes the plastic coefficient of the rolled material 13 based on the rolling constant obtained by the contact roll test. Therefore, the plastic coefficient of the rolled material 13 can be more accurately recognized.

此外,塑性係數識別裝置20係根據該壓延機座之壓延輥之旋轉位置來識別壓延材13之塑性係數。具體而言,塑性係數識別裝置20係使用數式(26)來計算塑性係數。因此,能夠更正確地識別壓延材13之塑性係數。 Further, the plastic coefficient recognizing device 20 recognizes the plastic coefficient of the rolled material 13 based on the rotational position of the calender roll of the calendering stand. Specifically, the plastic coefficient recognizing device 20 calculates the plastic coefficient using the equation (26). Therefore, the plastic coefficient of the rolled material 13 can be more accurately recognized.

此外,塑性係數識別裝置20係使用預先抽出之資料來識別壓延材13之塑性係數。因此,能夠使用過去之資料來計算壓延材13之塑性係數。 Further, the plastic coefficient recognizing device 20 uses the data extracted in advance to identify the plastic coefficient of the rolled material 13. Therefore, the past data can be used to calculate the plastic coefficient of the rolled material 13.

此外,塑性係數識別裝置20係當資料儲存在以相同或類似之鋼種、板厚、及壓延溫度範圍所分類之每一批次達預先設定之數量時,識別壓延材13之塑性係數。因此,能夠更正確地計算壓延材13之塑性係數。 Further, the plastic coefficient recognizing means 20 recognizes the plastic coefficient of the rolled material 13 when the data is stored in each of the batches classified by the same or similar steel grade, sheet thickness, and calendering temperature range to a predetermined amount. Therefore, the plastic coefficient of the rolled material 13 can be calculated more accurately.

此外,塑性係數識別裝置20係當每次資料儲存在以相同或類似之鋼種、板厚、及壓延溫度範圍所分類之批次,即識別壓延材13之塑性係數。因此,能夠藉由最新的資料修正壓延材13之塑性係數。 Further, the plastic coefficient recognizing means 20 recognizes the plastic coefficient of the rolled material 13 each time the data is stored in a batch classified by the same or similar steel grade, sheet thickness, and calendering temperature range. Therefore, the plasticity coefficient of the rolled material 13 can be corrected by the latest data.

另外,於該壓延機座之下游側未設置有板厚計12時,亦可使用質量流量恆定定律求得於壓延機座之出口側之壓延 材13的板厚。質量流量恆定定律係以下述之數式(29)表示。 Further, when the thickness gauge 12 is not provided on the downstream side of the calender base, the constant flow rate constant flow law can be used to obtain the calendering on the outlet side of the calender stand. The thickness of the material 13 is. The law of constant mass flow rate is expressed by the following equation (29).

數式(29)h X V X =h i (1+f i )V Ri (29) Equation (29) h X V X = h i (1+ f i ) V Ri (29)

在數式(29)中,下標字x係對應於假設設置板厚計12時之板厚計12的正下方的位置。下標字I係對應該壓延機座編號。h係為壓延材13的板厚。V係為壓延材13的速度。f係為前進率。前進率f係由壓延模型所計算。VRi係由壓延機座之壓延輥的圓周速率所量測。 In the equation (29), the subscript x corresponds to a position immediately below the thickness gauge 12 when the thickness gauge 12 is set. The subscript word I corresponds to the calender frame number. h is the thickness of the rolled material 13. V is the speed of the rolled material 13. f is the forward rate. The forward rate f is calculated by the calendering model. V Ri is measured by the peripheral velocity of the calender rolls of the calender stand.

實施形態2 Embodiment 2

第10圖係本發明之實施形態2之壓延機的板厚控制裝置之控制方塊圖的主要部分。另外,與實施形態1相同或相當部分係附加相同符號並省略說明。 Fig. 10 is a main part of a control block diagram of a plate thickness control device for a calender according to a second embodiment of the present invention. The same or equivalent portions as those in the first embodiment are denoted by the same reference numerals and will not be described.

實施形態2之板厚控制器9係使用經識別之輥偏心擾動△SD使控制性能提升。具體而言,輥間隙操作手段10係朝與經識別之輥偏心擾動△SD相反方向調整輥間隙。藉由該調整,使輥偏心擾動被消除。 The plate thickness controller 9 of the second embodiment uses the identified roll eccentricity disturbance ΔS D to improve the control performance. Specifically, the roll gap operation means 10 adjusts the roll gap in a direction opposite to the identified roll eccentricity disturbance ΔS D . With this adjustment, the eccentric disturbance of the roller is eliminated.

實際上,於壓延輥之位置的特定會有誤差、或油壓壓下裝置的應答會有落後。因此,當100%補償輥偏心擾動時,會產生控制之振盪等的缺失。故此,導入有調整增益KSDIn fact, there may be errors in the specific position of the calender rolls, or the response of the hydraulic press device may lag behind. Therefore, when the 100% compensation roller is eccentrically disturbed, a loss of control oscillation or the like occurs. Therefore, the adjustment gain K SD is introduced .

在第10圖中,對經推定之輥偏心擾動△SD,乘以調整增益KSD,來計算輥偏心補償量△SD REF。輥偏心補償量△SD REF係加上輥間隙指令值△SSETIn Fig. 10, the estimated roll eccentricity compensation amount ΔS D REF is calculated by multiplying the estimated roll eccentricity disturbance ΔS D by the adjustment gain K SD . The roll eccentricity compensation amount ΔS D REF is added to the roll gap command value ΔS SET .

根據以上所說明之實施形態2,輥間隙操作手段10係以降低輥偏心擾動的影響之方式,調整壓延機座的輥間隙。因 此,能夠精密度優越地控制壓延材13之板厚。 According to the second embodiment described above, the roll gap operation means 10 adjusts the roll gap of the rolling stand to reduce the influence of the eccentricity of the roll. because Thereby, the thickness of the rolled material 13 can be excellently controlled with precision.

另外,亦可將實施形態1及2之板厚控制裝置適用於四重式軋機以外之軋機。例如,亦可將該板厚控制裝置適用於以上側工作輥2a及下側工作輥2b所構成之2重式軋機。此外,亦可將該板厚控制裝置適用於在四重式軋機付加中間輥的六重式軋機。 Further, the plate thickness control devices of the first and second embodiments may be applied to a rolling mill other than the quadruple rolling mill. For example, the thickness control device may be applied to a two-fold rolling mill including the upper side work roll 2a and the lower side work roll 2b. In addition, the thickness control device can also be applied to a six-roll mill in which an intermediate roll is added to a quadruple mill.

(產業上之可利用性) (industrial availability)

如上所述,本發明之壓延機的板厚控制裝置係可利用於正確地識別壓延材之塑性係數之時。 As described above, the plate thickness control device of the calender of the present invention can be utilized to accurately recognize the plasticity coefficient of the rolled material.

14‧‧‧壓延過程 14‧‧‧Depression process

14a‧‧‧第1影響係數 14a‧‧‧1st influence coefficient

14b‧‧‧第2影響係數 14b‧‧‧2nd influence coefficient

15‧‧‧監測AGC 15‧‧‧Monitoring AGC

16‧‧‧計量器AGC 16‧‧‧Measuring AGC

16a‧‧‧第2控制區塊 16a‧‧‧2nd control block

16b‧‧‧PI控制器 16b‧‧‧PI controller

16c‧‧‧補償增益 16c‧‧‧Compensation gain

17‧‧‧MMC(Mill Modulus Control;壓延常數可變控制) 17‧‧‧MMC (Mill Modulus Control; variable compression constant control)

17a‧‧‧第3控制區塊 17a‧‧‧3rd control block

17b‧‧‧油壓壓下應答 17b‧‧‧Hydraulic pressure response

18‧‧‧第1控制區塊 18‧‧‧1st control block

hGM REF‧‧‧板厚目標變更量 h GM REF ‧‧‧ plate thickness target change

△SSET‧‧‧輥間隙指令值 △S SET ‧‧‧ Roll gap command value

△PACT‧‧‧壓延負荷實績變化量 △P ACT ‧‧‧Change in rolling load performance

Claims (13)

一種壓延機的板厚控制裝置,係具備:塑性係數識別裝置,根據操作對象之壓延機座的壓延負荷實績值、輥間隙實績值、及壓延常數,識別用以表示壓延材之硬度的塑性係數;且根據經識別之前述塑性係數而調整前述壓延機座之輥間隙的設定值。 A plate thickness control device for a calender includes a plastic coefficient recognizing device that recognizes a plastic coefficient for indicating the hardness of the rolled material according to a calendering load actual value, a roll gap actual value, and a calendering constant of the rolling stand of the operation target And adjusting the set value of the roll gap of the calender stand according to the identified plasticity coefficient. 如申請專利範圍第1項所述之壓延機的板厚控制裝置,具備:壓延常數識別裝置,根據前述壓延機座之壓延負荷實績值、輥間隙實績值、及於該壓延機座之下游側之壓延材的板厚,識別前述壓延機座的壓延常數;其中,前述塑性係數識別裝置,係根據藉由前述壓延常數識別裝置所識別之壓延常數而識別前述塑性係數。 The thickness control device for a rolling mill according to claim 1, comprising: a rolling constant identification device, a rolling load actual value according to the rolling stand, a roll gap actual value, and a downstream side of the rolling stand The plate thickness of the rolled material identifies the rolling constant of the rolling stand, wherein the plastic coefficient identifying means identifies the plastic coefficient based on a rolling constant recognized by the rolling constant identifying means. 如申請專利範圍第2項所述之壓延機的板厚控制裝置,其中,前述壓延常數識別裝置係根據使用了於前述壓延機座之下游側之壓延材的搬運速度與前述壓延機座之壓延輥的旋轉速度之質量流量恆定定律,計算於前述壓延機座之下游側之壓延材的板厚。 The thickness control device for a rolling mill according to the second aspect of the invention, wherein the rolling constant identification device is based on a conveying speed of a rolled material used on a downstream side of the rolling stand and a rolling of the rolling stand The constant mass flow rate of the rotational speed of the roller is calculated from the thickness of the rolled material on the downstream side of the calender stand. 如申請專利範圍第2項所述之壓延機的板厚控制裝置,其中,前述壓延常數識別裝置係根據前述壓延機座之壓延輥的旋轉位置,識別前述壓延機座的壓延常數。 The thickness control device for a rolling mill according to the second aspect of the invention, wherein the rolling constant identification device identifies a rolling constant of the rolling stand according to a rotation position of a rolling roll of the rolling stand. 如申請專利範圍第4項所述之壓延機的板厚控制裝置,其中,前述壓延常數識別裝置係對於前述壓延機座之下游側之壓延材的板厚,補償從該壓延機座至前述板厚計為止的搬運時間並 求得板厚量測值變化量,且根據從前述壓延機座之輥間隙之穩定值算起的變化量求得輥間隙實績變化量,且根據前述壓延機座之壓延負荷量測值與預先設定之值的偏差求得壓延負荷實績變化量,並對包含前述板厚量測值變化量、前述輥間隙實績變化量、前述壓延負荷實績變化量、前述壓延輥之旋轉位置、及前述壓延常數的數式適用最佳化手法識別前述壓延常數。 The thickness control device for a calender according to the fourth aspect of the invention, wherein the calendering constant recognizing device compensates a thickness of a rolled material on a downstream side of the rolling stand from the calender stand to the plate Carrying time until the thick gauge Obtaining the amount of change in the thickness measurement value, and determining the amount of change in the roll gap performance based on the amount of change from the stable value of the roll gap of the calendering stand, and according to the calendering load measurement value of the calender stand and the advance Deviation of the set value, the amount of change in the rolling load actual value is obtained, and the amount of change in the measured value of the thickness of the plate, the amount of change in the roll gap, the amount of change in the rolling load, the rotational position of the rolling roll, and the rolling constant are included. The number formula is optimized for the aforementioned calendering constant. 如申請專利範圍第2項至第5項中任一項所述之壓延機的板厚控制裝置,其中,前述壓延常數識別裝置係對於前述壓延機座,於每次獲得1根壓延材之資料時即識別前述壓延機座的壓延常數,並與過去之壓延常數平滑化,使前述壓延機座之壓延輥被更換時使用最新之識別資料的比率較通常提高。 The thickness control device for a calender according to any one of the items 2 to 5, wherein the calendering constant identification device obtains data of one rolled material at a time for the calendering stand. When the calendering constant of the calendering stand is recognized, and the calendering constant in the past is smoothed, the ratio of using the latest identification data when the calender rolls of the calendering stand are replaced is generally increased. 如申請專利範圍第1項所述之壓延機的板厚控制裝置,其中,前述塑性係數識別裝置係根據藉由接觸輥試驗所求得之壓延常數識別前述壓延材的塑性係數。 The thickness control device for a rolling mill according to the first aspect of the invention, wherein the plastic coefficient recognizing device identifies the plastic coefficient of the rolled material based on a rolling constant obtained by a contact roll test. 如申請專利範圍第1項或第7項所述之壓延機的板厚控制裝置,其中,前述塑性係數識別裝置係根據前述壓延機座之壓延輥之旋轉位置,識別前述壓延材的塑性係數。 The thickness control device for a rolling mill according to the first or seventh aspect of the invention, wherein the plastic coefficient recognizing device identifies the plastic coefficient of the rolled material based on a rotational position of the calender roll of the rolling stand. 如申請專利範圍第8項所述之壓延機的板厚控制裝置,其中,前述塑性係數識別裝置係根據前述壓延機座之壓延負荷量測值與預先設定之值之偏差求得壓延負荷實績變化量,且根據從前述壓延機座之輥間隙之穩定值算起的變化量求得輥間隙實績變化量,並對含有前述壓延負荷實績變化量、前述輥間隙實績變化量、前述壓延輥之旋轉位置、前述壓延常數、及前述塑性係數的數式適用最佳化手法而識別前述壓延材的塑性係數。 The thickness control device for a calender according to the eighth aspect of the invention, wherein the plastic coefficient recognizing device obtains a change in rolling load performance based on a deviation between a measured value of a rolling load of the rolling stand and a preset value. And the amount of change in the roll gap actual value is obtained from the amount of change from the stable value of the roll gap of the rolling stand, and the amount of change in the actual rolling load, the change in the roll gap, and the rotation of the calender roll are included. The numerical formula of the position, the calendering constant, and the plasticity coefficient described above is applied to an optimization method to identify the plastic coefficient of the rolled material. 如申請專利範圍第1項或第7項所述之壓延機的板厚控制裝置,其中,前述塑性係數識別裝置係使用預先抽出之資料而識別前述壓延材之塑性係數。 The thickness control device for a calender according to the first or seventh aspect of the invention, wherein the plastic coefficient recognizing device identifies the plastic coefficient of the rolled material using pre-extracted data. 如申請專利範圍第1項或第7項所述之壓延機的板厚控制裝置,其中,前述塑性係數識別裝置當資料依以相同或類似之鋼種、板厚、及壓延溫度範圍所分類之每一批次儲存達預先設定之數量時,識別前述壓延材之塑性係數。 The thickness control device for a calender according to claim 1 or 7, wherein the plasticity coefficient identifying device is classified according to the same or similar steel grade, plate thickness, and calendering temperature range. When a batch is stored for a predetermined amount, the plastic coefficient of the rolled material is identified. 如申請專利範圍第1項或第7項所述之壓延機的板厚控制裝置,其中,前述塑性係數識別裝置係當每次針對以相同或類似之鋼種、板厚、及壓延溫度範圍所分類之批次儲存資料時,即識別前述壓延材之塑性係數。 The thickness control device for a calender according to claim 1 or 7, wherein the plasticity coefficient identifying device is classified each time for the same or similar steel grade, plate thickness, and calendering temperature range. When the batch stores the data, the plastic coefficient of the rolled material is identified. 如申請專利範圍第1項或第2項所述之壓延機的板厚控制裝置,具備有輥間隙操作手段,其係推定起因於前述壓延機座之壓延輥之偏心的輥偏心擾動,且以降低該輥偏心擾動之影響的方式,調整前述壓延機座之輥間隙。 The plate thickness control device of the calender according to the first or second aspect of the invention is provided with a roll gap operation means for estimating the eccentricity of the roller caused by the eccentricity of the calender roll of the calender stand, and The roll gap of the calender stand is adjusted in such a manner as to reduce the influence of the eccentricity of the roll.
TW102138636A 2013-08-28 2013-10-25 Gauge controller for rolling mill TWI571328B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/073051 WO2015029171A1 (en) 2013-08-28 2013-08-28 Plate thickness controller for rolling machine

Publications (2)

Publication Number Publication Date
TW201507786A TW201507786A (en) 2015-03-01
TWI571328B true TWI571328B (en) 2017-02-21

Family

ID=52585789

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102138636A TWI571328B (en) 2013-08-28 2013-10-25 Gauge controller for rolling mill

Country Status (5)

Country Link
JP (1) JP6028871B2 (en)
KR (1) KR101767810B1 (en)
CN (1) CN105492133B (en)
TW (1) TWI571328B (en)
WO (1) WO2015029171A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106984651B (en) * 2017-05-26 2019-03-01 江苏省沙钢钢铁研究院有限公司 A kind of on-line control system improving rolled piece thickness control accuracy
CN107363105B (en) * 2017-07-20 2018-12-14 首钢集团有限公司 A kind of control method and device of hot rolled coil head thickness
JP6780786B2 (en) * 2017-09-13 2020-11-04 東芝三菱電機産業システム株式会社 Mathematical model calculator and control device for rolling lines
TWI670124B (en) * 2018-11-12 2019-09-01 中國鋼鐵股份有限公司 Steel strip thickness control method
JP6923081B2 (en) * 2019-08-28 2021-08-18 東芝三菱電機産業システム株式会社 Roll status monitoring device
US11298733B2 (en) * 2019-10-30 2022-04-12 Toshiba Mitsubishi-Electric Industrial Systems Corporation Method for calculating plate thickness schedule for tandem rolling machine and rolling plant

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6142412A (en) * 1984-08-07 1986-02-28 Nippon Steel Corp Automatic plate thickness controlling device
JP2002011508A (en) * 2000-06-30 2002-01-15 Topy Ind Ltd Method and device for controlling thickness provided with function for calculating and correcting plastic coefficient of material
CN101795786A (en) * 2007-09-20 2010-08-04 东芝三菱电机产业***株式会社 plate thickness controller
WO2011132273A1 (en) * 2010-04-21 2011-10-27 東芝三菱電機産業システム株式会社 Plate thickness control device, plate thickness control method, and plate thickness control programme

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5919016A (en) * 1982-07-21 1984-01-31 Kobe Steel Ltd Plate thickness control method in hydraulic drawing down type rolling mill
JP4907311B2 (en) 2006-11-24 2012-03-28 新日本製鐵株式会社 Thickness control device for tandem rolling mill
JP5071376B2 (en) * 2007-01-22 2012-11-14 東芝三菱電機産業システム株式会社 Plate thickness controller
EP2644288B1 (en) * 2010-11-22 2017-01-04 Toshiba Mitsubishi-Electric Industrial Systems Corporation Rolling mill control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6142412A (en) * 1984-08-07 1986-02-28 Nippon Steel Corp Automatic plate thickness controlling device
JP2002011508A (en) * 2000-06-30 2002-01-15 Topy Ind Ltd Method and device for controlling thickness provided with function for calculating and correcting plastic coefficient of material
CN101795786A (en) * 2007-09-20 2010-08-04 东芝三菱电机产业***株式会社 plate thickness controller
WO2011132273A1 (en) * 2010-04-21 2011-10-27 東芝三菱電機産業システム株式会社 Plate thickness control device, plate thickness control method, and plate thickness control programme

Also Published As

Publication number Publication date
CN105492133A (en) 2016-04-13
KR101767810B1 (en) 2017-08-23
TW201507786A (en) 2015-03-01
JPWO2015029171A1 (en) 2017-03-02
WO2015029171A1 (en) 2015-03-05
KR20160003863A (en) 2016-01-11
JP6028871B2 (en) 2016-11-24
CN105492133B (en) 2018-03-06

Similar Documents

Publication Publication Date Title
TWI571328B (en) Gauge controller for rolling mill
CN111659738B (en) Method and device for measuring cross degree of rolling mill roller system
JP5685208B2 (en) Control device for hot rolling mill for thin plate and control method for hot rolling mill for thin plate
CN106984652B (en) The method for controlling finishing stand sideslip according to breakdown bar camber
TWI726543B (en) Plate thickness control device and plate thickness control method
JP2014124666A (en) Rolling control apparatus, rolling control method and rolling control program
US20090210085A1 (en) Method for Suppressing the Influence of Roll Eccentricities
CN111299534B (en) Method and device for determining reference roll gap under continuous casting light and heavy press
JP4696775B2 (en) Plate width control method and apparatus
KR102252361B1 (en) Cross-angle identification method, cross-angle identification device, and rolling mill
JP5971293B2 (en) Control device and control method for temper rolling mill
CN107127218B (en) The method for determining strip width and strip running deviation amount according to the surveyed radial load of plate shape roller
CN113710386B (en) Method for controlling meandering of rolled material
JP4268582B2 (en) Plate thickness control method and plate thickness / shape non-interference control method
CN108971237B (en) Bearing float compensation for metal rolling applications
Schulte et al. Adaptive Pass Scheduling for Roughness Control in Cold Rolling
CN102513376A (en) Method for identifying and detecting eccentric phase of roller system of four/six-roller strip rolling mill
JP2002336906A (en) Method and apparatus for controlling rolling mill
JP6057774B2 (en) Identification method of mill elongation formula in rolling mill
JPH11192505A (en) Method for correcting sheet width change prediction equation in hot rolling and sheet width control method
JP3247030B2 (en) Method and apparatus for controlling flange width of H-section steel
KR101462332B1 (en) Method and device for controlling speed of rolling mill
KR100832399B1 (en) Method to control the strip off gauge by using load difference on the looper
WO2024034020A1 (en) Sheet width control device for reversing rolling mill
WO2016035505A1 (en) Control device and control method for tempering mill