TWI568130B - Staggered high frequency chord pulse electric vehicle charger - Google Patents

Staggered high frequency chord pulse electric vehicle charger Download PDF

Info

Publication number
TWI568130B
TWI568130B TW105107021A TW105107021A TWI568130B TW I568130 B TWI568130 B TW I568130B TW 105107021 A TW105107021 A TW 105107021A TW 105107021 A TW105107021 A TW 105107021A TW I568130 B TWI568130 B TW I568130B
Authority
TW
Taiwan
Prior art keywords
battery
resonant
voltage
capacitor
current
Prior art date
Application number
TW105107021A
Other languages
Chinese (zh)
Other versions
TW201733235A (en
Inventor
Ying-Jun Zhuang
Jun-Han Wu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to TW105107021A priority Critical patent/TWI568130B/en
Application granted granted Critical
Publication of TWI568130B publication Critical patent/TWI568130B/en
Publication of TW201733235A publication Critical patent/TW201733235A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Dc-Dc Converters (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

交錯式高頻弦波脈衝式電動車充電器Interlaced high frequency sine wave pulse electric vehicle charger

本發明係在提供一種交錯式高頻弦波脈衝式電動車充電器,特別係設有輸入電壓、輸入電容、第一分壓電容、第二分壓電容、驅動電路、共振槽、交錯式整流器、第一蓄電池及第二蓄電池所電性連接而成;如此,該驅動電路可供正常驅動,該共振槽可使該驅動電路在零電流切換之狀態下,減少該驅動電路之切換損失及提高操作效率,該共振槽所輸出之高頻交流電流經過該交錯式整流器轉換成交錯式高頻弦波脈衝式充電電流分別對該第一蓄電池或該第二蓄電池充電,且利用該交錯式整流器阻隔逆向電流,在該第一蓄電池與該第二蓄電池得到非連續之交錯式脈波電流充電,達到電動車之該第一蓄電池與該第二蓄電池間接休息時間,以提升充電效率及使用壽命。 The present invention provides an interleaved high-frequency sine wave pulse type electric vehicle charger, in particular, an input voltage, an input capacitor, a first voltage dividing capacitor, a second voltage dividing capacitor, a driving circuit, a resonant tank, and an interleaved rectifier. The first battery and the second battery are electrically connected; thus, the driving circuit can be normally driven, and the resonant slot can reduce the switching loss of the driving circuit and improve the driving circuit in a state of zero current switching. Operating efficiency, the high-frequency alternating current outputted by the resonant tank is converted into an interleaved high-frequency sine wave pulse charging current by the interleaved rectifier to respectively charge the first battery or the second battery, and is blocked by the interleaved rectifier The reverse current is obtained by the first battery and the second battery to obtain a discontinuous interleaved pulse current charging to reach an indirect rest time of the first battery and the second battery of the electric vehicle to improve charging efficiency and service life.

按,電能係一種可以替代石油的能源,更可以環保之方式生產,例如使用太陽能、潮汐能、風力、地熱等方式來取得電力,不同於石油燃燒時所產生的廢氣會污染環境,電能算是一種取之不盡的能源,所以在電力電子相關領域中,該如何提升效率且同時降低成本和損失,已為現今各大產業所重視,而目前電動車充電器之應用,會有無法確保電路可正常驅動、切換損失及操作效率不佳之狀況,更無法同時運用蓄電池來達到脈波式充電與不連續電流導通,又無連接共振式電路,因共振式電路可使開關在切換時,達到零電壓切換(Zero Voltage Switching;ZVS)或零電流切換(Zero Current Switching;ZCS),擁有柔性切換的特性及降低切換時的損失,所以尚未有電動車充電器能將共振式電路結合交錯式整流器以高頻弦波脈波式進行蓄電池充電,故充電效率及使用壽命有 限;緣此,本發明人有鑑於習知存在有如上述之缺失,乃潛心研究、改良,遂得以首先發明本發明。 According to electricity, electric energy is a kind of energy that can replace petroleum. It can be produced in an environmentally friendly way. For example, solar energy, tidal energy, wind power, geothermal energy, etc. can be used to obtain electricity. Different from the waste gas generated by oil burning, it pollutes the environment. Inexhaustible energy, so in the field of power electronics, how to improve efficiency while reducing costs and losses has been valued by today's major industries, and the current application of electric vehicle chargers will not ensure the circuit can be Normal driving, switching loss and poor operating efficiency, it is impossible to use the battery at the same time to achieve pulse wave charging and discontinuous current conduction, and no resonant circuit is connected. Because the resonant circuit can make the switch reach zero voltage when switching. Zero Voltage Switching (ZVS) or Zero Current Switching (ZCS), which has the characteristics of flexible switching and reduces the loss during switching, so there is no electric vehicle charger that can combine the resonant circuit with the interleaved rectifier. The frequency chord wave pulse type is used for charging the battery, so the charging efficiency and the service life are Therefore, the inventors of the present invention have invented the present invention firstly in view of the above-mentioned drawbacks as described above.

本發明之主要目的係在:該驅動電路可供正常驅動,該共振槽可使該驅動電路在零電流切換之狀態下,減少該驅動電路之切換損失及提高操作效率,該共振槽所輸出之高頻交流電流經過該交錯式整流器轉換成交錯式高頻弦波脈衝式充電電流分別對該第一蓄電池或該第二蓄電池充電,且利用該交錯式整流器阻隔逆向電流,在該第一蓄電池與該第二蓄電池得到非連續之脈波電流充電,達到電動車之該第一蓄電池與該第二蓄電池間接休息時間,以提升充電效率及使用壽命之交錯式高頻弦波脈衝式電動車充電器。 The main object of the present invention is that the driving circuit can be normally driven, and the resonant tank can reduce the switching loss of the driving circuit and improve the operating efficiency in the state of zero current switching, and the output of the resonant slot The high frequency alternating current is converted into an interleaved high frequency sine wave pulse charging current by the interleaved rectifier to respectively charge the first battery or the second battery, and the reverse current is blocked by the interleaved rectifier, in the first battery The second battery is charged by the discontinuous pulse wave current to reach the indirect rest time of the first battery and the second battery of the electric vehicle, so as to improve the charging efficiency and the service life of the staggered high-frequency sine wave pulse type electric vehicle charger .

本發明之主要特徵係在:設有輸入電壓、輸入電容、第一分壓電容、第二分壓電容、驅動電路、共振槽、交錯式整流器、第一蓄電池及第二蓄電池所電性連接而成,該輸入電壓之一端係連接於該輸入電容之一端、該第一分壓電容之一端及該驅動電路之第一功率開關之汲極,該第一分壓電容之另一端係連接於該第二分壓電容之一端、該第一蓄電池之一端及該第二蓄電池之一端,該驅動電路之第一功率開關之源極係連接於該驅動電路之第二功率開關之汲極、該共振槽之共振電感之一端,該驅動電路之第二功率開關之源極係連接於該第二分壓電容之另一端、該輸入電容之另一端及該輸入電壓之另一端,該共振槽之共振電感之另一端係連接於該共振槽之共振電容之一端,該共振槽之共振電容之另一端係連接於該交錯式整流器之第一整流二極體之一端及該交錯式整流器之第二整流二極體之一端,該交錯式整流器之第一整流二極體之另一端係連接於該第一蓄電池之另一端,該交錯式整流器之第二整流二極體之另一端係連接於該第二蓄電池之另一端。 The main features of the present invention are: providing an input voltage, an input capacitor, a first voltage dividing capacitor, a second voltage dividing capacitor, a driving circuit, a resonant tank, an interleaved rectifier, a first battery, and a second battery electrically connected One end of the input voltage is connected to one end of the input capacitor, one end of the first voltage dividing capacitor and a drain of the first power switch of the driving circuit, and the other end of the first voltage dividing capacitor is connected to the One end of the second voltage dividing capacitor, one end of the first battery, and one end of the second battery, the source of the first power switch of the driving circuit is connected to the drain of the second power switch of the driving circuit, and the resonance One end of the resonant inductor of the slot, the source of the second power switch of the driving circuit is connected to the other end of the second voltage dividing capacitor, the other end of the input capacitor, and the other end of the input voltage, the resonance of the resonant tank The other end of the inductor is connected to one end of the resonant capacitor of the resonant tank, and the other end of the resonant capacitor of the resonant tank is connected to one end of the first rectifying diode of the interleaved rectifier and the intersection One end of the second rectifying diode of the rectifier, the other end of the first rectifying diode of the interleaved rectifier is connected to the other end of the first battery, and the second rectifying diode of the interleaved rectifier is another One end is connected to the other end of the second battery.

本發明交錯式高頻弦波脈衝式電動車充電器,其中,該輸入電壓係為120V,該共振電感係為0.344μH,該共振電容係為2μF,該共振頻率係為192kHz,該切換頻率係為50kHz,其整體效率達到93.73%。 The interleaved high-frequency sine wave pulse type electric vehicle charger of the present invention, wherein the input voltage is 120V, the resonant inductance is 0.344μH, the resonant capacitance is 2μF, and the resonant frequency is 192kHz, and the switching frequency is At 50 kHz, the overall efficiency reaches 93.73%.

1‧‧‧驅動電路 1‧‧‧Drive circuit

2‧‧‧共振槽 2‧‧‧Resonance slot

3‧‧‧交錯式整流器 3‧‧‧Interleaved rectifier

V dc ‧‧‧輸入電壓 V dc ‧‧‧ input voltage

i dc ‧‧‧輸入電流 i dc ‧‧‧ input current

C dc ‧‧‧輸入電容 C dc ‧‧‧ input capacitor

v cdc ‧‧‧輸入電容電壓 v cdc ‧‧‧Input capacitor voltage

i cdc ‧‧‧輸入電容電流 i cdc ‧‧‧Input Capacitance Current

C 1 ‧‧‧第一分壓電容 C 1 ‧‧‧First voltage divider capacitor

v c1 ‧‧‧第一分壓電容電壓 v c1 ‧‧‧First voltage divider capacitor voltage

i c1 ‧‧‧第一分壓電容電流 i c1 ‧‧‧First voltage divider capacitor current

C 2 ‧‧‧第二分壓電容 C 2 ‧‧‧Second voltage divider capacitor

v c2 ‧‧‧第二分壓電容電壓 v c2 ‧‧‧Second voltage divider capacitor voltage

i c2 ‧‧‧第二分壓電容電流 i c2 ‧‧‧Second voltage divider current

v gs1 ‧‧‧第一驅動電壓 v gs1 ‧‧‧first drive voltage

v gs2 ‧‧‧第二驅動電壓 v gs2 ‧‧‧second drive voltage

S 1 ‧‧‧第一功率開關 S 1 ‧‧‧first power switch

D 1 ‧‧‧第一開關二極體 D 1 ‧‧‧First Switching Diode

v ds1 ‧‧‧第一功率開關電壓 v ds1 ‧‧‧first power switch voltage

i ds1 ‧‧‧第一功率開關電流 i ds1 ‧‧‧first power switch current

S 2 ‧‧‧第二功率開關 Second power switch S 2 ‧‧‧

D 2 ‧‧‧第二開關二極體 D 2 ‧‧‧Second switch diode

v ds2 ‧‧‧第二功率開關電壓 v ds2 ‧‧‧second power switch voltage

i ds2 ‧‧‧第二功率開關電流 i ds2 ‧‧‧second power switch current

L r ‧‧‧共振電感 L r ‧‧‧Resonance inductance

v Lr ‧‧‧共振電感電壓 v Lr ‧‧‧Resonance inductor voltage

i Lr ‧‧‧共振電感電流 i Lr ‧‧‧Resonance inductor current

C r ‧‧‧共振電容 C r ‧‧‧resonance capacitor

v Cr ‧‧‧共振電容電壓 v Cr ‧‧‧resonant capacitor voltage

i Cr ‧‧‧共振電容電流 i Cr ‧‧‧resonant capacitor current

v a ‧‧‧共振輸入電壓 v a ‧‧‧Resonant input voltage

i a ‧‧‧共振輸入電流 i a ‧‧‧Resonant input current

v b ‧‧‧共振輸出電壓 v b ‧‧‧Resonance output voltage

i b ‧‧‧共振輸出電流 i b ‧‧‧Resonance output current

D R1 ‧‧‧第一整流二極體 D R1 ‧‧‧First Rectifier Diode

v DR1 ‧‧‧第一整流二極體電壓 v DR1 ‧‧‧First Rectifier Diode Voltage

i DR1 ‧‧‧第一整流二極體電流 i DR1 ‧‧‧First Rectifier Diode Current

D R2 ‧‧‧第二整流二極體 D R2 ‧‧‧Second rectifying diode

v DR2 ‧‧‧第二整流二極體電壓 v DR2 ‧‧‧Second rectified diode voltage

i DR2 ‧‧‧第二整流二極體電流 i DR2 ‧‧‧Second rectified diode current

BA1‧‧‧第一蓄電池 BA 1‧‧‧First battery

v BA1 ‧‧‧第一蓄電池電壓 v BA1 ‧‧‧First battery voltage

i BA1 ‧‧‧第一蓄電池電流 i BA1 ‧‧‧First battery current

BA2‧‧‧第二蓄電池 BA2 ‧‧‧Second battery

v BA2 ‧‧‧第二蓄電池電壓 v BA2 ‧‧‧Second battery voltage

i BA2 ‧‧‧第二蓄電池電流 i BA2 ‧‧‧Second battery current

第一圖所示係為本發明實施例之電路圖。 The first figure is a circuit diagram of an embodiment of the present invention.

第二圖所示係為本發明實施例工作模式之波形圖。 The second figure is a waveform diagram of the working mode of the embodiment of the present invention.

第三圖所示係為本發明實施例工作模式一之電路圖。 The third figure is a circuit diagram of the working mode 1 of the embodiment of the present invention.

第四圖所示係為本發明實施例工作模式二之電路圖。 The fourth figure is a circuit diagram of the second working mode of the embodiment of the present invention.

第五圖所示係為本發明實施例工作模式三之電路圖。 The fifth figure is a circuit diagram of the working mode 3 of the embodiment of the present invention.

第六圖所示係為本發明實施例工作模式四之電路圖。 The sixth figure is a circuit diagram of the working mode 4 of the embodiment of the present invention.

第七圖所示係為本發明實施例第一驅動電壓v gs1 與第一功率開關電壓v ds1 之波形圖。 The seventh figure is a waveform diagram of the first driving voltage v gs1 and the first power switching voltage v ds1 according to the embodiment of the present invention.

第八圖所示係為本發明實施例第二驅動電壓v gs2 與第二功率開關電壓v ds2 之波形圖。 The eighth figure is a waveform diagram of the second driving voltage v gs2 and the second power switching voltage v ds2 according to the embodiment of the present invention.

第九圖所示係為本發明實施例第一功率開關電壓v ds1 與第一功率開關電流i ds1 之波形圖。 The ninth figure is a waveform diagram of the first power switch voltage v ds1 and the first power switch current i ds1 according to the embodiment of the present invention.

第十圖所示係為本發明實施例第二功率開關電壓v ds2 與第二功率開關電流i ds2 之波形圖。 The tenth figure is a waveform diagram of the second power switch voltage v ds2 and the second power switch current i ds2 according to the embodiment of the present invention.

第十一圖所示係為本發明實施例共振輸入電壓v a 與共振輸出電壓V b 之波形圖。 The eleventh diagram is a waveform diagram of the resonant input voltage v a and the resonant output voltage V b according to the embodiment of the present invention.

第十二圖所示係為本發明實施例共振輸入電壓v a 與共振輸入電流i a 之波形圖。 Figure 12 is a waveform diagram showing the resonant input voltage v a and the resonant input current i a in the embodiment of the present invention.

第十三圖所示係為本發明實施例共振電感電壓v Lr 與共振電感電流i Lr 之波形圖。 Figure 13 is a waveform diagram showing the resonant inductor voltage v Lr and the resonant inductor current i Lr in the embodiment of the present invention.

第十四圖所示係為本發明實施例共振電容電壓v cr 與共振電容電流i cr 之波形圖。 FIG fourteenth embodiment of a waveform diagram of the present invention based resonant capacitor Cr and resonant capacitor voltage V i cr current embodiment of FIG.

第十五圖所示係為本發明實施例共振輸出電壓v b 與共振輸出電流i b 之波形圖。 The fifteenth figure is a waveform diagram of the resonant output voltage v b and the resonant output current i b of the embodiment of the present invention.

第十六圖所示係為本發明實施例第一整流二極體電壓v DR1 與第一整流二極體電流i DR1 之波形圖。 FIG. 16 is a waveform diagram of the first rectified diode voltage v DR1 and the first rectified diode current i DR1 according to the embodiment of the present invention.

第十七圖所示係為本發明實施例第二整流二極體電壓v DR2 與第二整流二極體電流i DR2 之波形圖。 FIG. 17 is a waveform diagram of the second rectified diode voltage v DR2 and the second rectified diode current i DR2 according to the embodiment of the present invention.

第十八圖所示係為本發明實施例輸入電壓V dc 與輸入電流i dc 之波形圖。 Figure 18 is a waveform diagram showing an input voltage V dc and an input current i dc according to an embodiment of the present invention.

第十九圖所示係為本發明實施例第一蓄電池電壓v BA1 與第一蓄電池電流i BA1 之波形圖。 FIG. 19 is a waveform diagram of the first battery voltage v BA1 and the first battery current i BA1 according to the embodiment of the present invention.

第二十圖所示係為本發明實施例第二蓄電池電壓v BA2 與第二蓄電池電流i BA2 之波形圖。 Figure 20 is a waveform diagram showing the second battery voltage v BA2 and the second battery current i BA2 in the embodiment of the present invention.

第二十一圖所示係為本發明實施例第一蓄電池電流i BA1 、共振電容電流i cr 與第二蓄電池電流i BA2 之波形圖。 The twenty-first figure shows a waveform diagram of the first battery current i BA1 , the resonant capacitor current i cr and the second battery current i BA2 in the embodiment of the present invention.

第二十二圖所示係為本發明實施例之效率曲線圖。 Figure 22 is a graph showing the efficiency of an embodiment of the present invention.

第二十三圖所示係為本發明實施例第一蓄電池電壓v BA1 之充電曲線圖。 The twenty-third figure is a charging graph of the first battery voltage v BA1 according to the embodiment of the present invention.

第二十四圖所示係為本發明實施例第一蓄電池電流i BA1 之充電曲線圖。 The twenty-fourth graph is a charging graph of the first battery current i BA1 according to the embodiment of the present invention.

第二十五圖所示係為本發明實施例第二蓄電池電壓v BA2 之充電曲線圖。 Figure 25 is a graph showing the charging curve of the second battery voltage v BA2 in the embodiment of the present invention.

第二十六圖所示係為本發明實施例第二蓄電池電流i BA2 之充電曲線圖。 Figure 26 is a graph showing the charging curve of the second battery current i BA2 in the embodiment of the present invention.

有關本發明為達上述之使用目的與功效,所採用之技術手段,茲舉出較佳可行之實施例,並配合圖式所示,詳述如下:本發明之實施例,請先參閱第一圖所示,主要係設有輸入電壓V dc 、輸入電容C dc 、第一分壓電容C 1 、第二分壓電容C 2 、驅動電路1、共振槽2、交錯式整流器3、第一蓄電池BA1及第二蓄電池BA2所電性連接而成,該輸入電壓V dc 之一端係連接於該輸入電容C dc 之一端、該第一分壓電容C 1 之一端及該驅動電路1之第一功率開關S 1 之汲極,該第一分壓電容C 1 之另一端係連接於該第二分壓 電容C 2 之一端、該第一蓄電池BA1之一端及該第二蓄電池BA2之一端,該驅動電路1之第一功率開關S 1 之源極係連接於該驅動電路1之第二功率開關S 2 之汲極、該共振槽2之共振電感L r 之一端,該驅動電路1之第二功率開關S 2 之源極係連接於該第二分壓電容C 2 之另一端、該輸入電容C dc 之另一端及該輸入電壓V dc 之另一端,該共振槽2之共振電感L r 之另一端係連接於該共振槽2之共振電容C r 之一端,該共振槽2之共振電容C r 之另一端係連接於該交錯式整流器3之第一整流二極體D R1 之一端及該交錯式整流器3之第二整流二極體D R2 之一端,該交錯式整流器3之第一整流二極體D R1 之另一端係連接於該第一蓄電池BA1之另一端,該交錯式整流器3之第二整流二極體D R2 之另一端係連接於該第二蓄電池BA2之另一端。 For the purpose of the present invention, the preferred embodiments of the present invention are described in the accompanying drawings, and are described in detail below. For the embodiments of the present invention, please refer to the first The figure shows mainly the input voltage V dc , the input capacitor C dc , the first voltage dividing capacitor C 1 , the second voltage dividing capacitor C 2 , the driving circuit 1, the resonant tank 2, the interleaved rectifier 3, and the first battery. The BA 1 and the second battery BA 2 are electrically connected. One end of the input voltage V dc is connected to one end of the input capacitor C dc , one end of the first voltage dividing capacitor C 1 and the first of the driving circuit 1 . a power switch S 1 of the drain electrode, the first voltage dividing capacitor C the other end of the line connected to the second end dividing capacitor C 2, the end of the first battery BA 1 and 2 of the second battery BA At one end, the source of the first power switch S 1 of the driving circuit 1 is connected to the drain of the second power switch S 2 of the driving circuit 1 and one end of the resonant inductor L r of the resonant slot 2, the driving circuit 1 the switch S 2 of the second power source line connected to the other terminal of the second dividing capacitor C 2, the The other terminal of the other end of the capacitor C dc of and the input voltage V dc, the other end of the line L r of the resonant tank resonator 2 of the inductor is connected to one end of the resonator 2 of the capacitance C r of the resonant slot, the resonance of the resonant tank 2 of The other end of the capacitor C r is connected to one end of the first rectifying diode D R1 of the interleaved rectifier 3 and one end of the second rectifying diode D R2 of the interleaved rectifier 3, and the interleaved rectifier 3 is The other end of the rectifying diode D R1 is connected to the other end of the first battery BA 1 , and the other end of the second rectifying diode D R2 of the interleaved rectifier 3 is connected to the second battery BA 2 another side.

使用時,請參閱第一圖所示,係在該輸入電壓V dc 輸入一直流電壓,經由該輸入電容C dc 、該第一分壓電容C 1 或該第二分壓電容C 2 分壓、濾波,再將分壓、濾波後之直流電壓供給該驅動電路1之第一功率開關S 1 或第二功率開關S 2 ,並經第一驅動電壓v gs1 或第二驅動電壓v gs2 觸發該驅動電路1之第一功率開關S 1 或第二功率開關S 2 切換導通,由該驅動電路1之第一功率開關S 1 或第二功率開關S 2 來控制切換的模式,同時確保電路正常驅動,並以高頻脈波輸入至該共振槽2,而該驅動電路1之第一功率開關S 1 及第二功率開關S 2 係選擇MOSFET電晶體開關,其內寄生反向之第一開關二極體D 1 、第二開關二極體D 2 可用來配合工作模式的動作,該共振槽2係為共振電感L r 及共振電容C r 所電性連接而成之串聯共振式電路,該共振槽2所輸出之高頻交流電流經過該交錯式整流器3轉換成交錯式高頻弦波脈衝式充電電流分別對該第一蓄電池BA1或該第二蓄電池BA2充電,該交錯式整流器3之第一整流二極體D R1 及第二整流二極體D R2 需要很快的逆向恢復時間,才能配合高頻的操作模式,故採用蕭特基(Schottky)二極體或是快速恢復(Fast Recovery)二極體,若使用一般低頻二極體則會因為逆向恢復的時間較緩慢,造成整體電路的效率降低,且會使電路上之元件溫度上升導致損壞, 而該第一蓄電池BA1與該第二蓄電池BA2係為交錯式進行充電,經由該交錯式整流器3阻隔逆向電流,在該第一蓄電池BA1與該第二蓄電池BA2之充電電流得到非連續之交錯式脈波電流充電,且共振頻率f o 與切換頻率f s 係為不連續導通模式,因此在脈波電流充電中係為非連續電流,進而達到電動車之該第一蓄電池BA1與該第二蓄電池BA2間接休息時間,以提升該第一蓄電池BA1與該第二蓄電池BA2之充電效率及使用壽命。 In use, please refer to the first figure, the input current voltage V dc is input to the DC voltage, and the voltage is divided by the input capacitor C dc , the first voltage dividing capacitor C 1 or the second voltage dividing capacitor C 2 , Filtering, and then supplying the divided and filtered DC voltage to the first power switch S 1 or the second power switch S 2 of the driving circuit 1 and triggering the driving via the first driving voltage v gs1 or the second driving voltage v gs2 The first power switch S 1 or the second power switch S 2 of the circuit 1 is switched on, and the switching mode is controlled by the first power switch S 1 or the second power switch S 2 of the driving circuit 1 while ensuring that the circuit is normally driven. and a high frequency pulse to the input resonant tank 2, and the driving circuit of the first power switch S 1 1 and the second power switch S 2 selection of a MOSFET transistor switch, which is the reverse of the parasitic diode of the first switch The body D 1 and the second switch diode D 2 can be used to cooperate with the operation mode. The resonant tank 2 is a series resonant circuit in which the resonant inductor L r and the resonant capacitor C r are electrically connected, and the resonant tank 2 output high frequency alternating current is converted by the interleaved rectifier 3 Interleaved frequency sinusoidal pulse charging currents to the first battery or the second battery BA 1 BA 2 charging, the interlaced rectifier 3 of the first rectifying diode D R1 and the second rectifying diode D R2 A fast reverse recovery time is required to match the high-frequency operation mode, so a Schottky diode or a Fast Recovery diode is used. If a general low-frequency diode is used, it will be reversed. The recovery time is slow, causing the efficiency of the overall circuit to decrease, and the temperature of the components on the circuit rises to cause damage, and the first battery BA 1 and the second battery BA 2 are alternately charged, via the interleaving. The rectifier 3 blocks the reverse current, and the charging current of the first battery BA 1 and the second battery BA 2 is discontinuously interleaved pulse current charging, and the resonant frequency f o and the switching frequency f s are discontinuous conduction modes. Therefore, the pulse current charging is a non-continuous current, thereby achieving an indirect rest time of the first battery BA 1 and the second battery BA 2 of the electric vehicle to enhance the first battery BA 1 and the first The charging efficiency and service life of the second battery BA 2 .

本發明工作模式之波形圖,如第二圖所示,其工作模式分別為: The waveform diagram of the working mode of the present invention, as shown in the second figure, has the following working modes:

一、工作模式一(ω t 0 ≦ω t<ω t 1 ),請配合參閱第三圖所示,當第一驅動電壓v gs1 由低電位轉為高電位時,將觸發該驅動電路1之第一功率開關S 1 導通,此時第二驅動電壓v gs2 仍在低電位,該驅動電路1之第二功率開關S 2 尚未導通,共振電感電流i Lr 為一正脈波,該交錯式整流器3之第一整流二極體D R1 形成順向偏壓導通後,對該第一蓄電池BA1進行充電,在電流瞬間充入該第一蓄電池BA1,得以觀察第一蓄電池電壓v BA1 為脈動狀態,由該交錯式整流器3之第一整流二極體D R1 形成一個工作迴路完成工作模式一,另當共振電感電流i Lr 等於零時,進入工作模式二。 1. Working mode 1 ( ω t 0 ≦ ω t < ω t 1 ), please refer to the third figure, when the first driving voltage v gs1 changes from low potential to high potential, the driving circuit 1 will be triggered. The first power switch S 1 is turned on, at which time the second driving voltage v gs2 is still at a low potential, the second power switch S 2 of the driving circuit 1 is not turned on, and the resonant inductor current i Lr is a positive pulse wave, the interleaved rectifier 3 of the first rectifying diode D R1 form a forward bias is turned on, the first battery BA 1 is charged, the charged battery BA 1 in the first current momentary, able to observe the first battery voltage is pulsating v BA1 In the state, the first rectifying diode D R1 of the interleaved rectifier 3 forms a working circuit to complete the working mode 1, and when the resonant inductor current i Lr is equal to zero, the operating mode 2 is entered.

二、工作模式二(ω t 1 ≦ω t<ω t 2 ),請配合參閱第四圖所示,當第一驅動電壓v gs1 仍為高電位時,該驅動電路1之第一功率開關S 1 仍處於導通狀態,此時第二驅動電壓v gs2 仍在低電位,該驅動電路1之第二功率開關S 2 仍未導通,但由於該交錯式整流器3之第一整流二極體D R1 及第二整流二極體D R2 交錯式整流,故無電流逆回至該驅動電路1之第一功率開關S 1 或第二功率開關S 2 形成迴路,因此,當工作模式一之共振電感電流i Lr 為零時,工作模式二並無電流,此時該第一蓄電池BA1與該第二蓄電池BA2正處於休息狀態,另當第一驅動電壓V gs1 由高電位切換至低電位,經過延遲時間(Delay time)後,即進入工作模式三。 Second, the working mode 2 ( ω t 1 ≦ ω t < ω t 2 ), please refer to the fourth figure, when the first driving voltage v gs1 is still high, the first power switch S of the driving circuit 1 1 is still in the on state, at this time, the second driving voltage v gs2 is still at a low potential, the second power switch S 2 of the driving circuit 1 is still not turned on, but due to the first rectifying diode D R1 of the interleaved rectifier 3 And the second rectifying diode D R2 is interleaved and rectified, so that no current is reversed back to the first power switch S 1 or the second power switch S 2 of the driving circuit 1 to form a loop, therefore, when the working mode is the resonant inductor current When i Lr is zero, there is no current in the operating mode 2, at which time the first battery BA 1 and the second battery BA 2 are in a resting state, and when the first driving voltage V gs1 is switched from a high potential to a low potential, After the delay time ( Delay time ), it enters the working mode three.

三、工作模式三(ω t 2 ≦ω t<ω t 3 ),請配合參閱第五圖所示,當第二驅動電壓v gs2 由低電位轉為高電位時,將觸發該驅動電路1之第二功率開關S 2 導通,此時第一驅動電壓v gs1 轉為低電位,該驅動電路1之第一功率開關S 1 尚未導通,共振電感電流i Lr 為一負脈波,該交錯式整流器3之第二整流二極體D R2 形成順向偏壓導通後,對該第二蓄電池BA2進行充電,在電流瞬間充入該第二蓄電池BA2,得以觀察第二蓄電池電壓v BA2 為高頻弦波脈動狀態,由該交錯式整流器3之第二整流二極體D R2 形成一個工作迴路完成工作模式三,另當共振電感電流i Lr 等於零時,進入工作模式四。 Third, the working mode three ( ω t 2 ≦ ω t < ω t 3 ), please refer to the fifth figure, when the second driving voltage v gs2 changes from low potential to high potential, the driving circuit 1 will be triggered The second power switch S 2 is turned on, at which time the first driving voltage v gs1 is turned to a low potential, the first power switch S 1 of the driving circuit 1 is not turned on, and the resonant inductor current i Lr is a negative pulse wave, the interleaved rectifier second rectifying diode D R2 3 is formed of the forward bias is turned on, the second battery BA is charged to 2, in the second charging current momentary battery BA 2, able to observe the second high battery voltage v BA2 In the sinusoidal pulsation state, a second rectifying diode D R2 of the interleaved rectifier 3 forms a working circuit to complete the operating mode three, and when the resonant inductor current i Lr is equal to zero, enters the working mode four.

四、工作模式四(ω t 3 ≦ω t<ω t 4 ),請配合參閱第六圖所示,當第二驅動電壓v gs2 仍為高電位時,該驅動電路1之第二功率開關S 2 仍處於導通狀態,此時第一驅動電壓v gs1 仍在低電位,該驅動電路1之第一功率開關S 1 仍未導通,但由於該交錯式整流器3之第一整流二極體D R1 及第二整流二極體D R2 交錯式整流,故無電流逆回至該驅動電路1之第一功率開關S 1 或第二功率開關S 2 形成迴路,因此,當工作模式三之共振電感電流i Lr 為零時,工作模式四並無電流,此時該第一蓄電池BA1與該第二蓄電池BA2正處於休息狀態,另當第二驅動電壓V gs2 由高電位切換至低電位,經過延遲時間(Delay time)後,即返回工作模式一。 4. Working mode 4 ( ω t 3 ≦ ω t < ω t 4 ), please refer to the sixth figure, when the second driving voltage v gs2 is still high, the second power switch S of the driving circuit 1 2 is still in the on state, at this time, the first driving voltage v gs1 is still at a low potential, the first power switch S 1 of the driving circuit 1 is still not turned on, but due to the first rectifying diode D R1 of the interleaved rectifier 3 And the second rectifying diode D R2 is interleaved rectified, so that no current reverses to the first power switch S 1 or the second power switch S 2 of the driving circuit 1 to form a loop, therefore, when the resonant mode current of the operating mode 3 When i Lr is zero, there is no current in the operating mode 4, at which time the first battery BA 1 and the second battery BA 2 are in a resting state, and when the second driving voltage V gs2 is switched from a high potential to a low potential, after a delay time (delay time), i.e., a return to the operating mode.

本發明第一驅動電壓v gs1 與第一功率開關電壓v ds1 之波形圖,如第七圖所示,其中CH2:10V/div;CH4:100V/div;Time:5μs/div。 The waveform diagram of the first driving voltage v gs1 and the first power switching voltage v ds1 of the present invention is as shown in the seventh figure, wherein CH2: 10V/div; CH4: 100V/div; Time: 5μs/div.

本發明第二驅動電壓v gs2 與第二功率開關電壓v ds2 之波形圖,如第八圖所示,其中CH2:10V/div;CH4:100V/div;Time:5μs/div。 The waveform diagram of the second driving voltage v gs2 and the second power switching voltage v ds2 of the present invention is as shown in the eighth figure, wherein CH2: 10V/div; CH4: 100V/div; Time: 5μs/div.

本發明第一功率開關電壓v ds1 與第一功率開關電流i ds1 之波形圖,如第九圖所示,其中CH2:100V/div;CH4:20A/div;Time:5μs/div。 The waveform diagram of the first power switch voltage v ds1 and the first power switch current i ds1 of the present invention is as shown in the ninth figure, wherein CH2: 100V/div; CH4: 20A/div; Time: 5μs/div.

本發明第二功率開關電壓v ds2 與第二功率開關電流i ds2 之波形圖,如第十圖所示,其中CH2:100V/div;CH4:20A/div;Time:5μs/div。 The waveform diagram of the second power switch voltage v ds2 and the second power switch current i ds2 of the present invention is as shown in the tenth figure, wherein CH2: 100V/div; CH4: 20A/div; Time: 5μs/div.

本發明共振輸入電壓v a 與共振輸出電壓V b 之波形圖,如第十一圖所示,其中CH2:100V/div;CH4:100V/div;Time:5μs/div。 A waveform diagram of the resonant input voltage v a and the resonant output voltage V b of the present invention, as shown in FIG. 11, wherein CH2: 100 V/div; CH4: 100 V/div; Time: 5 μs/div.

本發明共振輸入電壓v a 與共振輸入電流i a 之波形圖,如第十二圖所示,其中CH2:100V/div;CH4:20A/div;Time:5μs/div。 A waveform diagram of the resonant input voltage v a and the resonant input current i a of the present invention is shown in Fig. 12, wherein CH2: 100 V/div; CH4: 20 A/div; Time: 5 μs/div.

本發明共振電感電壓v Lr 與共振電感電流i Lr 之波形圖,如第十三圖所示,其中CH2:20V/div;CH4:20A/div;Time:5μs/div。 A waveform diagram of the resonant inductor voltage v Lr and the resonant inductor current i Lr of the present invention is shown in FIG. 13 , wherein CH 2 : 20 V /div; CH 4 : 20 A/div; Time: 5 μs/div.

本發明共振電容電壓v cr 與共振電容電流i cr 之波形圖,如第十四圖所示,其中CH2:100V/div;CH4:20A/div;Time:5μs/div。 The present invention is the resonant capacitor voltage v cr waveform diagram of the resonant capacitor current i cr, as shown in FIG. XIV, wherein CH2: 100V / div; CH4: 20A / div; Time: 5μs / div.

本發明共振輸出電壓v b 與共振輸出電流i b 之波形圖,如第十五圖所示,其中CH2:100V/div;CH4:20A/div;Time:5μs/div。 A waveform diagram of the resonant output voltage v b and the resonant output current i b of the present invention, as shown in Fig. 15, wherein CH2: 100 V/div; CH4: 20 A/div; Time: 5 μs/div.

本發明第一整流二極體電壓v DR1 與第一整流二極體電流i DR1 之波形圖,如第十六圖所示,其中CH2:100V/div;CH4:20A/div;Time:5μs/div。 A waveform diagram of the first rectified diode voltage v DR1 and the first rectified diode current i DR1 of the present invention, as shown in FIG. 16 , wherein CH 2 : 100 V/div; CH 4 : 20 A/div; Time: 5 μs / Div.

本發明第二整流二極體電壓v DR2 與第二整流二極體電流i DR2 之波形圖,如第十七圖所示,其中CH2:100V/div;CH4:20A/div;Time:5μs/div。 A waveform diagram of the second rectifying diode voltage v DR2 and the second rectifying diode current i DR2 of the present invention, as shown in FIG. 17, wherein CH2: 100 V/div; CH4: 20 A/div; Time: 5 μs/ Div.

本發明輸入電壓V dc 與輸入電流i dc 之波形圖,如第十八圖所示,其中CH2:100V/div;CH4:20A/div;Time:5μs/div。 A waveform diagram of the input voltage V dc and the input current i dc of the present invention is as shown in FIG. 18, wherein CH2: 100 V/div; CH4: 20 A/div; Time: 5 μs/div.

本發明第一蓄電池電壓v BA1 與第一蓄電池電流i BA1 之波形圖,如第十九圖所示,其中CH2:100V/div;CH4:20A/div;Time:5μs/div。 A waveform diagram of the first battery voltage v BA1 and the first battery current i BA1 of the present invention is as shown in FIG. 19, wherein CH2: 100 V/div; CH4: 20 A/div; Time: 5 μs/div.

本發明第二蓄電池電壓v BA2 與第二蓄電池電流i BA2 之波形圖,如第二十圖所示,其中CH2:100V/div;CH4:20A/div;Tirme:5μs/div。 A waveform diagram of the second battery voltage v BA2 and the second battery current i BA2 of the present invention, as shown in the twentieth diagram, wherein CH2: 100 V/div; CH4: 20 A/div; Tirme: 5 μs/div.

本發明第一蓄電池電流i BA1 、共振電容電流i cr 與第二蓄電池電流i BA2 之波形圖,如第二十一圖所示,其中CH3:50A/div;CH2:50A/div;CH4:50A/div;Time:5μs/div。 A waveform diagram of the first battery current i BA1 , the resonant capacitor current i cr and the second battery current i BA2 of the present invention, as shown in the twenty-first diagram, wherein CH3: 50A/div; CH2: 50A/div; CH4: 50A /div;Time: 5μs/div.

本發明經由選擇適當之參數,如該輸入電壓V dc 係為120V,該共振電感L r 係為0.344μH,該共振電容C r 係為2μF,該共振頻率f O 係為192kHz,該切換頻率f S 係為50kHz,其整體效率達到93.73%,如第二十二圖所示,係為本發明之效率曲線圖,其效率於重載時有77.377%,輕載時高達93.73%,而該第一蓄電池電壓v BA1 之充電曲線,如第二十三圖所示,該第一蓄電池電流i BA1 之充電曲線,如第二十四圖所示,該第二蓄電池電壓v BA2 之充電曲線,如第二十五圖所示,該第二蓄電池電流i BA2 之充電曲線,如第二十六圖所示;如此,該驅動電路1可確保電路正常驅動,該共振槽2可使該驅動電路1在零電流切換之狀態下,減少該驅動電路1之切換損失及提高操作效率,該共振槽2所輸出之高頻交流電壓經過該交錯式整流器3轉換成交錯式高頻弦波脈衝式充電電流分別對該第一蓄電池BA1或該第二蓄電池BA2充電,且利用該交錯式整流器3阻隔逆向電流,在該第一蓄電池BA1與該第二蓄電池BA2得到非連續之脈波電流充電,達到電動車之該第一蓄電池BA1與該第二蓄電池BA2間接休息時間,以提升充電效率及使用壽命。 The present invention selects an appropriate parameter, such as the input voltage V dc is 120V, the resonant inductor L r is 0.344 μH, the resonant capacitor C r is 2 μF, and the resonant frequency f O is 192 kHz, the switching frequency f The S system is 50 kHz, and its overall efficiency reaches 93.73%. As shown in Figure 22, it is the efficiency graph of the present invention. The efficiency is 77.377% at heavy load and 93.73% at light load. a charging curve of the battery voltage v BA1 , as shown in the twenty-third figure, the charging curve of the first battery current i BA1 , as shown in the twenty-fourth figure, the charging curve of the second battery voltage v BA2 , such as As shown in the twenty-fifth figure, the charging curve of the second battery current i BA2 is as shown in the twenty-sixth figure; thus, the driving circuit 1 can ensure the normal driving of the circuit, and the resonant tank 2 can make the driving circuit 1 In the state of zero current switching, the switching loss of the driving circuit 1 is reduced and the operating efficiency is improved, and the high frequency alternating current voltage outputted by the resonant tank 2 is converted into an interleaved high frequency sine wave pulse charging current through the interleaved rectifier 3. respectively on the first or the battery BA 1 Two rechargeable batteries BA 2 and 3 using the interlaced barrier rectifier reverse current to give a non-continuous wave of the pulse current charging the first battery and the second battery BA 1 BA 2, reaches the first electric vehicles battery BA 1 Indirect rest time with the second battery BA 2 to improve charging efficiency and service life.

綜上所述,本發明確實已達到所預期之使用目的與功效,且更較習知者為之理想、實用,惟,上述實施例僅係針對本發明之較佳實施例進行具體說明而已,該實施例並非用以限定本發明之申請專利範圍,舉凡其它未脫離本發明所揭示之技術手段下所完成之均等變化與修飾,均應包含於本發明所涵蓋之申請專利範圍中。 In view of the above, the present invention has achieved the intended use and efficacy, and is more desirable and practical than the prior art, but the above embodiments are only specifically described for the preferred embodiment of the present invention. The present invention is not intended to limit the scope of the invention, and all other equivalents and modifications may be included in the scope of the invention covered by the invention.

1‧‧‧驅動電路 1‧‧‧Drive circuit

2‧‧‧共振槽 2‧‧‧Resonance slot

3‧‧‧交錯式整流器 3‧‧‧Interleaved rectifier

V dc ‧‧‧輸入電壓 V dc ‧‧‧ input voltage

i dc ‧‧‧輸入電流 i dc ‧‧‧ input current

C dc ‧‧‧輸入電容 C dc ‧‧‧ input capacitor

v cdc ‧‧‧輸入電容電壓 v cdc ‧‧‧Input capacitor voltage

i cdc ‧‧‧輸入電容電流 i cdc ‧‧‧Input Capacitance Current

C 1 ‧‧‧第一分壓電容 C 1 ‧‧‧First voltage divider capacitor

v c1 ‧‧‧第一分壓電容電壓 v c1 ‧‧‧First voltage divider capacitor voltage

i c1 ‧‧‧第一分壓電容電流 i c1 ‧‧‧First voltage divider capacitor current

C 2 ‧‧‧第二分壓電容 C 2 ‧‧‧Second voltage divider capacitor

v c2 ‧‧‧第二分壓電容電壓 v c2 ‧‧‧Second voltage divider capacitor voltage

i c2 ‧‧‧第二分壓電容電流 i c2 ‧‧‧Second voltage divider current

v gs1 ‧‧‧第一驅動電壓 v gs1 ‧‧‧first drive voltage

v gs2 ‧‧‧第二驅動電壓 v gs2 ‧‧‧second drive voltage

S 1 ‧‧‧第一功率開關 S 1 ‧‧‧first power switch

D 1 ‧‧‧第一開關二極體 D 1 ‧‧‧First Switching Diode

v ds1 ‧‧‧第一功率開關電壓 v ds1 ‧‧‧first power switch voltage

i ds1 ‧‧‧第一功率開關電流 i ds1 ‧‧‧first power switch current

S 2 ‧‧‧第二功率開關 Second power switch S 2 ‧‧‧

D 2 ‧‧‧第二開關二極體 D 2 ‧‧‧Second switch diode

v ds2 ‧‧‧第二功率開關電壓 v ds2 ‧‧‧second power switch voltage

i ds2 ‧‧‧第二功率開關電流 i ds2 ‧‧‧second power switch current

L r ‧‧‧共振電感 L r ‧‧‧Resonance inductance

v Lr ‧‧‧共振電感電壓 v Lr ‧‧‧Resonance inductor voltage

i Lr ‧‧‧共振電感電流 i Lr ‧‧‧Resonance inductor current

C r ‧‧‧共振電容 C r ‧‧‧resonance capacitor

v Cr ‧‧‧共振電容電壓 v Cr ‧‧‧resonant capacitor voltage

i Cr ‧‧‧共振電容電流 i Cr ‧‧‧resonant capacitor current

v a ‧‧‧共振輸入電壓 v a ‧‧‧Resonant input voltage

v b ‧‧‧共振輸出電壓 v b ‧‧‧Resonance output voltage

D R1 ‧‧‧第一整流二極體 D R1 ‧‧‧First Rectifier Diode

v DR1 ‧‧‧第一整流二極體電壓 v DR1 ‧‧‧First Rectifier Diode Voltage

i DR1 ‧‧‧第一整流二極體電流 i DR1 ‧‧‧First Rectifier Diode Current

D R2 ‧‧‧第二整流二極體 D R2 ‧‧‧Second rectifying diode

v DR2 ‧‧‧第二整流二極體電壓 v DR2 ‧‧‧Second rectified diode voltage

i DR2 ‧‧‧第二整流二極體電流 i DR2 ‧‧‧Second rectified diode current

BA1‧‧‧第一蓄電池 BA 1‧‧‧First battery

v BA1 ‧‧‧第一蓄電池電壓 v BA1 ‧‧‧First battery voltage

i BA1 ‧‧‧第一蓄電池電流 i BA1 ‧‧‧First battery current

BA2‧‧‧第二蓄電池 BA2 ‧‧‧Second battery

v BA2 ‧‧‧第二蓄電池電壓 v BA2 ‧‧‧Second battery voltage

i BA2 ‧‧‧第二蓄電池電流 i BA2 ‧‧‧Second battery current

Claims (2)

一種交錯式高頻弦波脈衝式電動車充電器,主要係設有輸入電壓、輸入電容、第一分壓電容、第二分壓電容、驅動電路、共振槽、交錯式整流器、第一蓄電池及第二蓄電池所電性連接而成,該輸入電壓之一端係連接於該輸入電容之一端、該第一分壓電容之一端及該驅動電路之第一功率開關之汲極,該第一分壓電容之另一端係連接於該第二分壓電容之一端、該第一蓄電池之一端及該第二蓄電池之一端,該驅動電路之第一功率開關之源極係連接於該驅動電路之第二功率開關之汲極、該共振槽之共振電感之一端,該驅動電路之第二功率開關之源極係連接於該第二分壓電容之另一端、該輸入電容之另一端及該輸入電壓之另一端,該共振槽之共振電感之另一端係連接於該共振槽之共振電容之一端,該共振槽之共振電容之另一端係連接於該交錯式整流器之第一整流二極體之一端及該交錯式整流器之第二整流二極體之一端,該交錯式整流器之第一整流二極體之另一端係連接於該第一蓄電池之另一端,該交錯式整流器之第二整流二極體之另一端係連接於該第二蓄電池之另一端;如此,該驅動電路可供正常驅動,該共振槽可使該驅動電路在零電流切換之狀態下,減少該驅動電路之切換損失及提高操作效率,該共振槽所輸出之高頻交流電流經過該交錯式整流器轉換成交錯式高頻弦波脈衝式充電電流分別對該第一蓄電池或該第二蓄電池充電,且利用該交錯式整流器阻隔逆向電流,在該第一蓄電池與該第二蓄電池得到非連續之交錯式脈波電流充電,達到電動車之該第一蓄電池與該第二蓄電池間接休息時間,以提升充電效率及使用壽命。An interleaved high-frequency sine wave pulse type electric vehicle charger mainly comprises an input voltage, an input capacitor, a first voltage dividing capacitor, a second voltage dividing capacitor, a driving circuit, a resonance tank, an interleaved rectifier, a first battery and The second battery is electrically connected, and one end of the input voltage is connected to one end of the input capacitor, one end of the first voltage dividing capacitor, and a first power switch of the driving circuit, the first voltage dividing The other end of the capacitor is connected to one end of the second voltage dividing capacitor, one end of the first battery and one end of the second battery, and the source of the first power switch of the driving circuit is connected to the second of the driving circuit a drain of the power switch, one end of the resonant inductor of the resonant tank, a source of the second power switch of the driving circuit is connected to the other end of the second voltage dividing capacitor, the other end of the input capacitor, and the input voltage At the other end, the other end of the resonant inductor of the resonant tank is connected to one end of the resonant capacitor of the resonant tank, and the other end of the resonant capacitor of the resonant tank is connected to the first of the interleaved rectifier One end of the flow diode and one end of the second rectifying diode of the interleaved rectifier, the other end of the first rectifying diode of the interleaved rectifier is connected to the other end of the first battery, the interleaved rectifier The other end of the second rectifying diode is connected to the other end of the second battery; thus, the driving circuit can be normally driven, and the resonant slot can reduce the driving of the driving circuit in a state of zero current switching The switching loss of the circuit and the improvement of the operating efficiency, the high-frequency alternating current outputted by the resonant tank is converted into an interleaved high-frequency sine wave pulse charging current by the interleaved rectifier to respectively charge the first battery or the second battery, and The staggered rectifier is used to block the reverse current, and the first battery and the second battery are subjected to discontinuous interleaved pulse current charging to reach an indirect rest time of the first battery and the second battery of the electric vehicle to improve charging. Efficiency and service life. 如申請專利範圍第1項所述交錯式高頻弦波脈衝式電動車充電器,其中,該輸入電壓係為120V,該共振電感係為0.344μH,該共振電容係為2μF,該共振頻率係為192kHz,該切換頻率係為50kHz,其整體效率達到93.73%。The interleaved high-frequency sinusoidal pulse type electric vehicle charger according to claim 1, wherein the input voltage is 120V, the resonant inductance is 0.344μH, and the resonant capacitor is 2μF, and the resonant frequency is At 192 kHz, the switching frequency is 50 kHz and the overall efficiency is 93.73%.
TW105107021A 2016-03-08 2016-03-08 Staggered high frequency chord pulse electric vehicle charger TWI568130B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105107021A TWI568130B (en) 2016-03-08 2016-03-08 Staggered high frequency chord pulse electric vehicle charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105107021A TWI568130B (en) 2016-03-08 2016-03-08 Staggered high frequency chord pulse electric vehicle charger

Publications (2)

Publication Number Publication Date
TWI568130B true TWI568130B (en) 2017-01-21
TW201733235A TW201733235A (en) 2017-09-16

Family

ID=58407963

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105107021A TWI568130B (en) 2016-03-08 2016-03-08 Staggered high frequency chord pulse electric vehicle charger

Country Status (1)

Country Link
TW (1) TWI568130B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI694656B (en) * 2018-06-12 2020-05-21 崑山科技大學 Interleaved wireless high frequency pulsed battery charger
TWI789783B (en) * 2021-06-09 2023-01-11 崑山科技大學 High-efficiency dual-sided llc resonant wireless charger for electric vehicles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200701592A (en) * 2005-06-17 2007-01-01 Univ Kun Shan Charger for high-frequency series connected load resonance battery
TW200713763A (en) * 2005-09-21 2007-04-01 Lin Hui Ching A bidirectional DC/DC converter for fuel cell electric vehicle driving system
JP2012085378A (en) * 2010-10-07 2012-04-26 Hitachi Computer Peripherals Co Ltd Resonant charging apparatus and vehicle using the same
WO2012176006A1 (en) * 2011-06-23 2012-12-27 University Court Of The University Of Aberdeen Converter
TW201338386A (en) * 2012-03-13 2013-09-16 Univ Kun Shan Interleaved DC-DC zero-voltage switching converter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200701592A (en) * 2005-06-17 2007-01-01 Univ Kun Shan Charger for high-frequency series connected load resonance battery
TW200713763A (en) * 2005-09-21 2007-04-01 Lin Hui Ching A bidirectional DC/DC converter for fuel cell electric vehicle driving system
JP2012085378A (en) * 2010-10-07 2012-04-26 Hitachi Computer Peripherals Co Ltd Resonant charging apparatus and vehicle using the same
WO2012176006A1 (en) * 2011-06-23 2012-12-27 University Court Of The University Of Aberdeen Converter
TW201338386A (en) * 2012-03-13 2013-09-16 Univ Kun Shan Interleaved DC-DC zero-voltage switching converter

Also Published As

Publication number Publication date
TW201733235A (en) 2017-09-16

Similar Documents

Publication Publication Date Title
Chuang et al. Implementation and analysis of an improved series-loaded resonant DC–DC converter operating above resonance for battery chargers
Chuang et al. Analysis and implementation of half-bridge series–parallel resonant converter for battery chargers
CN105391287A (en) Zero-input current ripple high-gain converter based on double coupling inductors and single switch
CN103391009A (en) High-gain isolated type direct current-direct current (DC-DC) convertor
CN103155704B (en) Efficient LED supply of electric power source
CN102510215A (en) Three-level bidirectional direct-current converter and pulse width control method thereof
CN1592061A (en) Push-pull converter and method for power supply device and uninterrupted power supply system
TWI568130B (en) Staggered high frequency chord pulse electric vehicle charger
CN103414338B (en) Bidirectional DC/DC translation circuit and converting means
Lai et al. A reflex-charging based bidirectional DC charger for light electric vehicle and DC-microgrids
Gupta et al. Multiphase interleaved dc-dc converter for fast charging application of electric vehicles
TWI482411B (en) Current fed single load switch series resonant converter doubler
Paul et al. PV-based off-board electric vehicle battery charger using BIDC
TWI506938B (en) Single - switch - type load - sharing resonator
Yang et al. Detail operating characteristics of Bi-directional LLC resonant converter
CN101588130A (en) ZVZCS three-level DC-DC converter with two-sided passive auxiliary network
CN205105094U (en) Promote buck output voltage&#39;s circuit
Tulon et al. Designing a Bidirectional Isolated DC/DC Converter for EV with Power Back Operation for Efficient Battery Charging During Neutral Run
Valipour et al. High efficiency LC resonant boost topology: Analysis and design
Siddique et al. Switched capacitor based soft-switching DC-DC boost converter for high voltage gain
Lee et al. A high-power DC-DC converter for electric vehicle battery charger
RU61964U1 (en) AUTONOMOUS AGREED RESONANCE INVERTER
Tseng et al. Buck-boost combined with active clamp flyback converter for PV power system
Chuang et al. A novel battery charger circuit with an improved parallel-loaded resonant converter for rechargeable batteries in mobile power applications
Yang et al. Consideration of operating characteristics for bi-directional LLC resonant converter

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees