TWI566793B - 微粒過濾系統及方法 - Google Patents

微粒過濾系統及方法 Download PDF

Info

Publication number
TWI566793B
TWI566793B TW099145725A TW99145725A TWI566793B TW I566793 B TWI566793 B TW I566793B TW 099145725 A TW099145725 A TW 099145725A TW 99145725 A TW99145725 A TW 99145725A TW I566793 B TWI566793 B TW I566793B
Authority
TW
Taiwan
Prior art keywords
filter
cells
fluid
feed
retentate
Prior art date
Application number
TW099145725A
Other languages
English (en)
Other versions
TW201132371A (en
Inventor
Lotien Huang
Original Assignee
Cytovera Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cytovera Inc filed Critical Cytovera Inc
Publication of TW201132371A publication Critical patent/TW201132371A/zh
Application granted granted Critical
Publication of TWI566793B publication Critical patent/TWI566793B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/50Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with multiple filtering elements, characterised by their mutual disposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502753Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by bulk separation arrangements on lab-on-a-chip devices, e.g. for filtration or centrifugation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/01Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements
    • B01D29/03Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements self-supporting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5021Test tubes specially adapted for centrifugation purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5025Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures for parallel transport of multiple samples
    • B01L3/50255Multi-well filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B1/00Devices without movable or flexible elements, e.g. microcapillary devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/04Closures and closing means
    • B01L2300/041Connecting closures to device or container
    • B01L2300/042Caps; Plugs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0681Filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0829Multi-well plates; Microtitration plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0409Moving fluids with specific forces or mechanical means specific forces centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
    • B01L2400/049Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/04Cell isolation or sorting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1006Investigating individual particles for cytology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1028Sorting particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1029Particle size

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Analytical Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Food Science & Technology (AREA)
  • Urology & Nephrology (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Filtering Materials (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Microbiology (AREA)
  • External Artificial Organs (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

微粒過濾系統及方法
本發明特別指出一種用於微粒過濾的裝置和使用該裝置的方法使存活細胞(viable cells)加濃(enrichment);尤其是,本發明特別指出這類裝置之應用有:血液細胞類型的分離(isolation)、臍帶血體積減少、和基質血管部份(stromal vascular fractions)的製備。
從生物樣本將細胞分離出來的方法在許多臨床檢驗技術及科學研究方法方面都是很重要的。保存於臍帶血銀行(cord blood banking)時,在進入低溫貯藏(cryopreservation)以前,可能利用細胞分離程序將臍帶血(umbilical cord blood)體積減少,以降低長期貯存的成本;於細胞療法(cellular therapy),在輸血給一個病人以前,增加某些類型的細胞,可以提高移植的成功機會(engraftment);然而,現今使用分離細胞的過濾技術常常無法保存細胞存活力(cell viability),以致於細胞移植後生長不多,舉例來說,憑藉尺寸排阻(size exclusion)的細胞分離技術使脆弱的細胞(fragile cells)受到剪應力(shear stress),造成細胞受損或裂解(lysis),累積的細胞碎片則加速儀器的結垢(fouling)和阻塞(clogging),用這種方法分離的細胞往往被激化、被改變、受損、或死亡。微流體裝置(microfluidic device)則受到被處理樣本體積的限制,光單純增加經過此類裝置的流速的方法,是無法成功的,因為當流速增加,則經過裝置的細胞所受的剪應力也會增加,因此,剪應力就限制了容積處理量(volumetric throughput)。
提供一種不使用尺寸排阻作為過濾機轉的微粒過濾(particle filtration)的方法和裝置是吾人所希望的,特別是提供一種細胞過濾的方法和裝置,該方法和裝置不容易阻塞、具有高容積處理量、物理性相容、且不會損害或激化細胞,更是吾人所希望的。
發明之簡要說明
如同以下之描述,本發明特別指出一種用於微粒過濾的裝置和使用該裝置的方法使存活細胞(viable cells)加濃(enrichment);尤其是,本發明特別指出這類裝置之應用有:血液細胞類型的分離(isolation)、臍帶血體積減少、和基質血管部份(stromal vascular fractions)的製備。
在有利方面來看,本裝置可以提供大體積樣本的高處理量的過濾,又保存了細胞存活力,並提供高產率。本發明的一些具體實施例可以包含適合自動化和高處理量過程的裝置;又本發明的一些具體實施例可以包含能夠在封閉系統中處理臨床樣本的系統。更進一步來看,使用本裝置的方法可以提供高結果、高再生利用,及於某些案例中提供高純度。此外,使用本裝置的方法應用於臨床樣本處理時,亦即:臍帶血容積減少(cord blood volume reduction)、骨髓幹細胞加濃(bone marrow stem cell enrichment)、周圍血液幹細胞處理(peripheral blood stem cell processing)、和基質血管部份製備等,在維持一個高度的分離後細胞存活力方面,本裝置的方法可以提供方便使用、安全、並有成本效益。
於一個具體實施例中,本發明提供一種微粒過濾裝置,用於大處理量的能存活細胞分離。因為該微粒過濾裝置提供最小的剪應力(shear force)於微粒分離,至少約50%、75%、85%、95%、98%、99%、99.5%、或更多的分離後細胞是可以存活生長,因此適合於研究和醫療方面的使用。於各種不同具體實施例中,過濾系統的特徵是適合裝載一個樣本及/或攜帶液(carrier fluid)的一個或多個容器(containers),用來遞送至一個或多個過濾器單元裝置(filter unit device);以及適合裝載保留物(retentate)或流出裝置的過濾液(filtrate)的一個或多個額外的容器。於一個具體實施例中,該容器為適合裝載液體的軟袋(flexible bags);於另一個具體實施例中,該容器以適合裝載攜帶液的軟管(flexible tubing)連結至過濾器單元(filter unit)。如有需求,該軟管可以藉著一個轉接器(adapter)連結至容器及/或過濾器單元箱座(filter unit housing)。
本發明的各面向和各具體實施例均指向一種微粒過濾的系統,包含一個卡匣(cartridge),內含一個箱座和複數的(例如:5、10、15、20、25、30、35、40、80、75、100、200、250、500、750、1,000、2,000、或5,000)過濾單元(filtration units),其中該箱座包括一個供料樣本入口(feed sample inlet)、一個保留物排出口(retentate outlet)、和一個過濾液排出口(filtrate outlet);而每一個過濾單元包括一個具有近端和遠端(proximal and distal ends)的保留物艙室(retentate chamber)、一個過濾液艙室(filtrate chamber)、和一個位於保留物艙室及過濾液艙室之間的柱狀物排(row of pillars),該柱狀物上有複數個小孔(pores)使保留物艙室及過濾液艙室的液體可以交流,保留物艙室的寬度由近端向遠端遞減,而過濾液艙室的寬度由近端向遠端遞增,過濾單元的這種結構使得小孔的有效小孔尺寸(effective pore size)可以小於這些小孔的物理小孔尺寸(physical pore size)的30%、50%、60%、70%、80%、90%、95%、或98%;供料樣本入口與每一個過濾單元內的保留物艙室的近端有液體連結(fluid connection);過濾液排出口與每一個過濾單元內的過濾液艙室有液體連結;以及保留物排出口與每一個複數的過濾單元內的保留物艙室的遠端有液體連結。
於另一個面向,本發明提供一種微粒過濾的系統,包含一個卡匣,內含一個箱座和複數的過濾單元,其中該箱座包括一個供料樣本入口、一個保留物排出口、和一個過濾液排出口;而每一個過濾單元包括一個具有近端和遠端的保留物艙室、一個包含至少一個遠端(distal end)的過濾液艙室、以及一個包含複數小孔位在保留物艙室和過濾液艙室之間的過濾器(filter),小孔使得保留物艙室和過濾液艙室之間液體交流;過濾液艙室、過濾器、和保留物艙室組成的結構使小孔的有效小孔尺寸可以小於這些小孔的物理小孔尺寸;供料樣本入口與每一個過濾單元內的保留物艙室的近端有液體連結;過濾液排出口與每一個過濾單元內的過濾液艙室有液體連結;以及保留物排出口與每一個複數的過濾單元內的保留物艙室的遠端有液體連結。
於另一個面向,本發明係提供一種微粒過濾的系統,包含一個卡匣,內含一個箱座和複數的過濾單元,其中該箱座包括一個供料樣本入口、一個保留物排出口、和一個過濾液排出口;並且每一個過濾單元包含一個第一流動艙室(first flow chamber)、一個第二流動艙室(second flow chamber)、及一個包含約3、5、6、7、8、9、10、15、20、、25、30、40、50、100、200、250、300、500、1,000、2,000、5,000、或更多小孔的過濾器,小孔具有介於約100奈米(nm)和3毫米(mm)之間的物理小孔尺寸(例如100奈米、200奈米、300奈米、400奈米、500奈米、750奈米、1微米(μm)、2微米、3微米、5微米、7.5微米、10微米、20微米、30微米、50微米、75微米、100微米、200微米、300微米、500微米、1毫米、2毫米、或3毫米),過濾器係排列在第一流動艙室和第二流動艙室之間;又第一流動艙室和第二流動艙室組成之結構使保留物微粒被過濾器阻留下來而無須物理限制;供料樣本入口與每一個過濾單元內的第一流動艙室的近端有液體連結;過濾液排出口與每一個過濾單元內的第二流動艙室的遠端有液體連結;以及保留物排出口與每一個複數的過濾單元內的第一流動艙室的遠端有液體連結。
於另一個面向,本發明係提供一種微粒過濾的系統,包含一個卡匣,內含一個箱座和複數的過濾單元,其中該箱座包括一個供料樣本入口、一個保留物排出口、和一個過濾液排出口;並且每一個過濾單元包含一個具有近端和遠端的第一流動艙室、一個第二流動艙室、及一個排列在第一流動艙室和第二流動艙室之間的過濾器,包含具有物理小孔尺寸介於約10奈米(nm)和10毫米(mm)之間的小孔;第一流動艙室和第二流動艙室組成之結構使過濾器的阻留尺寸(retention size)小於物理小孔尺寸;供料樣本入口與每一個過濾單元內的第一流動艙室的近端有液體連結;過濾液排出口與每一個過濾單元內的第二流動艙室的遠端有液體連結;以及保留物排出口與每一個複數的過濾單元內的第一流動艙室的遠端有液體連結。
於另一個面向,本發明係提供一種微粒過濾的系統,包含一個卡匣,內含一個箱座和複數的過濾單元,其中該箱座包括一個供料樣本入口、一個保留物排出口、一個過濾液排出口、和選擇性地包含一個攜帶液入口(carrier fluid inlet)。每一個過濾單元可以包含一個第一輸入通口(first input port)、一個第一輸出通口(first output port)、一個第二輸出通口(second output port)、及選擇性地包含一個與攜帶液入口有液體連結的第二輸入通口(second input port)。每一個過濾單元可以有一個設計效率指數(design efficiency index)約大於0.3毫米-2(mm-2)。供料樣本入口與每一個過濾單元內的第一輸入通口有液體連結,過濾液排出口與每一個過濾單元內的第一輸出通口有液體連結,保留物排出口與每一個複數的過濾單元內的第二輸出通口有液體連結。
於另一個面向,本發明係提供一種管子過濾系統(tube filter system)包含一個卡匣、一個管子嵌插物(tube insert)、和一個蓋子(cap);管狀嵌插物包含至少一個如前述各面向之任一者的過濾單元、一個供料樣本儲藏槽(feed sample reservoir)及選擇性地包含一個攜帶液儲藏槽(carrier fluid reservoir),每一者都與第一流動艙室或保留物艙室的近端有液體連結;又一個輸出儲藏槽(output reservoir)係與保留物艙室的遠端或第二流動艙室有液體連結,其中該輸出儲藏槽係適合接受來字過濾單元的保留物或過濾液。
於另一個面向,本發明係提供一種板狀過濾系統(plate filter system),包含一個或多個樣本井(sample well)及選擇性地包含一個攜帶液井(carrier fluid well),與前述各面向之任一者或此處描述之本發明其他面向的過濾單元有液體連結;一個過濾液井(filtrate well)和一個保留物井(retentate well),與過濾單元有液體連結,其中過濾液井和保留物井組成之構造係接受來自過濾單元的過濾液和保留物。
於另一個面向,本發明係提供一種板狀過濾系統(plate filter system),包含一個或多個樣本井及選擇性地包含一個攜帶液井,與前述各面向之任一者或此處描述之本發明其他面向的過濾單元有液體連結;一個過濾液井和一個保留物井,其中過濾液井和保留物井組成之構造係接受來自過濾單元的過濾液和保留物。於一個具體實施例中,過濾液井或保留物井並未與樣本井在同一個板上。
前述各面向之任一者或此處描述之本發明其他面向的格種不同具體實施例中,供料樣本入口具有一個近端,經由一個管狀線(tubing line)連結至一個轉接器(adaptor),保留物出口係經由一個管狀線連結至一個保留物收集袋(retentate collection bag),且過濾液出口係經由一個管狀線連結至一個過濾液收集袋(filtrate collection bag)。於前述各面向的其他具體實施例中,供料樣本入口係連結至一個具有近端和遠端(proximal and distal ends)的樣本收集袋(sample collection bag),其中近端包含一個薄膜(membrane)適合接受一個針(needle)而遠端包含一個通口(port),可以連接轉接器。於前述各面向的其他具體實施例中,供料樣本入口具有一個近端,經由一個管狀線連結至一個樣本收集袋(sample collection bag),保留物出口係經由一個管狀線連結至一個保留物收集袋,且過濾液出口係經由一個管狀線連結至一個過濾液收集袋。於前述各面向的更多其他具體實施例中,樣本收集袋包含一個針,用來汲取樣本進入樣本收集袋中。
關於以下之實施例,本說明書闡示的內容及文章係獨立的或以其他方式製造。本發明之其他特徵及優點將從以下詳細描述、和申請專利範圍,得以清晰呈現。依據本發明之一個面向,係提供一個過濾裝置:該過濾裝置包含一個第一流動艙室,該第一流動艙室包括至少一個入口(inlet),其構造係接受包含微粒和一個液體的一個供料,及至少一個保留物排出口;過濾裝置包含一個第二流動艙室,包括一個具有至少一個過濾液排出口的遠端;以及一個過濾器,位在第一流動艙室和第二流動艙室之間。過濾器包括一個第一柱狀物排(first row of pillars)和由相鄰柱狀物間距離所定的複數個小孔。每複數個小孔的小孔包含一個由相鄰柱狀物間之距離所定之物理性小孔尺寸,和一個小於物理性小孔尺寸的有效小孔尺寸。本過濾裝置更進一步包含移動供料通過過濾裝置的工具(means),由第一流動艙室、第二流動艙室、過濾器、和移動供料通過過濾裝置的工具組成的構造可以阻留實體分數部份微粒,這些微粒的尺寸大於小孔的有效小孔尺寸且小於小孔的物理性小孔尺寸,阻留下來的成為保留物,留在第一流動艙室,而通過的實體分數部份(substantial fraction)液體成為過濾液,進入第二流動艙室。
依據某些具體實施例,第一流動艙室包含一個第一實質固定深度(first substantially constant depth)。依據某些具體實施例,第二流動艙室包含一個第二實質固定深度(second substantially constant depth)。依據某些具體實施例,過濾器和第一流動艙室的一個側壁(sidewall)之間的距離係沿著至少一個入口(inlet)到至少一個保留物排出口的長度逐漸減少。依據某些具體實施例,過濾器和第二流動艙室的一個側壁之間的距離係沿著第二流動艙室的近端到遠端的長度逐漸增加。
依據某些具體實施例,第二流動艙室的一個側壁的切線和柱狀物排的切線之間的角度小於5度。
依據某些具體實施例,小孔的一個子集合具有實質相同的物理小孔尺寸。
依據某些具體實施例,小孔的一個子集合具有實質相同的有效小孔尺寸。
依據某些具體實施例,第一柱狀物排(first row of pillars)包含超過存在於過濾裝置中的全體柱狀物的10%。
依據某些具體實施例,申請專利之過濾裝置具有一個裝置長度,係第一流動艙室長度和第二流動艙室長度較大者決定;以及一個裝置寬度,係在第一流動艙室寬度和第二流動艙室寬度最大總和之處,由第一流動艙室寬度和第二流動艙室寬度的總和決定。裝置長度對裝置寬度具有一個比例,約大於6。
依據某些具體實施例,每一個小孔具有一個有效小孔尺寸,係小於小孔的物理小孔尺寸的80%。
依據某些具體實施例,第一流動艙室包含至少一個攜帶液入口,有別於至少一個入口。
依據某些具體實施例,至少一個攜帶液包含至少以下一者:核酸染色劑(nucleic acid stains)、定色劑(fixatives)、冷凍液(freezing solutions)、烷化劑(alkylating agents)、抗體(antibodies)、磁珠(magnetic beads)、酵素(enzymes)、膠原蛋白酶(collagenase)、解脂酶(lipase)、脫氧核糖核酸酶(DNase)、某些酵素的受酶質(substrates of certain enzymes)、環磷醯銨的活性衍生物(active derivatives of cyclophosphamide)、生長因子(growth factors)、清潔劑(detergents)、及裂解液(lysis solutions)。
依據某些具體實施例,在穿過裝置的流動路徑上,第一流動艙室和過濾器的每一者均沒有任何前緣(leading edge)具有小於1微米的彎曲半徑。
依據某些具體實施例,第一小孔子集合(first subset of the pores)具有一個與第二小孔子集合(second subset of the pores)不同的有效小孔尺寸。於某些具體實施例,第二流動艙室的至少一個過濾液排出口係組成一種構造,用來收集通過第一小孔子集合的過濾液,且其中第二流動艙室包含一個第二過濾液排出口(second filtrate outlet),該排出口的構造係收集通過第二小孔子集合的過濾液。
依據某些具體實施例,過濾裝置更進一步包含一個第二過濾器(second filter)和一個第三流動艙室(third flow chamber)。第二過濾器可以安裝在第一流動艙室和第三流動艙室之間,第三流動艙室可以包括一個近端和一個遠端,而遠端具有至少一個排出口。第三流動艙室可以沿著近端到遠端的長度而變寬。
依據某些具體實施例,過濾裝至具有一個由第一流動艙室長度所決定的裝置長度;又裝置寬度係在第一流動艙室寬度、第二流動艙室寬度和第三流動艙室寬度的最大總和處,由第一流動艙室寬度、第二流動艙室寬度和第三流動艙室寬度的總和而定。裝置長度對裝置寬度具有一個比例,約大於5。
依據某些具體實施例,過濾裝置具有略少於約5,000的柱狀物。
依據某些具體實施例,第一過濾器和第二過濾器包含超過約15%的存在於過濾裝置的全體柱狀物。
依據某些具體實施例,在一個通過第一流動艙室的中心線的鏡平面(mirror plane),過濾裝置係實質地對稱。
依據某些具體實施例,由第一柱狀物排決定的切線和第二柱狀物排決定的切線係不平行的(non-parallel)。
依據某些具體實施例,過濾裝置更進一步包含一個第二過濾器、一個第三流動艙室、和一個第四流動艙室(fourth flow chamber)。第二過濾器可以安裝在第三流動艙室和第四流動艙室之間,第三流動艙室可以包括至少一個入口和至少一個排出口。第四流動艙室可以包括至少一個排出口。
依據某些具體實施例,該第三流動艙室的至少一個排出口係構造成為收集來自第一過濾器的保留物。第三流動艙室可以更進一步包含一個明顯有別於該至少一個排出口的第二排出口(second outlet),其中第三流動艙室的第二排出口係構造為收集來自第二過濾器的保留物。
依據某些具體實施例,該第三流動艙室的至少一個排出口係構造成為收集來自第一過濾器的保留物和來自第二過濾器的保留物。
依據某些具體實施例,該第三流動艙室的至少一個排出口係構造成為收集來自第一過濾器的保留物和來自第二過濾器的保留物。第三流動艙室可以更進一步包含一個明顯有別於該至少一個排出口的第二排出口,其中第三流動艙室的第二排出口係構造成為收集來自第一過濾器的保留物。
依據某些具體實施例,申請專利之過濾裝置具有一個裝置長度,係由第一流動艙室長度和第三流動艙室長度的總和決定;以及一個裝置寬度,係在第一流動艙室寬度和第二流動艙室寬度的最大總和處之第一流動艙室寬度和第二流動艙室寬度的總和,與在第三流動艙室寬度和第四流動艙室寬度的最大總和處之第三流動艙室寬度和第四流動艙室寬度的總和,以較大者來決定裝置寬度。裝置長度對裝置寬度具有一個比例,約大於10。
依據某些具體實施例,第一過濾器和第二過濾器包含不少於10%的存在於過濾裝置中的全部柱狀物。
依據某些具體實施例,該第三流動艙室的至少一個入口係與第二流動艙室的至少一個過濾液排出口有液體連結。
依據某些具體實施例,該第三流動艙室的至少一個入口係與第一流動艙室的至少一個保留物排出口有液體連結。
依據某些具體實施例,該第三流動艙室的至少一個入口係與第一流動艙室的至少一個排出口及第二流動艙室的至少一個排出口有液體連結。
依據某些具體實施例,第三流動艙室更進一步包含至少一個攜帶液入口,係明顯有別於該至少一個入口。
依據某些具體實施例,過濾裝置的構造係符合『過濾液艙室擴張基準』。
依據某些具體實施例,過濾裝置的構造係符合『最低小孔數目基準』。
依據某些具體實施例,過濾裝置的構造係使流過每一個小孔的液體之容積流動速率(volumetric flow rate),和第一流動艙室近端之容積流動速率比較,約少3%。
依據某些具體實施例,過濾裝置的構造係使液體以一個實質固定流動速度流過第一艙室。
依據某些具體實施例,過濾裝置的構造係使液體以一個實質固定流動速度流過第二艙室。
依據某些具體實施例,過濾裝置的構造係使液體以一個大體上相同的流速基本上流過所有的小孔。
依據某些具體實施例,柱狀物具有蛋型(egg-shaped)橫切面。
依據某些具體實施例,過濾裝置更進一步包含一個第二過濾器、一個第三過濾器、一個第四過濾器、一個第三流動艙室、一個第四流動艙室、一個第五流動艙室、和一個第六流動艙室。第二過濾器可以安裝在第一流動艙室和第三流動艙室之間;第三過濾器可以安裝在第四流動艙室和第五流動艙室之間;第四過濾器可以安裝在第四流動艙室和第六流動艙室之間。第三流動艙室可包含一個第一端(first end)和至少一個排出口,而第三流動艙室可沿著第三流動艙室的第一端向著第三流動艙室的至少一個排出口的長度逐漸變寬。第五流動艙室可包含一個第一端(first end)和至少一個排出口,而第五流動艙室可沿著第五流動艙室的第一端向著第五流動艙室的至少一個排出口的長度逐漸變寬。第六流動艙室可包含一個第一端(first end)和至少一個排出口,而第六流動艙室可沿著第六流動艙室的第一端向著第六流動艙室的至少一個排出口的長度逐漸變寬。第四流動艙室可包含至少一個入口和至少一個排出口,該第四流動艙室的至少一個入口與第一流動艙室的至少一個保留物排出口、第二流動艙室的至少一個過濾液排出口、及第三流動艙室的至少一個排出口有液體連結。
依據某些具體實施例,過濾裝置更進一步包含一個第二過濾器和一個第三流動艙室。第二過濾器可以安裝在第二流動艙室和第三流動艙室之間;第三流動艙室可包含至少一個入口和至少一個排出口。
依據某些具體實施例,在一個通過第一流動艙室和第四流動艙室的鏡平面(mirror plane),過濾裝置係實質地對稱。
依據某些具體實施例,第四艙室更進一步包含明顯有別於第四流動艙室的至少一個入口的一個攜帶液入口。
依據本發明的另一個面向,係提供一個微粒過濾的方法;本方法包含提供一個過濾裝置。本過濾裝置包括至少一個過濾單元,每一個過濾單元包括一個第一流動艙室含有一個供料入口和一個保留物排出口、一個第二流動艙室含有一個過濾液排出口、及一個過濾器含有複數的具物理小孔尺寸的小孔,過濾器被安裝在第一流動艙室和第二流動艙室之間。本方法更進一步包含:導入含有一個供料液(feed fluid)和至少一個密數(population)的微粒的一個供料(feed)經供料入口進入裝置中,該微粒密數的尺寸較小於浸泡供料液的物理小孔尺寸;施予一個驅動力以驅動該供料通過該過濾裝置;將供料經過過濾裝置以致於至少一個微粒密數的一個實體分數部分的微粒被阻留在第一流動艙室,成為保留物,而供料液的一個實體分數部分通過過濾器成為過濾液,進入第二流動艙室;在保留物排出口收集保留物;及在過濾液排出口收集過濾液。
依據某些具體實施例,係提供一種過濾裝置,包含提供一種含有超過10個過濾單元的過濾裝置。
依據某些具體實施例,係導入供料進入裝置,包含導入一個細胞液體懸浮液進入第一流動艙室。
依據某些具體實施例,該供料包含存活細胞,又本方法更進一步包含從供料分離細胞,其中至少90%存活細胞在分離後仍保持存活。
依據某些具體實施例,本方法更進一步包含從供料分離細胞,且其中少於0.03%的細胞被過濾裝置裂解。
依據某些具體實施例,少於0.03%的細胞被過濾裝置捕捉。
依據某些具體實施例,將供料通過本過濾裝置,包含每秒超過105個細胞通過本過濾裝置。
依據某些具體實施例,將供料通過本過濾裝置,包含每秒超過106個細胞通過本過濾裝置。
依據某些具體實施例,將供料通過本過濾裝置,包含每秒超過107個細胞通過本過濾裝置。
依據某些具體實施例,提供本過濾裝置,包含提供一種含有至少一個過濾單元的過濾裝置,過濾單元具有一個小於0.8微升(microliter)的滯留體積(hold up volume)。
依據某些具體實施例,提供過濾裝置,包含提供具有一個設備佔地面積(footprint area)和一個具體的固定艙室深度的過濾裝置;又其中將供料通過該過濾裝置包含將細胞以一個標準化加工處理速度(normalized processing speed)通過該過濾裝置,標準化加工處理速度係每秒通過過濾裝置的細胞數除上實質固定艙室深度和設備佔地面積的乘積的結果,大於每秒每立方釐米10,000細胞。
依據某些具體實施例,提供過濾裝置,包含提供具有一種設備佔地面積(footprint area)和一種實質固定艙室深度的過濾裝置;又其中將供料通過該過濾裝置包含將細胞以一個標準化加工處理速度(normalized processing speed)通過該過濾裝置,標準化加工處理速度係每秒通過過濾裝置的細胞數除上實質固定艙室深度和設備佔地面積的乘積的結果,大於每秒每立方釐米100,000細胞。
依據某些具體實施例,提供過濾裝置係包含提供具有一個特有固定艙室深度、一個設備佔地面積、和一個過濾單元密度(filtration unit density)的過濾裝置,過濾單元密度係由含於過濾裝置中的過濾模組(filtration modules)數目除以特有固定艙室深度和設備佔地面積的乘積界定,其中過濾單元密度係大於每立方釐米400過濾單元。
依據某些具體實施例,將供料導入過濾裝置中係包含導入一個含有骨髓(bone marrow)的供料液進入第一流動艙室。
依據某些具體實施例,將供料導入過濾裝置中係包含導入一個含有血液(blood)的供料液進入第一流動艙室。
依據某些具體實施例,將供料導入過濾裝置中係包含導入一個含有臍帶血(umbilical cord blood)的供料液進入第一流動艙室。
依據某些具體實施例,將供料導入過濾裝置中係包含導入一種含有幹細胞(stem cells)的供料液進入第一流動艙室。
依據某些具體實施例,將供料導入過濾裝置中係包含導入一個含有集落形成細胞(colony forming cells)的供料液進入第一流動艙室。依據某些具體實施例,將供料導入過濾裝置中係包含導入一個含有免疫細胞(immune cells)的供料液進入第一流動艙室。
依據某些具體實施例,將供料導入過濾裝置中係包含導入一個含有羊膜液(amniotic fluid)的供料液進入第一流動艙室。
依據某些具體實施例,將供料導入過濾裝置中係包含導入一個含有已消化的脂肪組織(digested adipose tissue)的供料液進入第一流動艙室。
依據某些具體實施例,將供料導入過濾裝置中係包含導入以下其中之一進入第一流動艙室:細胞、血液細胞、臍帶血細胞、骨髓細胞、紅血球(erythrocytes)、白血球(leukocytes)、淋巴球(lymphocytes)、上皮細胞(epithelial cells)、幹細胞、癌細胞(cancer cells)、腫瘤細胞(tumor cells)、循環腫瘤細胞(circulating tumor cells)、源祖細胞(progenitor cells)、細胞前驅物(cell precursors)、臍帶血幹細胞(cord blood stem cells)、造血幹細胞(hematopoietic stem cells)、間葉系幹細胞(mesenchymal stem cells)、脂肪幹細胞(adipose stem cells)、多功能幹細胞(pluripotent stem cells)、誘導式多功能幹細胞(induced pluripotent stem cells)、胚胎幹細胞(embryonic stem cells)、源自臍帶的細胞(cells derived from umbilical cord)、源自脂肪組織的細胞(cells derived from fat tissues)、基質血管部份中的細胞(cells in stromal vascular fractions(SVF))、羊膜液中的細胞(cells in amniotic fluids)、經血中的細胞(cells in menstrual blood)、腦脊髓液中的細胞(cells in cerebral spinal fluid)、尿液中的細胞(cells in urine)、骨髓幹細胞(bone marrow stem cells)、周邊血液幹細胞(peripheral blood stem cells)、CD34+細胞(CD34+cells)、集落形成細胞(colony forming cells)、T細胞、B細胞、神經細胞(neural cells)、免疫細胞(immuno cells)、樹狀突細胞(dendritic cells)、巨核細胞(megakaryocytes)、固定化骨髓細胞(immobilized bone marrow cells)、血小板(platelets)、***(sperms)、蛋、卵母細胞(oocytes)、微生物(microbes)、微小動植物(microorganisms)、細菌、黴菌、酵母菌(yeasts)、原生動物(protozoans)、病毒(viruses)、細胞器官(organelles)、細胞核(nuclei)、核酸(nucleic acids)、粒線體(mitochondria)、微粒體(micelles)、脂質(lipids)、蛋白質、蛋白質複合物(protein complexes)、細胞碎片(cell debris)、寄生菌(parasites)、脂肪顆粒(fat droplets)、多細胞生物(multi-cellular organisms)、孢子(spores)、海藻(algae)、團簇(clusters)、以上之聚集團(aggregates of the above)、工業粉末(industrial powders)、聚合物(polymers)、粉末(powders)、乳液(emulsions)、小滴(droplets)、灰塵(dusts)、微粒圓球(microspheres)、微粒(particles)、及膠體(colloids)。
依據某些具體實施例,供料包含的微粒其尺寸係介於5微米和30微米之間。
依據某些具體實施例,本方法更進一步包含收集保留物微粒,保留物微粒包括以下其中之一:細胞、CD34+細胞、一個基質血管部份、幹細胞、源祖細胞、集落形成細胞、造血幹細胞、脂肪幹細胞、間葉系幹細胞、羊膜幹細胞、有核細胞(nucleated cells)、白血球、淋巴球、癌細胞、腫瘤細胞、樹狀突細胞、死細胞(dead cells)、活細胞(live cells)、***中細胞(dividing cells)、網狀紅血球(reticulocytes)、紅血球(red blood cells)、脂肪細胞、和脂肪小滴(fat droplets)。
依據某些具體實施例,收集保留物微粒係包含收集細胞,且其中保留物中的細胞約95%以上是存活的。
依據某些具體實施例,本方法更進一步包含收集過濾液,過濾液包括以下其中之一:細胞、CD34+細胞、一個基質血管部份、幹細胞、源祖細胞、集落形成細胞、造血幹細胞、脂肪幹細胞、間葉系幹細胞、羊膜幹細胞、血漿(plasma)、血小板、紅血球(red blood cells)、有核細胞(nucleated cells)、白血球、淋巴球、癌細胞、腫瘤細胞、樹狀突細胞、死細胞(dead cells)、活細胞(live cells)、***中細胞(dividing cells)、網狀紅血球(reticulocytes)、脂肪細胞、和脂肪小滴(fat droplets)。
依據某些具體實施例,收集過濾液包含收集細胞,且其中過濾液中的細胞約95%以上是存活的。
依據某些具體實施例,本方法更進一步包含提供一種過濾裝置,該裝置具有一個阻留尺寸(retention size)明顯地小於物理小孔尺寸。
依據本發明揭示的另一個面向,係提供一種減少臍帶血體積(cord blood volume reduction)的方法。本方法包含取得一個樣本,該樣本含有臍帶血具有至少一個密數的有核細胞(one population of nucleated cells),該樣本具有一個樣本體積(sample volume)。本方法更進一步包含提供一種過濾裝置,該過濾裝置包括一個第一收集貯存器(first collection receptacle)、一個第二收集貯存器(second collection receptacle)、一個供料通道工具(feed access means)、和至少三個過濾單元。每一個過濾單元具有一個微流體流動艙室(microfluidic flow chamber),包括一個供料入口、一個保留物排出口、和一個過濾液排出口。該微流體流動艙室具有至少一個維度(dimension)是垂直於其一個長度,該長度約小於1釐米(millimeter)。供料入口與供料通道工具有液體連結;保留物排出口與第一收集貯存器有液體連結;過濾液排出口與第二收集貯存器有液體連結。
本方法更進一步包含:利用供料通道工具將樣本導入過濾單元的供料入口;施予一個驅動力給樣本;使樣本通過該過濾裝置的微流體流動艙室;創造層流狀況(laminar flow conditions),引導一個實體分數部分的樣本體積到過濾液排出口及一個實體分數部分的至少一個有核細胞密數到保留物排出口;在第一收集貯存器收集來自保留物排出口的一個排出液體;以及在第二收集貯存器收集來自過濾液排出口的一個排出液體。
依據某些具體實施例,收集來自保留物排出口的排出液體包含:在第一收集貯存器中,以少於樣本體積25%的體積,從樣本收集70%以上的有核細胞。
依據某些具體實施例,該至少一個有核細胞密數包含CD34+細胞,且收集來自保留物排出口的排出液體包含從樣本收集75%以上的有核細胞進入第一收集貯存器。
依據某些具體實施例,本方法更進一步包含從樣本分開可存活細胞,且其中至少約95%的可存活細胞在分開後保持可存活狀態。
依據某些具體實施例,取得一個樣本包含:取得含有大於95%的存活力(viability)的臍帶血有核細胞的一個樣本,且其中收集來自保留物排出口的排出液體包含收集大於95%的存活力的有核細胞。
依據某些具體實施例,使樣本通過微流體流動艙室包含每秒超過10,000,000個血球細胞通過該過濾裝置。
依據本發明揭示的另一個面向,係提供一種微粒過濾儀器(particle filtration apparatus)。該微粒過濾儀器包含一個一般供料入口(common feed inlet)、一個一般過濾液排出口(common filtrate outlet)、一個一般保留物排出口(common retentate outlet)、和至少一個高模組密度裝置(high module density device)。該至少一個高模組密度裝置包括多數個過濾單元,每一個過濾單元包括:一個第一流動艙室,該艙室包括至少一個入口,其結構係接受一個供料液含有供料微粒的供料,和至少一個保留物排出口;一個第二流動艙室,該艙室包括一個近端、一個具有至少一個過濾液排出口的遠端;以及一個第一過濾器(first filter),位於第一流動艙室和第二流動艙室之間。
第一過濾器包括一個第一柱狀物排(first row of pillars),和由相鄰柱狀物間距離所定的複數個小孔。每複數個小孔的小孔包含一個由相鄰柱狀物間之距離所定之物理性小孔尺寸。本微粒過濾儀器更進一步包含移動供料通過複數的過濾單元的工具(means)。由第一流動艙室、第二流動艙室、過濾器、和移動供料通過複數的過濾單元工具組成的構造具有一個小於有效小孔尺寸的阻留尺寸,且阻留一個實體分數部份的供料微粒,這些微粒具有大於阻留尺寸的尺寸,被阻留下來成為保留物,留在第一流動艙室,而一個實體分數部份的供料液體通過成為過濾液,進入第二流動艙室。
複數個過濾單元的至少一個入口的每一者係與一般供料入口有液體連結;複數個過濾單元的至少一個過濾液排出口的每一者係與一般過濾液排出口有液體連結;複數個過濾單元的至少一個保留物排出口的每一者係與一般保留物排出口有液體連結。
依據某些具體實施例,微粒過濾儀器更進一步包含一個管子(tube)、一個管子蓋(tube cap)、和一個管子嵌插物(tube insert)。高模組密度裝置可組成一種構造是被架設在管子嵌插物之中,而管子的構造是配合管子嵌插物;管子嵌插物可包括一個供料儲藏槽(feed reservoir),與一般供料入口有液體連結。管子蓋的構造是蓋住管子和管子嵌插物。
依據某些具體實施例,管子的構造是接受來自高模組密度裝置的保留物;管子嵌插物更進一步包括一個過濾液儲藏槽(filtrate reservoir),其構造是接受來自高模組密度裝置的過濾液。
依據某些具體實施例,管子的構造是接受來自高模組密度裝置的過濾液;管子嵌插物更進一步包括一個保留物儲藏槽(retentate reservoir),其構造是接受來自高模組密度裝置的保留物。
依據某些具體實施例,管子嵌插物更進一步包括一個攜帶液儲藏槽(carrier fluid reservoir),其構造是供應一個攜帶液給至少一個第一流動艙室的一個入口。
依據某些具體實施例,微粒過濾儀器更進一步包含一個與一般保留物排出口有液體連結的保留物收集袋(retentate collection bag)、以及一個與一般過濾液排出口有液體連結的過濾液收集袋(filtrate collection bag)。
依據某些具體實施例,微粒過濾儀器更進一步包含一個一般攜帶液入口(common carrier fluid inlet),與至少一個第一流動艙室的一個入口有液體連結。
依據某些具體實施例,微粒過濾儀器更進一步包含一個攜帶液貯存器(carrier fluid receptacle),其構造係供應一個攜帶液到攜帶液一般入口(carrier fluid common inlet)。
依據某些具體實施例,微粒過濾儀器更進一步包含一個轉接器(adaptor),其構造係在一個供料收集袋(feed collection bag)和該一般供料入口之間建立一個液體連結。
依據某些具體實施例,微粒過濾儀器更進一步包含一個供料收集袋,與一般供料入口有液體連結。
依據某些具體實施例,供料收集袋包含至少一個針(needle),其構造係汲取供料進入供料收集袋。
依據某些具體實施例,供料收集袋盛裝一個抗凝劑(anticoagulant)。
依據某些具體實施例,供料收集袋盛裝一個液體(fluid)。
依據某些具體實施例,微粒過濾儀器更進一步包含一個第一井(first well),與一般供料入口有液體連結,並構造作為一個液體儲藏槽(fluid reservoir);一個第二井(second well),與一般保留物排出口有液體連結,並構造作為一個液體儲藏槽;以及一個第三井(third well),與一般過濾液排出口有液體連結,並構造作為一個液體儲藏槽。
依據某些具體實施例,第一井、第二井、和第三井係組成一個多井盤式構造(multi-well plate format)。
依據某些具體實施例,微粒過濾儀器更進一步包含一個第四井(fourth well),與至少一個第一流動艙室的一個入口有液體連結,且構造是供應一個攜帶液到至少一個第一流動艙室。
依據某些具體實施例,微粒過濾儀器更進一步包含一個蓋子(cap),其構造是封住第一井、第二井、和第三井的至少一個。
依據某些具體實施例,蓋子包含一個金屬薄片(foil),實質地不透空氣和蒸汽,且構造是密封第一井、第二井、和第三井的至少一個。
依據某些具體實施例,第一井、第二井、和第三井的至少一個盛裝一個液體。
依據某些具體實施例,複數個過濾單元的每一個過濾單元具有一個保留體積(hold up volume),係小於1微升(microliter)。
依據某些具體實施例,高模組密度裝置具有一個過濾單元密度,係大於每立方釐米(cubic centimeter)500過濾單元。
依據某些具體實施例,高模組密度裝置包含超過30過濾單元。依據某些具體實施例,高模組密度裝置具有一個設計效率指數(design efficiency index),係大於0.5毫米-2(mm-2)。
依據某些具體實施例,高模組密度裝置具有一個設計效率指數(design efficiency index),係大於5毫米-2(mm-2)。
依據本發明揭示的另一個面向,係提供一個過濾裝置。該過濾裝置包含一個第一流動艙室,該艙室包括:至少一個入口,構造為導入含有微粒的一個供料,及至少一個保留物排出口,構造為收集供料的一個保留物;過濾裝置更進一步包含一個第二流動艙室,該艙室包括:一個第一端(first end)和至少一個過濾液排出口,該至少一個過濾液排出口係構造為收集一個過濾液;過濾裝置更進一步包含一個第一過濾器(first filter),該第一過濾器包括複數個小孔,小孔具有一個物理小孔尺寸和一個小於物理小孔尺寸的阻留尺寸;第一過濾器係安裝在第一流動艙室和第二流動艙室之間。第一流動艙室、第二流動艙室、和第一過濾器組成的構造係使流動情況順暢,實質地增加小於物理小孔尺寸且大於阻留尺寸的微粒的阻留率(retention rate)。
依據某些具體實施例,過濾裝置的構造係符合『過濾液艙室擴張基準』。
依據某些具體實施例,第二流動艙室的一個側壁的切線和第一過濾器的切線之間所承角度係小於5度。
依據某些具體實施例,阻留尺寸係小於小孔的物理小孔尺寸的約90%。
依據某些具體實施例,過濾裝置的構造係使流過每一個小孔的液體之容積流動速率(volumetric flow rate),和第一流動艙室的至少一個入口之容積流動速率比較,約少3%。
依據某些具體實施例,過濾裝置具有一個長度對寬度的比例,約大於10。
依據某些具體實施例,第一流動艙室實質地具有一個第一固定深度(first constant depth),第二流動艙室實質地具有一個第二固定深度(second constant depth);又第二流動艙室可以從第二流動艙室的第一端朝向第二流動艙室的至少一個過濾液排出口擴張寬度。
依據某些具體實施例,過濾裝置的構造係使一個液體,以一個實質固定流動速度流經第一艙室。依據某些具體實施例,過濾裝置的構造係使一種液體,以一個實質固定流動速度流經第二艙室。依據某些具體實施例,過濾裝置的構造係使一個液體,以一個實質理想流動速度實質地流經所有的小孔。
依據某些具體實施例,第一過濾器包含一個柱狀物排,其中第一過濾器的小孔包含液體通道(fluid passages),在柱狀物排的相鄰柱狀物間;又其中柱狀物排包含不少於10%的存在於過濾裝置中的全部柱狀物。
依據某些具體實施例,第一艙室包含明顯有別於至少一個入口的至少一個攜帶液入口且構造為導入一個攜帶液進入第一流動艙室。
依據某些具體實施例,過濾裝置係沿著穿過裝置的流動路徑,沒有任何前緣(leading edge)具有小於0.5微米(μm)的彎曲半徑。
依據某些具體實施例,小孔第一子集合具有一個不同於小孔第二子集合的物理小孔尺寸。
依據某些具體實施例,第二流動艙室的至少一個過濾液排出口的構造係收集通過小孔第一子集合的過濾液,又其中第二流動艙室包含一個第二過濾液排出口,其構造係收集通過小孔第二子集合的過濾液。
依據某些具體實施例,過濾裝置更進一步包含一個第二過濾器(second filter)和一個第三流動艙室(third flow chamber),其中第二過濾器係安裝在第一流動艙室和第三流動艙室之間;又其中第三流動艙室包含至少一個排出口。
依據某些具體實施例,過濾裝置具有一個長度對寬度的比例,約大於5。
依據某些具體實施例,第一過濾器包含一個第一柱狀物排(first row of pillars),第一柱狀物排的小孔可包含液體通道(fluid passages),在第一柱狀物排的相鄰柱狀物間;第二過濾器可包含一個第二柱狀物排(second row of pillars),第二柱狀物排的小孔可包含液體通道,在第二柱狀物排的相鄰柱狀物間。第一柱狀物排和第二柱狀物排包含不少於10%的存在於過濾裝置中的全部小孔。
依據某些具體實施例,在一個通過第一流動艙室的中心線的鏡平面(mirror plane),過濾裝置係實質地對稱。
依據某些具體實施例,過濾裝置更進一步包含一個第二過濾器和一個第三流動艙室,其中第二過濾器係安裝在第二流動艙室和第三流動艙室之間;又其中第三流動艙室包含至少一個入口和至少一個排出口。
依據某些具體實施例,過濾裝置更進一步包含一個第二過濾器、一個第三流動艙室、和一個第四流動艙室,其中第二過濾器係安裝在第三流動艙室和第四流動艙室之間;其中第三流動艙室包含至少一個入口和至少一個排出口;又其中第四流動艙室包含至少一個排出口。
依據某些具體實施例,過濾裝置具有少於約6,000柱狀物。
依據某些具體實施例,第一過濾器和第二過濾器包含不少於10%的存在於過濾裝置中的全部小孔。
依據某些具體實施例,第三流動艙室的至少一個入口係與第一流動艙室的至少一個保留物排出口有液體連結。
依據某些具體實施例,第三流動艙室的至少一個入口係與第一流動艙室的至少一個排出口及第二流動艙室的至少一個排出口有液體連結。
依據某些具體實施例,第三流動艙室更進一步包含:明顯有別於至少一個入口的至少一個攜帶液入口,且構造為導入一個攜帶液。
依據某些具體實施例,第三流動艙室的至少一個排出口的構造係收集來自第一過濾器的保留物。第三流動艙室更進一步包含一個有別於至少一個排出口的第二排出口(second outlet),該第三流動艙室的第二排出口的構造係收集來自第二過濾器的保留物。
依據某些具體實施例,第三流動艙室的至少一個排出口的構造係收集來自第一過濾器的保留物和來自第二過濾器的保留物。
依據某些具體實施例,第三流動艙室的至少一個排出口的構造係收集來自第一過濾器的保留物和來自第二過濾器的保留物。第三流動艙室更進一步包含一個有別於至少一個排出口的第二排出口(second outlet),該第三流動艙室的第二排出口的構造係收集來自第一過濾器的過濾液。
發明之詳細說明
本發明之說明書並未限制其應用在以下的說明或圖示的描述中所提示的文字細節及組成份的排列配置,說明書做的出其他具體實施例且可以用各種方式實施或執行。同時,此處的專業用詞和術語係為了說明的目的且不可認為是限制。此使用『包括(including)』、『包含(comprising)』、『具有(having)』、『含有(containing)』、『含在(involving)』,及其變化均表示包含其後所列項目及其相等物和附加項目。
本發明的面向和具體實施例係指出一種可用於微粒過濾的過濾系統以及指出一個操作此過濾系統的方法。
本發明的面向和具體實施例係基於-至少有部份-發現一個裝置,該裝置運用流動排阻,且提供高容積(high capacity)、高處理量(high throughput)、低微粒損害(low particle damage)、低剪切(low shear)、以及微粒和生物性樣本的抗阻塞過濾(clogging resistant filtration)。再者,本發明提供一種方法和裝置,作為一個緊密輕巧的裝置,該裝置很容易製造,使用不昂貴的原料包括矽(silicon)和塑膠(plastics),但非限制於此。
此處所提供的範圍(range)應可了解是範圍內所有數值的速記,舉例來說,一個1到50的範圍可理解為包括由1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、或50所組成之群類的任何數字、數字合併、或次範圍。
除非特別陳述或從上下文字明顯可見,如同此處所使用者,用語『或(or)』可理解為「包含在內」。除非特別陳述或從上下文字明顯可見,如同此處所使用者,用語『一個(a、an)』和『該(the)』可理解為「單一個或複數個」。
除非特別陳述或從上下文字明顯可見,如同此處所使用者,用語『約(about)』可理解為「在一個業界正常可容忍的範圍內」,例如,在平均值的2個標準差之內。『約』可理解為在所述數值的10%、9%、8%、7%、6%、5%、4%、3%、2%、1%、0.5%、0.1%、0.05%、或0.01%之內。除非從上下文字在其他方面明顯可見,此處所提供的所有數字的值都以用語『約』加以修飾。
此處以一個改變的任何定義敘述的一個化學群組(chemical groups)一覽表,包括該改變的定義,如任何單一群組或表列群組的合併。此處用於一個改變或面向的一種具體實施例的敘述包括任何單一具體實施例或任何其他具體實施例或其部份的併用。
此處提供的任何組成或方法可以合併一種或更多個的此處提供的任何其他組成或方法。
此處使用的術語『微粒(particles)』包括:但非侷限於,細胞、血液細胞、臍帶血細胞、骨髓細胞、紅血球、白血球、淋巴球、上皮細胞、幹細胞、癌細胞、腫瘤細胞、循環腫瘤細胞(circulating tumor cells)、源祖細胞、細胞前驅物、臍帶血幹細胞、造血幹細胞、間葉系幹細胞、脂肪幹細胞、多功能幹細胞、誘導式多功能幹細胞、胚胎幹細胞、源自臍帶的細胞、源自脂肪組織的細胞、基質血管部份中的細胞、羊膜液中的細胞、經血中的細胞、腦脊髓液中的細胞、尿液中的細胞、骨髓幹細胞、周邊血液幹細胞、CD34+細胞、集落形成細胞、T細胞、B細胞、神經細胞、免疫細胞、樹狀突細胞、巨核細胞、固定化骨髓細胞、臍帶間質幹細胞(Wharton’s jelly stem cells)、真核細胞(eukaryotic cells)、原核細胞(prokaryotic cells)、動物細胞(animal cells)、血小板、***、蛋、卵母細胞、微生物、微小動植物、細菌、黴菌、酵母菌、原生動物、病毒、細胞器官、細胞核、核酸、粒線體、微粒體、脂質、蛋白質、蛋白質複合物、細胞碎片、寄生菌、脂肪顆粒、多細胞生物、孢子、海藻、以上之團簇或聚集團(clusters or aggregates of the above),以及其他懸浮在液體中的非生物性微粒(non-biological particles),如工業粉末、聚合物、粉末、乳劑、小滴、粉塵、微粒圓球(microspheres)、及膠體(colloids)。
這些微粒可能是堅硬不變的或可變形的,並且可能有各種尺寸和形狀。這些微粒可能的大小範圍,如可能具有最大範圍從約50微米(50 nm)到約1毫米(1 mm)的尺寸:微粒的形狀可以是:但非侷限於,長橢圓形、球形、類盤子形、類箱子形、類棒形、螺旋形、或以上形狀之鏈狀或聚集團。本發明之具體實施例可適用在可變形的、脆弱易碎的、或易受大剪應力影響而受傷的微粒的過濾。
『機械性質(Mechanical properties)』包括:但非侷限於,物理性尺寸(physical dimensions)、大小(size)、形狀(shape)、可變形性(deformability)、柔軟性(flexibility)、彈性(elasticity)、密度、黏滯度(viscosity)、堅硬度(rigidity)、和以上特徵的空間分布(spatial distributions)或時間反應(time response)。
此處使用的術語『尺寸排阻(size exclusion)』包含:藉由物理性阻斷,防止或限制進入或通過。一個尺寸排阻的具體實施例,係使用小孔002,防止大的、不可變形的微粒001進入小孔並通過過濾器003《圖1A》。另一個尺寸排阻的具體實施例,係使用一個小的開口(opening),防止一個可變形的微粒001擠壓進入並通過開口002《圖1B》。再另一種尺寸排阻的具體實施例顯示於圖1C,一個微粒001可能進入一個小孔002的一個寬的開口,然後被卡在小孔002的狹窄部份。再另一個尺寸排阻的具體實施例顯示於圖1D,一個微粒001可能進入一個小孔002,然後被堵在過濾器003內部。
此處使用的術語『尺寸排阻(size exclusion)』也包含『物理性限制(physical restriction)』。圖1E、1F、和1G顯示數種實例,於實例中,微粒並未因過濾器受到尺寸排阻或物理性限制。一個微粒001可能是太小而不被小孔002排阻《圖1E》。一個微粒001也可能是可變形以致於在一個驅動力下擠壓經過一格小孔002《圖1F》。於圖1G,微粒001被切線力004趨動,以致於無法移動進入可能會補捉到微粒的小孔002的狹窄部份。在圖1E、1F、和1G中的微粒並不被認為因過濾器受到尺寸排阻或物理性限制。
此處使用的術語『過濾(filtration)』通常包含:但非侷限,在一個分開微粒裝置中,使用或不使用過濾器的「微粒分開(particle separation)、分別法(fractionation)、微粒分離(particle isolation)、洗選(washing)、濃縮(concentration)、加濃(enrichment)、純化(purification)、及/或交換緩衝液(buffer exchange)」。『過濾』也用來指「部分或完全的移除或保留一個或更多的微粒密數」。此處使用的術語『過濾』也包括特殊的應用,例如細胞分開、幹細胞分離、減白血球(leuko-reduction)、白血球分離(leukocyte isolation)、癌細胞分離(cancer cell isolation)、臍帶血體積減少(cord blood volume reduction)、血漿撇取(plasma skimming)、及基質血管部份的生成(generation of stromal vascular fractions(SVF))。
此處使用的術語『過濾器(filter)』係指:但非侷限,一種構造,包含多個被稱為『小孔(pores)』的開口或液體通路。此處使用的術語『小孔(pores)』包含例如在一個過濾器上或內的一個開口或液體通路。一個小孔的橫切面形狀可以是:但非侷限,環形(circular)、長方形(rectangular)、圓形(round)、多角型(polygonal)、不規則形(irregular)、長且窄形(long and narrow)、或類縫隙形(slit-like)。此處使用的術語『小孔』包括:但非侷限,柱狀物之間的空間。使用於此處,一個小孔的具體實施例,係在一個流體通道(fluidic channel)中,兩個相鄰柱狀物之間的空間。另一個『小孔』的具體實施例,係在一個水堰構造(weir structure)間的縫隙(gap)和一個流體通道的頂板(ceiling)。
一種過濾器可以用來部份或完全容許某些微粒的通過,及/或不容許通過或減少其他微粒的流動。使用在此處的術語,『過濾器』並不侷限在基於尺寸排阻而阻擋或分開微粒的篩子(sieves);此處使用的一種過濾器的具體實施例包含一個物理性構造,包括障礙物(obstacles)和小孔(pores)。另一種過濾器的具體實施例包含一個物理性構造,其分開微粒係使用分叉的流動(bifurcating flows)和較大於保留物微粒的小孔。再另一種過濾器的具體實施例包含一個物理性構造,使用流動力(flow forces)或流體動力(fluid dynamic forces),保留小於物理性構造小孔開口的微粒。再另一種過濾器的具體實施例包含一個親水性(hydrophilic)模式在一個疏水性(hydrophobic)表面,為水性溶液創造『小孔』或流體通路的大道。
對於『過濾(filter)』,當使用在此處時,意指使用一個過濾器實施過濾工作。
此處使用的術語『保留物(retentate)』包含被一個過濾器保留或無法通過一個過濾器的微粒。此處使用的『保留物』也可以包括含有被保留微粒的液體。此處使用的『保留物』也可以稱為:在本發明之一種具體實施例中,藉由過濾器,包含被保留微粒的液體和微粒產出(output)。此處使用的『保留物』也可以稱為:藉由使用一個包含或不包含過濾器構造的分開的裝置,含有感興趣微粒的液體產出。
此處使用的術語『過濾液(filtrate)』包含「通過一種過濾器的微粒」。在此處使用『過濾液』也包含「含有通過一種過濾器的微粒的液體」。在此處使用『過濾液』也可稱為:於本發明之一種具體實施例中,含有通過一個過濾器的微粒的液體和微粒產出。在此處使用『過濾液』也可稱為:含有一種液體的液體產出,該液體中,藉由使用一種包含或不包含過濾器構造的分開的裝置,感興趣微粒部份或完全被移除。
此處使用的術語『供料(feed)』包含由過濾程序處理的微粒、或進入一個過濾裝置的微粒。術語『供料』也包含一個含有被過濾程序處理的微粒的液體。此處使用的術語『供料』可能包括:但並不侷限,微粒、血液、臍帶血、血清(serums)、脂肪組織(fat tissues)、消化過的脂肪組織(digested fat tissues)、基質血管成份、羊膜液、經血、腦脊髓液(cerebral spinal fluids)、乳汁(milk)、骨髓、尿液和其他體液。
此處使用的術語、一個微粒的『阻留率(retention rate)』,係指藉由一個安裝在裝置中的過濾器,將微粒保留的可能性;此處使用的術語、一個微粒密數(particle population)的『阻留率』,係指被收集成為一個裝置的保留物的微粒密數的比例;此處使用的術語、一種液體的『阻留率』,也指被收集成為一個裝置的保留物的液體的比例。此處所稱的裝置可以包含一個過濾器、一個過濾模組(filtration module)、一個過濾單元(filtration unit)、或一個過濾系統。舉例來說,一個實質地形狀相同的微粒密數的『阻留率』,可以計算為最後保留物中的微粒數目和被處理的供料中的微粒數目之間的比率。某些微粒密數的阻留率可以是過慮程序中被收集做為保留物的供料中這類密數的比例。『阻留率』也可認為是『取回率(recovery yield)』或『剩餘品(carryover)』。
此處使用的術語『物理小孔尺寸(physical pore size)』係指一個小孔的物理空間的尺寸。事實上,一個小孔的『物理小孔尺寸』本質上可以測定為一個不可變形的球體,亦即一個聚合物微粒圓球,的最大直徑,該球體在『死胡同(dead-ended)』過濾結構下,能夠通過小孔而沒有真實的物理限制或尺寸排阻。舉例來說,在一個50微米深的微流體通道(microfluidic channel)中相距10微米(10 μm)的兩個柱狀物空間所包含的一個小孔,具有一個10微米(10 μm)的物理小孔尺寸。同樣地,在一個膜上的一個5微米直徑的環形孔(circular hole)所包含的一個小孔,具有一個5微米的物理小孔尺寸。如果一個小孔包含一個縫隙(slit),物理小孔尺寸大體上就是該縫隙的寬度。以下參考文獻中大規模描述死胡同過濾結構:Zeman,L.J.等人,『微過濾和超過率』(“Microfiltration and Ultrafiltration”),Marcel Dekker,Inc.,ISBN 0-8247-9735-3,頁.328-331(1996),所揭示的關於死胡同過濾結構的描述,併在此處做為參考資料。
此處使用的術語,一個小孔的『有效小孔尺寸(effective pore size)』,係指一個不可變形的球體,亦即一個聚合物微粒圓球(polymer microsphere),的最小直徑,該球體在所希望的流動條件下,能實質地被小孔阻留下來。一個有效小孔尺寸可以根據實驗測量並決定,舉例來說,一個小孔的基準阻留率(baseline retention rate)可以用小的、不可變形的球體來估計,當該小球體在所希望的流動條件下流過小孔時,實質地追蹤流動流線(flow streamlines),而沒有尺寸排阻。大的、不可變形的球體在實質上相同的操作條件下,於較高於基準的阻留率時,可能因為小孔的尺寸排阻而被阻留。最小的、不可變形的球體,該球體在實質上較高於基準的阻留率,亦即高於基準40%、50%、60%、80%、90%、98%、99%、或100%,被保留,其直徑就稱為小孔的『有效小孔尺寸』。當測量有效小孔尺寸時,所使用的微粒最好具備以下特徵:(a)微粒實質上是球形的;(b)微粒實質上是不可變形(non-deformable)且堅硬的(rigid);(c)微粒係懸浮在大體上單一微粒懸浮液中;(d)該微粒懸浮液是稀釋的且實質上沒有微粒-微粒交互作用;(e)微粒經過預期時間區間不會沉澱;(f)微粒實質上不會黏住(stick)或糾結(foul)在流體通道或過濾器表面;(g)微粒不會因為電荷(electric charge)、黏性(sticking)、親和力(affinity)、或磁力(magnetic forces)而彼此交互作用或與流體通道、過濾器表面、或小孔交互作用。以上所述微粒特徵應可了解並非限制。
此處使用的一個裝置的『阻留尺寸(retention size)』係指一種不可變形的球體,亦即一種聚合物微粒圓球,的最小直徑,該球體具有一個阻留尺寸,實質上高於,例如高於一個在大體上相同的操作條件、用該裝置處理的液體的阻留率40%、50%、60%、80%、90%、98%、99%、或100%,一個裝置的阻留尺寸可以根據實驗測量並決定,舉例來說,使用小的、不可變形的球體,可以設立一個液體的阻留率(retention rate)作為基準(baseline),在一組操作條件下,當該小球體實質地追蹤液體的流動運動(flow motion)。混合在液體中的大的、不可變形的球體在實質上相同的操作條件下,可能具有較高於基準的阻留率;最小的、不可變形的球體,實質上具有較高於基準的阻留率,亦即高於基準40%、50%、60%、80%、90%、98%、99%、或100%,其直徑特別訂為該裝置的『阻留尺寸』。此處所謂的裝置可以包含一個過濾器、一個過濾模組(filtration module)、一個過濾單元(filtration unit)、或一個過濾系統。當測量阻留尺寸時,所使用的微粒可具備以下特徵:(a)微粒實質上是球形的(spherical);(b)微粒實質上是不可變形(non-deformable)且堅硬的(rigid);(c)微粒係懸浮在大體上單一微粒懸浮液中;(d)該微粒懸浮液是稀釋的且實質上沒有微粒-微粒交互作用;(e)微粒經過預期時間區間不會沉澱;(f)微粒實質上不會黏住或糾結在流體通道或過濾器表面;(g)微粒不會因為電荷(electric charge)、黏性(sticking)、親和力(affinity)、或磁力(magnetic forces)而彼此交互作用或與流體通道、過濾器表面、或小孔交互作用。以上所述微粒特徵應可了解並非限制。
此處使用的術語『流動排阻(flow exclusion)』係指以一個小孔為中心,藉由液體流動情況達到一個實質上小於物理小孔尺寸的有效小孔尺寸。此處使用的術語『流動排阻』也係指以一種過濾器為中心,藉由液體流動情況達到一個實質上小於過濾器構成小孔的物理小孔尺寸的阻留尺寸。
從以上定義,應可了解本說明書係傳達本發明的精神,並非限制其範圍。
微粒過濾裝置
本發明說明書之面向和具體實施例係提供一種供微粒過濾的裝置,包含:(a)一個第一流動艙室,具有至少一個入口;(b)一個第二流動艙室,具有至少一個排出口;(c)一個過濾器,包含複數的小孔,例如,至少10個小孔。此處,過濾器係配置在第一流動艙室和第二流動艙室之間,且具有一個介於約10微米和約10毫米之間的物理小孔尺寸。第一流動艙室和第二流動艙室組成的構造是過濾器小孔的有效小孔尺寸係實質地減少,例如較物理小孔尺寸減少達到約95%。製作該裝置的材料,例如,包括矽、玻璃或塑膠。一些具體實施例可製作成微粒不會遭遇尖銳稜邊(sharp edges),減少受損(reducing damage)。
依據本發明之面向和具體實施例的一種微粒過濾裝置可以數種不同方式組成構造。於某些具體實施例,第一流動艙室具有至少一個入口,可作為導入一個攜帶液體;其他的具體實施例包含一個第二過濾器和一個第三流動艙室,其中所謂第二過濾器係配置在所謂第一流動艙室和所謂第三流動艙室之間,又其中所謂第三流動艙室包含至少一個排出口。再其他的具體實施例包含一個第二過濾器和一個具有至少一個排出口的第三流動艙室,以致於第二過濾器配置在一個第二流動艙室和一個第三流動艙室之間。
於某些具體實施例,微粒係被至少以下之一者驅動經過該裝置:一個流體流動(fluid flow)、一個流體動力學流動(hydrodynamic flow)、一個壓降(pressure drop)、一個流體動力學壓力(hydrodynamic pressure)、一個壓力源(pressure source)、一個真空(vacuum)、一個頭高(head height)、重力(gravity)、一個離心力(centrifugal force)、一個電場(electric field)、一個電泳場(electrophoretic field)、一個電動力(electrokinetic force)、一個電滲力(electro-osmotic force)、一個毛細作用(capillary action)、或以上之併用。於某些具體實施例,微粒(『供料微粒』)以至少約100供料微粒的一個速率,亦即,每秒102、103、104、105、106、107、108、1010、1012、或1015,通過或被處理經過裝置。於某些具體實施例,裝置具有一個小於500奈升(nl)、200奈升、100奈升、50奈升、20奈升或10奈升滯留體積(hold up volume)。于某些具體實施例,微粒承受一種不會損害微粒的剪應力。
過濾器的具體實施例可以多種方式作成。於某些具體實施例,過濾器具有一排或多排柱狀物或突起物(protrusions),柱狀物或突起物可以是不同的形狀或尺寸;於其他具體實施例,至少有兩排柱狀物或突起物。本發明的其他具體實施例提供一個含有小孔的膜作成的過濾器;又另一些本發明的其他具體實施例提供一種濾網過濾器作成的過濾器。於某些具體實施例,過濾器的構造使得唯力不會遭遇任何尖銳稜邊,所以對於微粒潛在的損害會減少或消滅,當微粒是活的(living)或是凋亡(apoptotic)細胞時,這就很重要。
於本發明的一些具體實施例,過濾器包含小孔,小孔的有效小孔尺寸小於它們的物理小孔尺寸至少約0.5微米:於其他一些具體實施例,有效小孔尺寸小於物理小孔尺寸的95%;於再另一些具體實施例,有效小孔尺寸可能實質地小於物理小孔尺寸,亦即有效小孔尺寸是物理小孔尺寸的約75%、約60%、約50%、約30%、約10%、或約5%;又於再另一些具體實施例,阻留尺寸可能實質地小於物理小孔尺寸,例如,有效小孔尺寸是物理小孔尺寸的約90%、約75%、約60%、約50%、約30%、約10%、或約5%;更於再另一些具體實施例,一個微粒在其經過裝置時,遭遇不超過約5,000小孔。
本發明的各面向和具體實施例可以應用在過濾、分開(separate)、分解(fractionate)、處理(process)、加濃(enrich)、或分離(isolate)許多類型的微粒,如單一或複合的沉澱物、有害物或廢水中找到的重金屬汙染物、或自然發生或化學合成流體如石油、生質燃料(biofuels)或其類似物中找到的汙染物。此外,本發明的某些面向和具體實施例能夠應用在臨床目的,去過濾許多不同類型的細胞如健康的、生病的、正在生長的、正在死亡的、或已死的細胞。細胞的實例有血液細胞、幹細胞、造血幹細胞、源祖細胞、間葉系幹細胞、脂肪幹細胞、CD34+細胞、腫瘤細胞、骨髓細胞、臍帶血細胞、淋巴球、白血球、癌細胞、腦脊髓液細胞、羊膜液細胞、臍帶間質幹細胞、真核細胞、原核細胞、動物細胞、基質血管部份細胞、臍帶衍生細胞(umbilical cord derived cells)、肝細胞(liver cells)、神經元細胞(neuron cells)、和免疫細胞。其他的細胞類型包括細菌細胞、酵母細胞和不正常細胞(abnormal cells)。
本發明的各面向和具體實施例能夠應用在處理、過濾、分開、或分解許多類型的流體,例如血液、臍帶血、血清、脂肪組織、消化過的脂肪組織、基質血管部份、羊膜液、經血、腦脊髓液、乳汁、骨髓、和尿液。
本發明的各面向和具體實施例也包括使用一種或多個前述裝置的微粒過濾的方法。於某些方法的具體實施例中,供料微粒經過入口被導入裝置的第一流動艙室中、且一個驅動力施予給微粒、推動微粒經過該裝置,從第一流動艙室的排出口收集保留物微粒;而過濾液微粒則從第二及/或第三流動艙室的排出口被收集。於某些具體實施例中,一個攜帶液經過至少一個入口被導入裝置的第一流動艙室中。
流動排阻原理
使用流動分叉(flow bifurcation)代替尺寸排阻可以發生過濾,特別是,在某些流動配置(flow arrangements)之下,小微粒可以被大的過濾器小孔阻留;因為小微粒被該流動排阻進入一個大的小孔,此處,這個效果被稱為『流動排阻(flow exclusion)』。流動排阻效果早在1921年在微循環(microcirculation),亦即小血管中的血流被觀察到《Krogh,A.“Studies on the Physiology of Capillaries:II.The Reactions to Local Stimuli of the Blood-vessels in the Skin and Web of the Frog”J.Physiol.55(5-6):412-422(1921);Fahraeus,R.“The Suspension Stability of the Blood”Physiological Reviews 9:241-274(1929)》。當一個小血管分支成兩個血管,如果流動型態該變為較有利於尺寸排阻,即使沒有防止細胞進入低流動速率的血管的物理限制或尺寸排阻,血液細胞可能優先進入有較高流動速率的血管《圖2A》,此效果發生是因為細胞、血管、和血流間的複雜的流體動力學交互作用及力量。當兩個分支中的流動速率顯著不同時,流動排阻是最明確的,再者,有核細胞看似比無核細胞,亦即紅血球和血小板更顯著地受到流動排阻。
各種不同的學說發展出來,嘗試解釋在微血管(microcapillaries)中觀察到的流動排阻:Krogh,A.“Studies on the Physiology of Capillaries:II.The Reactions to Local Stimuli of the Blood-vessels in the Skin and Web of the Frog”J Physiol 55(5-6):412-422(1921);Fahraeus,R.“The Suspension Stability of the Blood”Physiological Reviews 9:241-274(1929);Svanes,K.等人,“Variations in Small Blood Vessel Hematocrits Produced in Hypothermic Rats by Micro-Occlusion”Microvasc Res.1:210-220(1968);Yen,R.T.等人,“Model Experiments on Apparent Blood Velocity and Hematocrit in Pulmonary Alveoli”J.Appl.Physiol.35:510-517(1973);Mayrovitz,H.N.等人,“Leukocyte distribution to arteriolar branches:dependence on microvascular blood flow”Microvasc Res.29(3):282-294(1985)。
如果仔細思考納維-斯托克斯方程式(Navier-Stokes equation),可以得到靈感,該方程式闡示不能壓縮的牛頓學說液體(incompressible Newtonian fluids)的流體動力學行為(hydrodynamic behavior):
此處,ρ是該流體的密度;v是該流體的速度;p是壓力;μ是黏滯度;且f是外部物體力量,例如重力。仔細思考在一個分支的血管中,一個單一細胞的移動,如圖2A所示,分析細胞的移動路徑,在細胞上確實的流體流動分布和力量必須計算出來,這通常是一個令人受挫的工作,因為即使只為一個單一細胞也需要密集的電腦計算;當許多細胞與其他細胞相互作用時,問題變的更困難,例如假設是計算血流。或許要了解流動排阻如何發生,最簡單的方法是應用白努利原理(Bernoulli’s principle),該原理說明:流體速度增加時,同時發生壓力減少。因為兩個分支血管間的流動速率差,一個細胞感受到一個像著具有較高流動速率的血管的上升力量(lift force)《圖2B》。此上升力量防止或阻止該細胞進入較低流動速率的血管,即使該血管可能物理性地足夠大,容許該細胞通過,因此發生流動排阻。顯然地,上述學說可能將以下原因過度簡化:(a)相關的流體,像血液或骨髓可能不是牛頓學說的;(b)微粒濃度如此高,微粒-微粒間的交互作用可能是一個影響微粒運動的主要因素;(c)相關的微粒在反應流體動力學力量時,是可變形的且有柔韌性的。
依據切流式過濾(tangential flow filtration)和流動排阻,本發明的各面向和具體實施例可以被瞭解,而不需要抓住特殊的機轉或學說。於一種本發明具體實施例,一個包含大的小孔的過濾器被用來保留相對小的微粒,與傳統切流式過濾大不相同,其中小的小孔藉由尺寸排阻被用來保留大的微粒。本發明某些具體實施例的一個顯著優點是微粒損害和過濾器阻塞明顯減少或消失,能夠以高處理量處理可變形的及/或脆弱易碎的微粒。如圖3所示,本發明具體實施例可以使用一個切線流(tangential flow)301、一個包含柱狀物302和小孔304的排列配置的過濾器306、和一個流動艙室303《圖3A》;於某些具體實施例,流動艙室303可能沿著流體流動方向逐漸變寬,使得在操作狀態下,只有切線流301的小分數部分(fraction)被抽取經過小孔304;流動艙室303變寬的比率、再加上過濾器的幾何構造,決定被抽取經過每個小孔304的流動數量,流動艙室303擴展越平緩,其抽取經過小孔的流動就越少。
在層流(laminar flow)的情況下《圖3A》,切線流301繞著每個小孔302分叉,極類似在微循環中血流在分支血管週圍分叉。如果進入一個小孔304的分支流動305具有一個比切線流301的流動速率小了許多的流動速率,則流動排阻效果可能發生,一個流過柱狀物302的微粒321可能或不可能進入該小孔304,端視流動排阻在微粒上的強度《圖3B》。因為不停細胞類型感受不同的流動排阻效果,且因為流動排阻是通過一個小孔的流動速率的一種作用,因此藉由控制在小孔304的流動速率,人們可以創造一個流動排阻情況,用於分開某些細胞類型,舉例來說,設計一種逐漸變寬的流動艙室303以創造分支的流動情況,可以引起在淋巴球311的強烈流動排阻《圖3C》,其結果,淋巴球311被過濾器306保留下來,而紅血球312通過過濾器306。於本發明的某些面向和具體實施例,流動排阻被應用作為微粒過濾的基礎。
於本發明的某些面向和具體實施例,經過一個小孔的容積流動速率(volumetric flow rate)是遠遠小於切線流者,利用在低雷諾數(Reynolds number)情況的一個層流中一個單一堅硬球體微粒的電腦流體動力學計算,有效小孔尺寸可估計為一個被抽取通過為一個微粒設計的小孔的流動數量的函數,圖4顯示一個顯示在圖5A的具體實施例的這種計算的結果,假設一個流動艙室深度為30微米(μm)、一個供料入口寬度為110微米、一個柱狀物直徑為30微米、及相鄰柱狀物間的中心至中心的距離為40微米,產生一個物理小孔尺寸為約10微米。當通過每個小孔的流動速率在供料入口502是切線流速率的約0.4%,則有效小孔尺寸是大約3.8微米,此顯著地小於10微米的物理小孔尺寸。
然而須注意,當通過每個小孔的容積流動速率,在入口處大約是切線流速率的1.6%,則有效小孔尺寸變成約與物理小孔尺寸相同;當通過每個小孔的流動速率,在入口處大於切線流速率的1.6%,尺寸排阻變成分開微粒的主要基礎,且裝置變成一個傳統的過濾裝置。不同於傳統的切流式過濾應用一個穿膜壓(transmembrane pressure)以達到尺寸排阻為基礎的分開,本發明應用一種在小孔周圍的流動速率分布(flow rate distribution),達到流動排阻為基礎的分開。
雖然前述電腦計算提供吾人對於在理想化和過度簡單化情況下《一個單一、堅硬的、球形微粒,在牛頓學說液體中而沒有布朗運動(Brownian motion)》的流動排阻的理解,但本發明中供料微粒的過濾過程可能實質地是隨機的(stochastic)、以或然率描述,且可能不是決定論的(deterministic)。
微粒-微粒交互作用、微粒變形、及布朗運動,還有其他因素,可能改變流動型態和施加在微粒上的力量,導致流動排阻是隨機的。此流動排阻的隨機本質可能是顯著的且非常實質的,特別是當供料微粒包含氟咱的微粒和液體,亦即血液、臍帶血、骨髓、基質血管部份等等。要正確認識此種真實世界樣本的複雜性,吾人可以慎重考量臍帶血,一個典型的臍帶血樣本每毫升(milliliter)含有約40億紅血球、1千萬白血球、和2億血小板,這些細胞構成約40%的血液容積、且它們相互作用時可以變形,再者,這些細胞在重力下以不同速率沉降。沒有明顯地稀釋樣本,亦即藉由一個1,000、10,000、100,000或更多的因子,微粒-微粒交互作用可能使血液細胞隨機地移動,因此使用本發明的一種具體實施例,實質上無法事先估計哪一個特別細胞會被保留。
物理小孔尺寸及有效小孔尺寸
描述一個過濾器和其小孔尺寸特徵的技術是使用堅硬的球體測量微粒保留《Zeman,L.J.等人“Microfiltration and Ultrafiltration”Marcel Dekker,Inc.,ISBN 0-8247-9735-3,頁265-274(1996)》。此發表的文獻所揭示微粒保留測量(particle retention measurements)的樣本一併於此作為參考。可以用在此種測量的微粒實例包括乳膠粒子(latex beads)和聚合物微粒圓球(polymer microspheres)。如前所述,應用此種技術可以測量並顯示『物理小孔尺寸』、『有效小孔尺寸』、和『阻留尺寸』的特徵。使用堅硬的球體做為標準,能夠顯示不同的過濾器和裝置的特徵並做比較,不拘於它們預期的用途。舉例來說,一種傳統用來移除水中細菌的過濾器可以和一種血液過濾裝置做比較,即使細菌可能和血液細胞具有非常不同的大小、形狀、可變形性、電荷、濃度、及其他特徵。
於傳統尺寸排阻過濾,一個小孔的有效小孔尺寸是大於或實質地等於物理小孔尺寸,又一個過濾器的排阻尺寸也大於或實質地等於物理小孔尺寸。相反地,於本發明的某些面向和具體實施例中,利用流動排阻《圖4》,一個小孔的有效小孔尺寸是小於或顯著地小於該小孔的物理小孔尺寸。
雖然使用標準堅硬球體可以顯示並比較裝置的特徵,但是本發明用於生物樣本的真實的具體實施例可以實證地充分應用於每一個特殊的用途。一個明顯地大於一個小孔的有效小孔尺寸的微粒仍可能通過該過濾器,因為微粒可變形或處理過程的隨機本質,此處,這個現象稱為『滲漏(leakage)』。在一種傳統的過濾器,其有效小孔尺寸是大於或實質地等於物理小孔尺寸,當滲漏發生時,微粒就易於阻塞和結垢淤塞過濾器;當可變形和脆弱的微粒滲漏通過一種傳統的過濾器時,微粒可能遭遇大的剪切(shear)並受到損害或裂解(lysed),除了阻塞(clogging)還引發一個過濾器結垢(filter fouling)串接小瀑布(cascade)。這在生物樣本和細胞的使用用途上是一個嚴重的問題。
本發明的某些面向和具體實施例包含方法及裝置,係應用小孔實質地大於其有效小孔尺寸,因此顯著地減少或避免過濾器結垢或阻塞。此外,本發明的具體實施例應用低容積流動速率通過它們的小孔作為創造流動排阻的方法。合併大的小孔和小的流動速率使低剪切容易出現在小孔內和小孔周圍,因此更進而減少結垢淤塞、阻塞、微粒活化、和微粒受損問題。
過濾模組、單元、和裝置
過濾器模組
本發明的另一種具體實施例示一個過濾器模組(filter module),顯示在圖5A。一個第一流動艙室501具有一個入口502和一個排出口503,供料微粒,亦即將以過濾處理的微粒,進入該入口502,並使用一個驅動力、驅動微粒從入口502朝向排出口503經過第一流動艙室501。第一流動艙室501以一個過濾器508與第二流動艙室504分開又有液體連結,過濾器508包含一個排列配製柱狀物505,柱狀物間的空間設置過濾器508的小孔506。第二流動艙室504係配置來抽取通過穿越過濾器508的小孔506的小量流動,以接受過濾液微粒、並經過一個過濾液排出口507獲得過濾液微粒。通過每一個小孔506的流動速率設計為一個小分數部份,亦即在第一流動艙室501的入口502的流動速率的1/10、1/20、1/30、1/50、1/100、1/200、1/300、1/500、1/1,000、1/2,000、1/5,000、1/10,000、1/20,000、1/50,000、或1/100,000、以促進流動排阻。於某些具體實施例中,小孔506製造成的尺寸使物理小孔尺寸係實質地大於有效小孔尺寸,有些過濾器508的具體實施例可能具有從約10到約50,000個小孔506,亦即10、20、50、100、200、500、1,000、2,000、5,000、10,000、或50,000個小孔。為了更方便進一步的討論,第一流動艙室501,係供料和保留物微粒移動,此處稱為『保留物艙室(retentate chamber)』,而第一流動艙室504,係過濾液微粒移動,稱為『過濾液艙室(filtrate chamber)』。
使用一個液體流動、一個驅動壓力、一個真空、一個一個頭高(head height)、重力(gravity)、一個離心力(centrifugal force)、一個磁力、一個毛細作用、或以上之併用,可以創造各種不同的微粒內部流動的具體實施例;利用一個電場(electric field)、一個電泳場(electrophoretic field)、一個介電泳場(dielectrophoretic field)、一個電滲力(electro-osmotic force)、一個電動力(electrokinetic force)、或以上各力的併用,可以創造該微粒流動(particle flow)。這些場或力可以移動微粒且可能或不可能移動含有微粒的流體。在一些例子當中,這些場或力可以移動微粒而不移動含有微粒的流體,舉例來說,缺乏任何電動力時,一個電泳場可以驅動帶電微粒通過一種本發明之裝置的具體實施例而不必創造一種液體流動。在重力的例子中,微粒的密度大於液體的密度,可能會在液體中沉降;於其他例子中,液體可能以與微粒相反方向流動。顯然地,這些例子當中不會發生流動排阻。然而,在裝置中的驅動力可以創造自己的流動排阻,大多如同液體流動所發生,因此,重力、離心力、電場、電泳場、和電動力也可以用來驅動微例,並達到不依賴尺寸排阻或物理限制的過濾效果。
於某些具體實施例,柱狀物505可能具有與它們寬度相同的高度,因此就有一個接近1的縱橫比,亦即0.8、0.9、1.0、1.1、1.2、或1.3,如圖5B和5C所示;或者,柱狀物505可能具有的高度小於它們的寬度,因此就有一個實質地小於1的縱橫比,亦即0.1、0.2、0.3、0.4、0.5、或0.6,如圖5D所示;或者,高度大於它們的寬度,因此就有一個實質地大於1的縱橫比,亦即1.5、2、3、5、8、10、20、100、500、2,000、或10,000,如圖5E所示。高縱橫比的柱狀物設計具有較高的容納量和處理量的優點;相反地,低縱橫比的柱狀物設計具有容易製造的優點。柱狀物505可以變成逐漸窄化或細小《圖5E》,出模角(draft angle)可以接近90度,亦即80、85、87、88、或89度;逐漸細小的柱狀物有助於脫模(demolding)且可以使用射出成形(injection molding)、凹凸壓紋(embossing)、軟蝕刻(soft lithography)、或其他較不困難的摹寫複製技術(replication techniques)來製造。
於某些具體實施例,保留物艙室50的側壁和過濾液艙室51的側壁大約是互相平行《圖5A》;於某些具體實施例,保留物艙室501可能有一個實質固定寬度、可能逐漸變寬、或可能逐漸變窄《圖6》,保留物艙室501在寬度上的一個改變可能產生艙室501中流動速率的改變和因此所生的剪應力(shear stress)。在圖6B所描述的具體實施例中,因為供料液體被抽取到過濾液艙室504中,當液體朝向排出口503移動時,保留物艙室501中的流動速度逐漸地變小;相反地,於圖6A所描述的具體實施例中,當保留物艙室501和過濾液艙室504的全部橫切面積變的越來越小,保留物艙室501中的液體可能加速朝向排出口503。過濾液艙室504變寬的程度可以實質地決定被抽取通過小孔506的流動數量,且可以充分應用於一個所希望的有效小孔尺寸。
於本發明另一種具體實施例,保留物艙室可能從入口側向著保留物排出口逐漸變窄,而過濾液艙室可能朝向過濾液排出口逐漸變寬。想得到高的流動速率和低的剪應力的應用用途,較合於理想的是:保留物艙室在入口側是寬的、在排出口側是窄的,這樣的構造可以保持在入口處的低流動速度又保持低剪應力遍及保留物艙室。於本發明另一種具體實施例,保留物艙室作成的構造是從入口側向著保留物排出口逐漸變窄,且當液體從入口流向排出口時,可以保持保留物艙室內的平均流動速度實質地不變。於本發明另一種具體實施例,保留物艙室和過濾液艙室的構造使得當液體從入口流向排出口時,在保留物艙室內的平均流動速度是實質地不變。
於本發明另一種具體實施例,過濾器包含排列配置在曲線(curve)上的柱狀物《圖7》,過濾器的『彎曲(curving)』可能產生一個過濾器特徵,那就是:每一個小孔可以具有不同的有效小孔尺寸,這些尺寸係設計來達到某種過濾要求。圖7A所描述的具體實施例,過濾器701與過濾液艙室711的側壁710最初形成一個小角度,讓過濾液艙室抽取非常小量的通過過濾器701的流動;然後過濾器702和側壁710間的角度變的較大以增加被抽取通過小孔的流動量,產生較大的有效小孔尺寸;過濾器703和側壁710間的角度朝向過濾液排出口720可能變的較小,減少被抽取通過小孔的流動量。於圖7B,過濾器704包含排列配置在曲線上的柱狀物,設計為保持一個可靠的過濾器特徵。每一個小孔的有效小孔尺寸係其從入口722到排出口721的位置的函數,顯示於圖7A和圖7B的具體實施例分別定性地描述於圖7C和圖7D。吾人應可理解:依照針對思考後的特殊應用而要求的過濾器特徵,也可能使用其他的柱狀物排列配置。
於又另一種具體實施例,通過每個小孔的流動速率本質上是一致的;於再另一種具體實施例,被抽取通過每個小孔的流動速率係小於或等於切線流的流動速率的一個最大分數部份(maximum fraction)x,其中x的範圍從約1/5到約1/100,000,舉例來說,一個預期的x是1/5、1/10、1/20、1/50、1/100、1/200、1/500、1/1,000、1/2,000、1/5,000、1/10,000、1/20,000、1/50,000、或1/100,000。此具体實施例的一個實例顯示在圖5,過濾器包含柱狀物約10到約100,000之間,亦即約10、20、50、100、200、500、1000、2,000、5,000、10,000、30,000、或100,000柱狀物,柱狀物和過濾液艙室構造係以有效小孔尺寸實質地小於物理小孔尺寸的方式作成。
於再另一種本發明具體實施例,過濾器包含一個柱狀物排列配置是均等空間分佈,如圖5、圖6、和圖7所示。於再另一種本發明具體實施例,柱狀物是不均等空間分佈,如圖8所示。對於某些應用方面,改變物理小孔尺寸使得某些微粒得以通過物理上的大的小孔是有利的。柱狀物可能有不同的橫切面形狀,合於理想的橫切面形狀的實例包括:但非侷限於,如圖9所示者,亦即圓形《圖9A和圖9B》、卵形(oval shaped)《圖9C》、橢圓形(elliptical)《圖9D》、蛋形(egg shaped)《圖9E和圖9F》、機翼形(airfoil shaped)《圖9G》等等。一個過濾器也可包含不同形狀及/或尺寸《圖9H》的柱狀物,為了溫和分開脆弱微粒,較合於理想的是沒有會碰觸微粒的尖銳邊緣,因為尖銳的邊緣會切開、撕開、或裂解脆弱微粒。雖然很多需要溫和分開的應用上喜歡採用無尖銳柱狀物表面,但也可能使用長方形、正方形、或多角形柱狀物橫切面,例如在不需要考慮微粒受損的情形時。
於本發明的另一種具體實施例,過濾液艙室901具有一個波浪狀側壁902,含有交替的凸面(convex)和凹面(concave)部分《圖9A》,且波浪狀側壁的週期與小孔903的中心到中心(center-to-center)距離一致,波浪狀側壁可幫助穩定該流動病維持小的有效小孔尺寸。
吾人應可瞭解:在本發明之具體實施例中,過濾器可以包含不同形狀和大小的柱狀物,平均排列或不平均排列在一條直線上或一條曲線上,以達到過濾器的某些特徵。
於本發明的另一種具體實施例,過濾液艙室504比保留物艙室501為淺《圖10》,於此具體實施例中,過濾器508包含一個連續的表面512和柱狀物505,過濾液艙室504可能比某些大的保留物微粒321為淺《圖10C》,然而,因為保留物微粒321是從物理小孔被流動排阻,它們實質上絕不會進入淺的過濾液艙室504、或小孔的狹窄部分(narrow parts)571《圖10C》,因此,與尺寸排阻相關聯的不利影響,在這個具體實施例,就幾乎沒有發生。此設計減少了柱狀物505的縱橫比(aspect ratios)而不會減少過濾器面積或深度,並且可使裝置的製造簡單又堅固。
於本發明的又另一種具體實施例,一個過濾器模組包含一個保留物艙室130、一個包含濾網過濾器(screen filter)的過濾器131、和一個控制流穿濾網過濾器131的流動的過濾液艙室132《圖11A和11B》。該流動艙室130、132包含具有窩凹(recesses)的敷層(layers)133、134,過濾液艙室132在敷層134中包含一個逐漸變深的窩凹,其配置係抽取小量的通過過濾器131的流動,過濾器131係被夾在保留物艙室敷層133和過濾液艙室敷層134之間,這個具體實施例可以有大的過濾範圍、且能達到非常高的容量和處理量。此具體實施例的一個變化包含一個夾在保留物艙室敷層133和過濾液艙室敷層134之間的多孔過濾敷層(porous filter layer)131《圖11C和11D》,該多孔過濾敷層可包含:例如一個蝕刻性微孔膜(track etched membrane)、或一個雷射加工金屬板(laser machined metal sheet)等,該敷層可以膠黏、接合、或單純緊壓在一起《圖11C和11D》。在過濾器131上的小孔可以規則地間隔,如圖11A至11D所示;或可以不規則任意分佈,如放射蝕刻性微孔膜過濾器(radiation track etched membrane filters)。
以上描述的本發明具體實施例可使用作為集中微粒、或從一個過濾液微粒密數(particle population)移除一個保留物微粒密數的裝置,然而,在某些例子中,較合於理想的是從保留物密數排空過濾液密數、或在一個不同液體中分離保留物微粒。
舉例來說,在某些例子中,較合於理想的是從全血(whole blood)分離有核血液細胞(nucleated blood cells)、並盡可能地移除許多無核紅血球,一個攜帶液522可被導入保留物艙室501《圖13》。於一個具體實施例中,保留物流動艙室501包含除了至少一個供料入口502、又有至少一個攜帶液流動入口(carrier flow inlet)521。此處,一個攜帶液522可以注射進入保留物艙室501並形成一個與供料流動奔流(feed flow stream)523並排的層流流動奔流(laminar flow stream)522,該層流流動情形可以使攜帶液流動522和供料流動523並排地移動而沒有對流的混合,兩個奔流522、523間的界面係如圖13所顯示的虛線524。保留物微粒531可以被含有柱狀物505的過濾器阻留並且從供料奔流523移動到攜帶液奔流522,在保留物排出口503,保留物微粒531是在攜帶液奔流522之中,因此,實質地排除過濾液密數;依據所希望的純度要求,攜帶液流動速率可以小於、等於、或大於保留液流動速率。吾人應可了解,攜帶液可以相通的方式應用在本發明的任何一種具體實施例,並不侷限於任何特殊具體實施例。
攜帶液流動也可以被導入為沖洗、處理或分類保留物微粒。於某些具體實施例中,可以導入超過一種以上的攜帶液流動以處理保留物微粒,舉例來說,使用本發明的某些具體實施例,將在一個連續流動方式中的細胞分類並沖洗,一個含有對抗特定保留物細胞(retentate cells)的抗體標籤(antibody labels)或染色(stains)的溶液,可以導入,與供料流動並排,作為第一攜帶液流動(first carrier flow),而一個沖洗溶液作為第二攜帶液流動(second carrier flow),緊接著第一攜帶液流動導入。由於流動排阻,保留物細胞可以從供料流動移動進入第一攜帶液流動,細胞在該處被加染色或標示,然後,可以從第一攜帶液流動移動進入第二攜帶液流動,細胞在該處被沖洗。本發明的任何一種具體實施例,保留物艙室可能使用超過一個以上的入口,用來導入攜帶液流動。
雙重過濾模組
在某些具體實施例中,兩個實質上一致的過濾器模組可以合併,作成一個『雙重過濾模組(dual filter module)』。於一個具體實施例中,兩個過濾器模組可以互相形成鏡像(mirror images)並共用一個保留物艙室,形成一個『雙重過濾模組』《圖14A》,保留物艙室501具有至少一個入口502和一個排出口503,供料微粒進入該入口502,並藉由例如一個液體流動、一個壓降、一個流體力學壓力、一個壓力源、一個真空、一個頭高、重力、一個離心力、一個電場、一個電泳場、一個電動力、一個電滲力(electro-osmotic force)、一個毛細作用(capillary action)、或以上之併用,被驅動朝向排出口503,通過流動艙室501;保留物流動艙室501可以藉由一個過濾器508與兩個過濾液流動艙室504的每一者分開,並且對稱地排列配置在中線(centerline)514兩側。
過濾器508的具體實施例可包含一種從約10到約100,000柱狀物505的排列,亦即10、20、50、100、200、500、1,000、2,000、5,000、10,000、20,000、或100,000柱狀物,柱狀物間的開口組成過濾器508的小孔506;過濾液艙室504可設計為抽取小量通過每個小孔506的流動,且經由過濾液排出口507移除過濾液微粒。通過每個小孔506的流動速率可以設計為在保留物艙室501的流動速率的一個小的分數部分(fraction),亦即1/10、1/20、1/30、1/50、1/100、1/200、1/300、1/500、1/1,000、1/2,000、1/5,000、1/10,000、1/20,000、1/50,000、或1/100,000,以有助於流動排阻。
於任何雙重過濾模組的具體實施例中,保留物艙室可以更進一步包含一個攜帶液流動入口521《圖14B》,一個攜帶液流動522被導入在兩個供料流動523之間,所以保留物微粒在保留物排出口503被收取到攜帶液流動522中,此具體實施例就可以產生高純度的保留物微粒。
另一種雙重過濾器模組的具體實施例顯示在圖15,其中兩個過濾器模組形成鏡像(mirror images)並共用一個過濾液艙室。包含一個過濾液排出口507的過濾液艙室504係設置在兩個保留物艙室501之間,過濾液艙室504可抽取通過在過濾器508的小孔506的一個小量流動,以協助流動排阻;供料流動可經由一個入口502進入保留物艙室501。保留物微粒可在保留物排出口503被收取;過濾液微粒可在過濾液排出口507被收取。此具體實施例更進一步包含至少一個攜帶液流動入口521《圖15B》,建立一個與供料流動奔流523並排的攜帶液流動奔流522,則保留物微粒可在攜帶液流動奔流522被收取。再一次,攜帶液流動增加了保留物微粒的純度。
多重過濾器模組
雙重過濾器模組可以再進一步共用一個保留物艙室或一個過濾液艙室,以形成多重過濾器模組(multiple filter modules)《圖16》。於顯示在圖16A的具體實施例中,兩個雙重過濾器模組《圖14A》共用一個過濾液艙室並形成模組中具有四個過濾器的一個多重過濾器模組;再者,超過兩個以上的雙重過濾器模組也可以共用保留物艙室或過濾液艙室,形成多重過濾器模組《圖16B》;一個雙重過濾器模組設計也可以合併一個過濾器模組,形成一個包含三個過濾器的多重過濾器模組;一個多重過濾器模組設計也可以用相同方式合併一個過濾器模組。
過濾器串流瀑布模組
在某些具體實施例中,兩個或以上過濾器模組、雙重過濾器模組、或多重過濾器模組可以連結成串,形成一個『過濾器串流瀑布模組(filter cascade module)』。於顯示在圖17A的具體實施例中,兩個實質一致的過濾器模組171、172係串連一起,第二模組172的入口177與第一模組171的排出口503、507有液體連結;供料微粒進入第一模組171的入口502,並可被第一過濾器173分開為保留物和過濾液。當裝置係以層流情況操作時,保留物和過濾液可以形成兩個並排的平行層流奔流,在分開後不會對流混合;當兩個微粒奔流進入第二模組172,從第一模組171來的過濾液會遇到第二過濾器174,有些微粒在此被阻留;過濾器串流瀑布模組170的保留物可在排出口503收集。
過濾器串流瀑布模組170的過濾液整體通過兩個過濾器173、174,且可在排出口507被收即。此具體實施例增加保留物微粒的取回率(recovery yield),因為沒有被第一過濾器173阻留的微粒可以被第二過濾器174阻留。同樣地,兩個或以上雙重過濾器模組可以合併串連,形成一個過濾器串流瀑布模組《圖17B》,第二模組172的入口177與第一模組171的排出口503、507有液體連結;兩個或以上雙重過濾器模組可以用相同的方式合併串連。其它過濾器構造,例如多重過濾器模組,也可以合併串連,形成一個過濾器串流瀑布模組。
吾人應可了解,連結成串、作成一個過濾器串流瀑布模組的過濾器模組、雙重過濾器模組、或多重過濾器模組可以是實質一致或不一致,又,可以具有實質一致或不一致的有效小孔尺寸或阻留尺寸。在任何一個過濾器串流瀑布模組的具體實施例,一個模組的保留物艙室可以更進一步包含一個攜帶液流動入口。圖17C顯示一個包含兩個雙重過濾器模組171、172的過濾器串流瀑布模組,雙重過濾器模組172包含一個攜帶液流動入口175,該入口包含一個通道(channel)和一個通過孔(through hole)176。圖17D顯示一個包含兩個雙重過濾器模組的過濾器串流瀑布模組,雙重過濾器模組包含兩個攜帶液流動入口521、175。
具有實質上不同有效小孔尺寸或阻留尺寸的不同過濾器模組、雙重過濾器模組、或多重過濾器模組可以合併作成一個過濾器串流瀑布模組,此種模組能夠將供料分切(fractionate)成多個分數部份(fractions)。於一種具體實施例中,如圖18A所示,一個串流瀑布模組180包含一個第一過濾器模組181和一個第二過濾器模組182,第一模組181包含一個第一艙室501,該艙室含有一個為供料的入口502和一個為第一保留物,此處稱為『分數部份1(fraction 1)』,的排出口503。一個第一過濾器508係配置在第一艙室501和一個第二艙室504之間,第二艙室可設計為抽取一個小量的通過在第一過濾器508的小孔的流動,以幫助流動排阻,並可接受來自第一過濾器的過濾液作為第一過濾液(first filtrate)。第一模組181的過濾液排出口183與第二模組182的入口184係有液體連結,第二模組182包含一個過濾器509,可以阻留第一過濾液的一個子密數(subpopulation)作為『分數部份2』,該分數部分係在一個排出口510被收取。一個第三艙室511可安裝來接受第二過濾器509的過濾液,且可抽取一個小量的通過在第二過濾器的小孔的流動,以幫助流動排阻。第二過濾器509的過濾液可經由排出口507排出,又,此處稱為『分數部份3』。第二模組182可應用一個比第一模組181較小的阻留尺寸,兩個模組181、182排列配置以減少第二艙室504的長度《圖18B》。於本發明另一種具體實施例中,如圖18C所顯示,一個串流瀑布模組180包含一個第一過濾模組181和一個第二過濾模組182,第二模組182的入口184係連結到第一模組181的排出口183、186,當模組180在平行層流流動情形下運作時,第一模組181的過濾液和保留物可並排地流動,如同兩條分開的流動奔流,不會對流混合,兩條奔流間的界面係如顯示的虛線185。串流瀑布模組180可將供料分切(fractionate)成三個不同的分數部份:分數部份1、分數部份2、和分數部份3,此三者可個別地經由出口503、510、和507被收集,為了增加分數部份1的純度,可經由入口521導入一個攜帶液。
圖18D描述當分開稀釋的堅硬球形微粒(rigid spherical particles)成為三個分數部分時,一個串流瀑布模組可達到的定性的尺寸分布結果(size distribution outcome),複合的供料例如血液,可分開成三個或更多的分數部分,此種分開可以用數個因子為依據,包括微粒-微粒交互作用、微粒的可變形性、及/或非牛頓系統流體(non-Newtonian fluid)性質。
雙重過濾模組和多重過濾模組可以串流作成過濾器串流瀑布模組,其方式與過濾器模組相同。圖19顯示兩種此類具體實施例,圖19A顯示一個具體實施例,描繪兩個圖18C所示的過濾器串流瀑布模組共用保留物艙室501的一個鏡像配置,微粒被分切並在排出口503、510、507被收集;同樣地,兩個圗18C的過濾器串流瀑布模組可共用艙室504,作成一個圗19B所示的具體實施例。
依照微粒的機械性質,亦即大小、形狀、可變形性、柔軟性(flexibility)、彈性(elasticity)、及/或黏滯度(viscosity),過濾器串流瀑布模組可用來分開微粒成三個或更多的分數部份,舉例來說,一個過濾器串流瀑布模組可分切全血(whole blood)為淋巴球、顆粒球(granulocyte)、和紅血球密數。另一個過濾器串流瀑布模組的具體實施例可分切酵素消化過的脂肪組織(enzyme digested fat tissues)為細胞、一個包含脂肪幹細胞、和血液細胞的基質血管部份。
另一種過濾器串流瀑布模組的具體實施例顯示在圖20A,一個保留物艙室501在一個入口502可接受一個供料液,該供料被驅動對抗一個第一過濾器508,一個第一過濾液艙室504可構造為抽取小量通過第一過濾器508的小孔的流動,以幫助流動排阻,並從第一過濾器508收集過濾液。第一過濾器508的保留物可以進入第二過濾器模組對抗一個第二過濾器509,一個第二過濾液艙室516可構造為抽取小量通過第二過濾器509的小孔的流動,並經由一個排出口513,從第二過濾器509收集過濾液。第一過濾器508的有效小孔尺寸的構造可以小於第二過濾器509的有效小孔尺寸,第二過濾器的保留物可經由在保留物艙室501的一個排出口503收取。
因為是在平行層流運作的狀況,圖20A的具體實施例可以簡化為如圖20B所示,兩個不同阻流尺寸的過濾器508、509的過濾液可用相同的過濾液艙室504收集,兩個過濾液不會對流地混合且可經由兩個排出口541、542,各別地被收集。
於圖20A和20B所示之具體實施例中,供料微粒可被分切為三個分數部分:第一過濾器508的過濾液(分數部分3)、第二過濾器509的過濾液(分數部分2)、和第二過濾器509的保留物(分數部分1),對於包含堅硬球形微粒的供料,三個分數部分的尺寸分布的實例被定性描述於圖20C。吾人應可了解,過濾器串流瀑布模組可以作成雙重過濾器串流瀑布模組(dual filter cascade modules)《圖21》,如同兩個過濾器模組可以作成雙重過濾器模組一般《圖14、15》;圖20A和20B的雙重過濾器模組可更進一步串流,以相同的方式,如圖14A的兩個雙重過濾器模組作成圖17B的一個串流瀑布模組,作成串流瀑布模組。
吾人應可了解,過濾器串流瀑布模組可包含兩個或更多的過濾器模組、雙重過濾器模組、或多重過濾器模組。
以上過濾器串流瀑布模組的具體實施例也可使用一個攜帶液流動或多個攜帶液流動,用來增加保留物的純度、沖洗微粒、用不同世紀當作攜帶液處理微粒、或標示微粒。
吾人應可了解,雙重過濾器串流瀑布模組可包含兩種以上阻流尺寸的過濾器,用來將一個供料分開為三個分數部份。又吾人亦可了解,雖然前面所描述的雙重過濾器串流瀑布模組的具體實施例係對稱於中線,但是一個雙重過濾器串流瀑布模組可以是對稱的,或者是在中線的相對側包含具有不同有效小孔尺寸的過濾器。
其他模組構造
於本發明的另一種具體實施例中,一個過濾器模組,包含一個保留物艙室、一個過濾器、和一個過濾液艙室,可以是彎曲,這樣的過濾器模組具體實施例當需要一個很長的過濾長度時,具有縮小佔地面積(reduced footprint)的優點;另外的選擇,過濾器模組和過濾器串流瀑布模組可排列配置為蜿蜒的形狀(serpentine shape)。
模組可合併已得到不同的過濾器特徵,舉例來說,圖22A顯示一個本發明具體實施例,可有效地濃縮保留物微粒,供料經由入口220進入第一模組221,第一模組可以集中濃縮在供料中的目標微粒作為其保留物,該保留物進入第二模組222作為供料,並在經由一個排出口225排出前、可以再被集中濃縮一次。如果每個模組以一個容積減少因數(volume reduction factor)5來集中濃縮其供料,則該兩個模組一起可以因數25來減少容積;更多模組,例如3、4、或5模組,以相同方式連貫在一起,可以得到更濃縮的產出。如果三個以相同方式模組串連,且如果每個模組具有一個容積減少因數4,則三個模組一起可減少容積達到一個64的因數。吾人應可了解,模組並未被賦予以相同因數來集中濃縮微粒。
圖22B顯示一種本發明具體實施例,其中保留物微粒可有效地被沖洗。供料經由入口227進入第一模組223,一個攜帶液可經由入口226導入,第一模組的保留物可被該攜帶液『沖洗(washed)』,並進入第二模組224;第二模組包含一個為第二攜帶液的一個入口228,入口228在具體實施例中可包含一個通過孔(through hole)。第二攜帶液可能與第一攜帶液相同或不相同,來自第一模組223的保留物在第二模組224中,被第二攜帶液沖洗。此具體實施例可應用來更完全地排空過濾液微粒密數,並得到保留物微粒密數更高的純化(purification);本實施例也可使用攜帶液來處理、沖洗、或標示保留物微粒,舉例來說,攜帶液可包含對抗在保留物密數上的一個目標抗原(target antigen)的抗體(antibody),當保留物微粒移動進入攜帶液流動奔流中時,目標微粒就可以被抗體標示。吾人應可了解,超過兩個以上的模組可用相同方式串流一起。
圖23A、23B、和23C顯示雙重過濾器模組的具體實施例,其中組成的模組係互相彌補。於圖23B所示之具體實施例,供料微粒經由一個入口230進入一個保留物艙室236,這些微粒可被一個過濾器237分開為一個保留物分數部分和一個過濾液分數部分,過濾液流經一個過濾液艙室231、並進入另一個艙室232,雖然此艙室232容許過濾液從第一過濾器237流過,但該艙室232也當作一個第二過濾器238的一個保留物艙室,由於平行層留情況,保留物和過濾液不會對流地混合,並在它們流經過保留物艙室232之後被收集。來自第一過濾器237和第二過濾器238的過濾液分數部分可分別經由一個第一排出口235和一個第二排出口234排出,其中過濾器237、238兩者的保留物分數部分可經由一個排出口233被收集。同樣地,在圖23C所示之具體實施例中,來自第一保留物艙室236的保留物和來自第一過濾液艙室231的過濾液可並排地流經過第二保留物艙室232,在平行層留情況下,保留物和過濾液不會對流地混合,虛線239顯示保留物和過濾液之間的液體界面,保留物和過濾液則分別經不同排出口233、235排出。
圖23D顯示一種多重過濾器模組的具體實施例。此模組包含兩個圖23C所示之模組,互相成為鏡像排列配置,過濾液艙室231和保留物艙室232係共用,因為流動式平行層流,過濾液和保留物的奔流不會對流地混合,兩奔流間的交界面係虛線239所示,過濾液奔流可經由排出口234、235收集,而保留物奔流可經由排出口233收集。
圖23E顯示一種過濾器串流瀑布模組的具體實施例,此過濾器串流瀑布模組包含兩個模組2310、2311,每一個都包含一個圖23C的模組。
吾人應可了解,以上描述的各種不同的過濾器模組設計和構造都僅僅是例示,並非侷限本發明;於本發明之精神,過濾器可包含不同橫切面的柱狀物,如圖9所示;模組可用各種方式合併及/或串流,作成雙重過濾器模組、多重過濾器模組、各種過濾器串流瀑布模組等等;一個攜帶液流動或多個攜帶液流動可以導入各種模組,用來幫助過濾液密數排空、過濾液密數移除、微粒沖洗、微粒標示、微粒處理等等、及諸如此類。
用於流動排組的結構條件
為了達到一個實質小於物理小孔尺寸的有效小孔尺寸,一個過濾裝置的過濾液艙室可以作成逐漸擴展,一個所屬技術領域中具有通常知識者(person skilled in the art)能夠理解於本發明具體實施例中,流動排阻可能發生的條件。
可以促進流動排阻的條件,無須受限於任何特殊的數學公式、方程式、推導和學說,描述於下。舉例來說,吾人仔細思考圖12所示的具體實施例,由於通過一個小孔的流動係被艙室的擴展和收縮所控制,例如,過濾液艙室的變寬及/或保留物艙室的變窄,吾人定義『按比例的過濾液艙室橫切面面積(proportional filtrate chamber cross sectional area)』w係過濾液艙室橫切面面積和保留物艙室橫切面面積的比例(ratio),其中橫切面面積是取自實質地垂直於平均流動方向(average flow direction),當一個過濾模組具有實質固定深度的艙室,如圖12所示之具體實施例,則按比例的過濾液艙室橫切面面積w係:
其中,在所要的橫切面處,a是保留物艙室的寬度、又b是過濾液艙室的寬度。通過小孔的流動作為艙室中全體流動的一個分數部份,係大體上視圍繞小孔的『按比例的過濾液艙室橫切面面積』的增加而定。於圖12所示的具體實施例中,該增加係指明為:
另一方面,因為被抽取通過小孔的流動數量大約與小孔開口面積和通過小孔的平均流動速度成比例,又因為流下到艙室的流動數量大約與艙室的總橫切面面積(total cross sectional area)和艙室中的平均流動速度成比例,吾人可以預期,通過一個小孔的流動當作艙室中的一個流動的分數部份係實質地與物理小孔尺寸的平方除以艙室的總橫切面面積成比例。
由於當通過小孔的流動較弱於物理小孔尺寸可容許時,流動排阻發生《圖4》,因此一個真實的流動排阻發生的條件可以是:
在分母的因數3是一個由電腦模擬所估算的比例因數《圖4》,此處,這個基準稱為『過濾液艙室擴展基準(filtrate chamber expansion criterion)』。於某些本發明之具體實施例中,一個過濾模組包含一個保留物艙室、一個過濾液艙室、和一個過濾器,過濾器具有柱狀物及含有物理小孔尺寸的小孔,其中過濾液艙室係以一個符合『過濾液艙室擴展基準』的比例擴展。於某些本發明之具體實施例中,過濾液艙室變寬的角度,亦即過濾器和過濾液艙室側壁間的可變或固定的角度,係非常小,例如,約0.1度、0.2度、0.3度、0.5度、0.7度、1度、1.5度、2度、2.5度、3度、或5度。
另一個可促進流動排阻的條件是將大數目的小孔併入一個過濾模組中,因為當小孔越多,通過小孔的流動會減少而流動排阻會發生。相同於前述之推導,吾人可以預期,流動排阻所需要的小孔數目大體上係視過濾液艙室所收集的流動數量、和含物理小孔尺寸的小孔所容許的流動數量而定;因此,流動排阻所需要的最低小孔數目係實質地與過濾液艙室排出口橫切面面積和物理小孔尺寸的平方之間的比率成比例,因此,另一個實質的流動排阻的條件可以是:
其中,N是模組中小孔的數目、而k是在過濾模組的排出口側之上的『成比例的過濾液艙室橫切面面積(proportional filtrate chamber cross sectional area)』,比例因數3是由電腦模擬所估算出來的,此基準於此處稱為『最低小孔數目基準(minimum pore number criterion)』。對於圖12所示的具體實施例,用於實質的流動排阻的條件會是:
於某些本發明之具體實施例,一個過濾模組包含一個保留物艙室、一個過濾液艙室、和一個過濾器,過濾器具有柱狀物及含有物理小孔尺寸的小孔,其中小孔數目係符合『最低小孔數目基準』。
吾人應可了解,前述理論、公式、方程式、和推導並不意味限制,『過濾液艙室擴展基準』和『最低小孔數目基準』可以應用在各種依據本發明過濾模組所作之具體實施例,過濾模組包括:但非侷限於,過濾器模組、雙重過濾器模組、多重過濾器模組、及過濾器串流瀑布模組。
過濾單元
本發明的一種具體實施例係一個過濾單元,包含一種前述的過濾模組、流體通道(fluidic channels)、和通口(ports)。流體通道的構造係作成提供通口和模組之間的液體連結(fluid connection),流體通道的構造也可作成提供適當的流體阻力(fluidic resistances)以建立一種模組內所希望的流動分布(flow distributions),舉例來說,在所希望的操作條件下,模組內正確的供料和攜帶液的比例、及/或收集作為保留物和過濾液的流體的正確的比例。
高模組密度裝置
本發明的某些具體實施例的顯著優點之一是使高處理量和高容量的以流動排阻為基礎的微粒過濾裝置成為可能,同時維持簡潔經濟裝置的佔地面積和低剪切。前述之模組和單元的構造是緊密簡潔的且可以簡單地製造為高模組密度的裝置,這類裝置具有可計數的容量和加工處理的處理量,且在許多應用上極為有用,諸如臍帶血體積減少、細胞沖洗、幹細胞分離、基質血管部份的製備、血漿撇取、和骨髓幹細胞的過濾。將許多這種緊密簡潔裝置堆疊一起作成一個裝置,可以提供更高的容量和處理量。
於另一種本發明具體實施例中,一個裝置包含複數的過濾單元(filtration unit),其中每一個過濾單元包含一個前述模組、和與模組有液體連結的流體通道。於再另一個本發明具體實施例中,複數的過濾單元,例如,約3、5、8、10、15、20、30、50、75、100、150、200、300、500、800或以上過濾單元係以高密度結構安樁再一個單一裝置中,這樣的裝置,此處稱為『高模組密度裝置(high module density device)』。
圖24A至24F顯示數種高模組密度裝置的具體實施例,其中過濾單元249係重複的,以增加處理量和容量。於圖24A,裝設了八個過濾單元,每一者都包含一種雙重過濾器模組,模組的供料入口502、保留物排出口503、和過濾液排出口507,各別利用一個入口通道244和一個排出口通道245、246,連結至輸入通口241和輸出通口242、243。
遍及通道244、245、246的流動阻力(flow resistances)可配置成在操作條件下,確立進入該入口502和排出該排出口503、507的流動的適當數量,並且促進個別的模組的操作。遍及通道244、245、246的流動阻力可設計為較小於、相等於、或較大於模組的流動阻力,視裝置被設計的操作條件而定。於某些具體實施例中,遍及入口和排出口通道245、246的流動阻力可以是雙重過濾模組阻力的從約0.01至約0.99倍。
於本發明的另一種具體實施例《圖24B》,每一個雙重過濾器模組包含一個攜帶液流動入口521,該入口經由一個通道248與一個輸入通口247有液體連結,通道的流動阻力可設計為促進個別模組的適當操作。於本發明的又另一個具體實施例《圖24C》,一個多重過濾器模組利用通道(channels)連結至輸入和輸出通口。於本發明的又另一種具體實施例《圖24D》,許多模組可共用一個輸入通口(input port)241和一個輸出通口(output port)242,連結模組和通口的通道可設計為具有實質相等的阻力。於本發明的又另一種具體實施例《圖24E》,模組可配置在一個環形圓盤(circular disk)上,圖24E的具體實施例中,該圓盤可繞著一個中心軸(central axis)旋轉以產生一個離心力(centrifugal force),該離心力可驅動一個流體通過配置在圓盤上的模組。
模組並未侷限於配置成只有一排,具有兩個或更多排的模組可配置在一個裝置中,因為模組具有兩個或更多排,因此有更多可能的排列配置方式來共用通口及減少裝置的佔地面積,圖24F顯示一個有20個雙重過濾器模組的複數,排列成兩排,共用相同的供料輸入通口。再者,裝置可以層疊,達到高容量和處理量《圖25》。
吾人應可了解,複數的過濾器模組、雙重過濾器模組、過濾器串流瀑布模組、雙重過濾器串流瀑布模組、多重過濾器模組、多重過濾器串流瀑布模組、其他組成構造、或任何前述模組併用都可以排列成互相是各種可能的二維或三維關係。
過濾裝置製造技術
有各種不同的技術可用來製造本發明之裝置的具體實施例。於一種本發明具體實施例中,一個裝置可以微機器製造(micromachined),微機器製造技術可以選自眾所周知的技術,但非侷限於此,例如,傳統用於以矽為基礎的積體電路(silicon-based integrated circuit)製造、凹凸壓紋(embossing)、軟性模板壓印(soft embossing)、鑄造(casting)、印碼(imprinting)、模鑄(molding)、射出成形(injection molding)、壓出成形(extrusion)、立體雷射光微影術(stereo laser lithography)、選擇性雷射燒結(selective laser sintering)、光限定性玻璃微影術(photodefinable glass lithography)和濕式蝕刻(wet etching)、電腦數值控制(computer numerical control(CNC))機器製造(machining)、聚二甲基矽氧烷(polydimethylsiloxane(PDMS))軟性模板壓印、超音波微銑(ultrasound micromilling)、厚膜光阻微影(thick photoresist lithography)、以上所述技術之併用、及諸如此類。
合適的製造技術之實例包括:光學蝕刻技術/光微影技術(photolithography)、離子深蝕刻技術(Deep reactive ion etching;DRIE)、濕式蝕刻、模鑄、凹凸壓紋、印碼、雷射燒蝕(laser ablation)、厚膜光阻微影技術、軟式光微影技術(soft lithography)、輻射軌跡蝕刻法(radiation track etching)、和其他技術。過濾裝置的某些面向和具體實施例可以使用與特殊需求能夠相容的材料來製造,這類情形包括,但非侷限於:酸鹼值、溫度、有機溶劑、生物相容性(biocompatibility)、離子強度(ionic strength)、壓力、電場應用(application of electric fields)、黏附性質(sticking properties)、表面電荷(surface charge)、表面官能化(surface functionalization)、表面處理(surface treatment)、濕角度(wet angle)、親水性(hydrophilicity)、恐水性(hydrophobicity)、機械強度(mechanical strength)、和熱擴張(heat expansion)。
裝置的材料也可以選擇針對它們的光學性質、機械性質、化學性質、溶劑化學耐力(chemical resistance to solvents)、融解性質(melting properties);及針對它們對裝置內實施的應用組成份的惰性(inertness)。這類材料可以包括,但非侷限於:玻璃、熔煉石英(fused silica)、矽橡膠(silicone rubber)、矽(silicone)、陶瓷(ceramics)、光限定性玻璃(photodefinable glass)、塑膠(plastics)、高分子材料(polymeric materials)、光敏感聚合物(photosensitive polymers)、厚膜光阻(thick photoresist)、SU-8光阻(SU-8 resist)、聚二甲基矽氧烷(polydimethylsiloxane(PDMS))、環烯烴共聚物(cyclic olefin copolymer(COC))、環烯烴聚合物(cyclic olefin polymer(COP))、聚碳酸酯(polycarbonate)、聚乙烯(polyethylene)、聚丙烯(polypropylene)、聚甲基丙烯酸甲酯(polymethylmethacrylate(PMMA))、壓敏材料(pressure sensitive materials)、鐵氟龍/鐵弗龍(Teflon)、壓克力(acrylic)、聚醚碸(polyethersulfone)、聚四氟乙烯(polytetrafluoroethylene)等等。該裝置亦可使用標準消毒技術來消毒,例如,伽瑪射線照射(gamma irradiation)、環氧乙烷滅菌(ethylene oxide(EO)sterilization)、紫外線照射(ultra violet light illumination)、高壓蒸氣滅菌(autoclaving)等等。
微流體過濾模組、單元和裝置的效率度量
與其他微流體裝置比較,本發明的某些面向和具體實施例創造流動排阻的條件係非常有效率的,依據本發明的一種過濾器模組的具體實施例可以配置為一個物理緊密裝置,亦即一個高模組密度裝置,具有所要求的容量及/或處理量。本發明的具體實施例具有許多顯著的優點,舉例來說,本發明之具體實施例不容易阻塞(clogging);其次,本發明的某些面向和具體實施例相對地容易製造,因為這些面向和具體實施例包含一個很小的佔地面積和一個相對地小數目的柱狀物;第三,本發明的某些面向和具體實施例緩和地對待過濾的微粒,在某些具體實施例中,一個過濾液微粒在過濾過程中,只走過一個小孔;第四,本發明的某些面向和具體實施例導入小擴散(little diffusion),因為微粒不會遭遇其他設計可能發生的碰撞和散開,小擴散可以產生高效率分開。
本發明的各面向和具體實施例可包含高處理量、低剪切、和容易又經濟製造的緊密過濾裝置,容易又經濟地製造。其度量(Metrics)可定義為定量一個裝置設計的效率和製造時所需的可能施力(efforts),一個反映製造一個微流體過濾裝置時所需的可能施力的度量是滯留體積(hold up volume),滯留體積是一個裝置內的空隙體積(void volume),並可代表在裝置製造過程中被移除或被取代的材料的數量,舉例來說,一個用矽製造微流體過濾裝置的方法是光學蝕刻技術,後面跟著反應式離子蝕刻法(reactive ion etching),在一張晶圓(wafer)上能製作的裝置數目,視一個裝置內的蝕刻區域的大小而定,然而反應式離子蝕刻法的機械時間則視蝕刻深度而定,裝置的滯留體積大約是蝕刻區域的大小乘上蝕刻深度,因此,可代表製造該裝置所需的施力和成本。舉例來說,對於運用微製造以矽來製造過濾裝置,一個裝置具有的滯留體積越大,則需要更多的晶圓材料、光學蝕刻技術施力、和蝕刻機械時間。其他的裝置製造技術,如射出成形,也一樣產生相同的滯留體積和製造裝置所需的施力之間的相互關係。
對包含一個或以上過濾模組的微流體過濾裝置,亦即一個過濾器模組、一個雙重過濾器模組、一個過濾器串流瀑布模組、或一個多重過濾器模組而言,過濾裝置的滯留體積可作為一個好的度量,用來描述過濾模組及/或過濾裝置的特徵。本發明的某些面向和具體實施例包含具有小滯留體積的過濾模組,亦即一個過濾模組包含的滯留體積是<1微升(μl)、<0.3微升、<0.1微升、<0.03微升、<0.01微升、或更小,本發明的數個例示的具體實施例的滯留體積係計算並揭露於以下實例段落。
另一個度量可被定義來估計製造一個模組所需的施力是『過濾單元密度(filtration unit density)』,此處定義為每體積的過濾單元的數目;更具體地說,『過濾單元密度』可被計算為:
舉例來說,一個高模組密度裝置具有100個相同的過濾單元、一個2釐米(cm)x 2釐米的佔地面積、和一個平均的特有的通道深度50微米(μm),則『過濾單元密度』是100/[(2釐米x 2釐米)x 50微米],等於5,000釐米-3。這樣一個『過濾單元密度』意謂:原則上,高達5,000過濾單元能被裝進一個立方釐米尺寸的高模組密度裝置中。為了增加一個微流體過濾裝置的有用性並減少其成本,當裝置處理量係視裝置中的模組數目而定、且成本趨向依照裝置中流體物的容積數量成比例時,將最大化裝置的『過濾單元密度』最大化是吾人所希望的。本發明之某些面向和具體實施例能夠使裝置具有一個高的『過濾單元密度』,本發明之數個例示的具體實施例的此『過濾單元密度』係計算並揭露於以下實例段落。
除了裝置的佔地面積和通道深度之外,微流體分開裝置(microfluidic separation device)的一個重要的性能描述是微粒加工處理速度(processing speed),定義為每單位時間加工處理的供料微粒數目。要描述一個裝置的微粒加工處理速度的特徵,很重要的是要考慮到裝置的佔地面積和流體的通道深度,互相關聯到製造的困難度和裝置的成本,用於一種微流體分開裝置的一個『標準化加工處理速度(normalized processing speed)』可定義如下:
吾人都希望一個裝置具有一個高的標準化加工處理速度,本發明的許多面向和具體實施例能夠使分開裝置(separation devices)具有高的『加工處理速度指數(processing speed indices)』,用於本發明之數個例示的具體實施例的此加工處理速度指數係計算並揭露於以下實例段落。
另一個相關於一個微流體分開裝置的效率和製造成本的重要因素是操作中的流動速度(operating flow speed)。在許多例子中,增加流動速度就增加裝置的處理量而不會增加製造成本,然而,這個方法在應用上可能遇到明顯的限制,其中剪應力(shear stress)是一個要擔心的問題。增加的流動速度可能產生更高的剪應力狀況,導致潛在的微粒損害及/或過濾器結垢。在細胞過濾應用方面,對於剪切的要求是有所限制,細胞可能容易受高剪應力而損害,或可能因高剪應力而活化、受損、改變、或甚至裂解,本發明的許多面向和具體實施例可以做到將流動速度最大化而限制剪切。
在比較不同的微流體流場分開裝置(microfluidic flow-through separation devices)的處理量時,吾人希望依照裝置佔地面積、通道深度、和操作中的剪切條件,將處理量標準化;再者,處理量可以依照過濾裝置的獨特的阻留尺寸的平方加以標準化,因為一個具有較大的阻留尺寸的過濾裝置較容易具有一個較高的處理量。此處,一個『設計效率指數(design efficiency index;(D.E.I.))』代表一個微流體分開裝置的標準化的處理量,定義如下:
其中,Q是裝置加工處理供料的容積處理量(volumetric throughput);S是一個微粒流動經過裝置時受到的最大剪切變率(maximum shear rate);A是裝置佔地面積,係一個區域;D是裝置通道的特有的深度;及R是裝置的阻留尺寸。此處,剪切變率係定義為流體在垂直於速度的方向的速度梯度(velocity gradient)、並有時間倒數(1/時間)的特質;設計效率指數有長度平方的倒數(1/長度2)的特質,且可認為是裝置的內在固有的性質(intrinsic property),不拘於裝置的大小、通道伸到、操作中的剪切狀況、和阻留尺寸。
『設計效率指數』對於一種裝置設計的有用性是一個好的指標,具有高設計效率指數的裝置可以是高處理量;且可以是簡潔緊湊、緩和、又容易製造。設計效率指數在描述微粒過濾用的微流體流場分開裝置之內在固有處理量性能的特徵是非常有用的,其中操作條件是流動係平行層流,其中雷諾數(Reynolds number(Re))係低的,亦即<0.01、<0.1、<1、<10、<100、或<500,又其中微粒尺寸範圍係介於約50奈米(nm)和約300奈米之間。
本發明的各面向和具體實施例能使裝置有高的設計效率指數,本發明之數個例示的具體實施例的『設計效率指數』係計算並揭露於以下實例段落。
吾人應可了解,本發明的各面向和具體實施例能使過濾裝置,特別是微流體分開裝置,包含設計特質,顯著改善裝置的性能和成本效益,如同滯留體積、過濾單元密度、標準化加工處理速度、設計效率指數度量(design efficiency index metrics)所描述的特質。
系統
用於微粒過濾的軟袋系統
於本發明的某些具體實施例,高模組密度裝置係安置在一個過濾器卡匣(filter cartridge)中,且連結至管狀線(tubing lines)和軟袋,以作成一個封閉系統(closed system);這樣的系統在臨床應用上特別有用,亦即,臍帶血容積減少、周邊血液成分分開、從羊膜液分離幹細胞、骨髓過濾、減除白血球(leuko-reduction)、血漿撇取(plasma skimming)、基質血管成份的生成等等;被加工處理的微粒樣本不致於接觸到外在污染物,再者,微粒樣本可被包含在系統中,因此,減少對操作者的生物性危險(biohazard risks)。
圖26A至26E顯示一種過濾器卡匣的具體實施例,包含一個箱座(housing)260和多重高模組密度裝置(multiple high module density devices)261。箱座260可包含一個供料通道(feed channel)262、一個保留物收集通道(retentate collection channel)263、和一個過濾液收集通道(filtrate collection channel)264;這些通道連結至管狀線形成一個軟袋系統(bag system)。卡匣260可將供料分送通過高模組密度裝置261,使裝置能同時加工處理供料以達到高容積處理量;卡匣260也可從高模組密度裝置261收集保留物和過濾液;如圖26D和26E所示,多重高模組密度裝置261可用墊襯(gaskets)268來堆疊,以提供適當的密封,使供料、保留物、和過濾液不會交互污染;另一種選擇,高模組密度裝置261可以膠黏或黏合。
過濾器卡匣的不同部位可以膠黏、黏合、超音波黏合、夾住、或螺絲扭緊一起,卡匣的箱座可用塑膠作成,採行標準製造技術例如射出成形、凹凸壓紋(embossing)、模鑄(molding)、熱壓式凹凸壓紋(hot embossing)、立體光微影術(stereo lithography)、機器製造(machining)等等;用於箱座的塑膠原料可包括,但非侷限於:環烯烴共聚物(cyclic olefin copolymer(COC))、環烯烴聚合物(cyclic olefin polymer(COP))、聚碳酸酯(polycarbonate)、聚乙烯(polyethylene)、聚丙烯(polypropylene)、聚甲基丙烯酸甲酯(polymethylmethacrylate(PMMA))、壓敏材料、鐵氟龍/鐵弗龍(Teflon)、壓克力、聚醚碸(polyethersulfone)、聚四氟乙烯(polytetrafluoroethylene)等等;墊襯可用橡膠原料製作,例如矽、乳膠、尼奧普林(neoprene)、乙烯基橡膠(vinyl rubber),採用標準技術例如模切(die cutting)、模鑄(molding)、水刀(water jetting)等等。
圖27A至27C顯示一種軟袋系統,包含一個含有多重高模組密度裝置的卡匣270、一個過濾液收集袋273、和一個保留物收集袋272。軟袋272、273可以用管線275、276連結至卡匣270;卡匣270的供料入口可用管線274連結至一個轉接器271;轉接器271包含一個小溝(sike),係設計為可刺入一個樣本收集袋278的一個通口279《圖27B》,並使樣本收集袋278中的供料微粒能夠進入過濾用卡匣;供料可含有供料或前述微粒,如血液、臍帶血、周邊血液幹細胞、骨髓等等。轉接器271***到樣本收集袋278內以後,軟袋系統在重力作用下懸掛起來《圖27C》,重力可驅使供料通過高模組密度裝置;或者另一種方法,施予一個壓力去擠壓該樣本袋278,以驅動樣本通過過濾器卡匣270;或者另一種方法,應用一個蠕動幫浦(peristaltic pump)來推動流體,樣本收集袋278可更進一步包含一個針2710來幫助從樣本源如一個病人或一個臍帶收集樣本。
軟袋的容積容量係根據系統的特定應用而設計的,用於臍帶血銀行的目的時,臍帶血是從一個臍帶收集,樣本袋278可以提供的範圍從約20毫升至約250毫升的臍帶血,並加上一個範圍從約0毫升至約400毫升的抗凝劑(anticoagulant)或添加劑(additives);檸檬酸磷酸右旋葡萄糖(Citrate phosphate dextrose(CPD))和肝素(heparin)可以用來作為臍帶血收集的抗凝劑;添加劑可包含磷酸鹽緩衝生理鹽水(phosphate buffered saline solution)、漢克平衡鹽緩衝液(Hank’s balanced salt solution)、血液增量劑(blood expander)、幹細胞生長培養基(stem cell growth medium)、生長因子(growth factors)等等;抗凝劑或添加劑可以預先裝入樣本收集袋278中。於一個本發明之具體實施例中,一個用於臍帶血的樣本收集袋可含有約25毫升至約35毫升的檸檬酸磷酸右旋葡萄糖、且可具有收集達約200毫升臍帶血的容量。
於臍帶血銀行,在冷凍前,可加工處理臍帶血以減少體積,這個作業可以減少長時間貯存費用。一個本發明之軟袋系統具體實施例可用於臍帶血體積減少,其中軟袋系統包含了設計為從保留物分開紅血球細胞和血漿的高模組密度裝置;該保留物可能包含造血幹細胞、源祖細胞(progenitor cells)、集落形成細胞(colony forming cells)、和CD34+細胞;該保留物可以混合一個冷凍介質(freezing medium),亦即二甲基亞碸(dimethyl sulfoxide(DMSO)),且可以在冷凍保存(cryopreservation)的條件下冷凍,以備後來治療使用;保留物收集袋272可包含一個冷凍保存冷凍袋(cryopreservation freezing bag)。於本發明的另一種具體實施例,保留物收集袋可包含一個具有至少兩個隔間的冷凍保存冷凍袋;於本發明的又另一種具體實施例,可包含一個具有25毫升容量的冷凍保存冷凍袋。
一個軟袋系統更進一步包含一個在供料管(feed tubing)、保留物管(retentate tubing)、或過濾液管(filtrate tubing)上的線夾(line clamp)277,用來控制軟袋系統中的流體流動《圖27》。
於另一種本發明具體實施例中,一個樣本收集袋281可用一個管狀線285連結至一個過濾器卡匣280《圖28》,此系統可更進一步包含一個起初是在一個封閉系統內的線夾287;樣本,亦即血液、臍帶血、骨髓等可用一個針(needle)284從來源,亦即一個病人、一個臍帶等,加以收集;此系統可選擇地包含一個第二針,當第一針阻塞時可以替代使用;當樣本收集完成後,線夾287可切換到打開位置,使樣本袋281和過濾器卡匣280之間有液體連結,一個驅動力如重力、一個壓力、或一個蠕動幫浦,可使樣本移動。
用於微粒過濾的管子系統
於本發明的另一種具體實施例中,一個高模組密度裝置可以併入到一個管子系統,以供樣本過濾。該管子系統包含一個離心管(centrifuge tube)290、一個管子嵌插物(tube insert)291、和一個蓋子(cap)292《圖29》;管子嵌插物291包含一個高模組密度裝置293、一個供料樣本儲藏槽(feed sample reservoir)294、一個輸出儲藏槽(output reservoir)295、和可任選的一個攜帶液儲藏槽(carrier fluid reservoir)296《圖30》;輸出儲藏槽可設計成含有來自高模組密度裝置293的過濾液或保留物。
為了使用管子系統,一個供料樣本可加入到供料樣本儲藏槽,一個攜帶液可以選擇性地加入到攜帶液儲藏槽,攜帶液也可以和管子系統作成套組(kit)銷售;攜帶液可以去氣(degassed)以減少泡沫在高模組密度裝置內形成的危險,或預先在真空下包裝到一個瓶中,亦即在壓力範圍是從約0.05大氣壓力(atm)到約0.95大氣壓力。或者另外的方式,攜帶液可以預先裝入在一個管子嵌插物中,用一個金屬箔片,亦即一個鋁箔,密封起來。
此高模組密度裝置可將一個供料樣本分開成為圍兩個分數部份(fractions),一個分數部份可被收集在管子中《圖29中的290》,且另一個管子嵌插物中。於另一種具體實施例中,過濾液可收集在管子中;於再另一個具體實施例中,供料樣本可以分成三個或更多的分數部份,兩個或以上的輸出分數部份(output fractions)可利用該嵌插物收集。
要操作管子系統《圖29》,管子嵌插物(tube insert)291可***管子290中,一個攜帶液和一個供料樣本分別被加入到攜帶液和供料樣儲藏槽,然後蓋子292蓋上以封閉管子;管子系統能藉由重力趨動,或是另一個方式,管子系統能藉由離心力驅動,亦即組裝的管子系統可以在一個離心機中旋轉,系統中的管子可以是一個標準的現成離心管,亦即一個50毫升、15毫升、或10毫升離心管;一個標準的現成微離心管,亦即一個2毫升、1.5毫升、或1毫升微離心管;或一個非通用的任何所要尺寸的訂製管子。
用於微粒過濾的卡匣系統和板狀系統
於本發明的另一種具體實施例中,一個過濾裝置可連結到井(wells),以形成一個用於樣本過濾的卡匣,該卡匣包含一個過濾裝置和井或儲藏槽,用來配合一個供料樣本、保留物、過濾液、或攜帶液;卡匣可包含多重過濾裝置和多組儲藏槽,容易作多種樣本的過濾;卡匣中的儲藏槽可用薄膜,亦即一個塑膠膜、一個鋁膜等,加以密封。
於本發明的其他具體實施例中,一個過濾裝置可連結到井,以形成一個用於樣本過濾的板狀系統,該系統包含一個過濾裝置和井,用來配合輸入和輸出的液體;過濾裝置包含一個過濾器模組、一個雙重過濾器模組、一個過濾器串流瀑布模組、一個多重過濾器模組、一個高模組密度裝置、或任何本發明所揭示的過濾器構造。
圖31A至31C顯示一種本發明之板狀系統的具體實施例,包含一個高模組密度裝置3105、一個樣本井(sample well)3101、一個攜帶液井(carrier fluid well)3102、一個過濾液井(filtrate well)3103、和一個保留物井(retentate well)3104。要使用這個系統,一個供料樣本和一個攜帶液可分別裝進樣本井3101和攜帶液井3102中,然後施予一個壓力給樣本井3101和攜帶液井3102,以驅動流體通過過濾裝置3105;或者另一個方式,施予一個小真空給過濾液井3103和保留物井3104,以驅動流體。過濾液和保留物分別收集在一個過濾液井3103和一個保留物井3104。
如前面所揭示的複數的板狀系統可以作成平行排列,如同單一板狀系統。圖32A至32D顯示一種本發明之96井板狀系統具體實施例,包含多重高模組密度裝置和在一個96井板狀格式(96 well plate format)的96個井;本系統具有使用一個標準96井板狀格式的有利條件,又,使用標準的吸注器(pipetting)和加工處理(processing)機器人(robots)或工作站(workstations),能夠整合成一個標準工作流程(standard workflow);本系統還更進一步具有在一個系統中加工處理多種樣本的優點,無論是同時地或是連續地皆可。或者另一種方式,一個板狀系統可以設計或製作成其他的標準板狀格式,亦即一個6井板、一個384井板等等;再者,一種板狀系統可以設計或製作成其他的非標準板狀格式而不偏離本發明之精神。
在卡匣系統或板狀系統中的微粒和流體可以手動移動或使用一個自動儀器如一個吸注器機器人(pipetting robot)來移動。
其他用於微粒過濾的系統格式
不同格式的其他系統可以設計並製造而不偏離本發明之精神,舉例來說,過濾裝置可以與儲藏槽(reservoirs)和滴管液滴尖口(dispensing tips)整合,以計量分配過濾液、保留物、和選擇的其他分數部份到試管(test tubes)或多井板(multi-well plates)中。於本發明另一種具體實施例,一個裝置係連結至真空離心管(vacutainers)。
系統製造技術
依據某些具體實施例,使用標準製造技術例如射出成形、凹凸壓紋、模鑄、熱壓式凹凸壓紋立體光微影術等等,用塑膠就可以製造前述的系統。用於箱座的塑膠原料包括:如聚二甲基矽氧烷(polydimethylsiloxane(PDMS))、環烯烴共聚物(cyclic olefin copolymer(COC))、環烯烴聚合物(cyclic olefin polymer(COP))、聚碳酸酯(polycarbonate)、聚乙烯、聚丙烯、聚甲基丙烯酸甲酯(polymethylmethacrylate(PMMA))、壓敏材料(pressure sensitive materials)、鐵氟龍(Teflon)、壓克力(acrylic)、聚醚碸(polyethersulfone)、聚四氟乙烯(polytetrafluoroethylene)等等。該系統亦可使用標準消毒技術來消毒,例如,伽瑪射線照射(gamma irradiation)、環氧乙烷滅菌(ethylene oxide(EO)sterilization)、紫外線照射(ultra violet light illumination)等等。
裝置和系統的操作
於本發明的各種面向和體實施例中,利用一個流體流動、一個驅動壓力、一個真空、一個頭高、重力、一個離心力、一個磁力、一個毛細作用、一個電場、一個電泳場、一個一個電滲力、一個電動力、或一個以上所述各種力之併用,為力和流體可被驅動通過一個裝置或系統。再者,對於一種包含一個柔韌袋子的裝置或系統,一個驅動壓力可以藉由施予壓力在袋子上而創造出來,舉例來說,一個帶子可能夾在兩個堅硬的板子之間,控制板子間的空間或施加在板子上的壓力,可以創造並控制一個袋子內的壓力。
使用一個或以上個的幫浦、蠕動幫浦、針筒式幫浦(syringe pumps)、一個離心機(centrifuge)、或前述設備之併用,也可以驅動或移動微粒和流體,有,使用一個或以上個的閥(valves)或線夾,亦即夾管閥(pinch valves)、回止閥(check valves)、排氣閥(vent valves)、線夾等等,也可以控制微粒和流體。再者,在一個封閉系統內、在一個開放系統內,藉由使用吸注器(pipettes)、使用吸注器機器人、使用一個或以上個真空離心管的抽吸(suction)、或以上之併用,微粒和流體可以移動運送。
本發明之裝置和系統的面向和具體實施例也可以在溫度控制下操作,溫度控制,亦即加熱元件(heating elements)、冷卻元件(cooling elements)、和溫度計構件(thermometer components)可以併入裝置或系統中,用於增加過濾加工處理(filtration process)的複現性(reproducibility)或充分運用過濾加工處理。舉例來說,在製備基質血管部份時,將裝置的溫度設定在約25至約37之間是有利的,減少要加工處理的流體的黏度(viscosity)降低。
套裝及套組
於本發明的另一具體實施例,一個裝置或系統可預先裝載或充填試劑(reagents),亦即攜帶液;於本發明的又另一具體實施例,一個裝置或系統可套裝:試劑、使用者手冊、說明書、標籤、操作規則、數據作業單、拋棄式零件、收集管、吸注器液滴尖口(pipette tips)、輸送吸注器(transfer pipette)、真空離心管、測試片(test strips)、生物芯片(biochips)、側向流動測試片(lateral flow test strips)、一個細胞計數艙室(cell counting chamber)、一個血球計數器(hemacytometer)、及/或其他裝置,作成一個套組(kit)。數個裝置或系統可套裝並上市為一個套組。於本發明的又另一具體實施例,裝置、系統、或套組可以消毒;於本發明的又另一具體實施例,為了額外的無菌益處,裝置或系統可個別套裝。
吾人應可了解,此處所描述的特種具體實施例僅僅是例示,並無侷限本發明範圍之意圖;本發明所描述的方法和裝置的各種修改變更、併用、和變動,對於該領域之習知技藝者而言,顯而易見地,並未脫離本發明之精神和範圍。舉例來說,此處所描述的許多原料和構成物可以用其他原料和構成物來替代而不會偏離本發明之精神;再者,此處描述的一個流體流動可以用一個電場、一個電泳場、和電動力流動(electrokinetic flow)、重力、或一個離心力來替代。吾人亦應可了解,此處所描述的各種學說和解釋並無侷限的意圖,舉例來說,此處描述的具體實施例可能運用一個流動流體、一個壓降、一個流體動力學壓力、一個壓力源、一個真空、一個頭高、重力、一個離心力、或以上之併用,來驅動微粒,而不會偏離本發明之精神。
吾人應可體認,雖然此處所描述的許多具體實施例中的過濾器包含柱狀物和小孔,然而其他包含使用流動排阻或其他非尺寸排阻的過濾機轉的小孔的過濾器設計也可應用,而不會偏離本發明之精神。吾人亦應可體認,本發明之具體實施例可以併用其他組件或加工程序,作成一個更複雜的裝置、系統、或儀器。
實施例
實施例1:聚合物微粒圓球的分開和阻留尺寸的測量
使用一種含有如圖14B所描繪的一個雙重過濾器模組的裝置,分開直徑3.0微米(μm)和6.9微米的螢光聚合物微粒圓球(Fluorescent polymer microspheres),該雙重過濾器模組包含30微米深度的通道和艙室、及兩個各含有165個柱狀物的過濾器,柱狀物是高30微米高並距離12微米,因此產生的小孔具有12微米的物理小孔尺寸;保留物艙室和過濾液艙室係設計為通過一個小孔的流動速率是介於保留物艙室入口處的流動速率的約0.22%和約0.28%之間,雙重過濾器模組是長約4毫米(mm)和寬約0.25毫米。
本裝置係使用標準微製造技術(standard microfabrication techniques)以矽(silicon)製造而成,應用光學蝕刻技術/光微影技術(photolithography)、矽深蝕刻技術(deep silicon reactive etching),作出流體的通道、艙室、和過濾器構件(filter structures);蝕刻深度為30微米;使用陽極接合(anodic bonding),將矽基板(silicon substrate)密封在蝕刻的通道上,面向一個玻璃晶圓(glass wafer),作成一個封閉的流體通道,然後該接合的晶圓切成個別的裝置。該裝置藉由機器操作,與一個具有外部流體儲藏槽(external fluidic reservoirs)的塑膠外殼(plastic enclosure)配對結合,來遞送樣本流體。
樣本流體係直徑3.0微米(μm)和6.9微米的螢光聚合物微粒圓球懸浮於含有1%牛血清白蛋白(bovine serum albumin)的杜貝可磷酸緩衝食鹽溶液(Dulbecco’s phosphate-buffered salt solution)中,微粒圓球的密度是1.05公克/立方公分(g/cm3),樣本流體中的3.0微米和6.9微米的微粒圓球的容積濃度分別是0.00004%和0.00048%,大約是每微升有28個微粒圓球,在這樣的濃度下,微粒-微粒間的交互作用可以忽略。
將裝置架設在一個螢光顯微鏡上,可以觀察螢光聚合物微粒圓球,將一個攜帶液流體加入到塑膠外殼中的攜帶液儲藏槽,準備好裝置,攜帶液是含有1%牛血清白蛋白的杜貝可磷酸緩衝食鹽溶液,接著,將樣本流體加入到樣本儲藏槽。然後,將兩個儲藏槽升高超過保留物和過濾液儲藏槽的高度,產生一個約30釐米(cm)的頭高(head height),流體藉由重力和頭高,被驅動通過裝置,在雙重過濾器模組中的平均流動速度係約1.5釐米/秒,相當於艙室中的雷諾數約0.45,通道深度被用來作為計算雷諾數時的特定長度,在像這樣的一個雷諾數時,該流動是平行層流的。
流動通過裝置的螢光聚合物微粒圓球離開該雙重過濾器模組時,以手動方式計數,其結果顯示於下:
3.0微米的微粒圓球代表微小阻留(little retention)發生的底線,且具有一個約0%的阻留率,6.9微米的微粒圓球的阻留率是約99%,係實質地高於3.0微米的微粒圓球所建立的底線。因此,雙重過濾器模組的『阻留尺寸』就被判定是在3.0微米至6.9微米之間的範圍,係小於12微米的物理小孔尺寸的58%;對於具有這樣的阻留尺寸的雙重過濾器模組,其構成小孔的『有效小孔尺寸』必須不得大於6.9微米,此處,該例示的裝置具有一個小於物理小孔尺寸的58%的有效小孔尺寸。
吾人應可理解,使用聚合物微粒圓球來測量阻留尺寸和有效小孔尺寸的例示方法可應用在其他過濾裝置,作為表徵阻留尺寸的標準測試,不拘過濾裝置的預期用途。舉例來說,以下用在實施例2、3、4、和5的裝置,可用聚合物微粒圓球來標示其特點,即使該裝置係意圖用於細胞加工處理。
實施例2:從全周邊血液分離白血球
使用一個高模組密度裝置,從全周邊血液(whole peripheral blood)分離出白血球(Leukocytes)。
例示的裝置是一種高模組密度裝置,如圖24B所描繪,包含72個過濾裝置《圖24B中的249》,每一者包含一個雙重過濾模組、一個攜帶液輸入通口《圖24B中的247》、一個樣本入口通口、一個保留物輸出通口、兩個過濾液輸出通口、以及連結雙重過濾模組和通口的通道。在裝置中的通道和艙室係30微米深;雙重過濾模組的每一者有2個各含有240小孔的過濾器;每一個小孔有一個30微米x 12微米的橫切面,因此具有一個12微米的物理小孔尺寸。雙重過濾模組的保留物艙室和攜帶液艙室設計為使通過一個小孔的流動速率是介於保留物艙室入口處的流動速率的約0.12%和0.18%之間;該裝置係長25毫米、寬0.6毫米、厚0.6毫米,並有一個600平方毫米(25毫米x 24毫米)的佔地面積。
使用實施例1所描述的方法,測量有效小孔尺寸和阻留尺寸,推算裝置的阻留尺寸是約4微米,顯著地小於12微米的物理小孔尺寸。
本裝置係使用標準微製造技術以矽製造而成,應用光學蝕刻技術、矽深蝕刻技術(deep silicon reactive etching),作出流體的通道、艙室、和過濾器構件;蝕刻深度為30微米;使用陽極接合(anodic bonding),將矽基板(silicon substrate)密封在蝕刻的通道上,朝向一個玻璃晶圓(glass wafer),作成一個封閉的流體通道,然後該接合的晶圓切成個別的裝置。該裝置藉由機器操作,與一個塑膠外殼(plastic enclosure)配對結合,塑膠外殼具有外部樣本(external sample)、攜帶液、保留物、和過濾液的儲藏槽。
於此實施例,人類全周邊血液(Human whole peripheral blood)用來當做樣本。使用乙二胺四乙酸二鉀真空採血管(K2EDTA(Ethylene Diamine Tetraacetic Acid)vacutainers;Ethylene diamine tetraacetic acid)、酸枸櫞酸鹽葡萄糖真空採血管(ACD vacutainers;Acid citrate dextrose)、或肝素真空採血管(heparin vacutainers)《必帝公司(Becton Dickinson,Franklin Lakes,New Jersey)》,從已同意的成年捐血人抽取血液,血液樣本的血比容(hematocrits)是約40%,每毫升血液含有超過40億紅血球(erythrocytes),而血比容是紅血球細胞(red blood cells)佔據的血液容積的比例,血液抽取後6小時內,在室溫加工處理。使用含0.5%牛血清白蛋白的杜貝可磷酸緩衝食鹽溶液和2毫莫耳(mM)乙二胺四乙酸二鉀作為攜帶液。
8毫升的攜帶液加入到塑膠外殼中的攜帶液儲藏槽,準備好裝置,4毫升全血接著加入到樣本儲藏槽。然後將兩個儲藏槽升高超過保留物和過濾液儲藏槽的高度,以產生一個約40釐米的頭高,血液和攜帶液藉由重力和頭高驅動,通過裝置,過濾液和保留物分別收集在過濾液和保留物的儲藏槽中;經過約40分鐘,血液完全通過裝置,使用一個自動細胞計數器(automated cell counter)《美國貝克曼庫爾特AC.T diff三分類血球分析儀(Coulter AcT diff hematology analyzer,Beckman Coulter,Fullerton,California)》,測量並分析過濾液和保留物;分離出來的白血球的存活力(viability)在運轉後立即測量,使用一種可滲入已破損細胞膜(compromised membranes)的細胞的染色劑-碘化丙啶(propidium iodide)、一個血球計數器(hemacytometer)、和一個螢光顯微鏡(fluorescence microscope)。
所產生的保留物和過濾液容積分別是約3.5毫升和7.6毫升,白血球作為保留物,被收集在攜帶液中;使用從兩個不同的捐贈者所取得的血液樣本,將本實驗實行兩次,其結果顯示在圖33。全血(whole blood)加工處理的處理量平均是約5.4毫升/小時(ml/hr),本裝置證明具有每秒處理超過6百萬個細胞的能力;白血球阻留(leukocyte retention)約94%,紅血球剩餘品(erythrocyte carryover)約2%,且血小板剩餘品(platelet carryover)是<1%。此處,紅血球剩餘品和血小板剩餘品係分別表示紅血球和血小板的阻留率。加工處理後的白血球存活力與加工前比較,在測量誤差範圍內,是無法區別的。本測量顯示裝置和分離程序不會降低白血球存活力,且本裝置能夠使分離的白血球具有>99%存活力。
實施結果和成本效益的度量顯示於下,在例示的裝置中的一個過濾模組的滯留體積係約0.03微升(μl),每一個過濾單元包含480個柱狀物,且其佔地面積小於8.4平方毫米(mm2)《亦即一個25毫米x 24毫米的裝置佔地面積除以72個過濾單元》。由於通道深度30微米、一個裝置佔地面積600平方毫米(25毫米x 24毫米)、和72個過濾單元在裝置上,因此該裝置的『過濾單元密度(filtration unit density)』是:
例示裝置的『標準化加工處理速度』計算如下:
像這樣的『標準化加工處理速度』意指在此裝置上的通道和過濾器構件的每一個立方毫米的貢獻是每秒加工處理0.33 x 106個細胞。
例示的裝置的設計效率指數計算如下:
供料加工處理的處理量:Q=5.4毫升/小時=1.5立方毫米(毫米3)/秒
特有的通道深度:D=30微米=0.03毫米
裝置佔地面積:A=25毫米x 24毫米=600平方毫米(毫米2)
阻留尺寸:R=4微米=0.004毫米
剪切變率:S=1900 s -1(計算於下)
根據電腦模擬,一個供料血液細胞在裝置中可能受到的最大剪切變率(maximum shear rate)發生在供料入口通道(feed inlet channel)的表面,利用電腦流體動力學,最大剪切變率能計算出來;或者,假設在供料入口通道中,流動的形式是拋物線,最大剪切變率能分析地估算出來如下。已知裝置含有144個供料入口通道《每一模組2個,72個模組》、且已知每一入口通道橫切面為70微米x 30微米,則在供料入口通道中的平均流動速度(average flow velocity)<v>計算出來為:
假設一個拋物線流動形式,因此在供料入口通道表面的剪切變率是:
因此,例示裝置的設計效率指數(design efficiency index(D.E.I))是:
同樣地,例示裝置的一個過濾單元(filtration unit)的設計效率指數可以計算出來,因為有72個過濾單元在裝置上,每一個過濾單元對於供料加工處理的處理量的貢獻是0.0208毫米3/秒《1.5毫米3/秒除以72》;一個過濾單元的平均佔地面積是8.33毫米2《25毫米x 24毫米÷72》,因此,一個過濾單元的設計效率指數是:
儘管裝置具有的加工處理處理量是遠遠多於單一過濾單元,但是過濾單元的設計效率指數與裝置的設計效率指數卻正好相同。吾人應可了解,雖然聚合物微小圓球可用來作為測量一個裝置的阻留尺寸的標準測試而無須拘泥於該裝置的預期用途為何,然而設計效率指數可做為一個裝置的標準特徵而無須拘泥於其通道尺寸、操作中流動速率、和阻留尺寸。
實施例3:全血的白血球減除(Leukocyte reduction)
實施例2中的例示裝置可做為一個白血球減除(leuko-reduction)過濾器,裝置的過濾液含有只有6%或更少的白血球進入裝置中,實施例2顯示,本發明之裝置能夠用來從全血減除白血球,其他裝置的構造,無論有無一個攜帶液,也可作為白血球減除過濾器。
實施例4:從周邊血液分離淋巴球
使用一個高模組密度裝置,將淋巴球(Lymphocytes)從周邊血液(peripheral blood)分離出來。
例示的裝置是一種高模組密度裝置,包含87個過濾單元,每一個單元包含一個過濾器串流瀑布模組,如圖17C所描繪者;每一個過濾器串流瀑布模組包含一個第一雙重過濾器模組(first dual filter module)《圖17C中的元件171》和一個含有攜帶液入口(carrier fluid inlet)《圖17C中的元件175》的第二雙重過濾器模組(second dual filter module)《圖17C中的元件172》。裝置中的通道和艙室係30微米的深度;第一雙重過濾器模組包含兩個各含有116小孔的過濾器,每個小孔的橫切面為30微米x 12微米,因此具有一個12微米的物理小孔尺寸;第一雙重過濾器模組的保留物艙室和過濾液艙室係設計為使通過小孔的流動速率約是在第一雙重過濾器模組的保留物艙室入口處流動速率的0.29%。第二雙重過濾器模組包含兩個各含有120小孔的過濾器,每個小孔的橫切面為30微米x 12微米,因此具有一個12微米的物理小孔尺寸;第二雙重過濾器模組的保留物艙室和過濾液艙室係設計為使通過小孔的流動速率約是在第二雙重過濾器模組的保留物艙室入口處流動速率的0.34%。該裝置係21毫米長度、24毫米寬度、0.6毫米厚度,因次具有一個佔地面積為504平方毫米(mm2)《21毫米x 24毫米》。
本裝置係使用標準微製造技術(standard microfabrication techniques)以矽(silicon)製造而成,應用光學蝕刻技術(photolithography)和矽深蝕刻技術(deep silicon reactive etching),作出流體的通道、艙室、和過濾器構件;蝕刻深度為30微米;使用陽極接合(anodic bonding),將矽基板(silicon substrate)密封在蝕刻的通道上,面向一個玻璃晶圓(glass wafer),作成一個封閉的流體通道,然後該接合的晶圓切成個別的裝置。該裝置藉由機器操作,與一個具有外部樣本、攜帶液、保留物、和過濾液的儲藏槽的塑膠外殼(plastic enclosure)配對結合。
此實施例中,使用人類周邊血液作為樣本,使用乙二胺四乙酸二鉀真空採血管(K2EDTA vacutainers(Becton Dickinson,Franklin Lakes,New Jersey))從已同意的成年捐贈者抽取血液,將血液用漢克平衡鹽緩衝液(Hank’s balanced salt solution)以1:1的比例稀釋,於抽取後8小時內,在室溫加工處理,使用含0.5%牛血清白蛋白和2毫莫耳乙二胺四乙酸二鉀的漢克平衡鹽緩衝液作為攜帶液。
將10毫升攜帶液加入到塑膠外殼中的攜帶液儲藏槽,準備好裝置;接著將8毫升血液樣本加入樣本儲藏槽;然後將兩個儲藏槽升高,超過保留物和過濾液儲藏槽的高度,產生一個約45公分的頭高。血液和攜帶液靠著重力和頭高,被驅動通過裝置,過濾液和保留物分別收集在過濾液和保留物的儲藏槽中;經過約40分鐘,血液由裝置加工處理完畢,然後使用自動化細胞計數器(Coulter AcT diff hematology analyzer,Beckman Coulter,Fullerton,California),測量並分析過濾液和保留物,其中,淋巴球、單核球、顆粒球(granulocytes)、紅血球、和血小板鑑別計數(differentially count)。
放入8毫升血液樣本和10毫升攜帶液產生約5毫升保留物和約13毫升過濾液,淋巴球做為保留物被收集在攜帶液中;使用從兩個不同捐贈者取得的樣本,將此實驗實施兩次,其結果顯示在圖34A至34D。平均加工處理的處理量是9.2毫升/小時(ml/hr),且分離的白血球純度是>90%,亦即,保留物中的全部的白血球,>90%是淋巴球;紅血球剩餘品是<0.5%,且血小板剩餘品是<1%。此處稀釋的血液每毫升含有大於20億個紅血球,因此,本裝置證明具有每秒處理超過5百萬個細胞的能力。
此處例示的裝置說明每一個模組能夠以高效率和結果分離淋巴球,且許多這種模組能同時地操作,作成一個高模組密度裝置。特別是,每一個過濾單位包含472個柱狀物,且佔地面積小於5.8平方毫米《亦即,一個21毫米x 24毫米的裝置佔地面積除以87個過濾單元》。在例示裝置中的一個過濾模組的滯留體積係約0.015微升(μl),由於通道深度30微米(μm)、一個裝置佔地面積504平方毫米(21毫米x 24毫米)、和87個過濾單元在裝置上,因此該裝置的『過濾單元密度(filtration unit density)』是:
例示裝置的『標準化加工處理速度』計算如下:
像這樣的『標準化加工處理速度』意指在此裝置上的通道和過濾器構件的每一個立方毫米的貢獻是每秒加工處理33萬個細胞。
本實施例是本發明面向和具體實施例中的流動排阻的複雜性質的典型,並歸納流動排阻以先前發明迄今仍未預期或顯然的一種方式,如何能被用來從一個複雜的液體分離其組成份,例如從血液分離淋巴球。特別是,血液中所有主要類型的細胞,亦即紅血球、顆粒球、單核球、和淋巴球,都是實質地小於裝置的物理小孔尺寸,紅血球、顆粒球、單核球、和淋巴球的平均細胞直徑分別大概是7微米、8微米、6微米、和5微米;再者,在這四種主要細胞類型中,與紅血球、顆粒球、單核球的平均細胞容積為分別約90飛升(femtoliters;fl)、250飛升(femtoliters;fl)、和120飛升(femtoliters;fl)比較,淋巴球是最小的組成份,具有一個平均細胞容積為約60飛升(fl)。總之,淋巴球是唯一實質地被例示裝置中的過濾器阻留的細胞類型,與所有其他細胞類型的阻留率約為0%比較,其阻留率約60%《圖34C》。
此實施例也清楚地呈現,在例示應用中的分開程序是隨機的(stochastic),且描述微粒阻留最好是用機率(probability),亦即一個阻留機率(retention probability)或一個阻留率(retention rate);特別是,一個血液細胞的移動通路不可能預先決定,至少不是光依照一個臨界尺寸(critical size)來預先決定;可能影響阻留機率的可能因素包括細胞-細胞的交互作用(cell cell interaction)、布朗運動(Brownian motion)、和流動方式的擾動(perturbation of flow patterns)。
實施例5:人類臍帶血液的容積減少及造血幹細胞的加濃並伴隨高細胞存活力
使用一種高模組密度裝置,減少臍帶血的容積,但是白血球、CD+34細胞、和集落形成幹細胞(colony forming stem cells)、及源祖細胞(progenitor cells)、包括集落形成細胞-顆粒球-巨噬細胞(colony forming cells-granulocyte,macrophage(CFC-GM)),可以回收並伴隨高細胞存活力。
此實施例所使用的裝置是一種高模組密度裝置,包含87個過濾單元,每一個過濾單元包含一個過濾器串流瀑布模組,如圖17C所描繪。每一個過濾器串流瀑布模組包含一個第一雙重過濾器模組(first dual filter module)《圖17C中的元件171》和一個第二雙重過濾器模組(second dual filter module)《圖17C中的元件172》。裝置中的通道和艙室係30微米的深度;第一雙重過濾器模組包含兩個各含有120小孔的過濾器,每個小孔的橫切面為30微米x 12微米,因此具有一個12微米的物理小孔尺寸;第一雙重過濾器模組的保留物艙室和過濾液艙室係設計為使通過小孔的流動速率約是在第一雙重過濾器模組的保留物艙室入口處流動速率的0.28%。第二雙重過濾器模組包含兩個各含有320小孔的過濾器,每個小孔的橫切面為30微米x12微米,因此具有一個12微米的物理小孔尺寸;第二雙重過濾器模組的保留物艙室和過濾液艙室係設計為使通過小孔的流動速率約是在第二雙重過濾器模組的保留物艙室入口處流動速率的0.10%至約0.14%之間。該裝置係23毫米長度、24毫米寬度、0.6毫米厚度,因次具有一個佔地面積為552平方毫米(mm2)《23毫米x 24毫米》。
估算裝置的阻留尺寸約是4微米,顯著地小於12微米的物理小孔尺寸。
本裝置係使用標準微製造技術(standard microfabrication techniques)以矽(silicon)製造而成,應用光學蝕刻技術(photolithography)和矽深蝕刻技術(deep silicon reactive etching),作出流體的通道、艙室、和過濾器構件(filter structures);蝕刻深度為30微米;使用陽極接合(anodic bonding),將矽基板(silicon substrate)密封在蝕刻的通道上,面向一個玻璃晶圓(glass wafer),作成一個封閉的流體通道,然後該接合的晶圓切成個別的裝置。該裝置藉由機器操作,與一個具有外部樣本、保留物、和過濾液儲藏槽的塑膠外殼(plastic enclosure)配對結合,來遞送樣本流體。
本實施例中,使用人類臍帶血作為樣本,使用臍帶血收集袋(Fenwal Inc.,Round Lake,IL)從已同意的成年捐贈者收集血液,該臍帶血收集袋含有檸檬酸磷酸右旋葡萄糖(Citrate phosphate dextrose(CPD))作為抗凝劑,於抽取後6小時內,將血液在室溫進行處理。
12毫升臍帶血不再進一步稀釋,加入裝置中;臍帶血供料的血比容(hematocrits)是在19%至45%的範圍內,且每毫升含有超過28億(2.8 billion)紅血球細胞(red blood cells),血比容是紅血球細胞佔據的血液容積的比例;血液藉由重力和一個約40公分的頭高驅動,通過裝置,過濾液和保留物分別收集在過濾液和保留物的儲藏槽中;白血球、CD+34細胞、和集落形成幹細胞和源祖細胞如預期地被回收為保留物。經過約1小時,血液完全通過裝置,使用一個自動細胞計數器(automated cell counter)《美國貝克曼庫爾特AC.T diff三分類血球分析儀(Coulter AcT diff hematology analyzer,Beckman Coulter,Fullerton,California)》,測量並分析過濾液和保留物,計算白血球取回率(leukocyte recovery yield)。被取回的細胞的存活力(viability)在運轉後立即測量,使用一種可滲入已破損細胞膜(compromised membranes)的細胞的染色劑-碘化丙啶(propidium iodide)、一個血球計數器(hemacytometer)、和一個螢光顯微鏡(fluorescence microscope)。使用流式細胞儀(flow cytometry)測量CD+34細胞的回收。要計數集落形成細胞,係將臍帶血和保留物與一個氯化銨裂解溶液(ammonium chloride lysis solution(Stemcell Technologies,Vancouver,BC,Canada))混合以裂解紅血球細胞,沖洗、然後在一個甲基纖維素生長培養基(methylcellulose growth medium(Stemcell Technologies,Vancouver,BC,Canada))中,使用一個培養箱組(incubator set),在攝氏37度、5%二氧化碳(CO2)、和高濕度的條件,培養14天,14天後,用一個倒立顯微鏡(inverted microscope),以人工方式計算集落形成細胞-顆粒球-巨噬細胞(CFC-GM)的集落。
實驗的結果顯示在圖35A至35C。白血球、CD+34細胞、和集落形成細胞《例如集落形成細胞-顆粒球-巨噬細胞》被回收在保留物中,取回率分別約88%、87%、和92%。本裝置以一個約5.4的因數減少臍帶血容積,亦即保留物容積搭約是臍帶血供料容積的18.5%,因為有這種容積減少因數,100毫升臍帶血就減少至18.5毫升。細胞存活力在處理前和處理後係大體上相同,在測量誤差內,且>99%。加工處理的處理量25係平均約每小時11.4毫升(11.4 ml/hr),此處理量相等於每秒處理約9百萬(9 million)個細胞。
例示裝置的『標準化加工處理速度』計算如下:
製造在此裝置上的通道和過濾器構件的每一個立方毫米貢獻的加工處理是每秒54萬個細胞。
本實施例證明所使用的裝置能以非常好的取回率和細胞存活力,使臍帶血幹細胞和源祖細胞濃縮;特別是,每一個過濾單元包含880個柱狀物,且佔地面積小於6.4平方毫米《亦即,一個23毫米x 24毫米的裝置佔地面積除以87個過濾單元》;於例示裝置中,一個過濾模組的滯留體積是約0.04微升,由於通道深度30微米、一個裝置佔地面積為552平方毫米(23毫米x 24毫米)、和7287個過濾單元在裝置上,因此該裝置的『過濾單元密度(filtration unit density)』是:
所使用的裝置的設計效率指數計算如下:
供料加工處理的處理量:Q=5.4毫升/小時=3.17立方毫米(毫米3)/秒
特有的通道深度:D=30微米=0.03毫米
裝置佔地面積:A=23毫米x 24毫米=552平方毫米(毫米2)
阻留尺寸:R=4微米=0.004毫米
剪切變率:S=1900 s -1(計算於下)
裝置中的最大剪切變率(maximum shear rate)發生在保留物艙室的表面,靠近其入口。利用電腦流體動力學,最大剪切變率能計算出來;或者,假設在保留物艙室中流動的形式是拋物線,最大剪切變率能分析地估算出來如下:已知裝置含有87個過濾模組,且每一保留物艙室具有一個已知的入口處橫切面為130微米x 30微米,則保留物艙室中的在入口處平均流動速度(average flow velocity)<v>,計算出來為:
假設一個拋物線流動形式,因此在保留物艙室表面的剪切變率是:
因此,例示裝置的設計效率指數(design efficiency index(D.E.I))是:
實施例6:被分離細胞的標示
實施例2中的例示裝置,使用一個含有對抗至少一個特定抗原的抗體(antibodies)的攜帶液,可用來標示具有至少一個特定抗原(specific antigen)的細胞的子密數(subpopulations),該抗體可以結合一個螢光團(fluorophore)或一個磁珠(magnetic bead),用以螢光性地或磁性地標示目標細胞。在分開程序(separation process)進行時,保留物細胞從供料奔流(feed stream)被引導進入攜帶液奔流(carrier fluid stream),並與抗體混合,具有特殊抗原的保留物細胞並收集成為保留物,一個沖洗液可以用與攜帶液相同的方式,選擇性地導入到裝置的過濾模組中,用來沖洗流經模組的細胞;分開程序可以在適合特殊抗體標示的溫度實施。接著,螢光標示的細胞可以用一個流式細胞儀(flow cytometer)來計數及描述特徵;而磁性標示的細胞可以用一個磁鐵來分離。抗體可以用來標示存在血液中的白血球和其他細胞的子密數,包括抗-CD45(anti-CD45)、抗-CD34、抗-CD71、抗-CD138、抗-CD14、抗-CD15、抗-CD3、抗-CD4、抗-CD8、抗-CD19、抗人類白血球抗原抗體(anti-HLA;anti-human leukocyte antigen antibody)、抗涎糖蛋白抗體(anti-GPA;anti-Glycophorin A antibody)、抗-CD271、抗-CD43、抗-CD10、抗-CD33、抗-CD66、和抗-CD105抗體。攜帶液可包含抗體以外的試劑,用來標示、處理、改變、染色、沖洗、或甚至裂解保留物細胞,也可以用相同方式實施;可以用來當作攜帶液的可能試劑包括:核酸染色劑(nucleic acid stains)、固定劑(fixatives)、冷凍溶液(freezing solutions)、烷化劑(alkylating agents)、抗體、磁珠、酵素(enzymes)、膠原酶(collagenase)、脂酶(lipase)、脫氧核糖核酸酶(DNase)、某些酵素受體(substrates of certain enzymes)、環磷醘胺(cyclophosphamide)的活性衍生物(active derivatives)、生長因子(growth factors)、清潔劑(detergents)、和裂解溶液(lysis solutions)。這個實施例描述本發明的一個過濾裝置的應用,用來在一個步驟中,實行分開和細胞標示、處理、改變、染色、沖洗、或裂解;這樣的方法預期在許多應用方面十分有用,包括CD34+幹細胞的分離、循環腫瘤細胞(circulating tumor cells)的分離、基質血管部分的製備、計數CD34+細胞、惡性漿細胞(malignant plasma cells)的分離、偵測醛脫氫酶(aldehyde dehydrogenase)活性、基於酵素活性的特殊細胞的分開、基於表面抗原(surface antigens)的特殊細胞的分離。
其他具體實施例
從先前的描述,此處描述的發明可以變更或修改以使其應用在不同的用途和狀況,此事係很顯然的,這樣的具體實施例也是在以下申請專利的範圍內。
此處,在一個變項的任何定義中的元件一覽表的詳述,包括該變項做為單一元件或表列元件的組合(或次組合)的定義;此處,一種具體實施例的詳述包括該具體實施例做為單一具體實施例、或與其它具體實施例或其組成部份的組合。
本說明書中所提到的所有專利及公開出版物,於此處併入作為參考,如同於每個獨立的專利及公開出版物特定地和單獨地指示併入作為參考,到相同的範圍。
本發明的至少一種具體實施例的數個面向已經如此描述過,吾人應可了解,各種變更、修改、和改良對於一個所屬技術領域中具有通常知識者將很容易發生,這樣的變更、修改、和改良,預期是在本發明的一部分中,並且是在本發明的精神和範圍內,因此前面的描述和附圖只是例示。
001...微粒
002...開口
003...過濾器
131...過濾器
132...過濾液艙室
133...敷層
134...敷層
170...過濾器串流瀑布模組
171...第一模組
172...過濾器模組
173...第一過濾器
174...第二過濾器
175...攜帶液流動入口
176...通過孔
177...入口
180...串流瀑布模組
181...第一模組
182...第二模組
183...排出口
184...入口
185...虛線
186...排出口
220...入口
221...第一模組
222...第二模組
223...第一模組
224...第二模組
225...排出口
226...入口
227...入口
228...第一模組
230...入口
231...艙室
232...艙室
233...排出口
234...排出口
235...排出口
236...物艙室
237...過濾器
238...過濾器
239...虛線
241...輸入通口
242...輸出通口
243...輸出通口
244...通道
245...排出口通道
246...排出口通道
247...輸入通口
248...通道
249...過濾單元
260...箱座
261...高模組密度裝置
263...收集通道
264...過濾液收集通道
268...墊襯
302...柱狀物
304...小孔
321...微粒
501...第一流動艙室
502...供料入口
503...排出口
504...第二流動艙室
505...柱狀物
506...小孔
507...過濾液排出口
508...過濾器
509...第二過濾器
510...排出口
511...第三艙室
512...連續的表面
513...排出口
516...第二過濾液艙室
541...排出口
542...排出口
521...入口
522...攜帶液奔流
523...供料奔流
524...虛線
531...保留物微粒
571...狹窄部分
701...過濾器
702...過濾器
703...過濾器
704...過濾器
710...側壁
711...濾液艙室
720...過濾液排出口
721...排出口
722...入口
2310...模組
2311...模組
3101...樣本井
3102...攜帶液井
3103...過濾液井
3104...保留物井
3015...過濾裝置
附圖並未依照比例繪製,且為了清楚易辨認,元件號碼(例如,柱狀物的號碼)可能會從實際的具體實施例中被縮減。於附圖中,在各個不同圖面所描繪的每一個相同的或幾乎相同的組成份係以相同的號碼代表,為了明確的目的,不會再每一個附圖中標示每一個組成份。以下各圖面:
圖1A至1G係概略示意圖,顯示用於微粒分離的不同方法。圖1A描述一個大粒子被一個小孔排除。圖1B描述一個大粒子的變形,該粒子一部份進入一個小孔,半無法擠壓通過小孔。圖1C顯示一個微粒進入一個狹窄開口,且陷入在小孔中。圖1D顯示微粒陷入在小孔中。圖1E顯示尺寸排阻(size exclusion)的失敗,於本示意圖,一個微粒走過一個小孔是因為該微粒小於該小孔。圖1F顯示另一個尺寸排阻的失敗,此例中,微粒走過一個小孔是因為該微粒可以變形或擠壓經過小孔。圖1G描述另一個尺寸排阻的失敗,此例中,微粒無法過濾是因為它們的流動路徑並未提供它們接觸物理性限制小孔(physically restricting pores)。
圖2A和2B係概略示意圖。圖2A顯示微血管的血液循環所觀察到的流動排阻效果(flow exclusion effect);圖2B顯示流動排阻(flow exclusion)的一個可能的機轉。
圖3A至3C係概略示意圖,描述本發明揭示的一個具體實施例的流動排阻原理。
圖4係一個曲線圖,顯示有效小孔尺寸是經過一個小孔的流動的函數。有效小孔尺寸係藉由電腦流體動力學模擬實驗所計算出來的。
圖5A至5F係概略示意圖,顯示過濾器模組的具體實施例。圖5A描述一個頂面視圖;圖5B提供一個三度空間的組合圖;圖5C提供一個三度空間的展開圖;圖5D提供一個三度空間視圖,顯示具有一個小於1的高寬比(aspect ratio)的柱狀物,過濾器模組具體實施例的蓋子並未顯示;圖5E提供一個三度空間視圖,顯示具有一個小於1的高寬比的柱狀物,具體實施例的蓋子並未顯示;圖5F提供一個三度空間視圖,顯示一個逐漸變小的柱狀物,具體實施例的蓋子並未顯示。
圖6A和6B係概略示意圖,提供兩個過濾器模組具體實施例的頂面視圖。
圖7A至7B係概略示意圖,說明過濾器模組具體實施例。圖7A提供一個過濾器模組具體實施例的頂面視圖;圖7B提供一個過濾器模組具體實施例的頂面視圖。圖7C係一個曲線圖,說明圖7A所示之過濾器模組的有效小孔尺寸;圖7D係一個曲線圖,說明圖7B所示之過濾器模組的有效小孔尺寸。
圖8係概略示意圖,提供一種具有不同小孔尺寸的過濾器模組具體實施例的三度空間視圖,模組的蓋子並未顯示。
圖9A至9H係概略示意圖,提供過濾器模組具體實施例的分切部份的頂面視圖。圖9A說明一個波浪狀過濾液艙室(wavy filtrate chamber);圖9B至9H顯示柱狀物的各種橫切面形狀。
圖10A至10C係概略示意圖,顯示一個過濾器模組,具有一個過濾液艙室,比保留物艙室較淺。圖10A和圖10B分別是頂面視圖及三度空間視圖,模組的蓋子並未顯示;圖10C說明一個微粒在模組中的移動。
圖11A和圖11B是兩個概略示意圖,顯示一種含有濾網過濾器(screen filter)的過濾器模組的三度空間組合圖和三度空間展開圖。
圖11C和圖11D是兩個概略示意圖,顯示一種含有多孔膜過濾器(porous membrane filter)的過濾器模組的三度空間組合圖和三度空間展開圖。
圖12是一個概略示意圖,顯示一個過濾器模組的頂面視圖。
圖13是一個概略示意圖,顯示一個過濾器模組使用一個攜帶流動(carrier flow)的頂面視圖。
圖14A和圖14B是概略示意圖,顯示兩個雙重過濾器模組(dual filter modules)的頂面視圖。
圖15A和圖15B顯示兩個雙重過濾器模組(dual filter modules)的頂面視圖。
圖16A和圖16B顯示兩個多重過濾器模組(multiple filter modules)的頂面視圖。
圖17A至17D係概略示意圖。圖17A提供一個包含兩個實質上相同的過濾器模組的過濾器連續階狀模組(filter cascade module)的頂面視圖。圖17B提供一個包含兩個實質上相同的雙重過濾器模組的過濾器連續階狀模組的頂面視圖。圖17C和圖17D提供兩個過濾器連續階狀模組的頂面視圖,每一者都包含兩個雙重過濾器模組。
圖18A至18C係概略示意圖,提供包含不同過濾器模組的過濾器連續階狀模組的頂面視圖。圖18D係曲線圖,顯示定性過濾特徵(qualitative filtration characteristics)。
圖19A和19B係概略示意圖,提供包含不同雙重過濾器模組的過濾器連續階狀模組的頂面視圖。
圖20A和20B係概略示意圖。圖20A提供包含兩個不同過濾器模組的過濾器連續階狀模組的頂面視圖;圖20B提供一個簡化的過濾器連續階狀模組的頂面視圖;圖20C係曲線圖,顯示定性過濾特徵。
圖21A和21B係概略示意圖,提供兩個雙重過濾器模組的頂面視圖。
圖22A和22B係概略示意圖,係依據一實施方式所示之過濾器模組的頂面視圖。
圖23A至23C係概略示意圖,提供三個雙重過濾器模組構造的頂面視圖。圖23D係概略示意圖,顯示一個多重過濾器模組;圖23E係概略示意圖,顯示一種過濾器連續階狀模組,包含兩個圖23C所示之雙重過濾器模組。
圖24A至24F係概略示意圖。圖24A至24D及24F提供高模組密度裝置的頂面視圖;圖24E提供一種高模組密度裝置的三度空間視圖,裝置的蓋子並未顯示。
圖25是一個概略示意圖,顯示一個含有四個高模組密度裝置的儲存架(stack)和一個蓋子的裝置的三度空間組合圖和三度空間展開圖。
圖26A至26E係一種卡匣的概略示意圖。圖26A係一種概略示意圖,顯示一種卡匣的三度空間組合圖;圖26B係一種概略示意圖,顯示一種卡匣的前面視圖;圖26C係一種概略示意圖,顯示一種卡匣的側面視圖;圖26D係一種概略示意圖,顯示一種卡匣的三度空間展開圖;圖26E係一種概略示意圖,顯示一種卡匣的側面展開圖。
圖27A至27C係一種軟袋系統(bag system)的概略示意圖。
圖28係一種軟袋系統(bag system)的一個概略示意圖。
圖29A和圖29B係概略示意圖,分別顯示一種管子系統(tube system)的三度空間組合圖和三度空間展開圖。
圖30A至30G係一種管子嵌插物的概略示意圖。圖30A是一種概略示意圖,顯示管子嵌插物的三度空間視圖;圖30B是一種概略示意圖,顯示管子嵌插物的橫切面視圖;圖30C、30D、30E、30F、和30G都是概略示意圖,分別顯示管子嵌插物的頂面視圖、前面視圖、側面視圖、後面視圖、和底面視圖。
圖31A至31C係一種板狀系統(plate system)的概略示意圖。圖31A係一種概略示意圖,顯示板狀系統的一種三度空間視圖;圖31B係一種概略示意圖,顯示板狀系統的一種三度空間展開圖;圖31C係一種概略示意圖,顯示板狀系統的一種側面視圖。
圖32A至32D係一種板狀系統(plate system)的概略示意圖。圖32A係一種概略示意圖,顯示板狀系統的一種三度空間視圖;圖32B、32C、和32D都是概略示意圖,分別顯示板狀系統的頂面視圖、側面視圖、和前面視圖。
圖33係一個表,顯示使用一種高模組密度裝置從周邊血液分離白血球的實驗結果。
圖34A至34B是直方圖,顯示在一個將白血球從周邊血液分離的實驗中,白血球(WBC)、紅血球(RBC)、和血小板(PLT)在血液樣本中以及在保留物中的尺寸分布。圖34C是一種表,顯示各種細胞類型的計數(counts)。圖34D是一種表,顯示一個高模組密度裝置的結果。
圖35A至35C都是表,顯示使用一種高模組密度裝置作臍帶血體積減少的實驗結果。
260...箱座
261...多重高模組密度裝置
262...供料通道
263...保留物收集通道
264...過濾液收集通道
268...墊襯

Claims (76)

  1. 一種過濾裝置,包含:一個第一流體艙室,包括:至少一個入口,其構造為接受一個含有微粒和一個液體的一個供料,和至少一個保留物排出口;一個第二流體艙室,包括:一個遠端,具有至少一個過濾液排出口,和一個過濾器,位於第一流體艙室和第二流體艙室之間;過濾器包括:一個第一柱狀物排(first row of pillars),和複數個小孔,由相鄰柱狀物間的距離所界定,其中複數個小孔的每一小孔包括:一個物理小孔尺寸,由界定小孔的相鄰柱狀物間的一個距離所界定,和一個小於物理小孔尺寸的有效小孔尺寸;和一手段用以移動供料通過過濾裝置;其中第一流體艙室、第二流體艙室、過濾器、和移動供料通過過濾裝置的方法作成的構造,係阻留一個實體分數部份的微粒做為 保留物於第一流體艙室中,微粒具有一個尺寸是大於小孔的有效小孔尺寸且小於小孔的物理小孔尺寸;及,流過一個實體分數部份的液體做為過濾液,進入第二流體艙室;且其中過濾器和第一流體艙室的一個側壁(sidewall)間的距離係沿著至少一個入口到至少一個保留物排出口的長度逐漸減少;及,其中過濾器和第二流體艙室的一個側壁間的距離係沿著第二流體艙室的近端到遠端的長度逐漸增加。
  2. 如申請專利範圍第1項所述之過濾裝置,其中第一流體艙室包含一個第一實質固定深度(first substantially constant depth);其中第二流體艙室包含一個第二實質固定深度。
  3. 如申請專利範圍第1項所述之過濾裝置,其中第二流體艙室的一個側壁的切線和柱狀物排的切線之間的角度小於5度。
  4. 如申請專利範圍第1項所述之過濾裝置,其中小孔的一個子集合(subset)具有實質相同的物理小孔尺寸。
  5. 如申請專利範圍第1項所述之過濾裝置,其中小孔的一個子集合具有實質相同的有效小孔尺寸。
  6. 如申請專利範圍第1項所述之過濾裝置,其中第一柱狀物排包含超過存在於過濾裝置中的全體柱狀物的10%。
  7. 如申請專利範圍第1項所述之過濾裝置,具有一個裝置長度,係由第一流體艙室長度和第二流體艙室長度較大者界定;及一個裝置寬度,係在第一流體艙室寬度和第二流體艙室寬度最大總和之處,由第一流體艙室寬度和第二流體艙室寬度總和界定;裝置長度對裝置寬度具有一個比例,約大於6。
  8. 如申請專利範圍第1項所述之過濾裝置,其中每個小孔具有一個有效小孔尺寸,係小於小孔的物理小孔尺寸的約80%。
  9. 如申請專利範圍第1項所述之過濾裝置,其中第一流體艙室包含至少一個攜帶液入口,有別於至少一個入口。
  10. 如申請專利範圍第1項所述之過濾裝置,在穿過裝置的流動路徑上,第一流體艙室和過濾器的每一者均沒有任何前緣(leading edge)具有小於1微米的彎曲半徑。
  11. 如申請專利範圍第1項所述之過濾裝置,其中第一小孔子集合(first subset of the pores)具有一個與第二小孔子集合(second subset of the pores)不同的有效小孔尺寸。
  12. 如申請專利範圍第1項所述之過濾裝置,其中過濾裝置更進一步 包含一個第二過濾器和一個第三流體艙室;其中第二過濾器安裝在第一流體艙室和第三流體艙室之間;其中第三流體艙室包括一個近端和一個遠端,遠端具有至少一個排出口;及,其中第三艙室沿著近端到遠端的長度而變寬。
  13. 如申請專利範圍第12項所述之過濾裝置,具有一個由第一流動艙室長度所界定的裝置長度;和一個裝置寬度,係在第一流體艙室寬度、第二流體艙室寬度和第三流體艙室寬度的最大總和處,由第一流體艙室寬度、第二流體艙室寬度和第三流體艙室寬度的總和界定;裝置長度對裝置寬度具有一個比例,約大於5。
  14. 如申請專利範圍第12項所述之過濾裝置,具有略少於約5,000的柱狀物。
  15. 如申請專利範圍第12項所述之過濾裝置,其中第一過濾器和第二過濾器包含超過約15%的過濾裝置所含的全體柱狀物。
  16. 如申請專利範圍第12項所述之過濾裝置,其中在一個通過第一流體艙室的中心線的鏡平面(mirror plane),過濾裝置係實質地對稱。
  17. 如申請專利範圍第12項所述之過濾裝置,其中由第一柱狀物排 界定的切線和第二柱狀物排界定的切線係不平行的(non-parallel)。
  18. 如申請專利範圍第1項所述之過濾裝置,其中過濾裝置更進一步包含一個第二過濾器、一個第三流體艙室、和一個第四流體艙室(fourth flow chamber);其中第二過濾器安裝在第三流體艙室和第四流體艙室之間;其中第三流體艙室包含至少一個入口和至少一個排出口;及,其中第四流體艙室包含至少一個排出口。
  19. 如申請專利範圍第18項所述之過濾裝置,具有一個裝置長度,係由第一流體艙室長度和第三流體艙室長度的總和界定;及,一個裝置寬度,係在第一流體艙室寬度和第二流體艙室寬度的最大總和處之第一流體艙室寬度和第二流體艙室寬度的總和,與在第三流體艙室寬度和第四流體艙室寬度的最大總和處之第三流體艙室寬度和第四流體艙室寬度的總和,以較大者來界定裝置寬度;裝置長度對裝置寬度具有一個比例,約大於10。
  20. 如申請專利範圍第18項所述之過濾裝置,具有略少於約5,000的柱狀物。
  21. 如申請專利範圍第18項所述之過濾裝置,其中第一過濾器和第二過濾器包含不少於10%的包括在過濾裝置中的全部柱狀物。
  22. 如申請專利範圍第18項所述之過濾裝置,其中第三流體艙室的至少一個入口係與第一流體艙室的至少一個排出口及與第二流體艙室的至少一個排出口有液體連結。
  23. 如申請專利範圍第22項所述之過濾裝置,其中第三流體艙室更進一步包含至少一個攜帶液入口,明顯有別於該至少一個入口。
  24. 一種微粒過濾的方法,包含:提供一個過濾裝置,裝置包括至少一個過濾單元,每一過濾單元包含:一個第一流體艙室,包括一個供料入口,和一個保留物排出口;一個第二流體艙室,包括一個過濾液排出口;一個過濾器,含有複數的具物理小孔尺寸的小孔;過濾器安裝在第一流體艙室和第二流體艙室之間;導入含有一個供料液(feed fluid)和至少一個密數(population)的微粒的一個供料(feed)經供料入口進入裝置中,該微粒密數的尺寸較小於浸泡供料液的物理小孔尺寸;施予一個驅動力,驅動該供料通過該過濾裝置;及輸送供料經過過濾裝置,以致於至少一個密數的微粒的一個實體 分數部分被阻留在第一流體艙室,成為保留物;而供料液的一個實體分數部分通過過濾器成為過濾液,進入第二流體艙室;收集保留物於保留物排出口;及收集過濾液於過濾液排出口。
  25. 如申請專利範圍第24項所述之方法,其中提供一種過濾裝置係包含提供一個含有超過10個過濾單元的過濾裝置。
  26. 如申請專利範圍第24項所述之方法,其中導入該供料進入裝置係包含導入一個細胞的液體懸浮液進入第一流體艙室。
  27. 如申請專利範圍第26項所述之方法,其中該供料包含存活細胞;其中該方法更進一步包含從供料分離細胞;及其中至少約90%的存活細胞在分離後仍保持存活。
  28. 如申請專利範圍第26項所述之方法,其中該方法更進一步包含從供料分離細胞;及其中少於約0.03%的細胞受過濾裝置影響而裂解。
  29. 如申請專利範圍第26項所述之方法,其中少於約0.03%的細胞被過濾裝置捕捉。
  30. 如申請專利範圍第26項所述之方法,其中輸送供料通過過濾裝置係包含每秒輸送超過105個細胞通過該過濾裝置。
  31. 如申請專利範圍第30項所述之方法,其中輸送供料通過過濾裝置係包含每秒輸送超過106個細胞通過該過濾裝置。
  32. 如申請專利範圍第31項所述之方法,其中輸送供料通過過濾裝置係包含每秒輸送超過107個細胞通過該過濾裝置。
  33. 如申請專利範圍第24項所述之方法,其中提供過濾裝置係包含提供一種過濾裝置;該裝置含有至少一個過濾單元;該過濾單元具有一個小於0.8微升(microliter)的滯留體積(hold up volume)。
  34. 如申請專利範圍第24項所述之方法,其中提供過濾裝置係包含提供一個具有一個設備佔地面積(footprint area)和一個具體固定艙室深度的過濾裝置;又,其中輸送供料通過該過濾裝置係包含以一個標準化加工處理速度(normalized processing speed)輸送細胞通過該過濾裝置;標準化加工處理速度係每秒通過過濾裝置的細胞數除以實質固定艙室深度和設備佔地面積的乘積的結果,大於每秒每立方釐米10,000細胞。
  35. 如申請專利範圍第24項所述之方法,其中提供過濾裝置係包含提供一個過濾裝置,該裝置具有一個特有固定艙室深度、一個設備佔地面積、和一個過濾單元密度(filtration unit density);過濾單元密度係由含於過濾裝置中的過濾模組(filtration modules)的數目除以特有固定艙室深度和設備佔地面積的乘積來界定,其中過濾單元密度係大於每立方釐米400過濾單元。
  36. 如申請專利範圍第24項所述之方法,其中導入供料進入過濾裝置係包含導入一個含有骨髓(bone marrow)的供料液進入第一流體艙室。
  37. 如申請專利範圍第24項所述之方法,其中導入供料進入過濾裝置係包含導入一個含有血液的供料液進入第一流體艙室。
  38. 如申請專利範圍第24項所述之方法,其中導入供料進入過濾裝置係包含導入一個含有臍帶血的供料液進入第一流體艙室。
  39. 如申請專利範圍第24項所述之方法,其中導入供料進入過濾裝置係包含導入一個含有幹細胞的供料液進入第一流體艙室。
  40. 如申請專利範圍第24項所述之方法,其中導入供料進入過濾裝置係包含導入羊膜液進入第一流體艙室。
  41. 如申請專利範圍第24項所述之方法,其中導入供料進入過濾裝置係包含導入已消化的脂肪組織進入第一流體艙室。
  42. 如申請專利範圍第24項所述之方法,其中導入供料進入過濾裝置係包含導入以下其中之一進入第一流體艙室:細胞、血液細胞、臍帶血細胞、骨髓細胞、紅血球(erythrocytes)、白血球(leukocytes)、淋巴球(lymphocytes)、上皮細胞(epithelial cells)、幹細胞、癌細胞(cancer cells)、腫瘤細胞(tumor cells)、循環腫瘤細胞(circulating tumor cells)、源祖細胞(progenitor cells)、細胞前驅物(cell precursors)、臍帶血幹細胞(cord blood stem cells)、造血幹細胞(hematopoietic stem cells)、間葉系幹細胞(mesenchymal stem cells)、脂肪幹細胞(adipose stem cells)、多功能幹細胞(pluripotent stem cells)、誘導式多功能幹細胞(induced pluripotent stem cells)、胚胎幹細胞(embryonic stem cells)、源自臍帶的細胞(cells derived from umbilical cord)、源自脂肪組織的細胞(cells derived from fat tissues)、基質血管部份中的細胞(cells in stromal vascular fractions(SVF))、羊膜液中的細胞(cells in amniotic fluids)、經血中的細胞(cells in menstrual blood)、腦脊髓液中的細胞(cells in cerebral spinal fluid)、尿液中的細胞(cells in urine)、骨髓幹細胞(bone marrow stem cells)、周邊血液幹細胞(peripheral blood stem cells)、CD34+細胞(CD34+cells)、集落形成細胞(colony forming cells)、T細胞、B細胞、神經細胞(neural cells)、免疫細胞(immuno cells)、樹狀突細胞(dendritic cells)、巨核細胞(megakaryocytes)、固定化骨髓細胞(immobilized bone marrow cells)、血小板(platelets)、***(sperms)、蛋、卵母細胞(oocytes)、微生物(microbes)、微小動植物(microorganisms)、細菌、黴菌、酵母菌(yeasts)、原生動物(protozoans)、病毒(viruses)、細胞器官(organelles)、細胞核(nuclei)、核酸(nucleic acids)、粒線體(mitochondria)、微粒體(micelles)、脂質(lipids)、蛋白質、蛋白質複合物(protein complexes)、細胞碎片(cell debris)、寄生菌(parasites)、脂肪顆粒(fat droplets)、多細胞生物(multi-cellular organisms)、孢子(spores)、海藻(algae)、團簇(clusters)、以上之聚集團(aggregates of the above)、工業粉末(industrial powders)、聚合物(polymers)、粉末(powders)、乳液(emulsions)、小滴(droplets)、灰塵(dusts)、微粒圓球(microspheres)、微粒(particles)、及膠體(colloids)。
  43. 如申請專利範圍第24項所述之方法,更進一步包含收集保留物,包括以下其中之一:細胞、CD34+細胞、一個基質血管部份、幹細胞、源祖細胞、集落形成細胞、造血幹細胞、脂肪幹細胞、間葉系幹細胞、 羊膜幹細胞、有核細胞(nucleated cells)、白血球、淋巴球、癌細胞、腫瘤細胞、樹狀突細胞、死細胞(dead cells)、活細胞(live cells)、***中細胞(dividing cells)、網狀紅血球(reticulocytes)、紅血球(red blood cells)、脂肪細胞、和脂肪小滴(fat droplets)。
  44. 如申請專利範圍第43項所述之方法,其中收集保留物係包含收集細胞,且其中保留物中的細胞約95%以上是存活的。
  45. 如申請專利範圍第24項所述之方法,更進一步包含收集過濾液,過濾液包括以下其中之一:細胞、CD34+細胞、一個基質血管部份、幹細胞、源祖細胞、集落形成細胞、造血幹細胞、脂肪幹細胞、間葉系幹細胞、羊膜幹細胞、血漿(plasma)、血小板、紅血球(red blood cells)、有核細胞(nucleated cells)、白血球、淋巴球、癌細胞、腫瘤細胞、樹狀突細胞、死細胞(dead cells)、活細胞(live cells)、***中細胞(dividing cells)、網狀紅血球(reticulocytes)、脂肪細胞、和脂肪小滴(fat droplets)。
  46. 如申請專利範圍第45項所述之方法,其中收集過濾液係包含收集細胞,且其中過濾液中的細胞約95%以上是存活的。
  47. 如申請專利範圍第24項所述之方法,其中提供一種過濾裝置係 提供一個具有一個阻留尺寸(retention size)明顯地小於物理小孔尺寸的過濾裝置。
  48. 一種減少臍帶血體積(cord blood volume reduction)的方法,包含:取得一個樣本,該樣本含有臍帶血,具有至少一個密數的有核細胞(one population of nucleated cells),該樣本具有一個樣本體積(sample volume);提供一種過濾裝置,該過濾裝置包括:一個第一收集貯存器(first collection receptacle)、一個第二收集貯存器(second collection receptacle)、一個供料通道工具(feed access means)、和至少三個過濾單元,每一個過濾單元具有一個微流體流體艙室(microfluidic flow chamber),包括:一個供料入口、一個保留物排出口、和一個過濾液排出口;其中每一個微流體流體艙室包括至少一個維度(dimension)是垂直於其一個長度,該長度約小於1釐米(millimeter);其中供料入口與供料通道工具有液體連結; 其中保留物排出口與第一收集貯存器有液體連結;及其中過濾液排出口與第二收集貯存器有液體連結;利用供料通道工具,導入樣本到過濾單元的供料入口;施予一個驅動力給樣本;輸送樣本通過過濾裝置的微流體流體艙室;創造層流狀況(laminar flow conditions),引導一個實體分數部分的樣本體積到過濾液排出口及一個實體分數部分的至少一個有核細胞密數到保留物排出口;在第一收集貯存器收集來自保留物排出口的一個排出液體;以及在第二收集貯存器收集來自過濾液排出口的一個排出液體。
  49. 如申請專利範圍第48項所述之方法,其中收集來自保留物排出口的排出液體,係包含在第一收集貯存器中,以少於樣本體積25%的體積,從樣本收集70%以上的有核細胞。
  50. 如申請專利範圍第48項所述之方法,其中至少一種有核細胞密數,係包含CD34+細胞;且收集來自保留物排出口的排出液體,係包含從樣本收集75%以上的有核細胞進入第一收集貯存器。
  51. 如申請專利範圍第48項所述之方法,其中所述之方法更進一步包含從樣本分開可存活細胞;且其中至少約95%的可存活細胞在分 開後保持可存活狀態。
  52. 如申請專利範圍第48項所述之方法,其中取得一個樣本,係包含取得一個樣本,該樣本含有的臍帶血有核細胞約95%以上具存活力(viability);且其中收集來自保留物排出口的排出液體,係包含收集有核細胞,有核細胞約95%以上具存活力。
  53. 如申請專利範圍第48項所述之方法,其中輸送樣本通過微流體流體艙室,係包含每秒超過10,000,000個血球細胞通過該過濾裝置。
  54. 一種微粒過濾儀器(particle filtration apparatus),包含:一個一般供料入口(common feed inlet);一個一般過濾液排出口(common filtrate outlet);一個一般保留物排出口(common retentate outlet);和至少一個高模組密度裝置(high module density device),包括複數個過濾單元,每一個過濾單元包括:一個第一流體艙室,包括至少一個入口,其結構係接受一個的供料,該供料係含有供料微粒的供料液,和至少一個保留物排出口;一個第二流體艙室,包括: 一個近端、一個具有至少一個過濾液排出口的遠端;以及一個第一過濾器(first filter),位於第一流體艙室和第二流體艙室之間,第一過濾器包括:一個第一柱狀物排(first row of pillars),和複數個小孔,由相鄰柱狀物排間之距離界定的複數個小孔;其中複數個小孔的每一小孔包含一種由相鄰柱狀物間之距離所定之物理性小孔尺寸,其中第一過濾器和第一流體艙室的一個側壁(sidewall)間的距離係沿著至少一個入口到至少一個保留物排出口的長度逐漸減少,且第一過濾器和第二流體艙室的一個側壁間的距離係沿著第二流體艙室的近端到遠端的長度逐漸增加;一手段用以移動供料通過複數的過濾單元;其中第一流體艙室、第二流體艙室、過濾器、和移動供料通過複數過濾單元的工具組成的構造具有一個小於有效小孔尺寸的阻留尺寸;和阻留一個實體分數部份的供料微粒,微粒具有大於阻留尺寸的尺寸,被阻留下來成為保留物,留在第一流體艙室,而一個實體分數部份的供料液體通過成為過濾液,進入第二流體艙室; 其中複數個過濾單元的至少一個入口的每一者係與一般供料入口有液體連結;其中複數個過濾單元的至少一個過濾液排出口的每一者係與一般過濾液排出口有液體連結;以及其中複數個過濾單元的至少一個保留物排出口的每一者係與一般保留物排出口有液體連結。
  55. 如申請專利範圍第54項所述之微粒過濾儀器,更進一步包含:一個管子(tube)、一個管子蓋(tube cap)、和一個管子嵌插物(tube insert);其中高模組密度裝置的組成構造是架設在管子嵌插物之中;其中管子的構造是配合管子嵌插物;其中管子嵌插物可包括一個供料儲藏槽(feed reservoir),該供料儲藏槽與一般供料入口有液體連結;以及其中管子蓋的構造是蓋住管子和管子嵌插物。
  56. 如申請專利範圍第55項所述之微粒過濾儀器,其中管子的構造是接受來自高模組密度裝置的保留物;又其中管子嵌插物更進一步包括一個過濾液儲藏槽(filtrate reservoir),其構造是接受來自高模組密 度裝置的過濾液。
  57. 如申請專利範圍第55項所述之微粒過濾儀器,其中管子的構造是接受來自高模組密度裝置的過濾液;又其中管子嵌插物更進一步包括一種保留物儲藏槽(retentate reservoir),其構造是接受來自高模組密度裝置的保留物。
  58. 如申請專利範圍第55項所述之微粒過濾儀器,其中管子嵌插物更進一步包括一種攜帶液儲藏槽(carrier fluid reservoir),其構造是供應一個攜帶液給至少一個第一流體艙室的一個入口。
  59. 如申請專利範圍第55項所述之微粒過濾儀器,更進一步包含:一種保留物收集袋(retentate collection bag),該保留物收集袋與一般保留物排出口有液體連結;和一個過濾液收集袋(filtrate collection bag),該過濾液收集袋與一般過濾液排出口有液體連結。
  60. 如申請專利範圍第59項所述之微粒過濾儀器,更進一步包含一個一般攜帶液入口(common carrier fluid inlet),該一般攜帶液入口與至少一個第一流體艙室的一個入口有液體連結。
  61. 如申請專利範圍第60項所述之微粒過濾儀器,更進一步包含一 個攜帶液貯存器(carrier fluid receptacle),其構造係供應一個攜帶液到攜帶液一般入口(carrier fluid common inlet)。
  62. 如申請專利範圍第59項所述之微粒過濾儀器,更進一步包含一個轉接器(adaptor),其構造係在一個供料收集袋(feed collection bag)和該一般供料入口之間建立一個液體連結。
  63. 如申請專利範圍第59項所述之微粒過濾儀器,更進一步包含一個供料收集袋,該供料收集袋與一般供料入口有液體連結。
  64. 如申請專利範圍第63項所述之微粒過濾儀器,其中供料收集袋包含至少一個針(needle),其構造係汲取供料進入供料收集袋。
  65. 如申請專利範圍第63項所述之微粒過濾儀器,其中供料收集袋包含一個抗凝劑。
  66. 如申請專利範圍第63項所述之微粒過濾儀器,其中供料收集袋包含一個液體。
  67. 如申請專利範圍第54項所述之微粒過濾儀器,更進一步包含:一個第一井(first well),與一般供料入口有液體連結,並構造作為一個液體儲藏槽(fluid reservoir); 一個第二井(second well),與一般保留物排出口有液體連結,並構造作為一個液體儲藏槽;以及一個第三井(third well),與一般過濾液排出口有液體連結,並構造作為一個液體儲藏槽。
  68. 如申請專利範圍第67項所述之微粒過濾儀器,其中第一井、第二井、和第三井係組成一個多井盤式構造(multi-well plate format)。
  69. 如申請專利範圍第67項所述之微粒過濾儀器,更進一步包含一個第四井(fourth well),該第四井與至少一個第一流體艙室的一個入口有液體連結,且構造是供應一個攜帶液到至少一個第一流體艙室。
  70. 如申請專利範圍第67項所述之微粒過濾儀器,更進一步包含一蓋子(cap),其構造是封住第一井、第二井、和第三井的至少一個。
  71. 如申請專利範圍第70項所述之微粒過濾儀器,其中所述之蓋子包含一個金屬薄片(foil),實質地不透空氣和蒸汽,且構造是密封第一井、第二井、和第三井的至少一個。
  72. 如申請專利範圍第70項所述之微粒過濾儀器,其中第一井、第二井、和第三井的至少一個盛裝一個液體。
  73. 如申請專利範圍第54項所述之微粒過濾儀器,其中複數個過濾單元的每一個過濾單元具有一個保留體積(hold up volume),係小於1微升(microliter)。
  74. 如申請專利範圍第54項所述之微粒過濾儀器,其中高模組密度裝置具有一個過濾單元密度,係大於每立方釐米(cubic centimeter)500過濾單元。
  75. 如申請專利範圍第54項所述之微粒過濾儀器,其中高模組密度裝置包括30個以上過濾單元。
  76. 如申請專利範圍第54項所述之微粒過濾儀器,其中高模組密度裝置具有一個設計效率指數(design efficiency index),係大於0.5毫米-2(mm-2)。
TW099145725A 2009-12-23 2010-12-23 微粒過濾系統及方法 TWI566793B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US28973009P 2009-12-23 2009-12-23
US29461110P 2010-01-13 2010-01-13

Publications (2)

Publication Number Publication Date
TW201132371A TW201132371A (en) 2011-10-01
TWI566793B true TWI566793B (zh) 2017-01-21

Family

ID=44196143

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099145725A TWI566793B (zh) 2009-12-23 2010-12-23 微粒過濾系統及方法

Country Status (16)

Country Link
US (2) US8679751B2 (zh)
EP (1) EP2516320A4 (zh)
JP (2) JP5624629B2 (zh)
KR (1) KR101443133B1 (zh)
CN (1) CN102791616B (zh)
AU (1) AU2010336424B2 (zh)
BR (1) BR112012018376A2 (zh)
CA (1) CA2785390C (zh)
CR (1) CR20120391A (zh)
DO (1) DOP2012000181A (zh)
IL (1) IL220274A (zh)
MX (1) MX344460B (zh)
RU (1) RU2539989C2 (zh)
SG (1) SG181676A1 (zh)
TW (1) TWI566793B (zh)
WO (1) WO2011079217A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI671397B (zh) * 2017-07-14 2019-09-11 國立中興大學 粒線體萃取裝置

Families Citing this family (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10850235B2 (en) 2006-10-09 2020-12-01 Minnetronix, Inc. Method for filtering cerebrospinal fluid (CSF) including monitoring CSF flow
JP2010505556A (ja) 2006-10-09 2010-02-25 ニューロフルーディクス, インコーポレイテッド 脳脊髄液精製システム
US10632237B2 (en) 2006-10-09 2020-04-28 Minnetronix, Inc. Tangential flow filter system for the filtration of materials from biologic fluids
AU2010336424B2 (en) 2009-12-23 2013-06-13 Cytovera, Inc. A system and method for particle filtration
ITTO20100068U1 (it) * 2010-04-20 2011-10-21 Eltek Spa Dispositivi microfluidici e/o attrezzature per dispositivi microfluidici
EP2775928B1 (en) 2011-11-08 2019-02-20 Auxocell Laboratories Inc. Systems and methods for processing cells
MX353212B (es) 2011-12-07 2018-01-08 Cytovera Inc Metodo y dispositivo para el procesamiento de muestras.
JP5963159B2 (ja) * 2012-01-05 2016-08-03 日立化成株式会社 細胞捕捉デバイス
DE102012103256A1 (de) * 2012-04-16 2013-10-17 Karlsruher Institut für Technologie Mikrostrukturapparat mit optischer Oberflächengüte sowie Verfahren zur Herstellung desselben
DE102013209718B4 (de) * 2012-06-22 2015-09-10 Human Med Ag Vorrichtung zum Separieren von adulten Stammzellen
KR101303059B1 (ko) * 2012-06-28 2013-09-03 포항공과대학교 산학협력단 물과 기름을 선택적으로 분리할 수 있는 극친수성 여과 구조물
DE102012220250A1 (de) * 2012-11-07 2014-05-08 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Fluidikmodul für eine zentrifugale filtration und verfahren zum filtern einer probe
US10248765B1 (en) 2012-12-05 2019-04-02 Theranos Ip Company, Llc Systems, devices, and methods for bodily fluid sample collection, transport, and handling
US9386948B2 (en) 2012-12-05 2016-07-12 Theranos, Inc. Systems, devices, and methods for bodily fluid sample transport
US9862987B2 (en) 2013-01-16 2018-01-09 The Regents Of The University Of California Label free molecular detection methods, systems and devices
WO2014113598A2 (en) * 2013-01-16 2014-07-24 The Regents Of The University Of California Microfluidic devices to extract, concentrate and isolate molecules
EP2953703A4 (en) 2013-02-05 2017-02-08 Pocared Diagnostics Ltd Filter arrangement and method for using the same
US20150273467A1 (en) * 2013-03-15 2015-10-01 Theranos, Inc. Methods and devices for sample collection and sample separation
CN110186835B (zh) 2013-03-15 2022-05-31 Gpb科学有限公司 颗粒的片上微流体处理
AU2014233184A1 (en) 2013-03-15 2015-09-17 Theranos Ip Company, Llc Methods and devices for sample collection and sample separation
US20140342375A1 (en) * 2013-03-15 2014-11-20 University Of Maryland Microfluidic processing of leukocytes for molecular diagnostic testing
CN105247042B (zh) 2013-03-15 2021-06-11 普林斯顿大学理事会 用于高通量纯化的方法和设备
US20150064153A1 (en) * 2013-03-15 2015-03-05 The Trustees Of Princeton University High efficiency microfluidic purification of stem cells to improve transplants
CN103190245B (zh) * 2013-04-01 2015-01-07 中国水产科学研究院黑龙江水产研究所 冰下着生藻类的采集装置及其方法
AU2014306423B2 (en) 2013-08-16 2019-04-18 Massachusetts Institute Of Technology Selective delivery of material to cells
ES2663225T3 (es) * 2013-09-30 2018-04-11 Westfälische Wilhelms-Universität Münster Método de enriquecimiento o aislamiento de una población de células diana
NO342032B1 (no) * 2013-10-25 2018-03-12 Trilobite Innovation As Fluidraffineringsanordning og -sammenstilling
GB201319139D0 (en) * 2013-10-30 2013-12-11 Exmoor Pharma Concepts Ltd Apparatus and method for filtration of a suspension
CA2931609A1 (en) 2013-12-04 2015-06-11 Pocared Diagnostics Ltd. Filter arrangement with slider valve and method for using the same
US20150166956A1 (en) 2013-12-16 2015-06-18 General Electric Company Devices for separation of particulates, associated methods and systems
WO2015109337A1 (en) * 2014-01-20 2015-07-23 Halcyon Biomedical, Incorporated Passive separation of whole blood
US10518196B2 (en) 2014-01-29 2019-12-31 General Electric Company Devices for separation of particulates, associated methods and systems
US10125345B2 (en) * 2014-01-31 2018-11-13 Dsm Ip Assets, B.V. Adipose tissue centrifuge and method of use
EP3114451B1 (en) * 2014-03-05 2022-10-19 Labrador Diagnostics LLC Device for sample separation
US9782707B2 (en) 2014-03-24 2017-10-10 Fenwal, Inc. Biological fluid filters having flexible walls and methods for making such filters
US9796166B2 (en) 2014-03-24 2017-10-24 Fenwal, Inc. Flexible biological fluid filters
US9968738B2 (en) 2014-03-24 2018-05-15 Fenwal, Inc. Biological fluid filters with molded frame and methods for making such filters
US10376627B2 (en) 2014-03-24 2019-08-13 Fenwal, Inc. Flexible biological fluid filters
US10159778B2 (en) 2014-03-24 2018-12-25 Fenwal, Inc. Biological fluid filters having flexible walls and methods for making such filters
EP3154694A1 (en) 2014-06-13 2017-04-19 Children's Medical Center Corporation Products and methods to isolate mitochondria
USD748462S1 (en) 2014-08-11 2016-02-02 Auxocell Laboratories, Inc. Centrifuge clip
US9993748B2 (en) 2014-08-11 2018-06-12 Auxocell Laboratories, Inc. Centrifuge clip and method
JP6509330B2 (ja) * 2014-09-05 2019-05-08 イマジン ティーエフ,エルエルシー 微細構造分離フィルタ
US10124275B2 (en) * 2014-09-05 2018-11-13 Imagine Tf, Llc Microstructure separation filters
WO2016064896A1 (en) 2014-10-20 2016-04-28 University Of Utah Research Foundation Tissue sample processing system and associated methods
CA2966603C (en) * 2014-11-03 2023-08-29 The General Hospital Corporation Combined sorting and concentrating particles in a microfluidic device
WO2016080609A1 (ko) 2014-11-20 2016-05-26 울산과학기술원 입자 여과 장치 및 입자 여과 방법
KR101776245B1 (ko) 2014-11-20 2017-09-11 울산과학기술원 입자 여과 장치 및 입자 여과 방법
JP6382699B2 (ja) * 2014-11-28 2018-08-29 株式会社東芝 マイクロ分析チップ
GB2534182A (en) 2015-01-15 2016-07-20 Univ Dublin City Microfluidic device
CN104549588B (zh) * 2015-01-20 2016-04-06 重庆科技学院 一种多级微球筛选芯片及使用方法
US9868659B2 (en) 2015-04-17 2018-01-16 General Electric Company Subsurface water purification method
WO2016200800A1 (en) 2015-06-08 2016-12-15 Becton, Dickinson And Company Filtration cell and method for filtering a biological sample
US20160367918A1 (en) * 2015-06-22 2016-12-22 Fuji Electric Co., Ltd. Filter system
US11147540B2 (en) 2015-07-01 2021-10-19 Minnetronix, Inc. Introducer sheath and puncture tool for the introduction and placement of a catheter in tissue
CA2988996A1 (en) 2015-07-09 2017-01-12 Massachusetts Institute Of Technology Delivery of materials to anucleate cells
US10371606B2 (en) 2015-07-21 2019-08-06 Theraos IP Company, LLC Bodily fluid sample collection and transport
US10976232B2 (en) 2015-08-24 2021-04-13 Gpb Scientific, Inc. Methods and devices for multi-step cell purification and concentration
EP3344575B1 (en) 2015-09-04 2020-04-15 SQZ Biotechnologies Company Intracellular delivery of biomolecules to cells comprising a cell wall
US11247208B2 (en) 2015-09-09 2022-02-15 Labrador Diagnostics Llc Methods and devices for sample collection and sample separation
CN105203375B (zh) * 2015-09-16 2018-05-22 北京大学 一种高通量的血浆分离器件及其制备方法
US11154860B2 (en) * 2015-10-23 2021-10-26 Unist (Ulsan National Institute Of Science & Technology) Centrifugal force-based nanoparticle separation apparatus and method for separating nanoparticles using the same
WO2017077385A1 (en) * 2015-11-05 2017-05-11 Abi Micro Filters Multi-layered water purifying device for the protection of the washing machine and dish washer
AU2016364907B2 (en) 2015-12-04 2019-08-22 Minnetronix, Inc. Systems and methods for the conditioning of cerebrospinal fluid
KR101791671B1 (ko) * 2015-12-31 2017-11-20 주식회사 큐리오시스 미세입자 분리 및 정렬 장치, 및 그 방법
CN108885203B (zh) 2016-03-02 2021-02-05 贝克顿·迪金森公司 生物流体分离装置
WO2021178701A1 (en) * 2020-03-05 2021-09-10 Exuma Biotech Corp. Methods and compositions for the delivery of modified lymphocyte aggregates
US11325948B2 (en) 2016-03-19 2022-05-10 Exuma Biotech Corp. Methods and compositions for genetically modifying lymphocytes to express polypeptides comprising the intracellular domain of MPL
WO2017182776A1 (en) * 2016-04-18 2017-10-26 Momentum Bioscience Limited Filter arrangement
EP3414011B1 (en) 2016-04-28 2023-01-04 Hewlett-Packard Development Company, L.P. Microfluidic filtering
RU2747878C2 (ru) * 2016-05-03 2021-05-17 ЭсКьюЗед БАЙОТЕКНОЛОДЖИЗ КОМПАНИ Внутриклеточная доставка биомолекул для индукции толерантности
JP6933212B2 (ja) * 2016-06-20 2021-09-08 凸版印刷株式会社 液体媒体の置換方法及び該方法のための流路デバイス
KR101711792B1 (ko) * 2016-06-27 2017-03-06 한국기계연구원 고속처리 미세유체소자
EP3480293A4 (en) * 2016-06-30 2019-07-03 FUJIFILM Corporation METHOD FOR MEMBRANE SEPARATION OF CELLULAR SUSPENSION AND CELL CULTURE DEVICE
EP3436176B1 (en) 2016-07-15 2020-04-15 Hewlett-Packard Development Company, L.P. Microfluidic filtering system
EP3487626A4 (en) * 2016-07-21 2020-03-18 Agency for Science, Technology and Research DEVICE FOR FOCUSING AN EXTERNAL WALL FOR MICROFILTRATION OF PARTICLES WITH HIGH VOLUME RATINGS, AND METHOD FOR THE PRODUCTION THEREOF
CN107884562B (zh) * 2016-09-30 2020-10-16 爱科来株式会社 粒子的磁标记方法和标记装置
CN109843438B (zh) * 2016-10-18 2022-07-12 美纳里尼硅生物***股份公司 用于隔离微粒的微流控装置、微流控***和方法
IT201600104612A1 (it) * 2016-10-18 2018-04-18 Menarini Silicon Biosystems Spa Sistema microfluidico e metodo per l'isolamento di particelle
IT201600104645A1 (it) * 2016-10-18 2018-04-18 Menarini Silicon Biosystems Spa Dispositivo microfluidico e metodo per l'isolamento di particelle
US10471425B2 (en) 2017-02-16 2019-11-12 International Business Machines Corporation Automated machine for sorting of biological fluids
US11857966B1 (en) 2017-03-15 2024-01-02 Labrador Diagnostics Llc Methods and devices for sample collection and sample separation
WO2018183744A1 (en) 2017-03-29 2018-10-04 The Research Foundation For The State University Of New York Microfluidic device and methods
EP3645998B1 (en) 2017-06-26 2023-11-15 Mendoza, Estevan Sample filtration device and method
CN107523481B (zh) * 2017-08-17 2020-11-13 北京旌准医疗科技有限公司 一种基于微流控芯片的微纳生物粒子分选设备
CA3074495A1 (en) 2017-09-01 2019-03-07 Gpb Scientific, Llc Methods for preparing therapeutically active cells using microfluidics
EP3700505A4 (en) 2017-10-26 2021-01-06 Repligen Corporation MICRO-ALTERNATIVE TANGENTIAL FLOW INFUSION FILTER, PROCESSING CONTAINER, AND METHODS OF USE THEREOF
US11524293B2 (en) * 2018-01-17 2022-12-13 Sartorius Stedim North America Inc. Cell separation device, method and system
KR102056938B1 (ko) * 2018-01-26 2019-12-17 (주)메타포어 매트릭스 구조를 가진 멤브레인 구조체 및 이를 이용한 생체분자 필터
JP7341148B2 (ja) * 2018-02-16 2023-09-08 アストレゴ ダイアグノスティクス エービー 微小流体装置
CN108949522B (zh) * 2018-07-19 2022-02-08 重庆医科大学附属第三医院(捷尔医院) 整形美容用自体脂肪活性细胞过滤装置
DE102018212930B3 (de) * 2018-08-02 2019-11-07 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Vorrichtung und Verfahren zum Leiten einer Flüssigkeit durch ein poröses Medium
CN113329820B (zh) * 2019-01-25 2023-12-15 贝克顿·迪金森公司 从生物样品中选择性提取组分的方法和仪器
CR20210493A (es) 2019-02-28 2022-01-17 Sqz Biotechnologies Co SUMINISTRO DE BIOMOLÉCULAS A PBMCs PARA MODIFICAR UNA RESPUESTA INMUNE
CN113784779A (zh) 2019-03-11 2021-12-10 建新公司 切向病毒过滤
CN113840906A (zh) 2019-04-08 2021-12-24 Sqz生物技术公司 用于在将有效载荷递送至细胞中的***中使用的试剂盒
GB2580723A (en) * 2019-05-02 2020-07-29 Renishaw Plc Powder handling apparatus
CN114599781A (zh) * 2019-06-17 2022-06-07 佐治亚技术研究公司 用于分离聚团颗粒的过滤基***和方法
CN110160942B (zh) * 2019-07-01 2022-03-29 重庆交通大学 一种河流水域鱼卵监测装置
CN110608989B (zh) * 2019-10-11 2021-12-21 西安石油大学 一种纳米尺度聚合物微球在中高渗油藏适用性的筛选方法
KR20210053010A (ko) * 2019-11-01 2021-05-11 주식회사라이브셀인스트루먼트 세포 분주 및 배양용 디스크, 실시간 모니터링 시스템 및 세포 분주 및 배양 방법
CN112304827B (zh) * 2020-04-07 2024-02-02 中国石油天然气股份有限公司 油田产出液中聚合物微球含量获取方法及装置
WO2022079494A2 (en) * 2020-10-15 2022-04-21 Sartorius Stedim Biotech Gmbh Channel designs and components
JP2022066771A (ja) * 2020-10-19 2022-05-02 キヤノンメディカルシステムズ株式会社 誘導多能性幹細胞樹立装置及び方法
RU2757639C1 (ru) * 2021-02-12 2021-10-19 Общество с ограниченной ответственностью «ЭНЕРДЖИН» Способ выделения опухолевых клеток из периферической крови
WO2022261135A1 (en) * 2021-06-07 2022-12-15 Plexium, Inc. Transfer dispensers for assay devices with bead size exclusion
DE102021208831A1 (de) * 2021-08-12 2023-02-16 Robert Bosch Gesellschaft mit beschränkter Haftung Mikrofluidische Vorrichtung und Verfahren zu ihrem Betrieb
US11892445B2 (en) 2021-12-08 2024-02-06 Western Digital Technologies, Inc. Devices, systems, and methods of using smart fluids to control translocation speed through a nanopore
US20230176033A1 (en) * 2021-12-08 2023-06-08 Western Digital Technologies, Inc. Devices, systems, and methods of using smart fluids to control molecule speeds
US11821828B1 (en) * 2022-12-20 2023-11-21 Kuwait University System and method for determining physical stability of dispersed particles in flowing liquid suspensions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060046305A1 (en) * 2003-10-15 2006-03-02 National University Of Singapore Method and apparatus for detecting analyte with filter
WO2008024070A1 (en) * 2006-08-22 2008-02-28 Agency For Science, Technology And Research Microfluidic filtration unit, device and methods thereof
US20090183871A1 (en) * 2004-09-08 2009-07-23 Schlumberger Technology Corporation Microfluidic separator

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4422939A (en) * 1979-11-07 1983-12-27 Texas Medical Products, Inc. Blood and perfusate filter
DE3546091A1 (de) 1985-12-24 1987-07-02 Kernforschungsz Karlsruhe Querstrom-mikrofilter
US5427663A (en) 1993-06-08 1995-06-27 British Technology Group Usa Inc. Microlithographic array for macromolecule and cell fractionation
US5601711A (en) * 1994-10-31 1997-02-11 Gelman Sciences Inc. Selective separation filter device
US5715946A (en) 1995-06-07 1998-02-10 Reichenbach; Steven H. Method and apparatus for sorting particles suspended in a fluid
US6635430B1 (en) * 1999-07-16 2003-10-21 Dupont Pharmaceuticals Company Filtrate plate device and reversible-well plate device
CN2411833Y (zh) * 2000-03-31 2000-12-27 新汶矿业集团有限责任公司莱芜医院 简易液体过滤器
JP2004518663A (ja) 2000-12-18 2004-06-24 トラスティーズ オブ プリンストン ユニバーシティ 非対称なパルスフィールド電気泳動を使用した巨大分子の分画
US7597791B2 (en) 2001-10-19 2009-10-06 The Trustees Of Princeton University Method and apparatus for generating electric fields and flow distributions for rapidly separating molecules
JP2004042012A (ja) 2001-10-26 2004-02-12 Nec Corp 分離装置、分析システム、分離方法および分離装置の製造方法
US7318902B2 (en) 2002-02-04 2008-01-15 Colorado School Of Mines Laminar flow-based separations of colloidal and cellular particles
AU2003224817B2 (en) 2002-04-01 2008-11-06 Fluidigm Corporation Microfluidic particle-analysis systems
US7455770B2 (en) * 2002-09-09 2008-11-25 Cytonome, Inc. Implementation of microfluidic components in a microfluidic system
EP2359689B1 (en) 2002-09-27 2015-08-26 The General Hospital Corporation Microfluidic device for cell separation and use thereof
US7150812B2 (en) 2002-10-23 2006-12-19 The Trustees Of Princeton University Method for continuous particle separation using obstacle arrays asymmetrically aligned to fields
JP2004354364A (ja) * 2002-12-02 2004-12-16 Nec Corp 微粒子操作ユニット、それを搭載したチップと検出装置、ならびにタンパク質の分離、捕獲、および検出方法
JP2004228382A (ja) 2003-01-23 2004-08-12 Nikon Corp 露光装置
DE10313201A1 (de) * 2003-03-21 2004-10-07 Steag Microparts Gmbh Mikrostrukturierte Trennvorrichtung und mikrofluidisches Verfahren zum Abtrennen von flüssigen Bestandteilen aus einer Flüssigkeit, die Partikel enthält
US7291450B2 (en) 2003-03-28 2007-11-06 Smith & Nephew, Inc. Preparation of a cell concentrate from a physiological solution
US20070160503A1 (en) 2003-06-13 2007-07-12 Palaniappan Sethu Microfluidic systems for size based removal of red blood cells and platelets from blood
JP2005007352A (ja) 2003-06-20 2005-01-13 Sharp Corp 粒子の分離方法及び分離装置並びに検出装置
US7790039B2 (en) * 2003-11-24 2010-09-07 Northwest Biotherapeutics, Inc. Tangential flow filtration devices and methods for stem cell enrichment
JP2005205387A (ja) 2004-01-24 2005-08-04 Minoru Seki 連続粒子分級方法
US20060204400A1 (en) 2004-11-24 2006-09-14 Christoph Blattert Process for separation of dispersions and an apparatus
JP2006263693A (ja) 2005-03-22 2006-10-05 Minoru Seki 微粒子の連続分離機構及び装置
US20070196820A1 (en) * 2005-04-05 2007-08-23 Ravi Kapur Devices and methods for enrichment and alteration of cells and other particles
KR20080026107A (ko) 2005-05-17 2008-03-24 아사히 가라스 가부시키가이샤 경화성 조성물 및 신규 아다만탄 화합물
JP2007021465A (ja) 2005-07-12 2007-02-01 Minoru Seki 粒子を連続的に濃縮・分離するための流路構造および方法
US20070059774A1 (en) * 2005-09-15 2007-03-15 Michael Grisham Kits for Prenatal Testing
JP2007175684A (ja) 2005-12-26 2007-07-12 Minoru Seki 微粒子の濃縮・分級のための流路構造および方法
US7735652B2 (en) 2006-06-01 2010-06-15 The Trustees Of Princeton University Apparatus and method for continuous particle separation
US7718420B2 (en) 2006-10-10 2010-05-18 Postech Academy-Industry Foundation Microfluidic biochip for blood typing based on agglutination reaction
KR100843339B1 (ko) 2006-12-07 2008-07-03 한국전자통신연구원 혈액 중의 혈장 분리를 위하여 마이크로채널을 이용한혈장분리기 및 이에 의한 혈장분리방법
US20080290037A1 (en) * 2007-05-23 2008-11-27 Applera Corporation Methods and Apparatuses for Separating Biological Particles
FR2931085B1 (fr) * 2008-05-13 2011-05-27 Commissariat Energie Atomique Procede de tri de particules ou d'amas de particules dans un fluide circulant dans un canal
RU87084U1 (ru) * 2009-06-16 2009-09-27 Закрытое акционерное общество Научно-производственный комплекс "КБ ВЗЛЕТ" Фильтр для вакуумируемого кардиотомического резервуара
AU2010336424B2 (en) 2009-12-23 2013-06-13 Cytovera, Inc. A system and method for particle filtration

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060046305A1 (en) * 2003-10-15 2006-03-02 National University Of Singapore Method and apparatus for detecting analyte with filter
US20090183871A1 (en) * 2004-09-08 2009-07-23 Schlumberger Technology Corporation Microfluidic separator
WO2008024070A1 (en) * 2006-08-22 2008-02-28 Agency For Science, Technology And Research Microfluidic filtration unit, device and methods thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI671397B (zh) * 2017-07-14 2019-09-11 國立中興大學 粒線體萃取裝置

Also Published As

Publication number Publication date
US9174212B2 (en) 2015-11-03
SG181676A1 (en) 2012-07-30
CN102791616B (zh) 2015-07-29
IL220274A0 (en) 2012-07-31
KR101443133B1 (ko) 2014-11-03
MX344460B (es) 2016-12-14
CR20120391A (es) 2012-11-21
CA2785390C (en) 2016-02-09
US8679751B2 (en) 2014-03-25
RU2012131424A (ru) 2014-01-27
BR112012018376A2 (pt) 2017-10-10
EP2516320A1 (en) 2012-10-31
JP5624629B2 (ja) 2014-11-12
US20140190903A1 (en) 2014-07-10
WO2011079217A1 (en) 2011-06-30
KR20120117834A (ko) 2012-10-24
EP2516320A4 (en) 2015-03-04
AU2010336424A1 (en) 2012-08-02
RU2539989C2 (ru) 2015-01-27
TW201132371A (en) 2011-10-01
JP2013515599A (ja) 2013-05-09
DOP2012000181A (es) 2012-12-15
US20120258459A1 (en) 2012-10-11
IL220274A (en) 2016-10-31
CN102791616A (zh) 2012-11-21
MX2012007372A (es) 2012-10-05
CA2785390A1 (en) 2011-06-30
AU2010336424B2 (en) 2013-06-13
JP2015062414A (ja) 2015-04-09

Similar Documents

Publication Publication Date Title
TWI566793B (zh) 微粒過濾系統及方法
US11446664B2 (en) Combined sorting and concentrating particles in a microfluidic device
US10081014B2 (en) Microfluidic device for cell separation and uses thereof
AU2013204820B2 (en) A System and Method for Particle Filtration
Bow Microfluidic devices for analysis of red blood cell mechanical properties

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees