TWI565681B - 多孔二氧化矽氣凝膠複合薄膜及其製造方法以及二氧化碳吸收裝置 - Google Patents

多孔二氧化矽氣凝膠複合薄膜及其製造方法以及二氧化碳吸收裝置 Download PDF

Info

Publication number
TWI565681B
TWI565681B TW103110336A TW103110336A TWI565681B TW I565681 B TWI565681 B TW I565681B TW 103110336 A TW103110336 A TW 103110336A TW 103110336 A TW103110336 A TW 103110336A TW I565681 B TWI565681 B TW I565681B
Authority
TW
Taiwan
Prior art keywords
film
porous
aerogel
carbon dioxide
composite film
Prior art date
Application number
TW103110336A
Other languages
English (en)
Other versions
TW201514126A (zh
Inventor
林義峰
柯家傑
童國倫
陳建樺
張楷焄
Original Assignee
中原大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中原大學 filed Critical 中原大學
Priority to TW103110336A priority Critical patent/TWI565681B/zh
Priority to US14/248,813 priority patent/US9561463B2/en
Publication of TW201514126A publication Critical patent/TW201514126A/zh
Priority to US15/383,278 priority patent/US9636633B2/en
Application granted granted Critical
Publication of TWI565681B publication Critical patent/TWI565681B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0048Inorganic membrane manufacture by sol-gel transition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/025Aluminium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/027Silicium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • B01J20/28035Membrane, sheet, cloth, pad, lamellar or mat with more than one layer, e.g. laminates, separated sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28085Pore diameter being more than 50 nm, i.e. macropores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D2053/221Devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/50Membrane in gel form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Silicon Compounds (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)

Description

多孔二氧化矽氣凝膠複合薄膜及其製造方法以及二氧化 碳吸收裝置
本發明係關於一種薄膜及其製造方法,特別是關於一種多孔二氧化矽氣凝膠複合薄膜及其製造方法以及二氧化碳吸收裝置。
溫室氣體的大量排放導致全球暖化日趨嚴重,其中以二氧化碳之排放為最大量,因此已發展了各種二氧化碳的捕捉技術,而各種二氧化碳的捕捉技術,依據其優缺點及適用條件而適當選擇,以應用於各種使用環境。二氧化碳的捕捉技術主要包括低溫冷凝、物理吸附、物理吸收、化學吸收及薄膜分離等,相關技術簡述如下。
低溫冷凝法對二氧化碳含量較高(約50%以上)之混合氣體較為適用,主要可分為兩個步驟,先利用壓縮與冷凝的方式將二氧化碳進行液化,再利用各物質間沸點的差異,經由蒸餾程序即可分離出高純度之二氧化碳,但過程較為耗能,然而當進料所含二氧化碳濃度較低時,則需進行多次壓縮與冷凝才能令二氧化碳產生相變化,導致能量需求驟增,所以較少用於傳統燃煤發電廠、石化廠中(二氧化碳濃度約在3~18%),較常見於高附加價值產品之分離。
物理吸附是利用吸附材進行氣體之分離,常見的吸附材有活性碳、分子篩及沸石等,其分離原理是藉由吸附材具單一孔徑與多孔結構之特性,利用各種氣體動力直徑之不同或各成分氣體與吸附表面間作用力之差異,進而達到氣體分離之效果。物理吸附程序主要依操作方法及條件可分為以下三種:(1)壓力擺盪吸附(Pressure swing adsorption,PSA):此方法是在高壓環境下進行,利用吸附材對各種氣體吸附力之差異,對目標氣體進行捕捉。(2)溫度擺盪吸附(Temperature swing adsorption,TSA):此方法經由改變系統溫度的方式來進行氣體之吸脫附,其原理是利用吸附材平衡吸附量為溫度之函數此點,藉由常溫下易於吸附、高溫則易於脫附之特性,達到分離目的。(3)電流擺盪吸附(Electric swing adsorption,ESA):此方法是使用具導電性之碳纖維複合分子篩作為吸附材,操作 原理是利用電流之有無來進行氣體之吸脫附,當吸附材之吸附量達飽和時,只需利用施加電流於吸附材之方式,提供吸附物質脫附時所需之能量,即可令吸附物質脫附並達到吸附材再生之效果。
物理吸收此方法是利用液體吸收劑對二氧化碳進行捕捉,常見的吸收劑有低溫甲醇、甘油、丙烯酸鹽等。其吸收原理是藉由分子間的吸引力如凡得瓦力或庫倫靜電力使二氧化碳與吸收劑間產生物理性鍵結而被捕捉,其中並無伴隨任何化學反應之發生,而當吸收劑之吸收量達飽和時,只需在常溫下進行汽提即可使二氧化碳與吸收劑產生分離,達到吸收劑再生之效果,屬低耗能之分離程序。
化學吸收此方法與物理吸收相似,同樣是以液體吸收劑對二氧化碳進行捕捉,常見的吸收劑有氫氧化鈉、碳酸鉀、醇胺溶液等。其吸收原理是利用吸收劑與二氧化碳進行化學反應,使兩者間產生化學鍵結以達到二氧化碳捕捉之目的,即使在低二氧化碳分壓下仍具有良好的捕捉效果,屬高效能之分離程序。其使用的吸收劑大致可分為:(1)強鹼溶液吸收(2)無機溶劑吸收劑(3)醇胺溶液吸收劑根據其化學結構可分為:一級醇胺、二級醇胺、三級醇胺以及立體障礙醇胺等。
薄膜分離,分為以下三類:(1)緻密型氣體分離膜,(2)輔助輸送型薄膜(3)多孔型薄膜。此外,目前於薄膜接觸器中使用無機陶瓷薄膜之研究較少,其主要原因是來自無機陶瓷薄膜本身之低孔隙度特性,由於無機陶瓷薄膜之製備過程通常都會歷經一燒結程序,薄膜之孔隙度會因此燒結動作而大幅降低並且呈現出巨孔孔洞,此兩者皆會造成無機陶瓷薄膜於薄膜接觸器之不適用性,此外無機陶瓷薄膜多為親水性薄膜,需經疏水化後才能應用接觸器。
近來,由相關文獻可知多孔二氧化矽氣凝膠應用於薄膜接觸器之薄膜需具備良好的抗濕性,而從過去文獻上得知,除了薄膜表面疏水性質外,孔洞大小亦為一主要因素。Chen等人(2010)以熱處理之方式對PTFE高分子薄膜表層孔洞進行縮孔改質並於薄膜接觸器中進行測試,經結果證實薄膜縮孔改質對此薄膜應用於薄膜接觸器之效能有顯著提升。然而要在無機陶瓷薄膜上以熱處理方式進行縮孔之效果有限,故Lin等人(2013)以中孔洞之二氧化矽氣凝膠對巨孔洞之陶瓷基材進行縮孔改質並應用於薄膜接器之二氧化碳捕捉,證實了二氧化矽氣凝膠應用於薄膜縮孔改質之可行性。有此二化矽氣凝膠改質技術,無機陶瓷薄膜於薄膜接觸器進行二氧化碳吸收一途將更具潛力,但由於此改質方法步驟較為繁瑣,用於表面疏水改質之改質劑FAS亦較為昂貴,屬費時且高成本之改質技術, 若能簡化其改質步驟,設法縮短其改質時間,勢必能有效降低改質成本。
由於二氧化矽氣凝膠之機械強度欠佳,其多孔結構易因外力而產生崩塌,造成孔洞大小量測上的困難,Scherer(1998)提出以數值方法對儀器測量結果進行校正,證實二氧化矽氣凝膠為一中孔洞結構(孔洞小於50nm)。目前二氧化矽氣凝膠主要是經由溶膠凝膠法進行製備,而在常見前驅物(矽單體)的選擇方面,Tamon等人(1997)選擇以tetraethylorthosilane(TEOS)、Yoda等人(1998)與Rao等人(2003)選擇以tetramethylorthosilane(TMOS)、Rao等人(2003)選擇以methyltrimethoxysilane(MTMS)作為製備二氧化矽氣凝膠之前驅物。St.Frohnhoff等人(1995)證實於常溫常壓下對二氧化矽氣凝膠進行乾燥時,其奈米多孔結構會因為孔洞內殘留物揮發時所形成之毛細力而遭受施壓,造成奈米多孔結構崩塌並導致孔隙度大幅下降。故乾燥程序為製備二氧化矽氣凝膠過程中最具挑戰性之問題,而過去皆以超臨界乾燥法來克服此問題,然而由於超臨界乾燥法必須於臨界條件下(高溫及高壓)操作,所需操作成本甚高,且製備二氧化矽氣凝膠所需前驅物亦較為昂貴,造成二氧化矽氣凝膠之發展與應用受到許多限制。
關於降低乾燥程序所需成本方面,Li與Wang(2008)以稻殼灰中之矽單體作為前驅物,以溶膠凝膠法製備二氧化矽氣凝膠,且不使用超臨界乾燥法,改採用於常壓、40℃下進行乾燥,而值得注意的是於溶膠狀態下添加了矽酸四乙酯(TEOS),實驗結果顯示,雖然是於接近常溫常壓下進行二氧化矽氣凝膠之乾燥,但此氣凝膠仍然具有網狀多及孔結構,圖中白色部分即代表其孔洞,相較於過去文獻中二氧化矽氣凝膠之TEM圖並無明顯差異;此外亦發現將TEOS添加於溶膠中有益於增加二氧化矽氣凝膠多孔結構之強度,降低其多孔結構於乾燥過程中崩塌之機率,使其平均孔徑、密度、體積收縮率、孔洞體積及比表面積等特性能更加逼近經超臨界乾燥法之氣凝膠,證明於近常溫常壓下進行乾燥程序仍有機會製備出低密度、高比表面積之二氧化矽氣凝膠。且Wei等人(2007)以溶膠凝膠法搭配常溫常壓乾燥之方式製備二氧化矽氣凝膠,並且以多重疏水性改質之方式維持氣凝膠之完整性。作者於實驗中製備無疏水性改質與具疏水性改質之氣凝膠,而後者又可再分為單一及多重疏水性改質兩者,進而比較三者間特性之差異,經由多重疏水性改質所製備出之氣凝膠具極低的體積收縮率,且其膠體完整性甚高;亦可發現氣凝膠因低體積收縮率而有高達96.8%之孔隙度,證實於常溫常壓下進行乾燥前,先進行多重疏水性改質將有助於提高二氧化矽氣凝膠之完整性。
由以上文獻回顧可知多重疏水性改質能使二氧化矽氣凝膠能於常溫常壓下乾燥後仍保有其完整性,十分具有發展潛力。此外亦有部分學者嘗試透過不同方式改善二氧化矽氣凝膠之易脆性。Rao等人(2006)以甲基三甲基矽烷(MTMS)作為前驅物搭配超臨界乾燥技術製備二氧化矽氣凝膠,實驗結果發現,其確實具有多孔網狀結構,且經MTMS所製備之二氧化矽氣凝膠本身具有形變性,此特性主要是因矽烷上的甲基官能基(-CH3)所造成,於溶膠凝膠法之反應機制中,甲基官能基之存在將降低其聚合程度,進而造成其形變性,同時也因甲基官能基而呈現出接觸角164°之高疏水性;此外亦發現此形變性會隨溶劑與前驅物間之莫耳比值(MeOH/MTMS)不同而有所改變。而於最佳合成條件下所製備出之二氧化矽氣凝膠經外力施壓後仍可恢復至原有狀態,證實以MTMS為前驅物可製備出具良好彈性之二氧化矽氣凝膠。
Bhagat等人(2007)進一步以MTMS作為前驅物搭配常溫常壓乾燥成功製備出具低密度與疏水性之完整二氧化矽氣凝膠。作者提出適當的溶劑量(MeOH/MTMS)有益於防止氣凝膠於常溫常壓下乾燥時易產生之崩塌現象,其原理是藉由氣凝膠之彈性與其乾燥時所產生之毛細力相互抵消,降低其多孔結構崩塌之機率,於最適條件下(MTMS:MeOH=1:35),可使氣凝膠具有低密度(0.062g/cm3)、低體積收縮率(10%) 及完整性等特性。Nadargi等人(2009)利用溶膠凝膠法搭配常溫常壓乾燥製備MTMS二氧化矽氣凝膠。研究中發現膠體熟化時間會對膠體密度、熱傳導係數、孔隙度等物理性質皆會產生影響,且其皆存在一最適條件,作者於此條件下成功製備具有低密度(0.04g/cm3)、低體積收縮率(4.59%)、高孔隙度(98.84%)且低熱傳導係數(0.05Wm/K)之二氧化矽氣凝膠。
Xu等人(2012)提出一有助於常溫常壓下製備MTMS氣凝膠之改良方法,且無需進行溶劑置換、膠體表面改質等步驟即可製備出具完整性之低密度(0.065~0.076g/cm3)MTMS氣凝膠。作者藉由改變實驗中溶劑與前驅物之莫耳比值(MeOH/MTMS)、成膠溫度(Tgelation)及熟化溫度(Tageing)等方式去觀察氣凝膠之巨觀性質,如成膠時間、膠體形態、體積收縮率及膠體密度,成膠時間與成膠溫度呈現反比關係,乃因於此溫度範圍內,Tgelation=60℃時有較高之水解及縮合反應速率所致;而成膠與熟化溫度對膠體形態、體積收縮率及膠體密度皆有影響,體積收縮率與膠體密度隨熟化溫度提升呈現先降後升之趨勢,顯示提高成膠溫度有助於凝膠反應進行,增加膠體之完整性;然而過高的成膠溫度則會使膠體之多孔結構因凝膠反應過快而缺乏強度,同時可明顯看出無論在任何情況下,提高熟化溫度皆有助於強化氣凝膠之多孔結構,此外對氣凝膠進行微結構分析,發現於較高的成膠溫度下,製備出之氣凝膠 具有孔徑一至之特點;但相對地其總孔洞體積較低,屬較緻密之結構。經如此有系統地研究後,不僅製備出品質良好之MTMS氣凝膠,更提供在不同前驅物濃度(MeOH/MTMS)下,能達到最低體積收縮率之製備條件設計原則。
由以上二氧化矽氣凝膠的文獻回顧中我們可得知,MTMS二氧化矽氣凝膠為一具有高孔隙度與高疏水性之無機材料,且製備過程中無需經過表面改質即可維持其多孔網狀結構。因此本研究將以溶膠凝膠法把MTMS二氧化矽氣凝膠成長於巨孔洞的氧化鋁陶瓷膜板上以達到縮孔及疏水化之目的,希望能以簡單之方式製備出疏水性氣凝膠薄膜。
上述二氧化碳的捕捉技術中,低溫冷凝、物理吸附適用於高二氧化碳分壓的條件,而化學吸收及薄膜分離,在低二氧化碳分壓的條件下仍可適用,但是物理吸收、化學吸收有二氧化碳吸收劑飽和的問題,而薄膜分離係利用薄膜的氣體選擇性進行分離,有二氧化碳處理量的限制之問題。因此,結合薄膜及化學吸收之方法,除可提高二氧化碳處理量,又可藉由使二氧化碳吸收劑流動循環而解決吸收劑飽和的問題。因此選擇適合的薄膜以及二氧化碳吸收劑,構成一新的多孔二氧化矽氣凝膠複合薄膜及其製造方法以及二氧化碳吸收裝置或處理裝置,以達到最佳的二氧化碳吸收量及長效捕捉二氧化碳,可降低二氧化碳捕捉之操作成本以及降低所需耗用的能量,以 符合業界之需求。
鑒於上述之發明背景,為了符合產業上之要求,本發明之目的之一,在於提供一種多孔二氧化矽氣凝膠複合薄膜及其製造方法,藉由利用甲基三甲氧基矽烷前驅物,形成多孔二氧化矽氣凝膠薄膜於氧化鋁薄膜上,使多孔性氧化鋁薄膜縮孔且具有疏水性,以便利用於二氧化碳之吸收。
再者,本發明之一目的,在於提供一種二氧化碳吸收裝置,藉由利用薄膜接觸器以及本發明的多孔二氧化矽氣凝膠複合薄膜,增加二氧化碳吸收量及長效捕捉二氧化碳,可降低二氧化碳捕捉之操作成本以及降低所需耗用的能量。
為了達到上述目的,根據本發明一實施態樣,提供一種多孔二氧化矽氣凝膠複合薄膜的製造方法,依序進行以下步驟:提供一多孔性氧化鋁薄膜,其係包含多數平均孔徑大於50nm的巨孔洞之氧化鋁薄膜,該多孔性氧化鋁薄膜具有一第一側及一第二側;提供一氣凝膠之溶膠,其中該氣凝膠之溶膠係由甲基三甲氧基矽烷前驅物所構成;進行一成膠程序,將該多孔性氧化鋁薄膜的至少一側,該第一側或該第二側或者第一側及該第二側,浸漬於該氣凝膠之溶膠中,形成一表面具有 凝膠之薄膜;進行一熟化(aging)程序,將該表面具有凝膠之薄膜浸漬於乙醇中,維持一既定的熟化時間,形成一複合薄膜;進行一溶劑取代程序,將熟化後的該複合薄膜浸漬於正己烷中,維持一既定的溶劑取代時間;進行一乾燥程序,將溶劑取代後,該複合薄膜在室溫常壓下進行乾燥,得到該多孔性氧化鋁薄膜具有多孔二氧化矽氣凝膠之多孔二氧化矽氣凝膠複合薄膜。
再者,根據本發明另一實施態樣,提供一種多孔二氧化矽氣凝膠複合薄膜,包括:一多孔性氧化鋁薄膜,包含多數平均孔徑大於50nm的巨孔洞,該多孔性氧化鋁薄膜具有一第一側及一第二側;以及一多孔二氧化矽氣凝膠薄膜,至少形成於該多孔性氧化鋁薄膜的該第一側或該第二側以及該多孔性氧化鋁薄膜的該第一側或該第二側之表層的巨孔洞,該多孔二氧化矽氣凝膠薄膜具有平均孔徑為2~50nm之中孔洞,該多孔二氧化矽氣凝膠薄膜係甲基三甲氧基矽烷前驅物,藉由溶膠凝膠合成法所構成。
此外,根據本發明又一實施態樣,提供一種二氧化碳吸收裝置,包括:一薄膜接觸器,具備一氣相端、一液相端以及位於該氣相端與該液相端之間的根據本發明的多孔二氧化矽氣凝膠複合薄膜;其中該氣相端係用以通過包含二氧化 碳的氣體;該液相端係用以通過一包含胺化合物之溶液,吸收二氧化碳;以及該多孔二氧化矽氣凝膠複合薄膜具有疏水性。
根據本發明的多孔二氧化矽氣凝膠複合薄膜及其製造方法,提供一單面具有疏水性之多孔性複合薄膜或者一雙面有疏水性之多孔性複合薄膜,可應用作為結合化學吸收及薄膜分離的薄膜,沒有傳統的分離系統容易有溢流的現象、渠道現象及設備體積龐大等的缺點。再者,根據本發明的二氧化碳吸收裝置,藉由利用本發明的多孔二氧化矽氣凝膠複合薄膜於薄膜接觸器,使薄膜具有疏水性,與利用有機薄膜之薄膜接觸器比較,具有比有機薄膜不易膨潤、更高耐化性及更高機械強度等的優點,增加二氧化碳吸收量及長效捕捉二氧化碳,可降低二氧化碳捕捉之操作成本以及降低所需耗用的能量。
11‧‧‧氧化鋁薄膜
12‧‧‧多孔二氧化矽氣凝膠薄膜
100‧‧‧二氧化碳吸收裝置
200‧‧‧薄膜接觸器
210‧‧‧氣相端
220‧‧‧液相端
300‧‧‧多孔二氧化矽氣凝膠複合薄膜
210in‧‧‧氣相端210入口閥
210out‧‧‧氣相端210出口閥
220in‧‧‧液相端220入口閥
220out‧‧‧液相端220出口閥
401‧‧‧提供一氧化鋁薄膜
402‧‧‧提供一氣凝膠之溶膠
403‧‧‧進行一成膠程序
404‧‧‧進行一熟化程序
406‧‧‧進行一乾燥程序
圖一表示根據本發明一實施例之多孔二氧化矽氣凝膠複合薄膜的剖面示意圖,(a)表示單面具有多孔二氧化矽氣凝膠,(b)表示兩面具有多孔二氧化矽氣凝膠。
圖二表示根據本發明一實施例之多孔二氧化矽氣凝膠複合薄膜的製造方法之流程圖。
圖三表示根據本發明一實施例之多孔二氧化矽氣凝膠複合薄膜的製造方法中縮合反應時乙醇對前驅物的莫耳比值與所製造的複合薄膜的二氧化碳的通量之關係圖。
圖四表示根據本發明一實施例之多孔二氧化矽氣凝膠複合薄膜的製造方法中縮合反應時乙醇對前驅物的莫耳比值與所製造的複合薄膜的接觸角之關係圖。
圖五表示根據本發明一實施例之二氧化碳吸收裝置的示意圖。
圖六表示根據本發明一實施例之二氧化碳吸收裝置中多孔二氧化矽氣凝膠複合薄膜的重複使用性試驗中二氧化碳吸收通量對時間的關係圖。
有關本發明之前述及其他技術內容、特點與功效,在以下配合參考圖式之一較佳實施例的詳細說明中,將可清楚的呈現。為了能徹底地瞭解本發明,將在下列的描述中提出詳盡的步驟及其組成。顯然地,本發明的施行並未限定於該領域之技藝者所熟習的特殊細節。另一方面,眾所周知的組成或步驟並未描述於細節中,以避免造成本發明不必要之限制。本發明的較佳實施例會詳細描述如下,然而除了這些詳細描述之外,本發明還可以廣泛地施行在其他的實施例中,且本發明的範圍不受限定,其以之後的專利範圍為準。以下實施例中所提到的方向用語,例如:上、下、左、右、前或後等,僅是參考附加圖式的方向。因此,使用的方向用語是用來說明並非用來限制本發明。圖示中,相同的元件係以相同的符號表示。
根據本發明第一實施態樣,揭露一種多孔二氧化矽氣凝膠複合薄膜,包括:一多孔性氧化鋁薄膜,包含多數平均孔徑大於50nm的巨孔洞,該多孔性氧化鋁薄膜具有一第一側及一第二側;以及一多孔二氧化矽氣凝膠薄膜,至少形成於該多孔性氧化鋁薄膜的該第一側或該第二側以及該多孔性氧化鋁薄膜的該第一側或該第二側之表層的巨孔洞,該多孔二氧化矽氣凝膠薄膜具有平均孔徑為2~50nm之中孔洞,該多孔二氧化矽氣凝膠薄膜係甲基三甲氧基矽烷前驅物,藉由溶膠凝膠 合成法所構成。
具體地,圖一表示根據本發明一實施例之多孔二氧化矽氣凝膠複合薄膜的剖面示意圖,(a)表示單面具有多孔二氧化矽氣凝膠,(b)表示兩面具有多孔二氧化矽氣凝膠,其中11表示氧化鋁薄膜,12表示多孔二氧化矽氣凝膠薄膜。
於一實施例,多孔二氧化矽氣凝膠薄膜的厚度為40~50μm。
於一實施例,多孔二氧化矽氣凝膠薄膜形成於多孔性氧化鋁薄膜的第一側或第二側,形成有多孔二氧化矽氣凝膠薄膜的第一側或第二側具有疏水性,亦即如圖一(a)所示為單面具有多孔二氧化矽氣凝膠之複合薄膜。
於一實施例,多孔性氧化鋁薄膜包含多數平均孔徑為1~1.2μm的巨孔洞。
根據本發明第二實施態樣,揭露一種多孔二氧化矽氣凝膠複合薄膜的製造方法。圖二表示根據本發明一實施例之多孔二氧化矽氣凝膠複合薄膜的製造方法之流程圖。本發明的多孔二氧化矽氣凝膠複合薄膜的製造方法,依序進行以下步驟,提供一氧化鋁薄膜401:提供一多孔性氧化鋁薄膜,其係 包含多數平均孔徑大於50nm的巨孔洞之氧化鋁薄膜,該多孔性氧化鋁薄膜具有一第一側及一第二側;提供一氣凝膠之溶膠402,其中該氣凝膠之溶膠係由甲基三甲氧基矽烷前驅物所構成;進行一成膠程序403,將該多孔性氧化鋁薄膜的至少一側,該第一側或該第二側或者第一側及該第二側,浸漬於該氣凝膠之溶膠中,形成一表面具有凝膠之薄膜;進行一熟化(aging)程序404,將該表面具有凝膠之薄膜浸漬於乙醇中,維持一既定的熟化時間,形成一複合薄膜;進行一溶劑取代程序405,將熟化後的該複合薄膜浸漬於正己烷中,維持一既定的溶劑取代時間;進行一乾燥程序406,將溶劑取代後,該複合薄膜在室溫常壓下進行乾燥以形成具有多孔二氧化矽氣凝膠之多孔二氧化矽氣凝膠複合薄膜。
對所製備的多孔二氧化矽氣凝膠複合薄膜,檢討進行縮合反應時氨水濃度及乙醇添加量對二氧化碳吸收量的影響,所使用的氨水濃度範圍為8.5~29重量%,所製造的複合薄膜之二氧化碳吸收量,先隨著氨水濃度的增加而增加,在17重量%時達到最佳值,然後隨著氨水濃度的增加而減少。圖三表示根據本發明一實施例之多孔二氧化矽氣凝膠複合薄膜的製造方法中縮合反應時乙醇對前驅物的莫耳比值(EtOH2nd/MTMS;其中EtOH2nd表示縮合反應時乙醇的添加莫耳數,MTMS表示甲基三甲氧基矽烷前驅物的莫耳數)與所 製造的複合薄膜的二氧化碳的通量之關係圖。圖四表示根據本發明一實施例之多孔二氧化矽氣凝膠複合薄膜的製造方法中縮合反應時乙醇對前驅物的莫耳比值與所製造的複合薄膜的接觸角之關係圖。於圖三及圖四中,製造複合薄膜時,氨水濃度為17重量%。由圖三及圖四顯示,縮合反應時乙醇對前驅物的莫耳比值為0.5~1.5較理想,更理想為1.0。使用氨水作為鹼催化劑,所得之複合(縮孔改質)薄膜之表面液滴接觸角皆達125°以上,可推斷疏水性官能基(-CH3)確實有接枝於薄膜表面。
上述製造方法中,氣凝膠之溶膠係由甲基三甲氧基矽烷前驅物、乙醇及鹽酸進行水解反應後,再加入乙醇及氨水,在室溫下攪拌均勻進行縮合反應後所構成。具體地,例如將2.04g的甲基三甲氧基矽烷前驅物、2.07g的乙醇及0.27g的鹽酸(濃度0.14重量%)在廣口瓶內混合後,在室溫下持續攪拌90分鐘,再加入0.69g的乙醇(EtOH2nd)以及0.69g的氨水(濃度17重量%),再於室溫下持續攪拌30分鐘進行縮合反應,待均勻混合後,成為所需的氣凝膠之溶膠。
於成膠程序,具體地例如將氧化鋁薄膜浸泡於氣凝膠之溶膠,將容器密封後於室溫下進行水解及縮合反應,並等待成膠,成膠時間為約2~20小時。
於熟化(aging)程序,具體地例如將成膠後的複合型薄膜在確保薄膜表面具有完整凝膠下小心取出,並浸泡於乙醇中進行熟化。為確保能更有效的強化凝膠之多孔結構,每24小時更換乙醇溶液。前述該既定的熟化時間為36~60,較理想為48小時。
於溶劑取代程序,具體地例如將薄膜浸泡於正己烷中,浸泡約24小時,以移除薄膜內之乙醇溶液與未反應之化學物質。亦即,該既定的溶劑取代時間為24小時。
根據本發明第三實施態樣,揭露一種多孔二氧化矽氣凝膠複合薄膜的製造方法。利用兩步驟溶膠凝膠法進行製備。首先將1.36g的前驅物MTMS、1.38g的乙醇與0.18g鹽酸於廣口瓶內混合後,在室溫下持續攪拌90分鐘;隨後再加入0.69g的乙醇與0.69g的氨水,再於室溫下持續攪拌30分鐘。待混合均勻後,此溶液即為所需氣凝膠之溶膠。然後,將氧化鋁薄膜浸泡於前步驟所製得的溶膠中,使溶膠略高於氧化鋁薄膜表面,容器經密封後於室溫下進行水解及縮合反應並靜置等待成膠。再來,將成膠後的複合型薄膜在確保薄膜表面具有完整凝膠下小心取出,並浸泡於乙醇中進行熟化兩天,為確保能更有效的強化凝膠之多孔結構,因此必需每天更換乙醇溶 液。接著,經兩天熟化後再將薄膜浸泡於n-hexane中,浸泡一天以移除薄膜內之乙醇溶液與未反應之化學物質。最後,將薄膜自n-hexane中取出,放置於室溫常壓下使其乾燥一天即可得到疏水性之多孔二氧化矽氣凝膠複合薄膜。
對所製備的多孔二氧化矽氣凝膠複合薄膜進行耐久性試驗,得知於不同EtOH2nd/MTMS莫耳比值下,二氧化碳吸收通量隨操作時間之變化,發現各EtOH2nd/MTMS莫耳比值下皆可達一穩定吸收通量,且可明顯觀察到在穩定所需時間方面已產生影響,當EtOH2nd/MTMS=1及0.5時,只需極短的時間即可達到穩定吸收狀態,因此本發明的複合薄膜具有實用性。
對多孔二氧化矽氣凝膠複合薄膜進行重複使用性試驗,首先將多孔二氧化矽氣凝膠複合薄膜安裝於圖五所示之本發明的二氧化碳吸收裝置100中,參考圖六,表示二氧化碳吸收通量對時間的關係圖。重複使用性試驗,係將進行二氧化碳吸收實驗歷時一天後的複合薄膜進行氣體反沖,其作法是將氣體流入氣相端(經過210in),並關閉氣相端出口閥210out,使氣體穿透複合薄膜300,再自液相端220排出,藉此減少薄膜潤濕程度,接著再進行二氧化碳吸收實驗,結果顯示,經兩次的氣體反沖程序後之複合薄膜,皆能恢復到原有的初始吸收 通量,且仍具有相同的穩定吸收通量,證實了複合薄膜不僅具備高的穩定性,亦有良好的重複使用性,本發明的複合薄膜於工業上深具發展潛力。
再者,圖五所示之本發明的二氧化碳吸收裝置100包括:一薄膜接觸器200,具備氣相端210、液相端220以及位於該氣相端210與該液相端220之間的根據本發明的多孔二氧化矽氣凝膠複合薄膜300;其中氣相端210係用以通過包含二氧化碳的氣體;液相端220係用以通過一包含胺化合物之溶液,吸收二氧化碳;以及多孔二氧化矽氣凝膠複合薄膜300具有疏水性。210in表示氣相端210入口閥,210out表示氣相端210出口閥,220in表示液相端220入口閥,220out表示液相端220出口閥。其中一操作條件如下表一所示:
液相端220之溶液為胺化合物,例如1級醇胺、2級醇胺、3級醇胺、立體障礙醇胺或上述的組合。胺化合物為立體障礙醇胺更理想,立體障礙醇胺例如為2-胺基-2-甲基-1-丙醇或無水二次乙亞胺(piperazine)。
於一實施例,多孔二氧化矽氣凝膠薄膜的厚度為40~50μm。
於一實施例,多孔二氧化矽氣凝膠薄膜形成於該多孔性氧化鋁薄膜的單一側(第一側或第二側),形成有該多孔二氧化矽氣凝膠薄膜的側(該第一側或該第二側)具有疏水性。
於一實施例,多孔性氧化鋁薄膜包含多數平均孔徑為1~1.2μm的巨孔洞。於一實施例,多孔性氧化鋁薄膜的厚度為2.4mm。
綜上所述,根據本發明的多孔二氧化矽氣凝膠複合薄膜及其製造方法,提供一單面具有疏水性之多孔性複合薄膜或者一雙面有疏水性之多孔性複合薄膜,可應用作為結合化學吸收及薄膜分離的薄膜,沒有傳統的分離系統容易有溢流的現象、渠道現象及設備體積龐大等的缺點。再者,根據本發明的二氧化碳吸收裝置,藉由利用本發明的多孔二氧化矽氣凝膠 複合薄膜於薄膜接觸器,使薄膜具有疏水性,與利用有機薄膜之薄膜接觸器比較,具有比有機薄膜不易膨潤、更高耐化性及更高機械強度等的優點,增加二氧化碳吸收量及長效捕捉二氧化碳,可降低二氧化碳捕捉之操作成本以及降低所需耗用的能量。
以上雖以特定實施例說明本發明,但並不因此限定本發明之範圍,只要不脫離本發明之要旨,熟悉本技藝者瞭解在不脫離本發明的意圖及範圍下可進行各種變形或變更。另外本發明的任一實施例或申請專利範圍不須達成本發明所揭露之全部目的或優點或特點。此外,摘要部分和標題僅是用來輔助專利文件搜尋之用,並非用來限制本發明之權利範圍。
11‧‧‧氧化鋁薄膜
12‧‧‧多孔二氧化矽氣凝膠薄膜

Claims (4)

  1. 一種多孔二氧化矽氣凝膠複合薄膜,包括:一多孔性氧化鋁薄膜,包含多數平均孔徑大於50nm的巨孔洞,該多孔性氧化鋁薄膜具有一第一側及一第二側;以及一多孔二氧化矽氣凝膠薄膜,至少形成於該多孔性氧化鋁薄膜的該第一側或該第二側以及該多孔性氧化鋁薄膜的該第一側或該第二側之表層的巨孔洞,該多孔二氧化矽氣凝膠薄膜具有平均孔徑為2~50nm之中孔洞,該多孔二氧化矽氣凝膠薄膜係甲基三甲氧基矽烷前驅物,藉由溶膠凝膠合成法所構成。
  2. 根據申請專利範圍第1項之多孔二氧化矽氣凝膠複合薄膜,其中該多孔二氧化矽氣凝膠薄膜的厚度為40~50μm。
  3. 根據申請專利範圍第1項之多孔二氧化矽氣凝膠複合薄膜,其中該多孔二氧化矽氣凝膠薄膜形成於該多孔性氧化鋁薄膜的該第一側或該第二側,形成有該多孔二氧化矽氣凝膠薄膜的該第一側或該第二側具有疏水性。
  4. 根據申請專利範圍第1項之多孔二氧化矽氣凝膠複合薄膜,其中該多孔性氧化鋁薄膜包含多數平均孔徑為1~1.2μm的 巨孔洞。
TW103110336A 2013-10-15 2014-03-19 多孔二氧化矽氣凝膠複合薄膜及其製造方法以及二氧化碳吸收裝置 TWI565681B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW103110336A TWI565681B (zh) 2013-10-15 2014-03-19 多孔二氧化矽氣凝膠複合薄膜及其製造方法以及二氧化碳吸收裝置
US14/248,813 US9561463B2 (en) 2013-10-15 2014-04-09 Porous silica aerogel composite membrane and method for making the same and carbon dioxide sorption device
US15/383,278 US9636633B2 (en) 2013-10-15 2016-12-19 Method for making a porous silica aerogel composite membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW102137134 2013-10-15
TW103110336A TWI565681B (zh) 2013-10-15 2014-03-19 多孔二氧化矽氣凝膠複合薄膜及其製造方法以及二氧化碳吸收裝置

Publications (2)

Publication Number Publication Date
TW201514126A TW201514126A (zh) 2015-04-16
TWI565681B true TWI565681B (zh) 2017-01-11

Family

ID=52809844

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103110336A TWI565681B (zh) 2013-10-15 2014-03-19 多孔二氧化矽氣凝膠複合薄膜及其製造方法以及二氧化碳吸收裝置

Country Status (2)

Country Link
US (2) US9561463B2 (zh)
TW (1) TWI565681B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI577565B (zh) * 2015-03-03 2017-04-11 國立臺灣大學 包含疏水性多孔二氧化矽氣凝膠複合薄膜的真空薄膜蒸餾裝置及真空薄膜蒸餾方法
CN105910965A (zh) * 2016-05-19 2016-08-31 中国科学院大气物理研究所 气溶胶采集进样气流的湿度调节装置和方法、测量仪器
CN108249901B (zh) * 2018-01-24 2020-01-24 航天特种材料及工艺技术研究所 一种耐高温气凝胶材料的制备方法
CN109772180A (zh) * 2019-02-25 2019-05-21 江西师范大学 一种碱土金属元素掺杂的二氧化硅膜及其制备方法和应用
CN111215007B (zh) * 2019-12-16 2021-12-21 华南理工大学 一种简单制备块状疏水氧化铝复合气凝胶的方法及制得的块状疏水氧化铝复合气凝胶
CN112624166B (zh) * 2020-12-16 2023-11-17 东南大学 一种硅铝基气凝胶的制备方法及制得的硅铝基气凝胶在吸附重金属气体方面的应用

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2627933A (en) * 1947-06-28 1953-02-10 Sinclair Refining Co Aerogel diffusion unit
US3932339A (en) * 1972-08-28 1976-01-13 G. D. Mcleod & Sons, Incorporated Product and process
US5683532A (en) * 1990-08-12 1997-11-04 Kabushiki Kaisha Seibu Giken Method of manufacturing an active silica gel honeycomb adsorbing body usable in an atmosphere having 100% relative humidity
US5139540A (en) * 1991-07-24 1992-08-18 Texaco Inc. Membrane separation of gases
US5160352A (en) * 1991-09-06 1992-11-03 Texaco Inc. Method of forming membranes useful for separation of gases
NO302454B1 (no) * 1996-07-31 1998-03-09 Kvaerner Asa Fremgangsmåte til fjerning av karbondioksid fra gasser
US6303046B1 (en) * 1997-08-08 2001-10-16 William M. Risen, Jr. Aerogel materials and detectors, liquid and gas absorbing objects, and optical devices comprising same
US7265158B2 (en) * 1997-08-08 2007-09-04 Brown University Research Foundation Non-metal aerogel materials and detectors, liquid and gas absorbing objects, and optical devices comprising same
TWI267704B (en) * 1999-07-02 2006-12-01 Asml Netherlands Bv Capping layer for EUV optical elements
EP1153739B1 (en) * 1999-11-10 2008-06-04 Matsushita Electric Works, Ltd. Aerogel substrate and method for preparing the same
US7019037B2 (en) * 2001-10-26 2006-03-28 Battelle Memorial Institute Monolayer coated aerogels and method of making
CA2467703A1 (en) * 2001-11-21 2003-06-05 University Of Massachusetts Mesoporous materials and methods
US7258899B1 (en) * 2001-12-13 2007-08-21 Amt Holdings, Inc. Process for preparing metal coatings from liquid solutions utilizing cold plasma
BR0215359A (pt) * 2001-12-27 2006-06-06 Aerogel Composite Llc composições de aerogel e metálicas
KR20040090997A (ko) * 2002-01-31 2004-10-27 미도리안젠 가부시키가이샤 탈취재 및 그의 제조방법
US7771609B2 (en) * 2002-08-16 2010-08-10 Aerogel Technologies, Llc Methods and compositions for preparing silica aerogels
US20040141908A1 (en) * 2002-12-20 2004-07-22 Hara Hiroaki S. Aerogel and metallic composites
GB0312063D0 (en) * 2003-05-27 2003-07-02 Exxonmobil Chem Patents Inc Catalyst composition II
US20040244356A1 (en) * 2003-05-29 2004-12-09 Ronney Paul David Thermal transpiration pump for gaseous material driven by chemical reaction
JP4728122B2 (ja) * 2003-08-27 2011-07-20 日本碍子株式会社 ガス分離体、及びその製造方法
US20050200040A1 (en) * 2004-03-15 2005-09-15 Hara Hiroaki S. Method of preparing membrane electrode assemblies with aerogel supported catalyst
US7396382B2 (en) * 2005-09-28 2008-07-08 General Electric Company Functionalized inorganic membranes for gas separation
US20080127632A1 (en) * 2006-11-30 2008-06-05 General Electric Company Carbon dioxide capture systems and methods
FR2910458B1 (fr) * 2006-12-20 2009-04-03 Centre Nat Rech Scient Aerogels a base de nanotubes de carbone
WO2008112520A1 (en) * 2007-03-09 2008-09-18 The Regents Of The University Of Colorado, A Body Corporate Synthesis of zeolites and zeolite membranes using multiple structure directing agents
AU2008231065B2 (en) * 2007-03-23 2014-09-11 Birdair, Inc. Architectural membrane structures and methods for producing them
US8262779B2 (en) * 2007-11-02 2012-09-11 Uop Llc Microporous aluminophosphate molecular sieve membranes for highly selective separations
CA2724351A1 (en) * 2008-05-15 2009-11-19 Shell Oil Company Method of making a high-performance supported gas separation molecular sieve membrane using a shortened crystallization time
WO2009148959A2 (en) * 2008-05-29 2009-12-10 Lawrence Livermore National Security, Llc Membranes with functionalized carbon nanotube pores for selective transport
US8715392B2 (en) * 2009-05-21 2014-05-06 Battelle Memorial Institute Catalyzed CO2-transport membrane on high surface area inorganic support
KR101044970B1 (ko) * 2009-09-15 2011-06-29 한서대학교 산학협력단 메조포러스 고분자 나노중합 합성체 소재 제조방법
KR101663184B1 (ko) * 2009-12-15 2016-10-06 삼성전자주식회사 하이브리드 다공성 물질 및 그의 제조방법
WO2011137227A1 (en) * 2010-04-29 2011-11-03 The Regents Of The University Of Colorado, A Body Corporate High flux sapo-34 membranes for co2/ch4 separation and template removal method
US9216390B2 (en) * 2010-07-15 2015-12-22 Ohio State Innovation Foundation Systems, compositions, and methods for fluid purification
US9187343B2 (en) * 2011-01-14 2015-11-17 National Institute For Materials Science Nanostructure material supporting arsenic ion adsorption compound and method to remove arsenic ion using the same
JP6181655B2 (ja) * 2011-10-10 2017-08-16 スリーエム イノベイティブ プロパティズ カンパニー エアロゲル、焼成及び結晶質製品及びその製造法
US9358534B2 (en) * 2011-11-28 2016-06-07 Union College Catalyst, catalytic converter, and method for the production thereof
WO2013106571A1 (en) * 2012-01-11 2013-07-18 The Regents Of The University Of Colorado, A Body Corporate Seeded-gel synthesis of high flux and high selectivity sapo-34 membranes for co2/ch4 separations
WO2013125661A1 (ja) * 2012-02-24 2013-08-29 三菱化学株式会社 多孔質支持体―ゼオライト膜複合体
US9302247B2 (en) * 2012-04-28 2016-04-05 Aspen Aerogels, Inc. Aerogel sorbents
US8882895B2 (en) * 2012-06-04 2014-11-11 Z124 Method of controlling airflow through a water recovery device
US20160045841A1 (en) * 2013-03-15 2016-02-18 Transtar Group, Ltd. New and improved system for processing various chemicals and materials
EP3174633A4 (en) * 2014-07-29 2018-04-25 SDCmaterials, Inc. Zone coated catalytic substrates with passive nox adsorption zones

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Mesoporous Fluorocarbon-modified Silica Aerogel Membranes enabling Long-term Continuous CO2 Capture with Large Absorption Flux Enhancements,【2012台灣二氧化碳捕獲、封存與再利用國際研討會論文集】,公開日2012年12月29日 *

Also Published As

Publication number Publication date
TW201514126A (zh) 2015-04-16
US9561463B2 (en) 2017-02-07
US20150104357A1 (en) 2015-04-16
US20170095769A1 (en) 2017-04-06
US9636633B2 (en) 2017-05-02

Similar Documents

Publication Publication Date Title
TWI565681B (zh) 多孔二氧化矽氣凝膠複合薄膜及其製造方法以及二氧化碳吸收裝置
Yang et al. Interlayer-free hybrid carbon-silica membranes for processing brackish to brine salt solutions by pervaporation
Wu et al. Facilitated transport mixed matrix membranes incorporated with amine functionalized MCM-41 for enhanced gas separation properties
Xin et al. Enhanced interfacial interaction and CO2 separation performance of mixed matrix membrane by incorporating polyethylenimine-decorated metal–organic frameworks
Hao et al. Rapid synthesis of nitrogen‐doped porous carbon monolith for CO2 capture
Liu et al. Dynamic performance of CO2 adsorption with tetraethylenepentamine-loaded KIT-6
Wang et al. Carbon dioxide capture using polyethylenimine-loaded mesoporous carbons
Kong et al. Dynamic capture of low-concentration CO2 on amine hybrid silsesquioxane aerogel
Kong et al. Development of monolithic adsorbent via polymeric sol–gel process for low-concentration CO2 capture
US9931612B2 (en) Aerogel sorbents
CN107188188B (zh) 一种胺基改性二氧化硅气凝胶的制备方法及吸附应用
Caruso et al. Silica films with bimodal pore structure prepared by using membranes as templates and amphiphiles as porogens
Chuah et al. High-performance porous carbon-zeolite mixed-matrix membranes for CO2/N2 separation
CN104117343A (zh) 一种可再生低浓度co2高效吸附材料的制备方法
CN103372377A (zh) 用于气体分离的咪唑型离子液体凝胶支撑液膜的制备方法
Zheng et al. Solvothermal and template-free synthesis of N-Functionalized mesoporous polymer for amine impregnation and CO2 adsorption
Jeon et al. Influence of nitrogen moieties on CO 2 capture of carbon aerogel
Yuan et al. Pore structure analysis of PFSA/SiO 2 composite catalysts from nitrogen adsorption isotherms
Xie et al. Enhanced pervaporation performance of SA-PFSA/ceramic hybrid membranes for ethanol dehydration
Chen et al. Embedding molecular amine functionalized polydopamine submicroparticles into polymeric membrane for carbon capture
Zhou et al. Synthesis and CO2 adsorption performance of TEPA-loaded cellulose whisker/silica composite aerogel
WO2021246383A1 (ja) 酸性ガス吸着・脱離材料
CN104876226B (zh) 一种用甲醇亚临界干燥快速制备疏水氧化硅气凝胶的方法
Yang et al. Hybrid organosilica membrane with high CO2 permselectivity fabricated by a two-step hot coating method
Chi et al. Porous molecular sieve polymer composite with high CO2 adsorption efficiency and hydrophobicity