TWI555088B - 製造高效能與電安定之半導體金屬氧化物層的方法,此方法製造的層以及其應用 - Google Patents

製造高效能與電安定之半導體金屬氧化物層的方法,此方法製造的層以及其應用 Download PDF

Info

Publication number
TWI555088B
TWI555088B TW101136507A TW101136507A TWI555088B TW I555088 B TWI555088 B TW I555088B TW 101136507 A TW101136507 A TW 101136507A TW 101136507 A TW101136507 A TW 101136507A TW I555088 B TWI555088 B TW I555088B
Authority
TW
Taiwan
Prior art keywords
metal oxide
layer
oxide layer
metal
liquid phase
Prior art date
Application number
TW101136507A
Other languages
English (en)
Other versions
TW201334070A (zh
Inventor
喬根 史堤格
德西 范
安妮塔 紐曼
艾力克席 馬可洛夫
爾恩 霍普
Original Assignee
贏創德固賽有限責任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 贏創德固賽有限責任公司 filed Critical 贏創德固賽有限責任公司
Publication of TW201334070A publication Critical patent/TW201334070A/zh
Application granted granted Critical
Publication of TWI555088B publication Critical patent/TWI555088B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1225Deposition of multilayers of inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1279Process of deposition of the inorganic material performed under reactive atmosphere, e.g. oxidising or reducing atmospheres
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/14Decomposition by irradiation, e.g. photolysis, particle radiation or by mixed irradiation sources
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/14Decomposition by irradiation, e.g. photolysis, particle radiation or by mixed irradiation sources
    • C23C18/143Radiation by light, e.g. photolysis or pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02469Group 12/16 materials
    • H01L21/02472Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02483Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02614Transformation of metal, e.g. oxidation, nitridation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Thin Film Transistor (AREA)
  • Laminated Bodies (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

製造高效能與電安定之半導體金屬氧化物層的方法,此方法製造的層以及其應用
本發明關於一種製造包含第一和第二金屬氧化物層及介電層之半導體層疊體的方法,該第一金屬氧化物層係佈置於該第二金屬氧化物層與該介電層之間。該第一和第二金屬氧化物層係由第一和第二液相相應地形成。本發明也關於可由此方法獲得之半導體層疊體且關於包含此半導體層疊體之電子組件。
半導體金屬氧化物,例如ZnO、In2O3及SnO2,在文獻中眾所周知。其具有高電荷載子移動率,同時還有光學透明度。於商業用途中,半導體金屬氧化物現在是藉由濺鍍或其他沉積方法自氣相施加。
JP2007-073704教導氧化半導體組件之形成方法,其中多種不同氧化物層係藉由濺鍍法接連施加。
Hong等人(Thin Solid Films(2006)515:2717-2721),教導藉由濺鍍法重複接連施加帶有一種類型之金屬原子的個別薄氧化物層。
Song等人(Solid State Communications(2010)150:1991-1994)教導藉由金屬-有機化學氣相沉積法(MOCVD)將氧化鋅層施於氧化銦層。
Kumomi等人(Journal of Display Technology(2009)5(12):531-540)討論帶有各種不同元素X之In-X-O系 統。該In-X-O層係藉由共濺鍍法施加。
這些方法並不利,因為其技術複雜且與購置其所使用之設備的高成本有關。
為了這個原因,文獻越發討論液相塗佈方法。在這些方法中,例如,於分散液中之氧化物,或於溶劑中之前驅物分子,係呈液相使用。由液相製造之層與已由氣相製造出來之層卻有多個方面不同,因為使用溶劑經常造成這些被加入該層之溶劑分子的殘留。此外,例如在前驅物溶液之案例中,成為氧化物之化學轉化不一定均勻。
在僅帶有一種類型之金屬原子的半導體金屬氧化物之案例中有一個已知的問題,不管製造該等半導體金屬氧化物之方法為何,對於大氣影響及對於電應力之安定性不足,而後者在商業上特別重要。
此問題之解決方法是使用帶有二或更多不同類型之金屬原子的金屬氧化物錯合物。在濺鍍或氣相沉積技術中,較佳因此是使用例如氧化銦鎵鋅之系統,因為這些系統特別安定。液相系統中也已經採用此方法。
WO2010/122274 A1教導藉由將鹼金屬或鹼土金屬原子引入該層而從溶液形成特別安定之組分。
Kim等人(APPLIED PHYSICS LETTERS(2010)96:163506)教導藉由將鎂金屬原子加入該半導體層而以液相為基礎製造安定組分。
US 2006-0088962 A1教導從溶液將氧化性介電質施於半導體組件以改善半導體性質。
儘管如此,在已知方法中,特別是在已經經過最佳化以便於相當低轉化溫度形成最理想之氧化物層的溶液或分散液之案例中,仍無法直接添加其他金屬原子卻不必忍受缺點。缺點之例子包括與原始溶液之化學反應、層形成之中斷或表面上之金屬原子的不均勻化學計量比。在這些例子中,關於電安定性之所欲優點同時伴隨著缺點,例如半導體層中之電荷載子移動率的降低。
本發明克服了已知之缺點。
本發明關於一種製造包含第一金屬氧化物層、第二金屬氧化物層及介電層之半導體層疊體之方法,該第一金屬氧化物層係佈置於該第二金屬氧化物層與該介電層之間,且該方法包含:(i)由第一液相形成包含至少一種選自由氧化銦、氧化鎵、氧化鋅、氧化錫或其混合物所組成的群組之金屬氧化物的第一金屬氧化物層,該第一金屬氧化物層具有20 nm之層厚度且該第一液相包含至少一種金屬氧化物或至少一種金屬氧化物前驅物,該金屬氧化物係選自由氧化銦、氧化鎵、氧化鋅、氧化錫或其混合物所組成的群組,及(ii)由第二液相形成包含至少一種選自由氧化鎵、氧化鋅、氧化錫、氧化鉿、氧化矽、氧化鋁、氧化鈦、鹼金屬氧化物、鹼土金屬氧化物或其混合物所組成的群組之金屬氧化物的第二金屬氧化物層,該第二液相包含至少一種金屬氧化物或至少一種金屬氧化物前驅物,該 金屬氧化物係選自由氧化鎵、氧化鋅、氧化錫、氧化鉿、氧化矽、氧化鋁、氧化鈦、鹼金屬氧化物、鹼土金屬氧化物或其混合物所組成的群組,且該第一層之至少一種金屬氧化物及第二層之至少一種金屬氧化物係不同。
在此方法之各個不同具體實施例中,該第一金屬氧化物層具有0.5至20 nm之層厚度。
在此方法之一些具體實施例中,該第二金屬氧化物層具有至少該第一金屬氧化物層之層厚度。
在此方法之其他具體實施例中,該第二金屬氧化物層包含至少一個不存在於該第一金屬氧化物層中之金屬氧化物。
在此方法之特定具體實施例中,該第二金屬氧化物層包含至少兩種金屬氧化物。
在此方法之各個不同具體實施例中,該第一金屬氧化物層包含至少兩種金屬氧化物。
在此方法之其他具體實施例中,該第二金屬氧化物層包含氧化矽。
在此方法之一些具體實施例中,該第一金屬氧化物層基本上由氧化銦(In2O3)或氧化銦鎵組成,即在各案例中以存在於該層中之金屬的質量比例計,在氧化銦之案例中的第一金屬氧化物層包含銦達到至少51重量%且,在氧化銦鎵之案例中,金屬銦和鎵一起達到至少51重量%。
在此方法之特定具體實施例中,該第二金屬氧化物層基本上由ZnO、Ga2O3、HfO2、SiO2、氧化矽鎵或氧化矽 鉿組成,以存在於該層中之所有金屬的質量比例計,達到至少51重量%。
在此方法之各個不同具體實施例中,該第一金屬氧化物層之形成包含將該第一液相施於該介電層及將該第一液相之至少一種金屬氧化物或至少一種金屬氧化物前驅物沉積於該介電層上以使該第一金屬氧化物層形成於該介電層上。在這些具體實施例中,該第二金屬氧化物層之形成包含將該第二液相施於該第一金屬氧化物層,及將該第二液相之至少一種金屬氧化物或至少一種金屬氧化物前驅物沉積於該第一金屬氧化物層上以使該第二金屬氧化物層形成於該第一金屬氧化物層上。
在此方法之其他具體實施例中,該第二金屬氧化物層之形成包含將該第二液相施於基材上及將該第二液相之至少一種金屬氧化物或至少一種金屬氧化物前驅物沉積於該基材上以使該第二金屬氧化物層形成於該基材上。在這些具體實施例中,該第一金屬氧化物層之形成包含將該第一液相施於該第二金屬氧化物層及將該第一液相之至少一種金屬氧化物或至少一種金屬氧化物前驅物沉積於該第二金屬氧化物層上以使該第一金屬氧化物層形成於該第二金屬氧化物層上,及將該介電層施於該第一金屬氧化物層。
在此方法之各個不同具體實施例中,該第一及/或第二液相係藉由選自由印刷法、噴塗法、旋塗法、浸塗法及狹縫模具式塗佈法(slot-die coating)所組成的群組之方法施加。
在此方法之其他具體實施例中,該第一及/或第二液相之至少一種金屬氧化物前驅物源於金屬烷氧化物及/或氧橋金屬烷氧化物(metal oxo alkoxide)之類型。
在此方法之各個不同具體實施例中,該第一及/或第二液相包含至少一種有機溶劑。
在此方法之其他具體實施例中,該第一及/或第二液相包含至少一種有機溶劑,該有機溶劑基本上係無水的。據了解基本上無水之溶劑意指含有最多500 ppm之水的溶劑。
在此方法之一些具體實施例中,該第一及/或第二液相包含至少一種金屬氧化物粒子型之金屬氧化物。
在此方法之幾個具體實施例中,該第一及/或第二液相包括含水相。
在此方法之其他具體實施例中,該第一及/或第二金屬氧化物層之形成另外包含該第一及/或第二液相之熱處理。
在此方法之一些具體實施例中,該第一及/或第二金屬氧化物層之形成包含以電磁輻射,尤其是UV、IR及/或VIS輻射,照射該第一及/或第二液相,更特別是以UV輻射照射該第一及/或第二液相。在特定具體實施例中,例如,以UV輻射,照射該第一及/或第二液相係在熱處理該第一及/或第二液相之前、之後或期間引發。
在此方法之其他具體實施例中,該第一及/或第二金屬氧化物層係於含氧氣氛,尤其是空氣,下形成。
在此方法之各個不同具體實施例中,該第一及/或第二金屬氧化物層係於100至450℃,尤其是150至350℃之溫度熱處理。
在此方法之一些具體實施例中,該第一金屬氧化物層具有0.5至10 nm,較佳2至5 nm之層厚度。
在另一個方面中,本發明關於由本發明之方法製造的半導體層疊體。
本發明另外包括含含本發明之半導體層疊體的電子組件。
也是本發明之一部分的是包含本發明之半導體層疊體的電子組件,該電子組件係為電晶體、薄膜電晶體、二極體、太陽能電池、感測器、RFID標籤或視覺顯示單元之TFT背板。
如開頭所述,藉由氣體沉積製造半導體之方法不方便又昂貴。因此現今半導體研究之目標在於發展用於製造適合半導體之液相方法,因為此方法在工藝上容易實行且不昂貴。截至目前,此方法之應用仍受到這些方法僅能用以製造電安定性不足的半導體之事實所限制。
在先前技藝中,由液晶方法產生之半導體的電安定性不足之問題係藉由將異質金屬原子引進該半導體層而解決。例如,據推測這能預防氧自該半導體漏出。
此解決方法具有大體上不利地影響該組件之基本效能 的缺點。更特別的是,異質原子引進該半導體層將降低電荷載子移動率。
本發明的發明人於是發現,令人驚訝的是,關於該金屬氧化物層之效能,存在介於第二金屬氧化物層與介電層之間的半導體層疊體內之厚度為20 nm的特別薄金屬氧化物層具有特別之益處。
不欲受限於特定理論,假設該薄金屬氧化物層被摻雜來自該第二金屬氧化物層之小量金屬原子,其結果是使該電荷載子移動率達成安定性之明顯改善。
因此,此半導體層疊體具有相當於藉由將異質原子引進液相製造之半導體層的電安定性。對照已知方法,本方法使安定性提高卻不需犧牲電荷載子移動率,且為此本發明之半導體層疊體具有優於先前技藝之電荷載子移動率的改善。因此,所請求之方法產生新穎之高效能半導體層疊體。
在第一個方面,本發明因此關於一種用於製造半導體層疊體之液相方法,該半導體層疊體包含第一金屬氧化物層、第二金屬氧化物層及介電層,該第一金屬氧化物層係佈置於該第二金屬氧化物層與該介電層之間,且該方法包含:(i)由第一液相形成包含至少一種選自由氧化銦、氧化鎵、氧化鋅、氧化錫或其混合物所組成的群組之金屬氧化物的第一金屬氧化物層,該第一金屬氧化物層具有20 nm之層厚度且該第一液相包含至少一種金屬氧化物或至少一種金屬氧化物前驅物,該金屬氧化物係選自由氧化 銦、氧化鎵、氧化鋅、氧化錫或其混合物所組成的群組;及(ii)由第二液相形成包含至少一種選自由氧化鎵、氧化鋅、氧化錫、氧化鉿、氧化矽、氧化鋁、氧化鈦、鹼金屬氧化物、鹼土金屬氧化物或其混合物所組成的群組之金屬氧化物的第二金屬氧化物層,該第二液相包含至少一種金屬氧化物或至少一種金屬氧化物前驅物,該金屬氧化物係選自由氧化鎵、氧化鋅、氧化錫、氧化鉿、氧化矽、氧化鋁、氧化鈦、鹼金屬氧化物、鹼土金屬氧化物或其混合物所組成的群組;該第一層之至少一種金屬氧化物及第二層之至少一種金屬氧化物係不同。
這意指該第一和第二金屬氧化物層之至少一種金屬氧化物不同。該二層可能含有的其他金屬氧化物可能相同及/或不同。
在根據本發明之方法中,該第一和第二金屬氧化物層接連形成,指定順序取決於該半導體元件所欲之組態。
在各個不同具體實施例中,該等鹼金屬氧化物係選自由氧化鋰、氧化鈉、氧化鉀、氧化銣及氧化銫所組成的群組。
該等鹼土金屬氧化物係,例如,選自由氧化鈹、氧化鎂、氧化鈣、氧化鍶及氧化鋇所組成的群組。
在可依據本發明製造之半導體層疊體中,該半導體第一金屬氧化物層具有介於1與100 cm2/Vs之間的電荷載 子移動率(於閘極-源極電壓50 V、汲極-源極電壓50 V、通道寬度1 cm及通道長度20 μm測量),這可經由"漸變通道近接(gradual channel approximation)"模型求得。為達此目的,使用由習知MOSFET得知之公式。在線性範圍中,運用以下公式: 其中ID是汲極電流,UDS是汲極-源極電壓,UGS是閘極-源極電壓,Ci是絕緣體之面積正規化(area-normalized)電容量,W是電晶體通道之寬度,L是電晶體之通道長度,μ是電荷載子移動率且UT是閾電壓。
在飽和範圍中,汲極電流與閘極電壓之間有平方依存關係,本案例中用以求得該電荷載子移動率:
據了解本發明之上下文中的措辭"金屬氧化物前驅物"意指無論是氧或其他氧化劑存在與否,可以熱或電磁輻射轉化為金屬氧化物之物質或化合物。金屬氧化物前驅物之實例是元素金屬、金屬鹽類、有機金屬化合物(例如金屬烷氧化物和氧橋金屬烷氧化物),熟於此藝之士可將該等金屬氧化物前驅物轉化為相應之金屬氧化物。
本發明之上下文中的措辭"半導體層疊體"關於由至少3個層,第一和第二金屬氧化物層及介電層,組成之層疊體。
該措辭"介電層"表示由介電材料組成之層。此層於半 導體層疊體之工作溫度扮演絕緣體之角色。根據本發明之方法中用以形成該介電層之介電材料較佳為包含金屬或過渡金屬氧化物或氮化物或由其組成,尤其是氧化矽或氮化矽、氧化鋁、氧化鉿、氧化鈦、有機或無機聚合物。藉由該第一和第二金屬氧化物層相對於該介電層之佈置,使本發明之半導體層疊體得到一個取向。
在特定具體實施例中,閘極鄰接該介電層,且這因是在該第一金屬氧化物層之相反側上。在一些具體實施例中,基板鄰接該閘極。在一些具體實施例中,基板鄰接該第二金屬氧化物層。該半導體層疊體也可包含鄰接該第一及/或第二金屬氧化物層之電極接點。源極及汲極可連接於該等電極接點。第2圖例示半導體元件中請求之半導體層疊體的各個不同非限定具體實施例。
據了解文中之措辭"金屬"意指金屬類,且還有半金屬類和過渡金屬類。因此,該措辭"金屬氧化物"關於金屬類、半金屬類和過渡金屬類之氧化物。
用於本文時該措辭"鹼金屬"及/或"鹼土金屬"包含並揭示由此群組轉化而成的所有金屬。這意指,若特定具體實施例包含鹼金屬及/或鹼土金屬,鋰、鈉、鉀、銣及/或銫就揭示作為鹼金屬,且鈹、鎂、鈣、鍶及/或鋇作為鹼土金屬。
據了解該措辭"金屬氧化物層"意指含金屬氧化物、半金屬氧化物-及/或過渡金屬氧化物-層。因此,該第一金屬氧化物層包含,例如,銦、鎵、錫及/或鋅原子或離子, 其係以氧化態或基本氧化態存在。在一些案例中,金屬氧化物層也可包含由不完全轉化或不完全移除引起之副產物的比例。例如,該金屬氧化物層也可包含碳烯、鹵素、烷氧化物及/或氧橋烷氧化物混合物。該第一及/或第二金屬氧化物層也可另外包含可能以元素或氧化態存在之金屬。
在本發明之上下文中的措辭"基本上"意指被指為構成上述物質或上述化合物之60%、70%、80%、90%、95%、99%、99.5%或99.9%的程度之產物或材料。若對象是經詳細描述之金屬氧化物層,百分比數字應被理解為重量%。若描述的是液相或氣氛,百分比數字應被理解為體積%。
該措辭"基板"關於能發揮供該半導體層疊體用之載體的功能之層。該基板較佳包含選自以下之材料:玻璃、矽、二氧化矽、金屬氧化物或過渡金屬氧化物、金屬、聚合性材料(尤其是聚醯亞胺(PI)、聚對苯二甲酸乙二酯(PET)、聚甲基丙烯酸甲酯(PMMA)或聚碳酸酯)及由無機和有機組成成分(尤其是氧化矽及聚醯亞胺)形成之混雜基板。
據了解在本發明之上下文中的措辭"液相"意指在SATP條件("標準周遭溫度和壓力";T=25℃及p=1013 hPa)下呈液態的那些相。
在本發明之上下文中的"無水"組合物是包含低於500 ppm之H2O者。熟於此藝之士已知導致溶劑之相當低水分的確立之相應乾燥步驟。
該措辭"由該第一及/或第二液相形成金屬氧化物層"可分成各個不同階段。在第一步驟中,該第一及/或第二液相可用以形成第一及/或第二固相。在隨後之步驟中,形成根據本發明之第一及/或第二金屬氧化物層。在特定具體實施例中,該二步驟同時進行。若,例如,該第一及/或第二液相包含至少一種金屬氧化物,該固相之形成將造成金屬氧化物層。
由該第一及/或第二液相形成第一及/或第二金屬氧化物層可,在一些具體實施例中,包含熱處理步驟。
該第一及/或第二液相之熱處理可用以使該第一及/或第二液相乾燥。此熱處理可於50至450℃進行並可用以由該第一及/或第二液相形成第一及/或第二固相。
根據該第一及/或第二液相包含至少一種金屬氧化物或至少一種金屬氧化物前驅物,因此可直接形成金屬氧化物層或先由金屬氧化物前驅物形成固相。根據選定之條件,更特別的是氣氛、溫度及熱處理期間,包含至少一種金屬氧化物前驅物之液相也可直接轉化為金屬氧化物層。
在一些具體實施例中,該熱處理包含先於50至350℃熱處理,接著於100至450℃熱處理。
一般,該第一及/或第二金屬氧化物層之形成可經歷數秒至數小時之時間間隔。因此,用於形成該第一及/或第二金屬氧化物層之熱處理可進行經歷數秒至數小時之時期。在一些具體實施例中,該熱處理是1小時。
在特定具體實施例中,第一及/或第二固相係由第一 及/或第二液相形成,該第一及/或第二固相之熱處理由該第一及/或第二固相形成第一及/或第二金屬氧化物層。
不欲受限於特定理論,假設金屬氧化物層之熱處理,任意藉由電磁輻射促成,造成該金屬氧化物層中之原子的重組,以致於該層具有半導體性質,或改良之半導體性質。因此,在各個不同具體實施例中,對該第一及/或第二液相施以熱處理不僅直到第一及/或第二液相形成,而是進一步熱處理直到該第一及/或第二金屬氧化物層所欲之半導體性質形成。
該第一及/或第二金屬氧化物層可藉由熱處理及/或藉由電磁輻射形成。在一些具體實施例中,熱處理可配合溫度曲線引起,以致於其首先以低溫(例如50℃)開始且此溫度接著提高至特定溫度(例如在150至450℃之範圍)並保持在那裡歷經預定期間。在一些具體實施例中,此溫度隨後降回室溫。冷卻可能緩慢或快速。在一些具體實施例中,由該第一或第二液相形成該第一及/或第二金屬氧化物層包含該第一及/或第二液相之熱處理。這使該第一及/或第二液相轉化為第一及/或第二固相,以致於在進一步熱處理之過程中形成第一及/或第二金屬氧化物層。
當該第一及/或第二液相包含金屬氧化物前驅物時,該等前驅物可藉由此熱處理轉化為對應之金屬氧化物,以致於形成第一及/或第二金屬氧化物層。在此方法之各個不同具體實施例中,該第一及/或第二金屬氧化物層係藉由熱處理於100至450℃之溫度,較佳於150至360℃或 150至350℃形成。
該措辭"金屬氧化物層之形成"也包含以電磁輻射照射該第一及/或第二液相以形成該第一及/或第二金屬氧化物層之具體實施例。在各個不同具體實施例中,該第一及/或第二液相係以UV、IR及/或VIS照射以形成該第一及/或第二金屬氧化物層。在其他具體實施例中,該第一及/或第二液相係熱處理並,在此之前、之後及/或期間,以電磁輻射(尤其是UV、IR及/或VIS照射)照射以形成該第一及/或第二金屬氧化物層。熱和電磁處理之組合可改善該第一及/或第二金屬氧化物層之形成。在特定具體實施例中,UV輻射在該熱處理之前或期間使該第一及/或第二液相之組成成分交聯。
該措辭"該第一及/或第二金屬氧化物層之形成"也包含以特定氣氛處理該第一及/或第二液相。在一些案例中,該第一及/或第二金屬氧化物層係在含氧氣氛(尤其是空氣)下形成。關於該第一及/或第二金屬氧化物層之形成,該第一及/或第二液相可以熱在含氧氣氛(尤其是空氣)下處理。在此方法之其他具體實施例中,該第一及/或第二液相係用以在含氧氣氛(尤其是空氣)下形成第一及/或第二固相,且該第一及/或第二金屬氧化物層係在含氧氣氛(尤其是空氣)下以熱處理形成。在各個不同具體實施例中,先施以真空以由該第一及/或第二液相形成固相,並接著在空氣下(尤其是藉由熱處理在含氧氣氛,例如空氣,下)形成該第一及/或第二金屬氧化物層。此形 成也可包含多個加工步驟,該等加工步驟係藉由排除空氣濕度及/或在保護氣體下先引起並接著在含氧氣氛(尤其是空氣)下之步驟。
在本發明上下文中之措辭"含氧氣氛"包含地球大氣(尤其是於海平面("空氣"))及帶有至少10體積%之分子氧的合成氣氛。在各個不同具體實施例中,合成氣氛包含至少20、30、40、50、60、70、80或90體積%之分子氧。在一些具體實施例中,合成氣氛是基本上由100體積%之分子氧組成的氣氛。在一些具體實施例中,合成氣氛是富含水蒸氣之氣氛。
由根據本發明之方法獲得的第一及/或第二金屬氧化物層之品質也可藉由該第一及/或第二金屬氧化物層之形成獲得改善,此形成包含上游之附屬或隨後的熱和氣體聯合處理(以H2O、H2或O2)、電漿處理(Ar、N2、O2或H2電漿)、雷射處理(以在UV、VIS或IR範圍之波長)或臭氧處理。
該第一金屬氧化物層具有20 nm之層厚度,較佳是0.5至20 nm,更佳是0.5至10 nm,又更佳是2至5 nm。在各個不同具體實施例中,該第一金屬氧化物層具有選自由0.5至5 nm、1至5 nm、2至6 nm、2至4 nm、0.5至4 nm、1至4 nm、0.5至3 nm、1至3 nm、0.5至6 nm及1至6 nm所組成的群組之層厚度。在一些具體實施例中,該第一金屬氧化物層,在各個不同具體實施例中,具有1至20 nm、1至15 nm、1至10 nm、1至9 nm、1至8 nm、1至7 nm、3至6 nm、3至5 nm、2至4 nm、2至3 nm或1至2 nm之層厚度。
熟於此藝之士知道先前技藝之方法可由包含至少一種金屬氧化物或至少一種金屬氧化物前驅物之液相形成具有所欲之層厚度的金屬氧化物層。簡單之稀釋系列,例如,即足以達成此目的。所得之層厚度可,例如,藉由橢圓儀(M.Schubert:Infrared Ellipsometry on semiconductor layer structures:Phonons,Plasmons,and Polaritons in:Springer Tracts in Modern Physics 209,Springer-Verlag,Berlin 2004)或原子力顯微鏡(AFM;G.Binnig,C.F.Quate,C.Gerber:Atomic force microscope.Physical Review Letters.56,1986,p.930-933)求得。熟於此藝之士由此進行而求得參數,例如體積、該金屬氧化物或金屬氧化物前驅物濃度及,適當的話,液相中之粒子密度,其使得熟於此藝之士能達成根據本發明之方法所欲的金屬氧化物層厚度。
一般,該第一和第二金屬氧化物層包含至少一種金屬氧化物,該第一金屬氧化物層之至少一種金屬氧化物與該第二金屬氧化物層之至少一種金屬氧化物係不同。在特定具體實施例中,該第一及/或第二金屬氧化物層各自由一種金屬氧化物組成。在各個不同具體實施例中,在各案例中,該第一及/或第二金屬氧化物層可由兩種金屬氧化物組成。在其他具體實施例中,該第一金屬氧化物層基本上由一種金屬氧化物組成,且該第二金屬氧化物層包含二或 多種金屬氧化物。在各個不同具體實施例中,該第一金屬氧化物層包含二或多種金屬氧化物且該第二金屬氧化物層由一種金屬氧化物組成。
在此方法之其他具體實施例中,該第二金屬氧化物層包含至少一種不存在於該第一金屬氧化物層中之金屬氧化物。這意指,當各自金屬氧化物層僅由一種金屬氧化物組成時,該二種金屬氧化物係不同。當該第一金屬氧化物層由兩種金屬氧化物組成且該第二金屬氧化物層由一種金屬氧化物組成時,該第二金屬氧化物層之金屬氧化物與該第一金屬氧化物層之金屬氧化物係不同。當兩種金屬氧化物層均由至少兩種金屬氧化物組成時,該第二金屬氧化物層具有至少一種不存在於該第一金屬氧化物層中之金屬氧化物。
在此方法之其他具體實施例中,該第二金屬氧化物層包含氧化矽。在此方法之一些具體實施例中,該第一金屬氧化物層基本上由氧化銦(In2O3)或氧化銦鎵組成。在各個不同具體實施例中,該第一金屬氧化物層由氧化銦鎵組成,其中該銦:鎵重量係為70:30、80:20、90:10、95:5、99.0:1.0至99.9:0.1。在此組態中,例如,該第二金屬氧化物層可基本上或僅由氧化鎵(Ga2O3)組成。
在各個不同具體實施例中,該第一金屬氧化物層可為純氧化銦、氧化鎵、氧化錫及/或氧化鋅層,即,忽略任何碳烯、烷氧化物、橋氧烷氧化物或鹵素化合物,基本上由銦、鎵、錫及/或鋅原子或離子組成。在一些具體實施 例中,該第一金屬氧化物層可包含其他金屬部分,該等金屬部分本身可呈元素或氧化形式。
在此方法之特定具體實施例中,該第二金屬氧化物層基本上由ZnO、Ga2O3、HfO2、SiO2、氧化矽鎵或氧化矽鉿組成。
在其他具體實施例中,該第一金屬氧化物層由氧化銦、氧化鎵、氧化鋅及/或氧化錫組成。在特定具體實施例中,該第一金屬氧化物層由純氧化銦(In2O3)或氧化銦鎵組成。
該第二層可,在各個不同具體實施例中,包含氧化鋰、氧化鈉、氧化鉀、氧化銣、氧化銫、氧化鈹、氧化鎂、氧化鈣、氧化鍶、氧化鋇、氧化鎵、氧化鋅、氧化錫、氧化鉿、氧化矽、氧化鋁及/或氧化鈦所組成的群組。
在此方法之其他具體實施例中,該第二金屬氧化物層基本上由Li2O、Na2O、K2O、Ru2O、Cs2O、BeO、MgO、CaO、SrO、BaO、Ga2O3、ZnO、SnO2、HfO2、SiO2、Al2O3或TiO2組成。
在特定具體實施例中,該第一金屬氧化物層基本上由純氧化銦(In2O3)組成且該第二金屬氧化物層基本上由Li2O、Na2O、K2O、Ru2O、Cs2O、BeO、MgO、CaO、SrO、BaO、Ga2O3、ZnO、SnO2、HfO2、SiO2、Al2O3或TiO2組成。
在一些具體實施例中,該第一金屬氧化物層基本上由 純氧化銦鎵組成且該第二金屬氧化物層基本上由Li2O、Na2O、K2O、Ru2O、Cs2O、BeO、MgO、CaO、SrO、BaO、Ga2O3、ZnO、SnO2、HfO2、SiO2、Al2O3或TiO2組成。
由該第一和第二液相形成該第一和第二金屬氧化物層之順序可任意根據所得半導體元件之形狀而選擇。
據了解該措辭"半導體元件"在本發明之上下文中意指包含本發明之半導體層疊體,還有基板和閘極的層疊體。在此案例中,該閘極鄰接本發明之半導體層疊體的介電層。從該第一金屬氧化物層看該閘極因此在該介電層之相反側。根據該半導體元件中之閘極相對於該半導體層疊體到底是面向或遠離該基板,而表示底閘極或頂閘極組態。該半導體元件也可包含鄰接該第一及/或第二金屬氧化物層之電極接點。源極和汲極可連於該電極接點。第2圖顯示此半導體元件中請求之半導體層疊體的各個不同非限定具體實施例。
在此方法之一些具體實施例中,該第一金屬氧化物層之形成因此包含將該第一液相施於該介電層及將該第一液相之至少一種金屬氧化物或至少一種金屬氧化物前驅物沉積於該介電層上以使該第一金屬氧化物層形成於該介電層上。在這些具體實施例中,該第二金屬氧化物層之形成包含將該第二液相施於該第一金屬氧化物層,及將該第二液相之至少一種金屬氧化物或至少一種金屬氧化物前驅物沉積於該第一金屬氧化物層上以使該第二金屬氧化物層形成 於該第一金屬氧化物層上。在特定具體實施例中,該介電層係在基板上。在該案例中,結果是該底閘極組態之半導體元件。
據了解本發明之上下文中的"沉積"意指由第一及/或第二液相以固相形式將該至少一種金屬氧化物或該至少一種金屬氧化物前驅物沉積於表面上。這包括,例如,吸附、沉澱等等。該措辭"沉積"因此包含,例如,液相之汽化和液相之蒸發以便藉此由第一及/或第二液相形成第一及/或第二固相。該液相可,例如,藉由文中所述之熱處理及/或施以真空或氣流,更特別是包含含氧氣氛或空氣流之流而蒸發。再者,該措辭"沉積"使該至少一種金屬氧化物或該至少一種金屬氧化物前驅物電解濃縮於表面上。此沉積也可藉由文中所述之熱處理及/或藉由電磁輻射,尤其是UV、IR及VIS輻射引起。在一些具體實施例中,該第一及/或第二固相是第一及/或第二金屬氧化物層。在其他具體實施例中,由該第一及/或第二液相形成該第一及/或第二金屬氧化物層包含由該第一及/或第二固相形成該第一及/或第二金屬氧化物層。
在此方法之其他具體實施例中,該第二金屬氧化物層之形成包含將該第二液相施於基材上,及將該第二液相之至少一種金屬氧化物或至少一種金屬氧化物前驅物沉積於該基材上以使該第二金屬氧化物層形成於該基材上。在這些具體實施例中,該第一金屬氧化物層之形成包含將該第一液相施於該第二金屬氧化物層,及將該第一液相之至少 一種金屬氧化物或至少一種金屬氧化物前驅物沉積於該第二金屬氧化物層上以使該第一金屬氧化物層形成於該第二金屬氧化物層上,及將該介電層施於該第一金屬氧化物層。在特定具體實施例中,閘極隨後形成於該介電層上。於是結果是該頂閘極組態之半導體元件。
此外本發明的發明人發現,令人驚訝的是,該第二金屬氧化物層不僅適用於該第一金屬氧化物層之塗佈,還可作為半導體元件之鈍化層。例如,從該第一金屬氧化物層觀看該介電層面向基板之半導體元件組態的案例中,該第二金屬氧化物層可擔任鈍化層,以致於以其結束該半導體元件並預防其受到大氣影響。
例如,在此方法之特定具體實施例中,該第二金屬氧化物層基本上可由氧化矽鉿組成。在此,例如,該矽:鉿重量比可為70:30至99.9:0.1。
在此方法之一些具體實施例中,該措辭"施加第一及/或第二液相"包含選自由印刷法、噴塗法、旋塗法、浸塗法及狹縫模具式塗佈法所組成的群組之方法。該措辭"印刷法"包含選自由,但不限於,橡皮板/凹版印刷、噴墨印刷、平版印刷、數位平版印刷及網版印刷所組成的群組之方法。本發明不包含以氣相沉積該金屬氧化物層之方法。在各個不同具體實施例中,該第一及/或第二液相之施加包含配合排除含氧氣氛、空氣及/或配合減少空氣濕度施加。在其他具體實施例中,在保護氣體下施加該第一及/或第二液相。
在此方法之各個不同具體實施例中,該第一及/或第二液相包含至少一種有機溶劑。在此案例中,該第一及/或第二液相可包含一種溶劑或多種不同溶劑之混合物。適合之溶劑係選自非質子和弱質子溶劑,尤其是選自由非質子之非極性溶劑的群組之溶劑。在各個不同具體實施例中,有機溶劑基本上係無水的。該等有機溶劑較佳是無水的。在特定具體實施例中,例如當使用來自有機金屬化合物類之金屬氧化物前驅物時,這可能促進或改善該第一及/或第二液相之施加及/或該第一及/或第二金屬氧化物層之形成。
因此,適合之溶劑可選自由經取代及/或未經取代之烷類、經取代及/或未經取代之烯類、經取代及/或未經取代之炔類、經取代及/或未經取代之芳族烴類、帶有脂族或芳族取代基之芳族烴類、鹵化烴類、四甲基矽烷、醚類(例如芳族醚類和經取代之醚類)、酯類或酸酐類、酮類、三級胺類、硝基甲烷、DMF(二甲基甲醯胺)、DMSO(二甲基亞碸)、碳酸丙二酯、醇類、一級和二級胺類及甲醯胺所組成的群組。
特佳之溶劑是醇類,還有甲苯、乙醇、1-甲氧基-2-丙醇(PGME)、乙酸1-甲氧基丙-2-酯(PGMEA)、二甲苯、苯甲醚、三甲苯、正己烷、正庚烷、參(3,6-二氧雜庚基)-胺(TDA)、2-胺基甲基四氫呋喃、苯***、4-甲基苯***、3-甲基苯***、苯甲酸甲酯、N-甲基-2-吡咯酮(NMP)、四氫萘、苯甲酸乙酯及二***。
非常特佳之溶劑是異丙醇、乙醇、PGME、PGMEA、四氫呋喃甲醇、第三丁醇和甲苯及其混合物。
在較佳具體實施例中,該第一及/或第二液相根據DIN 53019第1至2部分測定並於室溫測量而具有1 mPa‧s至10 Pa‧s之黏度,尤其是1 mPa‧s至100 mPa‧s。這樣之黏度可能特別適用於相應液相之印刷。
在一些具體實施例中,該第一及/或第二液相之黏度係於使用之前測定。因此可能是所請求之方法另外包含將該第一及/或第二液相之黏度調節至所欲黏度的案例。
關於所欲之黏度的調節,增稠劑可在施加之前加於該第一及/或第二液相。適合之增稠劑可選自由纖維素衍生物、SiO2(其可以註冊名稱AEROSIL®購得)、聚甲基丙烯酸甲酯增稠劑、聚乙烯醇、胺基甲酸酯增稠劑及聚丙烯酸酯增稠劑所組成的群組。
在此方法之各個不同具體實施例中,該第一及/或第二液相包括含水相。因此,該第一及/或第二液相可包括含水相或雙相或多相系統,在該案例中有一相是含水相。該至少一種其他相可包含本文所述之有機溶劑。在各個不同具體實施例中,該第一及/或第二液相是水溶液、分散液或乳液。
用於合成含金屬氧化物之層的適合可行之前驅物是眾多的物質及化合物類型。如上所述,金屬氧化物前驅物之群組包含元素金屬類、金屬鹽類、有機金屬化合物(尤其是金屬烷氧化物及氧橋金屬烷氧化物)。
本發明之上下文中的措辭"有機金屬化合物"包含任何包含至少一種金屬及至少一種有機化合物並能轉化為金屬氧化物之化合物。用於形成該第一金屬氧化物層之有機金屬化合物包括至少一種選自銦、鎵、鋅及錫的群組之金屬。用於形成該第二金屬氧化物層之有機金屬化合物包含至少一種選自鋰、鈉、鉀、銣、銫、鈹、鎂、鈣、鍶、鋇、鎵、鋅、錫、鉿、矽、鋁及鈦的群組之金屬。
該有機金屬化合物之至少一種有機化合物,不論該前驅物是否用於形成該第一及/或第二金屬氧化物層,包含至少一種選自由氫、經取代或未經取代之C1-50烷基、經取代或未經取代之C2-50烯基、經取代或未經取代之C2-50炔基、經取代或未經取代之C1-50烷氧基、經取代或未經取代之C5-50芳基、經取代或未經取代之C4-50雜芳基、經取代或未經取代之C1-50氧烷氧基、經取代或未經取代之C6-50烷芳基、經取代或未經取代之C6-50芳烷基、經取代或未經取代之C5-50烷基雜芳基、經取代或未經取代之C3-50環烷基及經取代或未經取代之C2-50雜環烷基所組成的群組之基團。若經取代,該等有機金屬化合物之取代基係選自由C1-50烷基、C2-50烯基、C2-50炔基、C1-50烷氧基、C5-50芳基、C5-50雜芳基、C1-50氧烷氧基、C6-50烷芳基、C6-50芳烷基、C4-50烷基雜芳基、C3-50環烷基及C2-50雜環烷基所組成的群組。
在一些具體實施例中,該等有機金屬化合物包含至少一種選自由F、Cl、Br及I所組成的群組之鹵素。
此技藝中有適合之金屬氧化物前驅物的充分描述,且其因此充分為熟於此藝之士所周知。例如,WO2010/094583 A1及WO2011/020792 A1揭示適合之金屬氧化物前驅物。特此將這些文件之揭示內容完全併入本專利申請案之揭示內容。更特別的是,該二文件揭示用於製造金屬氧化物層之適合的金屬烷氧化物及氧橋金屬烷氧化物前驅物及製造這樣的層之方法。
據了解金屬烷氧化物意指由至少一種金屬原子、至少一種式-OR(R=有機基團)之烷氧基及任意一或多種有機基團-R、一或多種鹵基及/或一或多種-OH或-OROH基團所組成之化合物。
比起金屬烷氧化物,氧橋金屬烷氧化物也具有至少另一種橋氧基團(氧橋基)或直接鍵結於至少一種金屬原子者。
在各個不同具體實施例中,該金屬烷氧化物或氧橋金屬烷氧化物是帶有至少一個C1-至C15-烷氧基或-氧烷基烷氧基之烷氧化物氧橋烷氧化物,更佳是至少一種C1-至C10-烷氧基或-氧烷基烷氧基。更佳地,該金屬烷氧化物及橋氧烷氧化物具有通式M(OR)x,其中R是C1-至C15-烷基或-烷基氧烷基,又更佳是C1-至C10-烷基或-烷基氧烷基。在此式中,x是相當於該金屬(M)之氧化態的整數。在一些具體實施例中,該金屬前驅物中之金屬的氧化態相當於該金屬於之後呈該第一及/或第二金屬氧化物層中之金屬氧化物存在時的氧化態。特佳為金屬烷氧化物 M(OCH3)x、M(OCH2CH3)x、M(OCH2CH2OCH3)x、M(OCH(CH3)2)x或M(O(CH3)3)x。又更佳地,使用M(OCH(CH3)2)x(金屬異丙氧化物)。在此金屬氧化物前驅物用於形成該第一金屬氧化物層之案例中,M係選自由銦、鎵、鋅及錫所組成的群組。在此金屬氧化物前驅物用於形成該第二金屬氧化物層之案例中,M係選自由鎵、鋅、錫、鉿、矽、鋁、鈦、鹼金屬及鹼土金屬所組成的群組。
在各個不同具體實施例中,該第一金屬氧化物層包含至少一種氧化銦並係由至少一種銦前驅物形成,尤其是銦烷氧化物前驅物或銦橋氧烷氧化物前驅物。該銦烷氧化物前驅物或銦橋氧烷氧化物前驅物較佳是銦(III)烷氧化物/橋氧烷氧化物。更佳地,該銦(III)烷氧化物/橋氧烷氧化物是帶有至少一個C1-至C15-烷氧基或-氧烷基烷氧基,更佳是至少一個C1-至C10-烷氧基或-氧烷基烷氧基之烷氧化物/橋氧烷氧化物種。更佳地,該銦(III)烷氧化物/橋氧烷氧化物是通式In(OR)3之烷氧化物,其中R是C1-至C15-烷基或-烷基氧烷基,又更佳是至少一個C1-至C10-烷基或-烷基氧烷基。這更佳是銦(III)烷氧化物或橋氧烷氧化物In(OCH3)3、In(OCH2CH3)3、In(OCH2CH2OCH3)3、In(OCH(CH3)2)3或In(O(CH3)3)3。又更佳地,使用In(OCH(CH3)2)3(異丙氧化銦)。
該銦烷氧化物或橋氧烷氧化物較佳以該第一液相之總重量為基準,存有1至15重量%之比例,更佳是2至10 重量%且最佳是2.5至7.5重量%。
為了製造純氧化銦、氧化鎵、氧化錫及/或氧化鋅層,在根據本發明之方法中,僅使用銦、鎵、錫及/或鋅前驅物,較佳僅使用橋氧烷氧化物及烷氧化物。
在一些具體實施例中,和金屬氧化物前驅物一樣,該第一及/或第二液相也可包含呈0氧化態之金屬類,以形成和該金屬氧化物一樣另外含有呈不帶電荷形式之金屬的金屬氧化物層。
在此方法之一些具體實施例中,該第一及/或第二液相之至少一種金屬烷氧化物前驅物源於該金屬烷氧化物及/或氧橋金屬烷氧化物類。
當單獨使用之金屬氧化物前驅物是該金屬烷氧化物或氧橋金屬烷氧化物時,根據本發明之方法特別能在製造該第一及/或第二金屬氧化物層時得到良好結果。
在特定具體實施例中,可使用氧橋金屬烷氧化物作為具有通式MxOy(OR)z[O(R'O)cH]aXb[R"OH]d之金屬氧化物前驅物,其中M=供該第一金屬氧化物層用之In、Ga、Sn及/或Zn且M=供該第二金屬氧化物層用之Ga、Sn、Zn、Al、Ti、Li、Na、K、Rb、Cs、Be、Mg、Ca、Sr、Ba、Hf及/或Si,x=3至25,y=1至10,z=3至50,a=0至25,b=0至20,c=0至1,d=0至25,R、R'、R"=有機基團,且X=F、Cl、Br、I。在此類型之另一個具體實施例中,該第一及/或第二液相可包含有機溶劑,尤其是基本上無水,最佳是無水之有機溶劑。
在各個不同具體實施例中,可使用氧橋金屬烷氧化物作為具有通式MxOy(OR)z之金屬氧化物前驅物,其中M=供該第一金屬氧化物層用之In、Ga、Sn及/或Zn且M=供該第二金屬氧化物層用之Ga、Sn、Zn、Al、Ti、Li、Na、K、Rb、Cs、Be、Mg、Ca、Sr、Ba、Hf及/或Si,x=3至20,y=1至8,z=1至25,OR=C1-C15-烷氧基、-氧烷基烷氧基、-芳氧基或-氧芳基烷氧基,特佳為使用具有以下條件之通式MxOy(OR)z者,其中M=供該第一金屬氧化物層用之In、Ga、Sn及/或Zn且M=供該第二金屬氧化物層用之Ga、Sn、Zn、Al、Ti、Li、Na、K、Rb、Cs、Be、Mg、Ca、Sr、Ba、Hf及/或Si,x=3至15,y=1至5,z=10至20,OR=-OCH3、-OCH2CH3、-OCH2CH2OCH3、-OCH(CH3)2或-O(CH3)3
在其他具體實施例中,可使用氧橋金屬烷氧化物作為具有式[In55-O)(μ3-OiPr)42-OiPr)4(OiPr)5]之金屬氧化物前驅物。此金屬前驅物尤其可用於形成該第一金屬氧化物層。
在一些具體實施例中,可使用氧橋金屬烷氧化物作為具有式[Sn3O(OiBu)10(iBuOH)2]及/或[Sn6O4(OR)4]之金屬氧化物前驅物。此金屬前驅物可用於形成該第一及/或第二金屬氧化物層。
金屬鹽類也可用作為用於製造金屬氧化物層之金屬氧化物前驅物。在一些具體實施例中,該第一液相包含至少一種金屬鹽,該金屬鹽係不排他地選自由至少一種選自由 銦、鎵、鋅及錫所組成的群組之金屬的鹵化物、硝酸鹽、硫酸鹽、磷酸鹽、碳酸鹽、乙酸鹽及草酸鹽所組成的群組。在其他具體實施例中,該第二液相包含至少一種金屬鹽,該金屬鹽係不排他地選自由至少一種選自由鎵、鋅、錫、鉿、矽、鋁、鈦、鹼金屬及鹼土金屬所組成的群組之金屬的鹵化物、硝酸鹽、硫酸鹽、磷酸鹽、碳酸鹽、乙酸鹽及草酸鹽所組成的群組。這樣之金屬鹽可用於,例如,該含水相。特定含金屬鹽之相可用以藉由熱處理及/或電磁輻射(尤其是UV輻射)形成金屬氧化物層。
在一些案例中,例如金屬鹵化物,該金屬鹽可經由中間步驟轉化為該金屬氧化物。例如,金屬鹵化物可先轉化為有機金屬化合物,接著將該有機金屬化合物氧化以形成該金屬氧化物層。在一些具體實施例中,用於此目的之第一及/或第二液相包含一或多種金屬鹽,該第一及/或第二液相包含有機溶劑。因此形成為中間物形式之有機金屬化合物包含文中所述之金屬烷氧基及金屬氧橋烷氧基化合物。這樣之方法在此技藝中係眾所周知。
例如,Kim等人(J.Am.Chem.Soc.(2008)130:12580-12581 and supplemental information)揭示由銦鹽類開始之氧化銦形成。例如,有使用由InCl3及鹼單乙醇胺(MEA)溶於甲氧基乙醇中構成之前驅物溶液所製造的組分之描述。等該溶液旋塗之後,對應之氧化銦層係藉由熱處理於400℃形成。
在一些具體實施例中,該第一及/或第二液相之至少 一種金屬氧化物前驅物是元素金屬。在此該元素金屬可呈奈米粒子於液體中之形式,並能藉由含氧氣氛(例如空氣,尤其是純氧)之處理轉化為該金屬氧化物。在一些具體實施例中,該金屬氧化物層之形成係由熱處理及/或電磁輻射促進,尤其是UV、IR及/或VIS輻射。因此,在一些具體實施例中,該第一液相包含至少一種來自元素金屬類之金屬氧化物前驅物,該金屬係選自由銦、鎵、鋅及錫所組成的群組。在一些具體實施例中,該第二液相包含至少一種來自元素金屬類之金屬氧化物前驅物,該金屬係選自由鎵、鋅、錫、鉿、矽、鋁、鈦、鹼金屬及鹼土金屬所組成的群組。
在其他具體實施例中,該第一及/或第二金屬氧化物層係由第一及/或第二液相形成,在該案例中該第一及/或第二液體包含至少一種屬於有機金屬化合物之金屬氧化物前驅物。關於該第一液相,該至少一種金屬氧化物化合物之金屬係選自由銦、鎵、鋅及/或錫所組成的群組。關於該第二液相,至少一種金屬氧化物化合物之金屬係選自由鎵、鋅、錫、鉿、矽、鋁、鈦、鹼金屬及/或鹼土金屬所組成的群組。在特定具體實施例中,對因此獲得之第一及/或第二液相施以熱處理及/或電磁輻射以形成該第一及/或第二液相。
該第一及/或第二金屬氧化物層之形成也可藉由此技藝中眾所周知之溶凝膠方法完成。
JP 06-136162 A(Fujimori Kogyo K.K.)描述自溶液 將金屬氧化物膜製造於基板上之方法,其中金屬烷氧化物溶液(尤其是異丙氧基銦溶液)係轉化為金屬氧化物凝膠,施於基板,乾燥並熱處理,在該乾燥和熱處理步驟之前、期間或之後以UV輻射照射該溶液。
JP 09-157855 A(Kansai Shin Gijutsu Kenkyusho K.K.)也描述由金屬烷氧化物溶液經由金屬氧化物溶膠中間物製造金屬氧化物膜,該金屬氧化物溶膠中間物係施於該基板並藉由UV輻射轉化為特定金屬氧化物。所得之金屬氧化物可為氧化銦。
CN 1280960 A描述由溶液經由溶凝膠方法製造氧化銦錫層,其中金屬烷氧化物之混合物係溶於溶劑中,水解並接著用於以隨後之乾燥和固化塗佈基板。
相同地,在本發明之一些具體實施例中,該第一及/或第二液相可包含至少一種金屬烷氧化物和水,尤其是相當大量之水或基本上由水構成之液相。在溶凝膠方法中,該第一及/或第二液相係藉由水解及隨後之縮合轉化為凝膠,並接著藉由加熱及/或電磁輻射形成該第一及/或第二金屬氧化物層。
在一些具體實施例中,該等金屬氧化物前驅物及該含水相在施加時僅相互接觸或接連施加。因此,本發明之第一及/或第二相也可先製造於支撐物上並以此方式同時施加。為了製造特別薄且均勻之層這可能是有利的,尤其是在溶凝膠方法之案例中。這可避免該金屬氧化物層中之不均勻並以此方式防止該金屬氧化物層具有差的層參數。
在此案例中,據了解不均勻意指個別域中之晶體形成,其導致表面之粗糙度高於Rms=5 nm(rms粗糙度=均方根粗糙度;藉由原子力顯微鏡測量)。此粗糙度先是對於該含氧化銦之層的層性質具有不利效應(結果特別是電荷載子移動率太低而無法用於半導體用途),其次對於用於製造組件之其他層的施加具有不利效應。
在此方法之一些具體實施例中,該第一及/或第二液相包含至少一種該金屬氧化物粒子型之金屬氧化物。該等金屬氧化物粒子通常是奈米粒子。用於本文中之"奈米粒子"表示具有至高100 nm之直徑的粒子,較佳是在1至100 nm之範圍中。關於在此方法中之應用,這樣之金屬氧化物粒子通常在可印刷之分散液中。為了改善這些性質,該液相可另外包含分散添加物。該液相可藉由上述方法,即藉由熱處理及/或電磁輻射轉化為固相,且該等金屬氧化物粒子可以此方式沉積。在一些具體實施例中,經過該印刷操作之後,該金屬氧化物層係藉由燒結操作轉化為半導體層。
在另一個方面中,本發明關於由本發明之方法製造的半導體層疊體。
本發明另外包括含本發明之半導體層疊體的電子組件。
也是本發明之一部分的是包含本發明之半導體層疊體的電子組件,該電子組件係選自由電晶體、薄膜電晶體、二極體、太陽能電池、感測器、RFID標籤或視覺顯示單 元之TFT背板所組成的群組。
本發明之另一個方面是用於製造電子組件的方法,這些方法包括用於製造半導體層疊體之根據本發明的方法。
也被本發明之範疇涵蓋的是本發明之半導體層疊體用於製造電子組件的用途。
這樣之電子組件係不排他地選自由電晶體、薄膜電晶體、二極體、太陽能電池、感測器、RFID標籤或視覺顯示單元之TFT背板所組成的群組。
具體實施例 實施例1:半導體層疊體之製造
使用帶有約15 mm之邊緣長度且帶有厚度大約200 nm之氧化矽塗層的經摻雜之矽基板及ITO/金之指部結構。
藉由旋塗法(2000 rpm;30秒)將由銦前驅物([In55-O)(μ3-OiPr)42-OiPr)4(OiPr)5]於1-甲氧基-2-丙醇中之5重量%)構成之調合物施於該氧化矽。
該前驅物層係藉由以下方式轉化為具有介於1至20 nm之間的層之In2O3半導體層(第一金屬氧化物層):a. UV交聯(UV處理歷經10分鐘),接著b.熱處理(在空氣下於350℃歷經1小時)。
隨後,藉由旋塗法將另一個由金屬氧化物前驅物或前驅物混合物於有機溶劑中之調合物施於該In2O3半導體層。該前驅物層係藉由以下方式轉化為該第二金屬氧化物 層:c. UV交聯(UV處理歷經10分鐘),接著d. 熱處理(在空氣下於350℃歷經1小時)。
為第一In2O3金屬氧化物層與帶有該第二金屬氧化物層中之各種不同金屬氧化物/金屬氧化物組合的各種不同組合測定該電荷載子移動率及起點偏移。低起點偏移表示該半導體之高電安定性。
用以測定該起點偏移之應力參數是:UDS=10V及UGS=-20V(負偏壓應力測試)。該等安定性測量係在惰性條件(N2)下進行以排除大氣氣體之影響。
結果:
結果顯示將第二金屬氧化物層形成於薄第一半導體金屬氧化物層上達成對抗電應力之安定性而不會同時降低電荷載子移動率。
實施例2:比較例(金屬原子之加入)
除了沒在該第一金屬氧化物層上形成第二金屬氧化物層之外,如實施例1進行比較例。取而代之地,將各種不同量之鋅前驅物加於含銦前驅物之第一液相。研究僅帶有一種金屬氧化物層之半導體的電荷載子移動率。已發現於該第一液相中之數個百分比的鋅前驅物已經導致電荷載子移動率之嚴重衰退(參照第3圖)。
10‧‧‧半導體元件
20‧‧‧基板
30‧‧‧閘極
40‧‧‧介電層
50‧‧‧第二金屬氧化物層
60‧‧‧電極接觸部位
70‧‧‧第一金屬氧化物層
第1圖顯示,藉由示範方式,從先前技藝知道之半導體元件(10)的構造示意圖這些元件包含基板(20)、閘極(30)、介電層(40)、主動半導體第二金屬氧化物層(50)及電極接觸部位(60)。從該第二金屬氧化物層(50)相對於該介電層(40)和該基板(20)之相關佈置的觀點來看,及從該等電極接觸部位(60)之位置的觀點來看該等半導體元件(10)之分別組態不相同。依據其組態,按照以下來稱呼該等組件a)底閘極-頂接點(BGTC)、b)底閘極-底接點(BGBC)、c)頂閘極-頂接點(TGTC)及d)頂閘極-底接點(TGBC)。
第2圖顯示,藉由示範方式,包含根據本發明之半導體層疊體的半導體元件(10)之構造。藉由示範方式顯示之4個變化例a)至d)包含佈置於第二金屬氧化物層(50)與該介電層(40)之間的主動半導體第一金屬氧化物層(70),並從該第一金屬氧化物層(70)相對於該閘極(30)和該基板(20)之相關佈置的觀點來看,及從該 等電極接觸部位(60)之位置的觀點來看不相同。
第3圖顯示半導體層之分析結果,該半導體層係在各種不同量之鋅前驅物(X軸)已經加於包含銦前驅物之液相,及此液相已經熱處理過之後獲得。以所得之半導體層分析其電荷載子移動率(Y軸)。
10‧‧‧半導體元件
20‧‧‧基板
30‧‧‧閘極
40‧‧‧介電層
50‧‧‧第二金屬氧化物層
60‧‧‧電極接觸部位
70‧‧‧第一金屬氧化物層

Claims (25)

  1. 一種製造包含第一金屬氧化物層、第二金屬氧化物層及介電層之半導體層疊體之方法,該第一金屬氧化物層係佈置於該第二金屬氧化物層與該介電層之間,且該方法包含:由第一液相形成包含至少一種選自由氧化銦、氧化鎵、氧化鋅、氧化錫或其混合物所組成的群組之金屬氧化物的第一金屬氧化物層,該第一金屬氧化物層具有20 nm之層厚度且該第一液相包含至少一種金屬氧化物或至少一種金屬氧化物前驅物,該金屬氧化物係選自由氧化銦、氧化鎵、氧化鋅、氧化錫或其混合物所組成的群組,由第二液相形成包含至少一種選自由氧化鎵、氧化鋅、氧化錫、氧化鉿、氧化矽、氧化鋁、氧化鈦、鹼金屬氧化物、鹼土金屬氧化物或其混合物所組成的群組之金屬氧化物的第二金屬氧化物層,該第二液相包含至少一種金屬氧化物或至少一種金屬氧化物前驅物,該金屬氧化物係選自由氧化鎵、氧化鋅、氧化錫、氧化鉿、氧化矽、氧化鋁、氧化鈦、鹼金屬氧化物、鹼土金屬氧化物或其混合物所組成的群組,該第一層之至少一種金屬氧化物及第二層之至少一種金屬氧化物係不同。
  2. 如申請專利範圍第1項之方法,其中該第一金屬氧化物層具有0.5至20 nm之層厚度。
  3. 如申請專利範圍第1項之方法,其中該第二金屬氧 化物層具有至少該第一金屬氧化物層之層厚度。
  4. 如申請專利範圍第1至3項中任一項之方法,其中該第二金屬氧化物層包含至少一個不存在於該第一金屬氧化物層中之金屬氧化物。
  5. 如申請專利範圍第1至3項中任一項之方法,其中該第二金屬氧化物層包含至少兩種金屬氧化物。
  6. 如申請專利範圍第1至3項中任一項之方法,其中該第一金屬氧化物層包含至少兩種金屬氧化物。
  7. 如申請專利範圍第1至3項中任一項之方法,其中該第二金屬氧化物層包含氧化矽。
  8. 如申請專利範圍第1至3項中任一項之方法,其中該第一金屬氧化物層基本上由氧化銦(In2O3)或氧化銦鎵組成。
  9. 如申請專利範圍第1至3項中任一項之方法,其中該第二金屬氧化物層基本上由ZnO、Ga2O3、HfO2、SiO2、氧化矽鎵或氧化矽鉿組成。
  10. 如申請專利範圍第1至3項中任一項之方法,其中該第一金屬氧化物層之形成包含:將該第一液相施於該介電層,及將該第一液相之至少一種金屬氧化物或至少一種金屬氧化物前驅物沉積於該介電層上以使該第一金屬氧化物層形成於該介電層上,且其中該第二金屬氧化物層之形成包含:將該第二液相施於該第一金屬氧化物層,及 將該第二液相之至少一種金屬氧化物或至少一種金屬氧化物前驅物沉積於該第一金屬氧化物層上以使該第二金屬氧化物層形成於該第一金屬氧化物層上。
  11. 如申請專利範圍第1至3項中任一項之方法,其中該第二金屬氧化物層之形成包含:將該第二液相施於基材上,及將該第二液相之至少一種金屬氧化物或至少一種金屬氧化物前驅物沉積於該基材上以使該第二金屬氧化物層形成於該基材上,且其中該第一金屬氧化物層之形成包含:將該第一液相施於該第二金屬氧化物層,及將該第一液相之至少一種金屬氧化物或至少一種金屬氧化物前驅物沉積於該第二金屬氧化物層上以使該第一金屬氧化物層形成於該第二金屬氧化物層上,及將該介電層施於該第一金屬氧化物層。
  12. 如申請專利範圍第1至3項中任一項之方法,其中該第一及/或第二液相係藉由選自由印刷法、噴塗法、旋塗法、浸塗法及狹縫模具式塗佈法(slot-die coating)所組成的群組之方法施加。
  13. 如申請專利範圍第1至3項中任一項之方法,其中該第一及/或第二液相之至少一種金屬氧化物前驅物源於金屬烷氧化物及/或氧橋金屬烷氧化物(metal oxo alkoxide)之類型。
  14. 如申請專利範圍第13項之方法,其中該第一及/或 第二液相包含至少一種有機溶劑。
  15. 如申請專利範圍第14項之方法,其中該有機溶劑基本上係無水的。
  16. 如申請專利範圍第1至3項中任一項之方法,其中該第一及/或第二液相包含至少一種金屬氧化物粒子型之金屬氧化物。
  17. 如申請專利範圍第1至3項中任一項之方法,其中該第一及/或第二液相包括含水相。
  18. 如申請專利範圍第1至3項中任一項之方法,其中該第一及/或第二金屬氧化物層之形成另外包含該第一及/或第二液相之熱處理。
  19. 如申請專利範圍第1至3項中任一項之方法,其中該第一及/或第二金屬氧化物層之形成包含在熱處理該第一及/或第二液相之前、之後或期間以電磁輻射,尤其是UV、IR、VIS輻射,照射該第一及/或第二液相,更特別是以UV輻射照射該第一及/或第二液相。
  20. 如申請專利範圍第1至3項中任一項之方法,其中該第一及/或第二金屬氧化物層係於含氧氣氛,尤其是空氣,下形成。
  21. 如申請專利範圍第18項之方法,其中該第一及/或第二金屬氧化物層係於100至450℃,尤其是150至350℃之溫度熱處理。
  22. 如申請專利範圍第1至3項中任一項之方法,其中該第一金屬氧化物層具有0.5至10 nm,較佳2至5 nm 之層厚度。
  23. 一種半導體層疊體,其係由申請專利範圍第1至22項之方法製造。
  24. 一種電子組件,其包含申請專利範圍第23項之半導體層疊體。
  25. 如申請專利範圍第24項之電子組件,其中該電子組件係為電晶體、薄膜電晶體、二極體、太陽能電池、感測器、RFID標籤或視覺顯示單元之TFT背板。
TW101136507A 2011-10-07 2012-10-03 製造高效能與電安定之半導體金屬氧化物層的方法,此方法製造的層以及其應用 TWI555088B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011084145A DE102011084145A1 (de) 2011-10-07 2011-10-07 Verfahren zur Herstellung von hochperformanten und elektrisch stabilen, halbleitenden Metalloxidschichten, nach dem Verfahren hergestellte Schichten und deren Verwendung

Publications (2)

Publication Number Publication Date
TW201334070A TW201334070A (zh) 2013-08-16
TWI555088B true TWI555088B (zh) 2016-10-21

Family

ID=46832402

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101136507A TWI555088B (zh) 2011-10-07 2012-10-03 製造高效能與電安定之半導體金屬氧化物層的方法,此方法製造的層以及其應用

Country Status (10)

Country Link
US (1) US9059299B2 (zh)
EP (1) EP2748857B1 (zh)
JP (1) JP6192646B2 (zh)
KR (1) KR102060492B1 (zh)
CN (1) CN103959478B (zh)
DE (1) DE102011084145A1 (zh)
IN (1) IN2014CN03328A (zh)
RU (1) RU2601210C2 (zh)
TW (1) TWI555088B (zh)
WO (1) WO2013050221A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010031895A1 (de) 2010-07-21 2012-01-26 Evonik Degussa Gmbh Indiumoxoalkoxide für die Herstellung Indiumoxid-haltiger Schichten
DE102012209918A1 (de) 2012-06-13 2013-12-19 Evonik Industries Ag Verfahren zur Herstellung Indiumoxid-haltiger Schichten
DE102013212018A1 (de) * 2013-06-25 2015-01-08 Evonik Industries Ag Metalloxid-Prekursoren, sie enthaltende Beschichtungszusammensetzungen, und ihre Verwendung
DE102013109451B9 (de) 2013-08-30 2017-07-13 Osram Oled Gmbh Verfahren zur Herstellung eines optoelektronischen Bauelements
EP2874187B1 (en) 2013-11-15 2020-01-01 Evonik Operations GmbH Low contact resistance thin film transistor
DE102014202718A1 (de) 2014-02-14 2015-08-20 Evonik Degussa Gmbh Beschichtungszusammensetzung, Verfahren zu ihrer Herstellung und ihre Verwendung
US10892327B2 (en) 2015-09-14 2021-01-12 University College Cork Semi-metal rectifying junction
US9515158B1 (en) * 2015-10-20 2016-12-06 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor structure with insertion layer and method for manufacturing the same
DE102015121067B4 (de) * 2015-12-03 2018-10-18 Technische Universität Dresden Verfahren zur Reparaturvorbereitung von Faser-Kunststoff-Verbünden
GB2549951B (en) * 2016-05-03 2019-11-20 Metodiev Lavchiev Ventsislav Light emitting structures and systems on the basis of group-IV material(s) for the ultra violet and visible spectral range
KR101914835B1 (ko) * 2016-11-18 2018-11-02 아주대학교산학협력단 금속산화물 이종 접합 구조, 이의 제조방법 및 이를 포함하는 박막트랜지스터
CN108396312B (zh) * 2018-01-19 2020-04-17 东华大学 一种快速制备高平整度金属氧化物薄膜的方法
EP3774641A4 (en) * 2018-04-11 2021-05-12 The Regents of the University of California DEVICES AND METHODS FOR DETECTING / DISTINCTIONING COMPLEMENTARY AND MISMATCHED NUCLEIC ACIDS USING ULTRA-THIN-FILM FIELD TRANSISTORS
US11282966B2 (en) 2019-03-06 2022-03-22 Hewlett-Packard Development Company, L.P. Semiconductor materials

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060088737A1 (en) * 2004-10-25 2006-04-27 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular magnetic recording medium with granular structured magnetic recording layer, method for producing the same, and magnetic recording apparatus
US20060094168A1 (en) * 2004-10-29 2006-05-04 Randy Hoffman Method of forming a thin film component
US20100123761A1 (en) * 2008-11-19 2010-05-20 Seiko Epson Corporation Liquid ejecting head, liquid ejecting apparatus, actuator device, and method for manufacturing the liquid ejecting head
WO2011073044A1 (de) * 2009-12-18 2011-06-23 Basf Se Metalloxid-feldeffekttransistoren auf mechanisch flexiblem polymersubstrat mit aus lösung prozessierbarem dielektrikum bei niedrigen temperaturen

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06136162A (ja) 1992-10-21 1994-05-17 Fujimori Kogyo Kk 金属酸化物薄膜の形成方法
JPH09157855A (ja) 1995-12-06 1997-06-17 Kansai Shin Gijutsu Kenkyusho:Kk 金属酸化物薄膜の形成方法
CN1101352C (zh) 2000-07-15 2003-02-12 昆明理工大学 铟锡氧化物薄膜溶胶—凝胶制备方法
US7604839B2 (en) * 2000-07-31 2009-10-20 Los Alamos National Security, Llc Polymer-assisted deposition of films
US20060088962A1 (en) 2004-10-22 2006-04-27 Herman Gregory S Method of forming a solution processed transistor having a multilayer dielectric
RU2305346C2 (ru) * 2004-11-29 2007-08-27 Федеральное Государственное Унитарное Предприятие "Научно-исследовательский физико-химический институт им. Л.Я. Карпова" (НИФХИ им. Л.Я. Карпова) Тонкопленочный материал диэлектрика затвора с высокой диэлектрической проницаемостью и способ его получения (варианты)
JP2007073704A (ja) 2005-09-06 2007-03-22 Canon Inc 半導体薄膜
JP2007073074A (ja) * 2006-12-04 2007-03-22 Omron Corp 医療情報処理システムおよび医療情報処理方法、並びに、情報処理装置および情報処理方法
DE102007018431A1 (de) * 2007-04-19 2008-10-30 Evonik Degussa Gmbh Pyrogenes Zinkoxid enthaltender Verbund von Schichten und diesen Verbund aufweisender Feldeffekttransistor
JP5489445B2 (ja) * 2007-11-15 2014-05-14 富士フイルム株式会社 薄膜電界効果型トランジスタおよびそれを用いた表示装置
JP5250322B2 (ja) * 2008-07-10 2013-07-31 富士フイルム株式会社 金属酸化物膜とその製造方法、及び半導体装置
JP2010050165A (ja) * 2008-08-19 2010-03-04 Sumitomo Chemical Co Ltd 半導体装置、半導体装置の製造方法、トランジスタ基板、発光装置、および、表示装置
DE102008058040A1 (de) 2008-11-18 2010-05-27 Evonik Degussa Gmbh Formulierungen enthaltend ein Gemisch von ZnO-Cubanen und sie einsetzendes Verfahren zur Herstellung halbleitender ZnO-Schichten
DE102009009337A1 (de) 2009-02-17 2010-08-19 Evonik Degussa Gmbh Verfahren zur Herstellung halbleitender Indiumoxid-Schichten, nach dem Verfahren hergestellte Indiumoxid-Schichten und deren Verwendung
DE102009009338A1 (de) 2009-02-17 2010-08-26 Evonik Degussa Gmbh Indiumalkoxid-haltige Zusammensetzungen, Verfahren zu ihrer Herstellung und ihre Verwendung
JP2010258057A (ja) * 2009-04-22 2010-11-11 Konica Minolta Holdings Inc 金属酸化物半導体、その製造方法、及びそれを用いた薄膜トランジスタ
US20120037901A1 (en) 2009-04-24 2012-02-16 Cambridge Enterprise Ltd. Oxide semiconductor
KR20100130850A (ko) * 2009-06-04 2010-12-14 삼성전자주식회사 박막 트랜지스터 기판 및 이의 제조 방법
DE102009028802B3 (de) 2009-08-21 2011-03-24 Evonik Degussa Gmbh Verfahren zur Herstellung Metalloxid-haltiger Schichten, nach dem Verfahren herstellbare Metalloxid-haltige Schicht und deren Verwendung
DE102009028801B3 (de) 2009-08-21 2011-04-14 Evonik Degussa Gmbh Verfahren zur Herstellung Indiumoxid-haltiger Schichten, nach dem Verfahren herstellbare Indiumoxid-haltige Schicht und deren Verwendung
WO2011065329A1 (ja) * 2009-11-27 2011-06-03 株式会社日立製作所 酸化物半導体装置およびその製造方法
DE102009054997B3 (de) 2009-12-18 2011-06-01 Evonik Degussa Gmbh Verfahren zur Herstellung von Indiumoxid-haltigen Schichten, nach dem Verfahren hergestellte Indiumoxid-haltige Schichten und ihre Verwendung
KR20110106225A (ko) * 2010-03-22 2011-09-28 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법과 상기 박막 트랜지스터를 포함하는 표시장치
KR101669953B1 (ko) * 2010-03-26 2016-11-09 삼성전자 주식회사 산화물 박막, 산화물 박막의 형성 방법 및 산화물 박막을 포함하는 전자 소자
DE102010031895A1 (de) 2010-07-21 2012-01-26 Evonik Degussa Gmbh Indiumoxoalkoxide für die Herstellung Indiumoxid-haltiger Schichten
DE102010031592A1 (de) 2010-07-21 2012-01-26 Evonik Degussa Gmbh Indiumoxoalkoxide für die Herstellung Indiumoxid-haltiger Schichten
DE102010043668B4 (de) 2010-11-10 2012-06-21 Evonik Degussa Gmbh Verfahren zur Herstellung von Indiumoxid-haltigen Schichten, nach dem Verfahren hergestellte Indiumoxid-haltige Schichten und ihre Verwendung
JP6150038B2 (ja) * 2013-03-13 2017-06-21 セイコーエプソン株式会社 液体噴射ヘッド、液体噴射装置、圧電素子、超音波トランスデューサー及び超音波デバイス

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060088737A1 (en) * 2004-10-25 2006-04-27 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular magnetic recording medium with granular structured magnetic recording layer, method for producing the same, and magnetic recording apparatus
US20060094168A1 (en) * 2004-10-29 2006-05-04 Randy Hoffman Method of forming a thin film component
US20100123761A1 (en) * 2008-11-19 2010-05-20 Seiko Epson Corporation Liquid ejecting head, liquid ejecting apparatus, actuator device, and method for manufacturing the liquid ejecting head
WO2011073044A1 (de) * 2009-12-18 2011-06-23 Basf Se Metalloxid-feldeffekttransistoren auf mechanisch flexiblem polymersubstrat mit aus lösung prozessierbarem dielektrikum bei niedrigen temperaturen

Also Published As

Publication number Publication date
RU2014118033A (ru) 2015-11-27
KR102060492B1 (ko) 2020-02-11
CN103959478A (zh) 2014-07-30
TW201334070A (zh) 2013-08-16
EP2748857A1 (de) 2014-07-02
JP2015501529A (ja) 2015-01-15
IN2014CN03328A (zh) 2015-07-03
DE102011084145A1 (de) 2013-04-11
KR20140072148A (ko) 2014-06-12
US20150053966A1 (en) 2015-02-26
EP2748857B1 (de) 2018-06-13
JP6192646B2 (ja) 2017-09-06
WO2013050221A1 (de) 2013-04-11
RU2601210C2 (ru) 2016-10-27
CN103959478B (zh) 2016-10-26
US9059299B2 (en) 2015-06-16

Similar Documents

Publication Publication Date Title
TWI555088B (zh) 製造高效能與電安定之半導體金屬氧化物層的方法,此方法製造的層以及其應用
TWI483925B (zh) 含烷氧銦的組成物,彼之製法以及彼之應用
TWI509102B (zh) 製造含氧化銦之層的方法,藉由該方法製得之含氧化銦之層及其用途
JP5766191B2 (ja) 金属酸化物含有層の製造方法
JP5769709B2 (ja) 酸化インジウム含有層の製造方法
JP6141362B2 (ja) 半導体の酸化インジウム膜の製造法、該方法に従って製造された酸化インジウム膜及び該膜の使用
TWI567232B (zh) 含氧化銦的層之製法
KR102032168B1 (ko) 산화 인듐-함유 층 제조 방법
KR20130015887A (ko) 박막의 제조방법, 박막, 박막의 제조장치 및 전자소자
US9812330B2 (en) Formulations for producing indium oxide-containing layers, process for producing them and their use

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees