TWI543239B - 具有非平面基底表面的基底處理方法 - Google Patents

具有非平面基底表面的基底處理方法 Download PDF

Info

Publication number
TWI543239B
TWI543239B TW099112847A TW99112847A TWI543239B TW I543239 B TWI543239 B TW I543239B TW 099112847 A TW099112847 A TW 099112847A TW 99112847 A TW99112847 A TW 99112847A TW I543239 B TWI543239 B TW I543239B
Authority
TW
Taiwan
Prior art keywords
substrate
film
processing
stage
source
Prior art date
Application number
TW099112847A
Other languages
English (en)
Other versions
TW201216332A (en
Inventor
喬治D 帕帕守爾艾迪斯
維克拉姆 辛
尹赫雲
Original Assignee
瓦里安半導體設備公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瓦里安半導體設備公司 filed Critical 瓦里安半導體設備公司
Publication of TW201216332A publication Critical patent/TW201216332A/zh
Application granted granted Critical
Publication of TWI543239B publication Critical patent/TWI543239B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/223Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a gaseous phase
    • H01L21/2236Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a gaseous phase from or into a plasma phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • H01L29/66803Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET with a step of doping the vertical sidewall, e.g. using tilted or multi-angled implants

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physical Vapour Deposition (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

具有非平面基底表面的基底處理方法
本申請案主張2009年4月24日申請的美國暫時專利申請案第61/172,365號的優先權,其內容併入本文以作為參考。
本揭露案是關於具有非平面表面的基底處理方法。
在製造高級元件中,可能有必要處理具有非平面表面之基底。此類元件之實例包含:三維(three dimensional,3D)FinFET,其具有升高鰭,所述鰭具有水平及垂直定向之表面區段;以及CMOS影像感測器(CMOS image sensor,CIS)及eDRAM,其各自具有溝槽,所述溝槽具有水平及垂直定向之表面區段。用於處理此基底之技術中的一者可包含摻雜,以修改原始基底之電、機械、光學及熱特性或此類特性之組合。FinFET之源極/汲極(source/drain,SD)區、CMOS影像感測器中之淺溝槽(shallow trench)的側壁,及eDRAM中之深溝槽(deep trench,DT)的側壁可經摻雜以修改基底之特性。
可經由離子植入(即,基於粒子之步驟)而執行摻雜技術。在離子植入中,在離子源中產生離子。其後,以單一、均一或實質上均一的角度朝向位於離子源下游處的基底引導離子。離子隨後入射於基底表面上且處理所述基底。
無論用於平面亦或非平面基底,離子植入技術均為視線(line-of-sight)技術。充分地暴露且有效地處理垂直於 或實質上垂直於離子之入射角的表面區段。然而,以另一角度定向之其他表面區段可能未經充分暴露,且所述表面可能無法有效處理。例如,在基於電漿之摻雜技術中,基底之靠近垂直於或實質上垂直於離子流之表面區段的區域可能以比靠***行於離子流之表面區段的其他區域高得多的劑量(例如,高達10至100倍)被摻雜。因此,可能發生非保形(non-conformal)處理。處理中的此變化可能導致具有非均一特性的基底,且最終元件可能無法最佳地操作。
因為高級元件需要均一特性,故所述技術保形地處理以不同角度定向之表面可為合意的。例如,在摻雜技術中,在靠近不同定向之表面區段的區域中達成相等或實質上相等的摻雜劑濃度可為合意的。儘管已提出眾多技術,但所提出之技術達成有限的成就。因此,需要一種新技術。
本發明揭露一種保形地處理具有非平面表面之基底的技術。所述技術包含若干階段。在第一階段中,有效地處理所述基底之某些表面。在第二階段期間,這些表面經處理以限制或消除對這些表面之進一步處理。在第三階段期間,處理所述基底之其他表面。在某些應用中,在所述第一及第二階段中處理垂直於或實質上垂直於粒子流的表面,而在所述第三階段中處理其他表面。在某些實施例中,所述第二階段包含在所述基底上沈積膜。
在本揭露案中,介紹用於處理具有非平面表面之基底之新穎技術的若干實施例。出於清楚及簡明之目的,將在一系統及製程之上下文中描述實施例,在所述系統及製程中,在一或多種處理劑入射於基底上時處理所述基底。系統及製程的特定實例可包含基於電漿之系統及技術,其中所述處理劑包含帶電粒子。本揭露案中之粒子可涉及基於亞原子、原子或分子的粒子,包含光子、聲子、電子、質子、中子、離子、氣團(gas cluster)等。本揭露案中不排除沒有必要涉及電漿之系統及製程(例如,化學氣相沈積(chemical vapor deposition,CVD)技術、原子層沈積(atomic layer deposition,ALD)技術、分子束磊晶(molecular beam epitaxy,MBE)技術)。此外,本揭露案可同等地適用於基於其他粒子或其他類似於粒子之處理劑(包含中性粒子、光子及聲子)的系統及技術,例如,基於雷射之系統及製程等。
為了避免混淆,本揭露案將集中於基於電漿之製程,例如,電漿輔助型摻雜(plasma assisted doping,PLAD)或電漿浸沒式離子植入(plasma immersion ion implantation,PIII)系統,或電漿增強型化學氣相沈積系統(plasma enhanced chemical vapor deposition system,PECVD),及其執行系統。然而,一般熟習此項技術者將認識到,本揭露案不限於此類基於電漿之系統及製程。另外,本揭露案將集中於具有多個表面區段之FinFET基底,其中所述表面區段中之一者經定向以與另一不同表面區段 相比具有對朝基底導向之粒子的較大暴露。前一表面區段可經定向為橫越(但不一定垂直)朝基底導向之粒子路徑,使得所述表面區段具有對所述粒子之較大暴露。同時,後一表面區段可經定向為沿著(但不一定平行)粒子路徑,使得後一表面區段具有對粒子之較小暴露。雖然本揭露案集中於FinFET基底,但一般熟習此項技術者將認識到,本揭露案將同等地適用於具有以不同角度定向之表面區段之任何類型的基底。
用於處理具有非平面表面之基底的方法
參看圖1a至圖1d,繪示根據本揭露案之一個實施例用於處理具有非平面表面之基底的方法。所述方法可包括第一至第三階段。在一個實施例中,可循序地執行所述階段,其中一個階段僅在另一階段完成之後執行。在另一實施例中,可同時執行所述階段中的至少一些。又在另一實施例中,兩個或兩個以上階段之至少一部分可同時發生。在一個實施例中,可指定所述階段的次序。然而,在另一實施例中,可不指定所述階段的次序,且可以任何次序執行所述階段。
在第一階段期間,可優先處理基底100之第一區。本文中,第一表面區段可為具有對入射於基底上之粒子或處理劑之最高暴露的表面區段。在粒子以垂直於或實質上垂直於基底之角度入射的一個實施例中,所述第一表面區段可為水平延伸區段102,且第一區可為水平延伸區段102下方的區域102a。同時,第二表面區段可為垂直延伸區段 104,且第二區可為鄰近於垂直延伸區段104的區域104a。在另一實施例中,第一表面區段可為垂直延伸區段104,且第一區可為鄰近於垂直延伸區段104的區域104a。同時,第二表面區段可為水平延伸區段102,且第二區可為水平延伸區段102下方的區域102a。出於清楚及簡明之目的,將在前一實施例之上下文中描述所述方法。因此,本文中之第一表面區段可指代水平延伸表面區段,且水平延伸表面區段下方的區域將被稱作第一區。
在一個實施例中,可在第一階段期間執行的製程可為摻雜製程。另外,可例如經由離子植入製程執行所述摻雜。在執行所述摻雜製程中,如圖1b中所示,可用摻雜劑植入第一區102a,直至達成所要摻雜劑程度為止。在本揭露案中,所要摻雜劑程度可處於約1×105摻雜劑/cm2至約1×1030摻雜劑/cm2之範圍中。另外,可以所要深度植入第一區102a。所植入之粒子之能量可處於約5KeV至約15KeV之範圍中。若諸如PLAD系統之基於電漿之系統用於執行第一階段,則可藉由調整施加至基底之偏壓來控制所要摻雜劑深度。若使用諸如束線離子植入系統(beam-line ion implantation system)之系統,則可藉由調整朝基底導向之粒子之加速或減速來控制摻雜劑深度。亦可藉由經由例如退火製程調整基底之溫度來控制摻雜劑深度。
在某些實施例中,與第二表面區段104及第二區104a相比,第一階段可更完全地處理第一表面區段102及第一區102a。舉例而言,在摻雜製程中,可以所要劑量之摻雜 劑植入第一區102a,而第二區104a可能接納很少或不接納所植入之摻雜劑。
本揭露案之方法亦可包括第二階段。在一個實施例中,可在第一階段之後執行第二階段。在另一實施例中,可同時執行第一及第二階段。又在另一實施例中,可在第一階段之前執行第二階段。在本實施例中,可在第二階段期間執行的製程可為沈積製程。然而,在另一實施例中,第二製程技術可為另一不同類型的製程。在第二階段期間,如圖1c中所示,可在第一表面區段102上形成薄的膜106。儘管亦可在第二表面區段104上形成薄的膜108,但膜108形成於第二表面區段104上之速率可小於膜106形成於第一表面區段102上之速率。因此,若膜106及108分別形成於第一表面區段102及第二表面區段104兩者上,則形成於第一表面區段102上之膜106可比形成於第二表面區段104上的膜厚。第二階段可繼續,直至形成於第一表面區段102上之膜106之厚度大於80Å為止。在另一實施例中,第二階段可繼續,直至形成於第一表面區段102上之膜106之厚度比形成於第二表面區段104上之膜108之厚度大約10倍或10倍以上為止。又在另一實施例中,第二階段可繼續,直至膜106具有足夠厚度以防止或限制第一表面區段102及第一區102a在第三階段期間進一步處理為止,如下文所描述。在第二階段結束時,以不同角度定向之不同表面區段可具有擁有不同厚度的膜。
如圖2中所說明,可使用碼TRIM計算含有停止1.5keV 植入所需之As之膜的厚度。圖2繪示很少的離子穿透通過約80Å的深度。因此,此厚度之As膜將足以限制或防止對第一區102a之進一步離子植入。可藉由第三階段(如下文所述)之製程條件(例如,粒子種類及植入能量)及/或經形成以防止或限制在第三階段期間進一步植入之膜的特性(例如,密度或種類)來界定在第二階段期間所形成之膜可能需要達到的厚度。對於較高能量及較低膜密度,厚度將增加。
形成於第一表面區段102上的膜可含有第一階段之摻雜劑中亦含有之物質。舉例而言,第一階段中所使用之摻雜劑及第二階段期間所形成的膜可含有砷(As)、碳(C)、硼(B)、鎵(Ga)、鍺(Ge)、矽(Si)或其他金屬或非金屬材料。在另一實例中,第二階段期間所形成的膜可不含有第一階段期間所植入之摻雜劑中的物質。
若諸如PLAD或PECVD系統之基於電漿之系統用於執行第二階段,則施加較低或較佳為零的偏壓以促進膜之形成及/或阻礙將帶電粒子植入至基底中。另外,電漿參數可經調整以控制形成於第一表面區段102及第二表面區段104上之膜之厚度的比率。舉例而言,可調整電漿密度及反應速率。可藉由增加施加至電漿源之功率來調整電漿密度。可在第11/771,190號、第12/098,781號及第12/105,761號共同待決申請案中找到調整電漿密度之詳細描述,所述申請案中之每一者全文以引用的方式併入本文中。同時,可藉由增加施加至電漿源之RF功率,或替代地藉由增加 引入至系統之膜前驅體(film precursor)之濃度,來調整反應速率。
本揭露案之方法亦可包括第三階段。在第三階段中,優先處理其上尚未形成膜或其上形成具有較小厚度的膜的第二表面區段104。在本實施例中,第三階段可與第一階段相同或類似於第一階段。由此,若第一階段例如為植入製程,則第三階段亦可為植入製程。另外,在第一及第三階段期間所植入之摻雜劑可含有相同或不同物質。
當粒子入射於第二表面區段104上時,處理區域104a。同時,形成於第一表面區段102上之膜106可防止或替代地限制第一表面區段102及第一區102a受到進一步處理。因此,可防止第一表面區段102及第一區102a被以粒子植入且經處理。或者,可以比植入第二表面區段104之速率低得多的速率以摻雜劑植入第一表面區段102。藉由用膜防止或限制第一表面區段102上之粒子植入,且促進第二表面區段104及第二區104a上之粒子植入,可避免或校正摻雜劑程度、植入深度或在不同表面區段間原本將發生的其他結果之較廣變化。
本揭露案中所描述之方法可具有可選的化學或電漿處置階段。在所述可選階段期間,沈積於一或多個表面區段上的膜可暴露於含有氧之原子、分子或電漿(例如,O2、O3、H2O),且所述膜可被氧化。或者,所述膜可暴露於含有氮之原子、分子或電漿(例如,N2或NH3),且致使膜之氮化。又在另一實例中,所述膜可暴露於另一氣態物質 且與所述氣態物質起化學反應。藉由對所述膜進行改質,可減少沈積於基底上之材料的揮發性(volatility)。另外,可在所述階段期間對所述膜進行化學改質,以改良可溶性(solubility)且可進行植入後剝離(post implant stripping)。在圖3中給出O2電漿處置及其對As保留劑量及植入分佈之影響的實例。在此實例中,As之濃度在暴露於氧處置10秒後在幾乎所有深度處增加。
在本實施例中,第一至第三階段以及可選改質階段之製程條件及參數可不同。如上文所述,較佳在第二階段期間避免粒子之植入。然而,在第三階段期間,最小程度的沈積或濺鍍為較佳。在此階段期間沈積膜可防止在所要表面區段處植入粒子。同時,濺鍍可移除含有先前植入之摻雜劑的區域。在圖4及圖5中說明摻雜依據PLAD劑量而增加之製程的實例。在第一至第三階段為基於電漿之製程之實施例中,包含施加至電漿源及/或基底之RF功率、能量、氣體成分、稀釋氣體(diluent gas)、工作因數(duty factor)等的製程條件可經調整以將電漿摻雜製程置於所需機制(regime)的中心。在第11/771,190號、第12/098,781號、第12/105,761號及第11/376,522號共同待決申請案中描述了多設定點RF產生器(multi set-point RF generator)及/或斜坡電壓(ramped voltage)之使用,所述申請案中之每一者全文以引用的方式併入本文中。
在本揭露案中,每一階段可繼續,直至達成所要特性為止。在第一及第三階段涉及摻雜劑植入且第二階段涉及 膜形成之實施例中,每一階段可繼續,直至達成所要的植入劑量或膜厚度為止。可藉由監視粒子劑量、由製程表徵(process characterization)及校準所判定之製程時間或自基底本身或腔室所接收之信號(例如,光學信號)來偵測每一階段的終點。
上文所描述之製程順序是例示性的製程順序。視特定應用之要求而定,可改變上文所描述之步驟的次序。另外,可重複每一個別階段,且可重複一組階段。此外,可視應用及結構之幾何形狀而定調整製程條件,以達成最佳結果。
舉例而言,用於處理具有非平面表面之基底的方法可用於有效地摻雜動態隨機存取記憶體(dynamic random access memory,DRAM)電容器結構之溝槽。在此實例中,所述溝槽可具有100nm開口及4000nm深度的尺寸。為了摻雜所述溝槽,可以較高植入能量(例如,大於等於10kV)以As對所述結構進行植入。此例示性實施例中所使用之系統可為PLAD系統或束線離子植入器。在第一階段期間,具有足夠植入能量之離子可以淺角(shallow angle)入射於溝槽壁上。入射於溝槽上之壁上之離子的一部分可自表面彈起,且可均一地摻雜溝槽之整個深度。在可選的化學或電漿處置階段期間,所述膜可暴露於O2電漿。所述處置階段可減小沈積於晶圓上之材料的揮發性,並促進後處理(post processing)。
例示性系統
參看圖6,繪示根據本揭露案之一個實施例用於處理 具有非平面表面之基底的例示性系統。本文中所揭露之系統600可為獨立系統。或者,系統600可為包含一或多個系統600、一或多個基底監視系統、一或多個其他類型之基底處理系統及用於在不同系統之間轉移基底之一或多個轉移系統的群集工具(cluster tool)之一部分。
系統600可包括處理腔室602,其通常能夠與例如渦輪泵606、機械泵608以及其他必需的真空密封組件一起具有高真空基礎壓力(high vacuum base pressure)。在處理腔室602內可存在支撐至少一個基底603的平臺610。平臺610可裝備有一或多個溫度管理元件,以調整並維持基底603的溫度。亦可適應(accommodate)基底603之傾斜或旋轉,以將基底與背景磁場(background magnetic field)對準。偏壓源620可電耦接至平臺610,因此耦接至基底603,從而將偏壓施加至基底603。可藉由提供連續或脈衝RF或DC電流來施加所述偏壓。若偏壓源620提供RF電流,則可在偏壓源與平臺610之間提供阻抗匹配網路(impedance matching network)(未圖示)。在本實施例中,偏壓源620能夠在操作期間調整並改變施加至基底603之偏壓。舉例而言,偏壓源620可在操作期間連續地或步進地斜坡升高或降低施加至基底603之偏壓。
處理腔室602亦可裝備有一或多個原位(in situ)監視系統。舉例而言,處理腔室602中可包含一或多個溫度監視系統,以監視基底的溫度及/或環境溫度。處理腔室602亦可裝備有磁場監視系統(未圖示),其能夠監視背景 磁場及/或製程完整性。
系統600亦可包括電漿腔室604,其可與處理腔室602耦接或與處理腔室602間隔開,因此遠離處理腔室602。電漿腔室亦可包含電漿源612,以用於產生高或低密度電漿。舉例而言,電漿腔室604可包含感應耦接電漿(inductively coupled plasma,ICP)源、電容耦接電漿(capacitively coupled plasma,CCP)源、微波(microwave,MW)源、輝光放電(glow-discharge,GD)源、螺旋波(helicon)源或其組合。若電漿腔室604裝備有ICP源,則系統600可包括平面及螺旋形線圈612a及612b中之至少一者、電耦接至線圈612a及612b中之一者或兩者的電源612c以及阻抗匹配網路612d。若系統600裝備有CCP源,則系統600可包括至少一個電極(未圖示),其經定位以使得基底603介於所述電極與平臺610之間。亦可包含電源612c,以將電極及平臺610電耦接。此外,電源612c可耦接至阻抗匹配網路612d。若系統600裝備有GD源,則系統600可包括至少一個電極(未圖示),其經定位以使得基底603介於所述電極與平臺610之間。另外,電源612c可電耦接至電極及平臺610。
視電漿源612之類型而定,所述電源可為RF電源或DC電源。舉例而言,若電漿源612為ICP或CCP源,則電源可為RF電源。然而,若電漿源612為GD源,則電源612可為DC源。若電漿源為CCP源,則電源612c可提供處於30至200MHz之範圍中的高頻RF電流。然而, 亦可使用具有其他頻率之RF電流。若電漿源612為ICP源,則由電源612c提供之RF電流可為處於1至30MHz之範圍中的RF電流。然而,亦可使用具有其他頻率之RF電流。若電漿源612為MW源,則RF電流可處於0.3至300GHz之範圍中。然而,亦可使用具有其他頻率之RF電流。電源612可提供連續或脈衝電流。可在第10/905,172號共同待決申請案中找到對具有ICP電漿源之系統的詳細描述,所述申請案全文以引用的方式併入本文中。
在一個實施例中,將功率提供至電漿源(例如,線圈或電極)之電源612c亦可為將偏壓提供至平臺610之偏壓源。舉例而言,系統600可包括用以啟動(activate)平臺以及多個線圈(或電極)中之至少一者的單一電源。然而,系統600可較佳包括兩個或兩個以上電源,至少一個電源啟動電漿源之線圈或電極,且至少一個另一電源啟動處理腔室之平臺。
系統600亦可包含一或多個處理氣體源614及一或多個稀釋氣體源616。在本揭露案中,處理氣體源614可含有包含硼(B)、磷或As的物質。處理氣體源614可含有其他物質。一或多個稀釋氣體源616可含有包含氦、氖、氬、氪、氙、氡、氧、氮或其他氣體的物質。
如上文所述,本文中所描述之系統600可為獨立系統600。或者,系統600可為含有一或多個處理及/或監視系統之群集工具的一部分。若系統600為群集工具的一部分,則所述群集工具可包含轉移機構,其用以將基底轉移 至各種處理及/或監視系統及自各種處理及/或監視系統轉移基底,以在不將基底引入至開放大氣的情況下循序地執行各種製程。
參看圖7,繪示根據本揭露案之一個實施例用於處理具有非平面表面之基底的例示性系統。在此實施例中,繪示束線離子植入器。所述離子植入器可包含用於產生離子之離子源702。離子植入器700亦可包括一系列束線組件,離子束707通過所述束線組件。束線組件之實例可包含萃取電極704、磁質量分析器(magnetic mass analyzer)706、多個透鏡708、束平行化器(beam parallelizer)710及加速/減速平臺712。離子植入器700亦可包含支撐待植入之晶圓714之平臺716。同時,可藉由一組件(有時稱作“轉板(roplat)”)(未圖示)使晶圓714在一或多個維度上移動(例如,平移、旋轉及傾斜)。
在植入期間,自離子源702產生及萃取諸如氫離子之所要物質之離子。其後,所萃取之離子沿著束線組件以束狀狀態行進並植入至晶圓714。非常類似於操縱光束之一系列光學透鏡,束線組件操縱離子束707。由束線組件操縱之離子束707被引導。
揭露一種用於處理具有非平面表面之基底的新穎方法及系統。如上文所述,所述系統及方法可適用於製造或處理各種類型的基底(包含FinFET或DRAM)。雖然本文已在出於特定目的特定實施於特定環境中之特定實施例的上下文中描述了本揭露案,但一般熟習此項技術者將認識 到,其有效性不限於此且本揭露案可出於任何數目之目的有益地實施於任何數目的環境中。在不脫離本文中所界定之本發明之精神及範疇的情況下,可作出形式及細節上的各種改變。因此,應依據本文中所描述之本揭露案之全部廣度及精神來解釋下文所陳述之申請專利範圍。
100、603‧‧‧基底
102‧‧‧水平延伸區段/第一表面區段
102a、104a‧‧‧區域
104‧‧‧垂直延伸區段/第二表面區段
106、108‧‧‧膜
600‧‧‧系統
602‧‧‧處理腔室
604‧‧‧電漿腔室
606‧‧‧渦輪泵
608‧‧‧機械泵
610‧‧‧平臺
612‧‧‧電漿源/電源
612a、612b‧‧‧線圈
612c‧‧‧電源
612d‧‧‧阻抗匹配網路
614‧‧‧處理氣體源
616‧‧‧稀釋氣體源
620‧‧‧偏壓源
700‧‧‧離子植入器
702‧‧‧離子源
704‧‧‧萃取電極
706‧‧‧磁質量分析器
707‧‧‧離子束
708‧‧‧透鏡
710‧‧‧束平行化器
712‧‧‧加速/減速平臺
714‧‧‧晶圓
716‧‧‧平臺
為了更好地理解本揭露案,對隨附圖式作出參考,在隨附圖式中,用相同標號參考相同元件,且其中:圖1a至圖1d表示根據一個實施例用於處理具有非平面表面之基底的一系列步驟。
圖2為繪示含有停止1.5keV植入所需之As之膜之厚度的圖表。
圖3為繪示氧處理對AsH3植入之保留劑量之影響的圖表。
圖4為繪示保留劑量及串聯電阻對AsH3植入之劑量之間的關係的圖表。
圖5為繪示保留劑量及串聯電阻對AsH2植入之劑量之間的關係的圖表。
圖6表示根據一個實施例用於處理基底的系統。
圖7表示根據第二實施例用於處理基底的系統。
102‧‧‧水平延伸區段/第一表面區段
102a‧‧‧區域
104‧‧‧垂直延伸區段/第二表面區段

Claims (6)

  1. 一種處理非平面基底的方法,所述基底具有第一表面及第二表面,所述第一表面係在相對所述基底之平面的水平方向上延伸且所述第二表面係在相對所述基底之所述平面的垂直方向上延伸,所述處理非平面基底的方法包括:執行將離子植入於所述基底中的第一階段,其中所述第一階段植入比所述第二表面更多的離子到所述第一表面;執行在所述第一表面上沈積第一膜與在所述第二表面上沈積第二膜的第二階段,其中所述第一膜限制對所述第一表面的進一步處理且所述第一膜的厚度大於所述第二膜的厚度;以及在所述第二階段之後執行將離子植入於所述基底中的第三階段,其中通過所述第二膜並植入所述第二表面的離子量比植入所述第一表面的離子量更多。
  2. 如申請專利範圍第1項所述之處理非平面基底的方法,其中所述第一膜的所述厚度約80Å。
  3. 如申請專利範圍第1項所述之處理非平面基底的方法,其中所述第一膜的所述厚度是比所述第二膜的所述厚度大約10倍。
  4. 如申請專利範圍第1項所述之處理非平面基底的方法,其中所述第二階段繼續,直至所述第一膜足夠厚以限制所述第一表面的進一步處理為止。
  5. 如申請專利範圍第1項所述之處理非平面基底的 方法,進一步包括將所述第一膜暴露於含有氧的原子、分子或電漿。
  6. 如申請專利範圍第1項所述之處理非平面基底的方法,進一步包括將所述第一膜暴露於含有氮的原子、分子或電漿。
TW099112847A 2009-04-24 2010-04-23 具有非平面基底表面的基底處理方法 TWI543239B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17236509P 2009-04-24 2009-04-24
US12/765,346 US8202792B2 (en) 2009-04-24 2010-04-22 Method of processing a substrate having a non-planar surface

Publications (2)

Publication Number Publication Date
TW201216332A TW201216332A (en) 2012-04-16
TWI543239B true TWI543239B (zh) 2016-07-21

Family

ID=42992520

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099112847A TWI543239B (zh) 2009-04-24 2010-04-23 具有非平面基底表面的基底處理方法

Country Status (6)

Country Link
US (2) US8202792B2 (zh)
JP (1) JP6074796B2 (zh)
KR (1) KR101626079B1 (zh)
CN (1) CN102449731B (zh)
TW (1) TWI543239B (zh)
WO (1) WO2010124213A2 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735879A (ja) * 1993-07-22 1995-02-07 Yukiro Kawashima 時刻・年月日信号を出力する電波時計
US8202792B2 (en) * 2009-04-24 2012-06-19 Varian Semiconductor Equipment Associates, Inc. Method of processing a substrate having a non-planar surface
US20110039034A1 (en) * 2009-08-11 2011-02-17 Helen Maynard Pulsed deposition and recrystallization and tandem solar cell design utilizing crystallized/amorphous material
US8679960B2 (en) * 2009-10-14 2014-03-25 Varian Semiconductor Equipment Associates, Inc. Technique for processing a substrate having a non-planar surface
US8598020B2 (en) * 2010-06-25 2013-12-03 Applied Materials, Inc. Plasma-enhanced chemical vapor deposition of crystalline germanium
US8664027B2 (en) 2011-02-11 2014-03-04 Varian Semiconductor Associates, Inc. LED mesa sidewall isolation by ion implantation
US8501605B2 (en) * 2011-03-14 2013-08-06 Applied Materials, Inc. Methods and apparatus for conformal doping
US9006065B2 (en) * 2012-10-09 2015-04-14 Advanced Ion Beam Technology, Inc. Plasma doping a non-planar semiconductor device
JP6629312B2 (ja) 2014-07-03 2020-01-15 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 選択的堆積のための方法及び装置
KR102252647B1 (ko) 2014-07-11 2021-05-17 삼성전자주식회사 이미지 센서의 픽셀 및 이미지 센서
CN106033728B (zh) * 2015-03-11 2019-07-09 上海凯世通半导体股份有限公司 FinFET的掺杂方法
CN106033715B (zh) * 2015-03-11 2019-03-22 上海临港凯世通半导体有限公司 FinFET的掺杂方法
CN106033729B (zh) * 2015-03-11 2019-04-02 上海凯世通半导体股份有限公司 FinFET的掺杂方法
CN106548958B (zh) * 2015-09-18 2020-09-04 中微半导体设备(上海)股份有限公司 一种整合多功能腔以及基片处理***
CN107437506B (zh) * 2016-05-27 2020-08-07 中芯国际集成电路制造(上海)有限公司 半导体结构的形成方法
US10566242B2 (en) * 2016-12-13 2020-02-18 Taiwan Semiconductor Manufacturing Company, Ltd. Minimization of plasma doping induced fin height loss
US10147584B2 (en) * 2017-03-20 2018-12-04 Varian Semiconductor Equipment Associates, Inc. Apparatus and techniques for decelerated ion beam with no energy contamination

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5512506A (en) * 1995-04-06 1996-04-30 Advanced Micro Devices, Inc. Lightly doped drain profile optimization with high energy implants
US5874346A (en) 1996-05-23 1999-02-23 Advanced Micro Devices, Inc. Subtrench conductor formation with large tilt angle implant
US5888880A (en) * 1996-10-30 1999-03-30 Advanced Micro Devices, Inc. Trench transistor with localized source/drain regions implanted through selectively grown oxide layer
KR100266006B1 (ko) 1997-09-10 2000-09-15 김영환 불순물이도핑된박막형성방법
US5998267A (en) 1998-09-18 1999-12-07 National Semiconductor Corporation Process to manufacture high density ULSI ROM array
JP3652322B2 (ja) * 2002-04-30 2005-05-25 Necエレクトロニクス株式会社 縦型mosfetとその製造方法
JP2006121019A (ja) 2004-09-22 2006-05-11 Hitachi Kokusai Electric Inc 半導体装置の製造方法
JP2006128380A (ja) * 2004-10-28 2006-05-18 Toshiba Corp 半導体装置の製造方法および製造装置
KR100607198B1 (ko) * 2005-02-21 2006-08-01 삼성전자주식회사 반도체소자의 트렌치 소자 분리 방법
KR100694471B1 (ko) 2005-08-24 2007-03-12 매그나칩 반도체 유한회사 광 특성을 향상시키기 위한 이미지센서 제조 방법
EP1892765A1 (en) * 2006-08-23 2008-02-27 INTERUNIVERSITAIR MICROELEKTRONICA CENTRUM vzw (IMEC) Method for doping a fin-based semiconductor device
EP2073256A1 (en) * 2007-12-20 2009-06-24 Interuniversitair Microelektronica Centrum vzw ( IMEC) Method for fabricating a semiconductor device and the semiconductor device made thereof
US8202792B2 (en) * 2009-04-24 2012-06-19 Varian Semiconductor Equipment Associates, Inc. Method of processing a substrate having a non-planar surface
US8298925B2 (en) * 2010-11-08 2012-10-30 Taiwan Semiconductor Manufacturing Company, Ltd. Mechanisms for forming ultra shallow junction
US8039349B2 (en) * 2009-07-30 2011-10-18 Globalfoundries Inc. Methods for fabricating non-planar semiconductor devices having stress memory

Also Published As

Publication number Publication date
CN102449731A (zh) 2012-05-09
US20100273322A1 (en) 2010-10-28
WO2010124213A3 (en) 2011-01-20
WO2010124213A2 (en) 2010-10-28
TW201216332A (en) 2012-04-16
JP2012525011A (ja) 2012-10-18
US8507372B2 (en) 2013-08-13
CN102449731B (zh) 2014-10-08
JP6074796B2 (ja) 2017-02-08
US8202792B2 (en) 2012-06-19
US20120295430A1 (en) 2012-11-22
KR20120006550A (ko) 2012-01-18
KR101626079B1 (ko) 2016-05-31

Similar Documents

Publication Publication Date Title
TWI543239B (zh) 具有非平面基底表面的基底處理方法
TWI620233B (zh) 選擇性沉積的方法與設備
TWI629717B (zh) 3d結構半導體應用之利用圖案化自組裝單層的選擇性原子層沉積製程
KR101545221B1 (ko) 비평면 표면을 가진 기판을 처리하기 위한 기술
US8598025B2 (en) Doping of planar or three-dimensional structures at elevated temperatures
TW201639000A (zh) 利用掩模及方向性電漿處理之選擇性沉積
US20120309180A1 (en) Method of forming a retrograde material profile using ion implantation
US20140144379A1 (en) Systems and methods for plasma doping microfeature workpieces
JP5558480B2 (ja) P3iチャンバにおける共形ドープの改善
JP2012507867A (ja) P3iプロセスにおけるドーピングプロファイルの調整
US7927986B2 (en) Ion implantation with heavy halogenide compounds
US8778465B2 (en) Ion-assisted direct growth of porous materials
US20120302048A1 (en) Pre or post-implant plasma treatment for plasma immersed ion implantation process