TWI539471B - Anisotropic conductive film - Google Patents

Anisotropic conductive film Download PDF

Info

Publication number
TWI539471B
TWI539471B TW100112426A TW100112426A TWI539471B TW I539471 B TWI539471 B TW I539471B TW 100112426 A TW100112426 A TW 100112426A TW 100112426 A TW100112426 A TW 100112426A TW I539471 B TWI539471 B TW I539471B
Authority
TW
Taiwan
Prior art keywords
conductive film
anisotropic conductive
composition
layer
insulating layer
Prior art date
Application number
TW100112426A
Other languages
Chinese (zh)
Other versions
TW201216301A (en
Inventor
朴憬修
李佑碩
林佑俊
李京秦
金奉龍
朴鎮晟
魚東善
Original Assignee
第一毛織股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第一毛織股份有限公司 filed Critical 第一毛織股份有限公司
Publication of TW201216301A publication Critical patent/TW201216301A/en
Application granted granted Critical
Publication of TWI539471B publication Critical patent/TWI539471B/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13452Conductors connecting driver circuitry and terminals of panels
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10128Display

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Non-Insulated Conductors (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Conductive Materials (AREA)

Description

異向性導電膜Anisotropic conductive film 發明領域Field of invention

本發明係有關於一種異向性導電膜。更特別地,本發明係有關於一種異向性導電膜,其包括一絕緣層和一導電層,該導電層係被層合於該絕緣層之上且含有導電顆粒,其特徵在於該導電層的最低熔化黏度係比該絕緣層的最低熔化黏度更大。The present invention relates to an anisotropic conductive film. More particularly, the present invention relates to an anisotropic conductive film including an insulating layer and a conductive layer laminated on the insulating layer and containing conductive particles, characterized by the conductive layer The lowest melt viscosity is greater than the lowest melt viscosity of the insulation.

發明背景Background of the invention

異向性導電膜(ACFs)一般係提及膜,其中導電顆粒,例如金屬顆粒(例如,鎳(Ni)或金(Au)顆粒)或是金屬塗覆的聚合物顆粒,係被分散以於z軸方向上傳導電以及於x-y平面方向上絕緣。Anisotropic conductive films (ACFs) generally refer to films in which conductive particles, such as metal particles (eg, nickel (Ni) or gold (Au) particles) or metal coated polymer particles, are dispersed. The z-axis direction is electrically conductive and insulated in the xy plane direction.

當此一異向性導電膜係跟隨適當的條件下之熱壓後而設置於電路之間時,彼此面對的電路終端係通過導電顆粒而電氣地連接的以及使一絕緣黏合樹脂充滿於電路和鄰接的電路之間的空間內以使得導電顆粒彼此獨立地呈現。結果,給予該異向性導電膜高的絕緣性能。一般的異向性導電膜係廣泛地使用於介於液晶顯示器(LCD)面板和捲帶式載體封裝(TCPs)之間的電氣接連以及介於印刷電路板(PCBs)和TCPs之間的電氣接連。When the anisotropic conductive film is disposed between the circuits after being subjected to hot pressing under appropriate conditions, the circuit terminals facing each other are electrically connected by the conductive particles and an insulating adhesive resin is filled in the circuit. The space between the adjacent circuit and the adjacent circuit is such that the conductive particles are presented independently of each other. As a result, the anisotropic conductive film is imparted with high insulating properties. General anisotropic conductive films are widely used in electrical connections between liquid crystal display (LCD) panels and tape carrier packages (TCPs) and electrical connections between printed circuit boards (PCBs) and TCPs. .

隨著行業中朝大且薄的顯示器之近來的趨勢,介於電極之間的間距以及介於電路之間的間距已經變得更細微。慣用的單層結構的異向性導電膜之使用有細微的電路終端之接連的限制。With the recent trend in large and thin displays in the industry, the spacing between the electrodes and the spacing between the circuits has become more subtle. The use of a conventional single-layer structure of an anisotropic conductive film has successive limitations of fine circuit termination.

於此等情況下,多層的異向性導電膜已經被提議。然而,因一典型的多層異向性導電膜包括具有低的熔化黏度之一黏合層,該黏合層內所包括的導電顆粒不放在電路終端之間的位置以及反而流至鄰接的空間之內,造成短路或是連接電阻的增加。多層的異向性導電膜之另一個問題為介於電路構件之間之不充分的黏合強度。再者,沒有導電顆粒的一絕緣黏合層之高的透明度使得在該膜對著電路構件預備性壓擠之後不可能辨識該異向性導電膜的存在。In these cases, a multilayered anisotropic conductive film has been proposed. However, since a typical multilayer anisotropic conductive film includes an adhesive layer having a low melt viscosity, the conductive particles included in the adhesive layer are not placed at positions between circuit terminals and instead flow into adjacent spaces. , causing a short circuit or an increase in the connection resistance. Another problem with multilayered anisotropic conductive films is the insufficient bond strength between circuit components. Moreover, the high transparency of an insulating bonding layer without conductive particles makes it impossible to recognize the presence of the anisotropic conductive film after the film is pre-compressed against the circuit member.

發明概要Summary of invention

本發明的一目的係要提供一異向性導電膜,其能防止導電顆粒之間的短路以及能達成減少的連接電阻。It is an object of the present invention to provide an anisotropic conductive film which prevents short circuits between conductive particles and which achieves reduced connection resistance.

本發明的另一個目係要提供一異向性導電膜,其提供電路構件之間足夠的黏合強度以及具有改善的可辨識性。Another object of the present invention is to provide an anisotropic conductive film which provides sufficient bonding strength between circuit members and improved identifiability.

本發明之以上的目的和其他的目的顯然地將由於下列的說明而被本技藝中具有技術的該等所了解。The above and other objects of the present invention will be apparent from the teachings of the present invention.

本發明的一個態樣提供了一異向性導電膜。於一具體例中,該異向性導電膜包括一絕緣層和一導電層,該導電層係被層合於該絕緣層之上且含有導電顆粒,其中該導電層的最低熔化黏度係比該絕緣層的最低熔化黏度更大3,000 Pa‧s的。One aspect of the present invention provides an anisotropic conductive film. In one embodiment, the anisotropic conductive film includes an insulating layer and a conductive layer, the conductive layer is laminated on the insulating layer and contains conductive particles, wherein the conductive layer has a lowest melt viscosity ratio The minimum melt viscosity of the insulation is 3,000 Pa‧s.

於一具體例中,該導電層的最低熔化黏度可以比該絕緣層的最低熔化黏度更大3,000至48,000 Pa‧s的。In one embodiment, the conductive layer may have a minimum melt viscosity of 3,000 to 48,000 Pa‧s greater than the lowest melt viscosity of the insulating layer.

於一具體例中,該導電層的最低熔化黏度可以為4,000至50,000 Pa‧s以及該絕緣層的最低熔化黏度可以為2,000至10,000 Pa‧s。In one embodiment, the conductive layer may have a minimum melt viscosity of 4,000 to 50,000 Pa‧s and the insulating layer may have a minimum melt viscosity of 2,000 to 10,000 Pa‧s.

於一具體例中,該絕緣層可以比該導電層為更厚。更特別地,該絕緣層可以比該導電層更厚少於4倍的。In one embodiment, the insulating layer can be thicker than the conductive layer. More particularly, the insulating layer can be less than 4 times thicker than the conductive layer.

於一具體例中,該導電層或該絕緣層可以包括絕緣顆粒。In one embodiment, the conductive layer or the insulating layer may include insulating particles.

特別地,該等絕緣顆粒可以以0.1至20重量%的數量存在,以該導電層之組成物或該絕緣層之組成物的總量為基準。In particular, the insulating particles may be present in an amount of from 0.1 to 20% by weight based on the total of the composition of the conductive layer or the composition of the insulating layer.

於該導電層內之絕緣顆粒的含量(重量%)有關於該導電層之組成物的總量可以是比起於該絕緣層內之絕緣顆粒的含量有關於該絕緣層之組成物的總量為較高的。The content (% by weight) of the insulating particles in the conductive layer may be a total amount of the composition of the conductive layer relative to the content of the insulating particles in the insulating layer. It is higher.

絕緣顆粒可以以2至20重量%的數量存在,以該導電層之組成物的總量為基準。The insulating particles may be present in an amount of 2 to 20% by weight based on the total amount of the composition of the conductive layer.

絕緣顆粒可以以存在0.1至10重量%的數量,以該絕緣層之組成物的總量為基準。The insulating particles may be present in an amount of from 0.1 to 10% by weight based on the total amount of the composition of the insulating layer.

於一具體例中,該導電層可以包括1至30重量%的導電顆粒,以該導電層之組成物的總量為基準。In one embodiment, the conductive layer may include 1 to 30% by weight of conductive particles based on the total amount of the composition of the conductive layer.

於一具體例中,用於該導電層之組成物或用於該絕緣層之組成物可以包括一聚合物樹脂、一可自由基聚合型材料,以及一自由基起始劑。In one embodiment, the composition for the conductive layer or the composition for the insulating layer may include a polymer resin, a radical polymerizable material, and a radical initiator.

特別地,該聚合物樹脂可以包括選自於以下之至少一樹脂:烯烴型樹脂、丁二烯樹脂、丙烯腈-丁二烯共聚物、羧基終止的丙烯腈-丁二烯共聚物、聚醯亞胺樹脂、聚醯胺樹脂、聚酯樹脂、聚乙烯丁醛樹脂、乙烯-乙酸乙烯酯共聚物、苯乙烯-丁烯-苯乙烯(SBS)樹脂、苯乙烯-乙烯-丁烯-苯乙烯(SEBS)樹脂、丙烯腈-丁二烯橡膠(NBRs)、胺酯(urethane)樹脂、(甲基)丙烯酸樹脂以及苯氧樹脂。In particular, the polymer resin may include at least one resin selected from the group consisting of an olefin type resin, a butadiene resin, an acrylonitrile-butadiene copolymer, a carboxyl terminated acrylonitrile-butadiene copolymer, and a polyfluorene. Imine resin, polyamide resin, polyester resin, polyvinyl butyral resin, ethylene-vinyl acetate copolymer, styrene-butylene-styrene (SBS) resin, styrene-ethylene-butylene-styrene (SEBS) resin, acrylonitrile-butadiene rubber (NBRs), urethane resin, (meth)acrylic resin, and phenoxy resin.

該導電層和該絕緣層的各個可以包括具有50,000至1,000,000的分子量之一聚合物樹脂。該聚合物樹脂可以以20至60重量%的數量存在,以該導電層之組成物的總量為基準。該聚合物樹脂可以以30至70重量%的數量存在,以該絕緣層之組成物的總量為基準。Each of the conductive layer and the insulating layer may include a polymer resin having a molecular weight of 50,000 to 1,000,000. The polymer resin may be present in an amount of from 20 to 60% by weight based on the total amount of the composition of the conductive layer. The polymer resin may be present in an amount of from 30 to 70% by weight based on the total amount of the composition of the insulating layer.

該可自由基聚合型材料可以包括一(甲基)丙烯酸酯單體(寡聚物)或一胺酯丙烯酸酯單體(寡聚物)。該可自由基聚合型材料可以以20至60重量%的數量存在,以該導電層之組成物或該絕緣層之組成物的總量為基準。The radically polymerizable material may include a (meth) acrylate monomer (oligomer) or a urethane acrylate monomer (oligomer). The radically polymerizable material may be present in an amount of from 20 to 60% by weight based on the total of the composition of the conductive layer or the composition of the insulating layer.

該自由基起始劑可以包括選自於光聚合化起始劑及熱固化起始劑之至少一個起始劑。該可自由基聚合型材料可以以0.5至10重量%的數量存在,以該導電層之組成物或該絕緣層之組成物的總量為基準。The radical initiator may include at least one initiator selected from the group consisting of a photopolymerization initiator and a heat curing initiator. The radically polymerizable material may be present in an amount of from 0.5 to 10% by weight based on the total of the composition of the conductive layer or the composition of the insulating layer.

於一具體例中,該導電層之組成物或該絕緣層之組成物可以進一步包含一矽烷偶合劑。該矽烷偶合劑可以以0.1至5重量%的數量存在,以該導電層之組成物或該絕緣層之組成物的總量為基準。In one embodiment, the composition of the conductive layer or the composition of the insulating layer may further comprise a decane coupling agent. The decane coupling agent may be present in an amount of from 0.1 to 5% by weight based on the total of the composition of the conductive layer or the composition of the insulating layer.

本發明的另一個態樣提供了一異向性導電膜。於一具體例中,該異向性導電膜包括一絕緣層和一導電層,該導電層係被層合於該絕緣層之上且含有導電顆粒,其中在把玻璃基材面朝彼此放在該異向性導電膜的上部表面和下部表面之上的位置並且以3 MPa(以該樣本區為主)及160℃(以該異向性導電膜的偵測溫度為基礎)對著該異向性導電膜壓擠歷時5 sec之後,該絕緣層的面積對該導電層的面積之比率可以為由1.4:1至3.0:1。Another aspect of the invention provides an anisotropic conductive film. In one embodiment, the anisotropic conductive film includes an insulating layer and a conductive layer laminated on the insulating layer and containing conductive particles, wherein the glass substrates are placed facing each other The position above the upper surface and the lower surface of the anisotropic conductive film is opposite to 3 MPa (mainly in the sample region) and 160 ° C (based on the detected temperature of the anisotropic conductive film) After the conductive film is pressed for 5 sec, the ratio of the area of the insulating layer to the area of the conductive layer may be from 1.4:1 to 3.0:1.

於一具體例中,該導電層的最低熔化黏度可以是比該絕緣層的最低熔化黏度更大的。In one embodiment, the conductive layer may have a minimum melt viscosity that is greater than a minimum melt viscosity of the insulating layer.

圖式簡單說明Simple illustration

本發明之以上的以及其他的態樣、特徵和優點由下列的詳細說明結合附圖會變成為明顯的,其中:第1圖為依據本發明的一例示性具體例之一異向性導電膜的一橫截面圖;第2圖為用於解釋依據本發明的一例示性具體例之一異向性導電膜的組分層之最低熔化黏度之測量的一概念圖;以及第3圖為用於解釋使用依據本發明的一例示性具體例之一異向性導電膜的捲帶式自動接合(TAB)方法的一橫截面圖。The above and other aspects, features and advantages of the present invention will become apparent from the following detailed description in conjunction with the accompanying drawings in which: FIG. A cross-sectional view of FIG. 2 is a conceptual diagram for explaining the measurement of the lowest melt viscosity of the constituent layers of the anisotropic conductive film according to an exemplary embodiment of the present invention; and FIG. 3 is for A cross-sectional view of a tape automated bonding (TAB) method using an anisotropic conductive film according to an exemplary embodiment of the present invention is explained.

較佳實施例之詳細說明Detailed description of the preferred embodiment

本發明之較佳的具體例現在將關於附圖予以詳細地描述。提供具體例以協助本發明之進一步的了解以及不使用來限制本發明的範疇。本技藝中具有技術的該等會容易地辨識且領會不包括於本文中的具體例,以及省略其等之解釋。Preferred embodiments of the present invention will now be described in detail with reference to the accompanying drawings. Specific examples are provided to assist in further understanding of the invention and not to limit the scope of the invention. Those skilled in the art will readily recognize and appreciate the specific examples that are not included herein, and omit the explanations thereof.

第1圖為依據本發明的一例示性具體例之一異向性導電膜的一橫截面圖。第2圖為用於解釋依據本發明的一例示性具體例之一異向性導電膜的組分層之最低熔化黏度之測量的一概念圖。如同於第1圖中所闡明的,該異向性導電膜100包括一絕緣黏合層(在下文提及簡單地為一‘絕緣層’)102和一導電黏合層(在下文提及簡單地為一‘導電層’)104。Fig. 1 is a cross-sectional view showing an anisotropic conductive film according to an exemplary embodiment of the present invention. Fig. 2 is a conceptual diagram for explaining the measurement of the lowest melt viscosity of the constituent layers of the anisotropic conductive film according to an exemplary embodiment of the present invention. As illustrated in FIG. 1, the anisotropic conductive film 100 includes an insulating adhesive layer (hereinafter simply referred to as an 'insulating layer') 102 and a conductive adhesive layer (hereinafter simply referred to as A 'conductive layer') 104.

該異向性導電膜100特徵在於該導電層104之最低熔化黏度η0係比該絕緣層102之η0更大的。於一具體例中,該導電層104的最低熔化黏度可以比該絕緣層102之最低熔化黏度更大3,000 Pa‧s的,較佳地,3,000至48,000 Pa‧s的。此熔化黏度的差異可以抑制由該導電層的導電顆粒所引起的短路以及使得該絕緣層可充分地流動於電路構件之間,導致高的黏合強度。100 characterized in that the anisotropic conductive film of the lowest melting viscosity of [eta] 0 of the conductive line layer 104 is larger than 0 η 102 of the insulating layer. In one embodiment, the conductive layer 104 has a minimum melt viscosity that is 3,000 Pa‧s, preferably 3,000 to 48,000 Pa‧s, greater than the lowest melt viscosity of the insulating layer 102. This difference in melt viscosity can suppress short circuits caused by the conductive particles of the conductive layer and allow the insulating layer to sufficiently flow between the circuit members, resulting in high adhesive strength.

該導電層104的最低熔化黏度可以於4,000至50,000 Pa‧s的範圍內。該絕緣層102的最低熔化黏度可以於2,000至10,000 Pa‧s的範圍內。於此等範圍之內,由該導電層的導電顆粒所引起的短路可以被抑制以及該絕緣層可充分地流動於電路構件之間,導致高的黏合強度。The conductive layer 104 may have a minimum melt viscosity in the range of 4,000 to 50,000 Pa‧s. The insulating layer 102 may have a minimum melt viscosity in the range of 2,000 to 10,000 Pa‧s. Within such a range, the short circuit caused by the conductive particles of the conductive layer can be suppressed and the insulating layer can sufficiently flow between the circuit members, resulting in high adhesive strength.

參照第2圖,一般的黏合劑的黏度於加熱(區域A1)之起始階段隨著遞增的溫度漸漸地減少。該黏合劑係在某個點T0予以熔化,該處其顯示出最低黏度η0。之後,該黏合劑隨著遞增的溫度(區域A2)而固化以及變成為黏的。在固化完成(區域A3)之後,黏度維持固定。該最低熔化黏度指示出於T0之黏度η0Referring to Fig. 2, the viscosity of a general adhesive gradually decreases with increasing temperature in the initial stage of heating (area A 1 ). The binder is melted at a point T 0 where it exhibits a minimum viscosity η 0 . Thereafter, the binder solidifies and becomes viscous with increasing temperature (area A 2 ). After the curing is completed (area A 3 ), the viscosity remains fixed. The lowest melt viscosity for indicating T 0 viscosity of η 0.

該絕緣層102的厚度T1可以比該導電層104的厚度T2更大。較佳地,比率T1/T2係多於1以及小於4。於此範圍之內,該絕緣樹脂係充分地充滿於鄰接的電路之間,達成良好的絕緣性能以及黏合性。The thickness T 1 of the insulating layer 102 may be greater than the thickness T 2 of the conductive layer 104. Preferably, the ratio T 1 /T 2 is more than 1 and less than 4. Within this range, the insulating resin is sufficiently filled between adjacent circuits to achieve good insulating properties and adhesion.

該異向性導電膜的該導電層102可以包括導電顆粒106,其等將在以下予以描述。該導電層104及/或該絕緣層102可以包括絕緣顆粒108,其等亦將在以下予以描述。較佳地該等絕緣顆粒108係於尺寸上比該等導電顆粒106更小的(平均顆粒直徑)。The conductive layer 102 of the anisotropic conductive film may include conductive particles 106, which will be described below. The conductive layer 104 and/or the insulating layer 102 may include insulating particles 108, which will also be described below. Preferably, the insulating particles 108 are smaller in size than the conductive particles 106 (average particle diameter).

第3圖為用於解釋使用依據本發明的一例示性具體例之一異向性導電膜的捲帶式自動接合(TAB)方法的一橫截面圖。TAB方法主要地使用來通過一異向性導電膜而接連一捲帶式載體封裝(TCP)至一LCD面板,以此一方式將驅動積體電路(ICs)架設至該LCD面板。關於第3圖,在一TCP 200的電路終端202以及一LCD面板300的電極302對準之後,該異向性導電膜100在跟隨熱壓後而***於其等之間。Fig. 3 is a cross-sectional view for explaining a tape automated bonding (TAB) method using an anisotropic conductive film according to an exemplary embodiment of the present invention. The TAB method is mainly used to connect a tape carrier package (TCP) to an LCD panel through an anisotropic conductive film, and to drive the integrated circuit (ICs) to the LCD panel in a manner. With reference to Fig. 3, after the circuit terminal 202 of a TCP 200 and the electrode 302 of an LCD panel 300 are aligned, the anisotropic conductive film 100 is interposed between it or the like after being subjected to hot pressing.

在熱壓後,該異向性導電膜100之該絕緣層102由於其之低黏度而為高度可流動的以及主要地流至該等電路終端202和該等電極302未彼此面對的空間之內。其間,該導電層104的基質和該等導電顆粒106,其由於其之高黏度為較不可流動的,主要係被設置於以及壓擠於該等電路終端202和該等電極302之間。也就是說,僅有非常小數量的該等導電顆粒106流至該等電路終端202和該等電極302未彼此面對的空間之內。結果,可以防止介於該等導電顆粒106之間的短路。該等絕緣顆粒108可以被設置於該等導電顆粒106之間以進一步防止該等導電顆粒106之間的短路以及來減少該異向性導電膜的透明度,導致改善的可辨識性。After the hot pressing, the insulating layer 102 of the anisotropic conductive film 100 is highly flowable due to its low viscosity and mainly flows to the circuit terminals 202 and the spaces where the electrodes 302 do not face each other. Inside. In the meantime, the substrate of the conductive layer 104 and the conductive particles 106, which are relatively non-flowable due to their high viscosity, are mainly disposed and squeezed between the circuit terminals 202 and the electrodes 302. That is, only a very small number of such conductive particles 106 flow into the circuit terminals 202 and the spaces in which the electrodes 302 do not face each other. As a result, a short circuit between the conductive particles 106 can be prevented. The insulating particles 108 may be disposed between the conductive particles 106 to further prevent short circuits between the conductive particles 106 and to reduce transparency of the anisotropic conductive film, resulting in improved identifiability.

該絕緣層120的面積可以在壓擠之後是比該導電層104的面積更大的,因為該絕緣層由於其之低黏度而為高度可流動的。特別地,在把玻璃基材放在該異向性導電膜的上部表面和下部表面之上的位置以面對彼此以及以3 MPa(以該樣本區為主)及160℃(以該異向性導電膜的偵測溫度為基礎)對著該異向性導電膜壓擠歷時5 sec之後,該絕緣層的面積對該導電層的面積之比率以最外邊的顆粒(換言之,導電顆粒與絕緣顆粒)為基準在壓擠之後較佳地為由1.4:1至3.0:1。The area of the insulating layer 120 may be larger than the area of the conductive layer 104 after compression because the insulating layer is highly flowable due to its low viscosity. Specifically, a glass substrate is placed at a position above the upper surface and the lower surface of the anisotropic conductive film to face each other and at 3 MPa (mainly in the sample region) and 160 ° C (in the opposite direction) The detection temperature of the conductive film is based on the pressing of the anisotropic conductive film for 5 sec, the ratio of the area of the insulating layer to the area of the conductive layer is the outermost particle (in other words, the conductive particles and the insulating layer) The particle basis is preferably from 1.4:1 to 3.0:1 after compression.

在下文,將解釋用於該異向性導電膜之絕緣層與導電層之組成物。該等組成物的各個可以包括一聚合物樹脂、一可自由基聚合型材料、一自由基起始劑、導電顆粒、絕緣顆粒、一偶合劑、其他的添加劑,等等。Hereinafter, the composition of the insulating layer and the conductive layer for the anisotropic conductive film will be explained. Each of the compositions may include a polymer resin, a radical polymerizable material, a radical initiator, conductive particles, insulating particles, a coupling agent, other additives, and the like.

(a)聚合物樹脂(a) Polymer resin

聚合物樹脂係作用為該膜之一基質。聚合物樹脂可以為一熱塑性樹脂、一熱固性樹脂或其等之組合。適當的聚合物樹脂之實例包括,但是不限於:烯烴型樹脂(例如聚乙烯與聚丙烯樹脂)、丁二烯樹脂、丙烯腈-丁二烯共聚物、羧基終止的丙烯腈-丁二烯共聚物、聚醯亞胺樹脂、聚醯胺樹脂、聚酯樹脂、聚乙烯丁醛樹脂、乙烯-乙酸乙烯酯共聚物、苯乙烯-丁烯-苯乙烯(SBS)樹脂、苯乙烯-乙烯-丁烯-苯乙烯(SEBS)樹脂、丙烯腈-丁二烯橡膠(NBRs)、胺酯樹脂、(甲基)丙烯酸樹脂以及苯氧樹脂。此等聚合物樹脂可以單獨使用或是如同其等之2或更多個之混合物來使用。The polymer resin acts as a substrate for the film. The polymer resin may be a thermoplastic resin, a thermosetting resin or a combination thereof. Examples of suitable polymeric resins include, but are not limited to, olefinic resins (e.g., polyethylene and polypropylene resins), butadiene resins, acrylonitrile-butadiene copolymers, carboxyl terminated acrylonitrile-butadiene copolymers. , polyimide resin, polyamide resin, polyester resin, polyvinyl butyral resin, ethylene-vinyl acetate copolymer, styrene-butylene-styrene (SBS) resin, styrene-ethylene-butyl Ethylene-styrene (SEBS) resin, acrylonitrile-butadiene rubber (NBRs), amine ester resin, (meth)acrylic resin, and phenoxy resin. These polymer resins may be used singly or as a mixture of two or more thereof.

較佳地,該聚合物樹脂具有50,000至1,000,000的分子量。於此範圍之內,該導電層和該絕緣層之熔化黏度可以被最適宜地控制。較佳地該導電層包括20至60重量%之該聚合物樹脂(具有50,000至1,000,000的分子量),以該導電層之組成物的總量為基準。較佳地該絕緣層包括10至40重量%之該聚合物樹脂(具有50,000至1,000,000的分子量),以該絕緣層之組成物的總量為基準。較佳地於該絕緣層內具有50,000至1,000,000的分子量之聚合物樹脂的含量(重量%)係比於該導電層內的具有50,000至1,000,000的分子量之聚合物樹脂之含量(重量%)更低的。由於此含量的差異,導電顆粒可以是設置於電路終端之間的,可以防止介於導電顆粒之間的短路以及可以減少連接電阻。Preferably, the polymer resin has a molecular weight of 50,000 to 1,000,000. Within this range, the melt viscosity of the conductive layer and the insulating layer can be optimally controlled. Preferably, the conductive layer comprises 20 to 60% by weight of the polymer resin (having a molecular weight of 50,000 to 1,000,000) based on the total amount of the composition of the conductive layer. Preferably, the insulating layer comprises 10 to 40% by weight of the polymer resin (having a molecular weight of 50,000 to 1,000,000) based on the total amount of the composition of the insulating layer. Preferably, the content (% by weight) of the polymer resin having a molecular weight of 50,000 to 1,000,000 in the insulating layer is lower than the content (% by weight) of the polymer resin having a molecular weight of 50,000 to 1,000,000 in the conductive layer. of. Due to this difference in content, the conductive particles may be disposed between the terminals of the circuit to prevent short circuits between the conductive particles and to reduce the connection resistance.

該聚合物樹脂可以包括一環氧樹脂。該環氧樹脂經歷固化以保證要連接至該異向性導電膜的層之間之良好的黏合強度以及高的連接可靠性。對於環氧樹脂的種類沒有限定。舉例而言,環氧樹脂可以選自於雙酚環氧樹脂、酚醛環氧樹脂、環氧丙基環氧樹脂、脂肪族環氧樹脂、脂環環氧樹脂,以及其等之混合物。環氧樹脂可以為於室溫下一固體的形式之一環氧樹脂,於室溫下一液體的形式之一環氧樹脂,以及選擇性地,一可撓性環氧樹脂之一組合。適當的固體環氧樹脂之實例包括,但是不必然限於,苯酚酚醛環氧樹脂、甲酚酚醛環氧樹脂、主要的骨架為二環戊二烯之環氧樹脂、雙酚A聚合物、雙酚F聚合物,以及經修飾之環氧樹脂。適當的液體環氧樹脂之實例包括,但是不必然限於,雙酚A環氧樹脂、雙酚F環氧樹脂,以及其等之組合。適當的可撓性環氧樹脂之實例包括二體酸修飾之環氧樹脂、主要的骨架為丙二醇之環氧樹脂,以及胺酯修飾之環氧樹脂。The polymer resin may comprise an epoxy resin. The epoxy resin is subjected to curing to ensure good bonding strength between layers to be bonded to the anisotropic conductive film and high connection reliability. There is no limitation on the type of epoxy resin. For example, the epoxy resin may be selected from the group consisting of bisphenol epoxy resins, novolac epoxy resins, epoxy propylene epoxy resins, aliphatic epoxy resins, alicyclic epoxy resins, and the like. The epoxy resin may be one epoxy resin in the form of a solid at room temperature, one epoxy resin in the form of a liquid at room temperature, and, optionally, one of a flexible epoxy resin. Examples of suitable solid epoxy resins include, but are not necessarily limited to, phenol novolac epoxy resins, cresol novolac epoxy resins, epoxy resins having a main skeleton of dicyclopentadiene, bisphenol A polymers, bisphenols F polymer, as well as modified epoxy resin. Examples of suitable liquid epoxy resins include, but are not necessarily limited to, bisphenol A epoxy resins, bisphenol F epoxy resins, and combinations thereof. Examples of suitable flexible epoxy resins include dimer acid modified epoxy resins, primary epoxy resins having a backbone of propylene glycol, and amine ester modified epoxy resins.

(b) 可自由基聚合型材料(b) Free radically polymerizable materials

可自由基聚合型材料為可固化系統的一組分以及經歷固化以保證要連接至該異向性導電膜的層之間之良好的黏附以及高的連接可靠性。對於可自由基聚合型材料的種類沒有限定。舉例而言,可自由基聚合型材料可以為一(甲基)丙烯酸酯寡聚物、一個(甲基)丙烯酸酯單體或其等之一混合物。The radically polymerizable material is a component of the curable system and undergoes curing to ensure good adhesion between layers to be bonded to the anisotropic conductive film and high connection reliability. There is no limitation on the kind of the radically polymerizable material. For example, the radically polymerizable material may be a (meth) acrylate oligomer, a (meth) acrylate monomer, or a mixture thereof.

(b-1)(甲基)丙烯酸酯寡聚物(b-1) (meth) acrylate oligomer

(甲基)丙烯酸酯寡聚物不特別限制以及可以為本技藝中已知的該等之任一者。較佳的(甲基)丙烯酸酯寡聚物之實例包括胺酯(甲基)丙烯酸酯、環氧(甲基)丙烯酸酯、聚酯(甲基)丙烯酸酯、氟化的(甲基)丙烯酸酯、茀(甲基)丙烯酸酯、矽(甲基)丙烯酸酯、磷酸(甲基)丙烯酸酯、馬來亞醯胺修飾之(甲基)丙烯酸酯,以及丙烯酸酯(甲基丙烯酸酯)之寡聚物。此等(甲基)丙烯酸酯寡聚物可以單獨地使用或以其等之2或更多個之組合來使用。The (meth) acrylate oligomer is not particularly limited and may be any of those known in the art. Examples of preferred (meth) acrylate oligomers include amine ester (meth) acrylate, epoxy (meth) acrylate, polyester (meth) acrylate, fluorinated (meth) acrylate Ester, hydrazine (meth) acrylate, hydrazine (meth) acrylate, phosphoric acid (meth) acrylate, maleimide modified (meth) acrylate, and acrylate (methacrylate) Oligomer. These (meth) acrylate oligomers may be used singly or in combination of two or more thereof.

特別地,胺酯(甲基)丙烯酸酯寡聚物可以為分子內之其等之中間物結構係由聚醚多元醇、聚醚多元醇、聚碳酸酯多元醇、聚己內酯多元醇、四氫呋喃-環氧丙烷開環共聚物、聚丁二烯二醇、聚二甲基矽氧烷二醇、聚乙二醇、丙二醇、1,4-丁二醇、1,5-戊二醇、1,6-己二醇、新戊二醇、1,4-環已烷二甲醇、雙酚A、氫化雙酚A、2,4-甲苯二異氰酸酯、1,3-二甲苯二異氰酸酯、1,4-二甲苯二異氰酸酯、1,5-萘(naphthalene)二異氰酸酯、1,6-已烷二異氰酸酯以及異佛酮二異氰酸酯予以合成的該等。In particular, the amine ester (meth) acrylate oligomer may be an intramolecular structure such as a polyether polyol, a polyether polyol, a polycarbonate polyol, a polycaprolactone polyol, or the like. Tetrahydrofuran-propylene oxide ring-opening copolymer, polybutadiene diol, polydimethyl siloxane diol, polyethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, 1,4-cyclohexanedimethanol, bisphenol A, hydrogenated bisphenol A, 2,4-toluene diisocyanate, 1,3-xylene diisocyanate, 1 , 4-xylene diisocyanate, 1,5-naphthalene diisocyanate, 1,6-hexane diisocyanate, and isophorone diisocyanate are synthesized.

環氧(甲基)丙烯酸酯寡聚物可以為分子內之其等之中間物結構為2-溴氫醌、間苯二酚、兒茶酚、雙酚(例如雙酚A、雙酚F、雙酚AD和雙酚S)、4,4’-二羥聯苯以及雙(4-羥苯基)醚的骨架之該等。(甲基)丙烯酸酯寡聚物可以選自於包括烷基、芳基、羥甲基、烯丙基、脂環、鹵素(四溴雙酚A,等等。)以及硝基的該等所構成的群組。其他的(甲基)丙烯酸酯寡聚物可以包括分子內含有至少2個馬來亞醯胺基團之該等,舉例而言,1-甲基-2,4-雙馬來亞醯胺苯、N,N’-間-伸苯基雙馬來亞醯胺、N,N’-對-伸苯基雙馬來亞醯胺、N,N’-間-甲伸苯基雙馬來亞醯胺、N,N’-4,4-伸聯苯基雙馬來亞醯胺、N,N’-4,4-(3,3’-二甲基伸聯苯基)雙馬來亞醯胺、N,N’-4,4-(3,3’-二甲基二苯甲烷)雙馬來亞醯胺、N,N’-4,4-(3,3’-二乙基二苯甲烷)雙馬來亞醯胺、N,N’-4,4-二苯甲烷雙馬來亞醯胺、N,N’-4,4-二苯丙烷雙馬來亞醯胺、N,N’-4,4-二苯醚雙馬來亞醯胺、N,N’-3,3-二苯碸雙馬來亞醯胺、2,2-雙(4-(4-馬來亞醯胺苯氧基)苯基)丙烷、2,2-雙(3-s-丁基-4-8(4-馬來亞醯胺苯氧基)苯基)丙烷、1,1-雙(4-(4-馬來亞醯胺苯氧基)苯基)癸烷、4,4’-亞環己基雙(1-(4-馬來亞醯胺苯氧基)-2-環己基苯以及2,2-雙(4-(4馬來亞醯胺苯氧基)苯基)六氟丙烷。此等(甲基)丙烯酸酯寡聚物可以單獨地使用或以其等之2或更多個之組合來使用。The epoxy (meth) acrylate oligomer may be in the molecule, and the intermediate structure thereof is 2-bromohydroquinone, resorcinol, catechol, bisphenol (for example, bisphenol A, bisphenol F, These are the skeletons of bisphenol AD and bisphenol S), 4,4'-dihydroxybiphenyl and bis(4-hydroxyphenyl)ether. The (meth) acrylate oligomer may be selected from the group consisting of an alkyl group, an aryl group, a methylol group, an allyl group, an alicyclic ring, a halogen (tetrabromobisphenol A, etc.), and a nitro group. The group that is formed. Other (meth) acrylate oligomers may include those having at least 2 maleimide groups in the molecule, for example, 1-methyl-2,4-bismaleimide benzene. , N,N'-m-phenyl-p-maleimide, N,N'-p-phenylene bismaleimide, N,N'-m-methyl-phenyl-dual-malay Indoleamine, N, N'-4,4-extended biphenylbismaleimide, N,N'-4,4-(3,3'-dimethyl extended phenyl) double Malaya Indoleamine, N, N'-4,4-(3,3'-dimethyldiphenylmethane) bismaleimide, N,N'-4,4-(3,3'-diethyl Diphenylmethane) Bismaleimide, N,N'-4,4-Diphenylmethane Bismaleimide, N,N'-4,4-Diphenylpropane Bismaleamide, N , N'-4,4-diphenyl ether, bimaleimide, N,N'-3,3-diphenyl bis-maleimide, 2,2-bis(4-(4-malay) Amidoxime phenoxy)phenyl)propane, 2,2-bis(3-s-butyl-4-8(4-maleimide)phenoxy)phenyl)propane, 1,1-double (4-(4-maleimide phenoxy)phenyl)decane, 4,4'-cyclohexylene bis(1-(4-maleimide)phenoxy)-2-cyclohexyl Benzene and 2,2-bis(4-(4-maleimide phenoxy)phenyl)hexafluoropropane. The methyl acrylate oligomer may be used singly or in combination of two or more thereof.

(b-2)(甲基)丙烯酸酯單體(b-2) (meth) acrylate monomer

可自由基固化型(radically curable)組成物可以包括一個(甲基)丙烯酸酯單體作為一可自由基聚合型材料。(甲基)丙烯酸酯單體係可固化系統的另一個組分。The radically curable composition may include a (meth) acrylate monomer as a radically polymerizable material. Another component of the (meth) acrylate single system curable system.

(甲基)丙烯酸酯單體不特別限制以及可以為本技藝中已知的該等之任一者。較佳地,(甲基)丙烯酸酯單體係選自於以下所構成的群組:1,6-己二醇單(甲基)丙烯酸酯、2-羥乙基(甲基)丙烯酸酯、2-羥丙基(甲基)丙烯酸酯、2-羥丁基(甲基)丙烯酸酯、2-羥基-3-苯基氧丙基(甲基)丙烯酸酯、1,4-丁二醇(甲基)丙烯酸酯、2-羥基烷基(甲基)丙烯醯磷酸酯、4-羥基環己基(甲基)丙烯酸酯、新戊二醇單(甲基)丙烯酸酯、三(羥甲)乙烷二(甲基)丙烯酸酯、三(羥甲)乙烷二(甲基)丙烯酸酯、季戊四醇三(甲基)丙烯酸酯、二季戊四醇五(甲基)丙烯酸酯、季戊四醇六(甲基)丙烯酸酯、二季戊四醇六(甲基)丙烯酸酯、甘油二(甲基)丙烯酸酯、t-氫呋喃甲基(甲基)丙烯酸酯、異癸基(甲基)丙烯酸酯、2-(2-乙氧基乙氧基)乙基(甲基)丙烯酸酯、硬脂醯(甲基)丙烯酸酯、月桂基(甲基)丙烯酸酯、2-苯氧乙基(甲基)丙烯酸酯、異基(甲基)丙烯酸酯、十三基(甲基)丙烯酸酯、乙氧化壬基酚(甲基)丙烯酸酯、乙二醇二(甲基)丙烯酸酯、二乙二醇二(甲基)丙烯酸酯、三乙二醇二(甲基)丙烯酸酯、t-乙二醇二(甲基)丙烯酸酯、聚乙二醇二(甲基)丙烯酸酯、1,3-丁二醇二(甲基)丙烯酸酯、三丙二醇二(甲基)丙烯酸酯、乙氧化雙酚-A二(甲基)丙烯酸酯、環已烷二甲醇二(甲基)丙烯酸酯、苯氧基-t-二醇(甲基)丙烯酸酯、2-甲基丙烯醯氧乙基磷酸酯、二羥甲基三環癸烷二(甲基)丙烯酸酯、三羥甲基丙烷苯甲酸酯丙烯酸酯、茀(甲基)丙烯酸酯,以及其等之混合物。The (meth) acrylate monomer is not particularly limited and may be any of those known in the art. Preferably, the (meth) acrylate monosystem is selected from the group consisting of 1,6-hexanediol mono(meth)acrylate, 2-hydroxyethyl (meth) acrylate, 2-Hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenyloxypropyl (meth) acrylate, 1,4-butanediol ( Methyl) acrylate, 2-hydroxyalkyl (meth) propylene phthalate, 4-hydroxycyclohexyl (meth) acrylate, neopentyl glycol mono (meth) acrylate, tris (hydroxymethyl) B Alkane di(meth)acrylate, tris(hydroxymethyl)ethane di(meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol penta(meth)acrylate, pentaerythritol hexa(meth)acrylate Ester, dipentaerythritol hexa(meth) acrylate, glycerol di(meth) acrylate, t-hydrofuran methyl (meth) acrylate, isodecyl (meth) acrylate, 2-(2-B Oxyethoxyethyl)ethyl (meth) acrylate, stearic acid (meth) acrylate, lauryl (meth) acrylate, 2-phenoxyethyl (meth) acrylate, different (meth) acrylate, tridecyl (meth) acrylate, ethoxylated nonyl phenol (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (methyl) Acrylate, triethylene glycol di(meth)acrylate, t-ethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, 1,3-butanediol di(a) Acrylate, tripropylene glycol di(meth)acrylate, ethoxylated bisphenol-A di(meth)acrylate, cyclohexanedimethanol di(meth)acrylate, phenoxy-t-diol (Meth) acrylate, 2-methacryl oxiranyl ethyl phosphate, dimethylol tricyclodecane di(meth) acrylate, trimethylolpropane benzoate acrylate, hydrazine Acrylate, and mixtures thereof.

可自由基聚合型材料可以以20至60重量%的數量存在,以該導電層之組成物或該絕緣層之組成物的總量為基準。於此範圍之內,可以獲得在熱壓後之良好的可靠性和良好的接觸性能、連接電阻以及在黏附後於導電顆粒和電路構件之間的黏附性。The radically polymerizable material may be present in an amount of from 20 to 60% by weight based on the total of the composition of the conductive layer or the composition of the insulating layer. Within this range, good reliability after hot pressing and good contact properties, connection resistance, and adhesion between the conductive particles and the circuit member after adhesion can be obtained.

(c) 自由基起始劑(c) Free radical initiator

自由基起始劑可以選自於光聚合化起始劑、熱固化起始劑以及其等之混合物。光聚合化起始劑之特定的實例包括二苯基酮、鄰苯甲醯苯甲酸甲酯(methyl o-benzoyl benzoate)、4-苯甲醯基-4-甲基硫化二苯基、異丙基噻酮(isopropylthioxanthone)、二乙基噻酮、乙基4-二乙基苯甲酸酯、安息香醚、苯甲醯基丙基醚、2-羥基-2-甲基-1-苯丙-1-酮以及二乙氧基苯乙酮。The radical initiator may be selected from the group consisting of photopolymerization initiators, heat curing initiators, and the like. Specific examples of the photopolymerization initiator include diphenyl ketone, methyl o-benzoyl benzoate, 4-benzylidene-4-methylsulfide diphenyl, isopropyl Thiophene Ketone (isopropylthioxanthone), diethyl thiophene Ketone, ethyl 4-diethyl benzoate, benzoin ether, benzhydryl propyl ether, 2-hydroxy-2-methyl-1-phenylpropan-1-one, and diethoxyacetophenone .

如同熱固化起始劑,可以使用過氧化物起始劑與偶氮起始劑。過氧化物起始劑之特定的實例包括過月桂酸三級丁酯、1,1,3,3-t-甲基丁基過氧-2-乙基已酸酯、2,5-二甲基-2,5-二(2-乙基己醯基過氧)已烷、1-環己基-1-甲基乙基過氧-2-乙基已酸酯、2,5-二甲基-2,5-二(間-甲苯甲醯基過氧)已烷、三級丁基過氧異丙基碳酸酯、三級丁基過氧-2-乙基己基碳酸酯、三級己基過氧苯甲酸酯、三級丁基過氧乙酸酯、雙異苯丙基過氧化物、2,5,-二甲基-2,5-二(三級丁基過氧)已烷、三級丁基異苯丙基過氧化物、三級己基過氧新癸酸酯、三級己基過氧-2-乙基已酸酯、三級丁基過氧-2-2-乙基三級丁基、三級丁基過氧異丁酸酯、1,1-雙(三級丁基過氧)環已烷、三級己基過氧異丙基碳酸酯、三級丁基過氧-3,5,5-三甲基已酸酯、過氧異丁酸三級丁酯、異丙苯基過氧新癸酸酯、氫過氧化二異丙苯、氫過氧化異丙苯(cumene hydroperoxide)、過氧化異丁基、2,4-二氯苯甲醯過氧化物、3,5,5-三甲基己醯基過氧化物、過氧化辛醯基、過氧化月桂醯、過氧化硬脂醯、過氧化琥珀酸、過氧化苯甲醯、3,5,5-三甲基己醯基過氧化物、苯甲醯基過氧化甲苯、1,1,3,3-四甲基丁基過氧新癸酸酯、1-環己基-1-甲基乙基過氧新癸酸酯、過氧二碳酸二正丙酯、過氧碳酸二異丙酯、雙(4-三級丁基環己基)過氧二碳酸酯、過氧二碳酸二-2-乙氧基甲氧酯、二(2-乙基己基過氧)二碳酸酯、過氧二碳酸二甲氧基丁酯、二(3-甲基-3-甲氧基丁基過氧)二碳酸酯、1,1-雙(三級己基過氧)-3,3,5-三甲基環已烷、1,1-雙(三級己基過氧)環已烷、1,1-雙(三級丁基過氧)-3,3,5-三甲基環已烷、1,1-(三級丁基過氧)環十二烷、2,2-雙(三級丁基過氧)癸烷、三級丁基三甲基矽基過氧化物、雙(三級丁基)二甲基矽基過氧化物、三級丁基三烯丙基矽基過氧化物、雙(三級丁基)二烯丙基矽基過氧化物以及參(三級丁基)芳基矽基過氧化物。As the heat curing initiator, a peroxide initiator and an azo initiator can be used. Specific examples of the peroxide initiator include butyl laurate, 1,1,3,3-t-methylbutylperoxy-2-ethylhexanoate, 2,5-dimethyl Base-2,5-bis(2-ethylhexylperoxy)hexane, 1-cyclohexyl-1-methylethylperoxy-2-ethylhexanoate, 2,5-dimethyl -2,5-di(m-tolylmethyl peroxy)hexane, tertiary butyl peroxyisopropyl carbonate, tertiary butyl peroxy-2-ethylhexyl carbonate, tertiary hexyl Oxybenzoic acid ester, tertiary butyl peroxyacetate, bisisophenylpropyl peroxide, 2,5,-dimethyl-2,5-di(tertiary butylperoxy)hexane, Tert-butyl butyl isopropyl propyl peroxide, tertiary hexyl peroxy neodecanoate, tertiary hexyl peroxy-2-ethyl hexanoate, tertiary butyl peroxy-2-2-ethyl Butyl, tert-butylperoxy isobutyrate, 1,1-bis(tri-butylperoxy)cyclohexane, tertiary hexylperoxyisopropyl carbonate, tertiary butyl peroxy- 3,5,5-trimethylhexanoate, butyl peroxyisobutyrate, cumene peroxy neodecanoate, dicumyl hydroperoxide, cumene hydroperoxide (cumene) Hydroperoxide), isobutyl peroxide, 2,4-dichlorobenzene Peroxide, 3,5,5-trimethylhexyl peroxide, octyl peroxylate, lauric acid peroxide, stearyl peroxide, succinic acid peroxide, benzammonium peroxide, 3,5, 5-trimethylhexyl peroxide, benzamidine peroxytoluene, 1,1,3,3-tetramethylbutyl peroxy neodecanoate, 1-cyclohexyl-1-methyl Base peroxy neodecanoate, di-n-propyl peroxydicarbonate, diisopropyl peroxycarbonate, bis(4-tert-butylcyclohexyl)peroxydicarbonate, di-2-oxoperate Ethoxymethoxy, bis(2-ethylhexylperoxy)dicarbonate, dimethoxybutyl peroxydicarbonate, bis(3-methyl-3-methoxybutylperoxy) Carbonate, 1,1-bis(tri-hexylperoxy)-3,3,5-trimethylcyclohexane, 1,1-bis(tri-hexylperoxy)cyclohexane, 1,1-double (tertiary butyl peroxy)-3,3,5-trimethylcyclohexane, 1,1-(tertiary butylperoxy)cyclododecane, 2,2-bis(tributyl) Oxygen) decane, tertiary butyl trimethyl decyl peroxide, bis (tertiary butyl) dimethyl decyl peroxide, tertiary butyl triallyl decyl peroxide, bis ( Tertiary butyl) diallyl sulfhydryl peroxidation And reference (tert.butyl) aryl silicon based peroxide.

偶氮起始劑之特定的實例包括,但是不限於,2,2’-偶氮雙(4-甲氧基-2,4-二甲基戊腈)、二甲基2,2’-偶氮雙(2-甲基丙酸酯)、2,2’-偶氮雙(N-環己基-2-甲基丙醯胺)、2,2-偶氮雙(2,4-二甲基戊腈)、2,2’-偶氮雙(2-甲基丁腈)、2,2’-偶氮雙[N-(2-丙烯基)-2-甲基丙醯胺]、2,2’-偶氮雙(N-丁基-2-甲基丙醯胺)、2,2’-偶氮雙[N-(2-丙烯基)-2-甲基丙醯胺]、1,1’-偶氮雙(環己烷-1-甲腈),以及1-[(氰基-1-甲基乙基)偶氮]甲醯胺。Specific examples of azo starters include, but are not limited to, 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile), dimethyl 2,2'-couple Nitrogen bis(2-methylpropionate), 2,2'-azobis(N-cyclohexyl-2-methylpropionamide), 2,2-azobis(2,4-dimethyl Valeronitrile), 2,2'-azobis(2-methylbutyronitrile), 2,2'-azobis[N-(2-propenyl)-2-methylpropanamide], 2, 2'-Azobis(N-butyl-2-methylpropionamide), 2,2'-azobis[N-(2-propenyl)-2-methylpropanamide], 1, 1'-Azobis(cyclohexane-1-carbonitrile), and 1-[(cyano-1-methylethyl)azo]carbamamine.

此等起始劑可以單獨使用或是如其等之2或更多個之混合物來使用。自由基起始劑的含量係予以決定於使黏合劑內之固化的能力以及黏合劑的防腐性能平衡的範圍之內。該起始劑可以以0.5至10重量%的數量存在,以該導電層之組成物或該絕緣層之組成物的總量為基準。此範圍保證良好的固化速度,導致優秀的熱壓特徵,以及使在重做後能夠移除該異向性導電膜。These initiators may be used singly or as a mixture of two or more thereof. The content of the radical initiator is determined within the range in which the ability to cure in the binder and the corrosion resistance of the binder are balanced. The initiator may be present in an amount of from 0.5 to 10% by weight based on the total of the composition of the conductive layer or the composition of the insulating layer. This range ensures a good curing speed, resulting in excellent hot pressing characteristics and the ability to remove the anisotropic conductive film after redoing.

(d)導電顆粒(d) Conductive particles

導電顆粒係予以分散於絕緣黏合劑內以電氣接連構件。導電顆粒係包括於該導電層內。導電顆粒可以為本技藝中已知的該等之任一者。舉例而言,導電顆粒可以為金屬顆粒(例如Au、Ag、Ni、Cu及Pb顆粒)、碳顆粒、金屬塗覆的聚合物樹脂顆粒,或是表面絕緣的金屬塗覆的聚合物樹脂顆粒。聚合物樹脂之實例包括,但是不限於,聚乙烯、聚丙烯、聚酯、聚苯乙烯以及聚乙烯醇。塗覆於聚合物樹脂上之金屬之實例包括,但是不限於,Au、Ag、Ni、Cu以及Pb。The conductive particles are dispersed in an insulating adhesive to electrically connect the members. Conductive particles are included in the conductive layer. The electrically conductive particles can be any of those known in the art. For example, the conductive particles may be metal particles (eg, Au, Ag, Ni, Cu, and Pb particles), carbon particles, metal coated polymer resin particles, or surface-insulated metal-coated polymer resin particles. Examples of the polymer resin include, but are not limited to, polyethylene, polypropylene, polyester, polystyrene, and polyvinyl alcohol. Examples of the metal coated on the polymer resin include, but are not limited to, Au, Ag, Ni, Cu, and Pb.

特別地,就銦錫氧化物(ITO)玻璃的表面為一黏附體(adherend)之外導線接合(OLB)來說,導電顆粒的核心較佳地由塑膠材料所構成來保護ITO不受施加來連接該異向性導電膜至該黏附體的一壓力所損傷。於該異向性導電膜連接至一PCB的事例中,可以使用金屬顆粒,例如Ni顆粒。就一電漿顯示面板(PDP)來說,可以使用鍍金(Au)的金屬顆粒(例如,Ni顆粒)因為非常高的伏特被施加至電路。就覆晶玻璃(COG)或窄間距的覆晶薄膜(COF)來說,可以使用表面覆蓋熱塑性樹脂的絕緣的導電顆粒。In particular, in the case of wire bonding (OLB) in which the surface of indium tin oxide (ITO) glass is an adherent, the core of the conductive particles is preferably composed of a plastic material to protect the ITO from application. A pressure connecting the anisotropic conductive film to the adherend is damaged. In the case where the anisotropic conductive film is attached to a PCB, metal particles such as Ni particles may be used. In the case of a plasma display panel (PDP), gold-plated (Au) metal particles (for example, Ni particles) can be used because very high volts are applied to the circuit. In the case of a flip-chip glass (COG) or a narrow-pitch flip chip (COF), insulating conductive particles whose surface is covered with a thermoplastic resin can be used.

導電顆粒的尺寸可以於1至30 μm的範圍內,較佳地3至20 μm的範圍內,取決於電路的間距以及可以依據預期的應用來恰當地選擇。導電顆粒可以以1至30重量%的數量存在,以該導電層之組成物或該異向性導電膜之組成物的總量為基準。此範圍可以保證穩定的連接可靠性以及能防止起因於熱壓的期間介於間距之間的導電顆粒之聚集作用的電氣短路。The size of the conductive particles may range from 1 to 30 μm, preferably from 3 to 20 μm, depending on the pitch of the circuit and may be appropriately selected depending on the intended application. The conductive particles may be present in an amount of from 1 to 30% by weight based on the total of the composition of the conductive layer or the composition of the anisotropic conductive film. This range can ensure stable connection reliability and an electrical short circuit capable of preventing aggregation of conductive particles caused by the interval between hot pressing.

(e) 絕緣顆粒(e) Insulating particles

絕緣顆粒可以為無機顆粒、有機顆粒或混雜的有機/無機顆粒。絕緣顆粒可以被包括於該絕緣層及/或該導電層之內。絕緣顆粒給予該異向性導電膜可辨識性以及能防止導電顆粒之間的短路。The insulating particles may be inorganic particles, organic particles or mixed organic/inorganic particles. Insulating particles may be included in the insulating layer and/or within the conductive layer. The insulating particles impart visibility to the anisotropic conductive film and prevent short circuits between the conductive particles.

無機顆粒之實例包括,但是不限於,陶瓷顆粒(例如矽石(SiO2))、Al2O3、TiO2、ZnO、MgO、ZrO2、PbO、Bi2O3、MoO3、V2O5、Nb2O5、Ta2O5、WO3以及In2O3顆粒。亦可以使用此等有機顆粒之混合物。有機顆粒可以為,舉例而言,丙烯酸系珠。混雜的有機/無機顆粒可以為表面塗覆一有機材料的無機顆粒。Examples of the inorganic particles include, but are not limited to, ceramic particles (for example, vermiculite (SiO 2 )), Al 2 O 3 , TiO 2 , ZnO, MgO, ZrO 2 , PbO, Bi 2 O 3 , MoO 3 , V 2 O. 5 , Nb 2 O 5 , Ta 2 O 5 , WO 3 and In 2 O 3 particles. Mixtures of such organic particles can also be used. The organic particles may be, for example, acrylic beads. The hybrid organic/inorganic particles may be inorganic particles coated with an organic material on the surface.

矽石顆粒可以藉由液相方法,例如溶膠-凝膠和沉澱方法,以及汽相方法,例如焰式氧化,來產生。該等矽石顆粒可以為矽石凝膠或熔矽石顆粒之精细分割的顆粒。對於矽石顆粒的形狀沒有限定。舉例而言,矽石顆粒於形狀上可以是球形的、粉碎的或邊緣不明顯的。熔矽石可以是藉由用一電弧放電或一氫氧焰來熔化天然的石英或矽石予以產生之天然的矽石玻璃。熔矽石可以為藉由使用氫氧焰或氧電漿之氣體原料(例如四氯化矽或矽烷)的熱解作用予以合成之合成的矽石玻璃。亦可以使用天然的矽石玻璃以及合成的矽石玻璃之混合物。Vermiculite particles can be produced by liquid phase processes such as sol-gel and precipitation processes, as well as vapor phase processes such as flame oxidation. The vermiculite particles may be finely divided particles of vermiculite gel or fused stone particles. There is no limitation on the shape of the vermiculite particles. For example, the vermiculite particles may be spherical, comminuted or inconspicuous in shape. The molten vermiculite may be a natural vermiculite glass produced by melting natural quartz or vermiculite with an arc discharge or an oxyhydrogen flame. The molten vermiculite may be a synthetic vermiculite glass synthesized by pyrolysis of a gaseous material of an oxyhydrogen flame or an oxygen plasma such as hafnium tetrachloride or decane. Natural vermiculite glass and a mixture of synthetic vermiculite glass can also be used.

設若絕緣顆粒於尺寸(平均顆粒直徑)比起導電顆粒為更大的,於電子通訊方面可能會有問題。因而,絕緣顆粒較佳地比起導電顆粒為更小的。絕緣顆粒可以具有直徑0.1至20 μm的平均顆粒,較佳地,1至10 μm的平均顆粒。絕緣顆粒的平均粒度可以於0.1至20 μm的範圍內,較佳地,1至10 μm的範圍內依據預期的應用來恰當地選擇。對於絕緣顆粒的含量沒有限定。絕緣顆粒可以以0.1至20重量%的數量存在,以該導電層之組成物或該絕緣層之組成物的總量為基準。該導電層或該絕緣層不必要包括絕緣顆粒。It is assumed that if the insulating particles are larger in size (average particle diameter) than the conductive particles, there may be problems in electronic communication. Thus, the insulating particles are preferably smaller than the conductive particles. The insulating particles may have an average particle diameter of 0.1 to 20 μm, preferably an average particle size of 1 to 10 μm. The average particle size of the insulating particles may be suitably selected in the range of 0.1 to 20 μm, preferably in the range of 1 to 10 μm, depending on the intended application. There is no limitation on the content of the insulating particles. The insulating particles may be present in an amount of from 0.1 to 20% by weight based on the total of the composition of the conductive layer or the composition of the insulating layer. The conductive layer or the insulating layer does not necessarily include insulating particles.

於該導電層內之絕緣顆粒的含量(重量%)有關於該導電層內之組成物的總量較佳地更高於該絕緣層內之絕緣顆粒的含量有關於該絕緣層內之組成物的總量。特別地,該導電層可以包括2至20重量%的絕緣顆粒,以該導電層之組成物的總量為基準,以及該絕緣層可以包括0.1至10重量%的絕緣顆粒,以該絕緣層之組成物的總量為基準。The content (% by weight) of the insulating particles in the conductive layer is that the total amount of the composition in the conductive layer is preferably higher than the content of the insulating particles in the insulating layer, and the composition in the insulating layer The total amount. In particular, the conductive layer may include 2 to 20% by weight of insulating particles based on the total amount of the composition of the conductive layer, and the insulating layer may include 0.1 to 10% by weight of insulating particles, and the insulating layer The total amount of the composition is the basis.

(f) 偶合劑(f) coupling agent

該組成物可以進一步包含一偶合劑,其適用來提升無機材料的表面和異向性導電膜之間的黏合強度以及異向性導電膜對熱和溼度之抗性,導致連接可靠性之改善。該偶合劑較佳地係以0.1至5重量%的數量,較佳地0.1至2重量%的數量來添加,以該導電層之組成物或該絕緣層之組成物的總量為基準。於此範圍之內,達成了該黏合劑組成物之高的凝聚強度,因而預防黏合強度或可靠性的劣化。The composition may further comprise a coupling agent which is suitable for enhancing the bonding strength between the surface of the inorganic material and the anisotropic conductive film and the resistance of the anisotropic conductive film to heat and humidity, resulting in an improvement in connection reliability. The coupling agent is preferably added in an amount of 0.1 to 5% by weight, preferably 0.1 to 2% by weight, based on the total of the composition of the conductive layer or the composition of the insulating layer. Within this range, high cohesive strength of the binder composition is achieved, thereby preventing deterioration of adhesive strength or reliability.

該偶合劑可以為一本技藝中通常使用的矽烷偶合劑。此矽烷偶合劑之實例包括:含環氧基團矽烷化合物,例如2-(3,4-環氧環己基)乙基三甲氧基矽烷、3-縮水甘油氧三甲氧基矽烷和3-縮水甘油氧丙基三乙氧基矽烷;含胺基矽烷化合物,例如N-2-(胺基乙基)-3-胺基丙基甲基二甲氧基矽烷、N-2-(胺基乙基)-3-胺丙基三甲氧基矽烷、N-2-(胺基乙基)3-胺丙基三乙氧基矽烷、3-胺丙基三甲氧基矽烷、3-胺丙基三乙氧基矽烷、3-三乙氧基矽基-N-(1,3-二甲基亞丁基)丙胺基和N-苯基-3-胺丙基三甲氧基矽烷;含巰基矽烷化合物,例如3-巰基丙基甲基二甲氧基矽烷與3-巰基丙基三乙氧基矽烷;以及含異氰酸酯基矽烷化合物,例如3-異氰酸基丙基三乙氧基矽烷。此等矽烷偶合劑可以單獨使用或是如同其等之2或更多個之混合物來使用。The coupling agent can be a decane coupling agent commonly used in the art. Examples of the decane coupling agent include: an epoxy group-containing decane compound such as 2-(3,4-epoxycyclohexyl)ethyltrimethoxynonane, 3-glycidoxytrimethoxydecane, and 3-glycidol. Oxypropyl propyl triethoxy decane; an amine-containing decane compound such as N-2-(aminoethyl)-3-aminopropylmethyldimethoxydecane, N-2-(aminoethyl) 3-aminopropyltrimethoxydecane, N-2-(aminoethyl)3-aminopropyltriethoxydecane, 3-aminopropyltrimethoxydecane, 3-aminopropyltriethyl Oxydecane, 3-triethoxyindolyl-N-(1,3-dimethylbutylidene)propylamino and N-phenyl-3-aminopropyltrimethoxydecane; decyldecane-containing compounds, for example 3-mercaptopropylmethyldimethoxydecane and 3-mercaptopropyltriethoxydecane; and an isocyanate-containing decane compound such as 3-isocyanatopropyltriethoxydecane. These decane coupling agents may be used singly or as a mixture of two or more thereof.

(g) 其他的添加劑(g) Other additives

由該導電層和該絕緣層所組成之用於該異向性導電膜之組成物可以進一步包含選自於聚合作用抑制劑、抗氧化劑和熱穩定劑之一或更多個添加劑,以給予該異向性導電膜額外的物理性質而不犧牲該異向性導電膜之基本的物理性質。此等的添加劑可以以本技藝中已知的量呈現。The composition for the anisotropic conductive film composed of the conductive layer and the insulating layer may further comprise one or more additives selected from the group consisting of a polymerization inhibitor, an antioxidant, and a heat stabilizer to give the The anisotropic conductive film has additional physical properties without sacrificing the basic physical properties of the anisotropic conductive film. Such additives can be presented in amounts known in the art.

實施例1-2和比較實施例1-3Example 1-2 and Comparative Example 1-3

由下列的實施例及比較實施例(參見表1)將更好的領會本發明。此等實施例係提供僅用於作例證的目的以及不打算限制由附隨的申請專利範圍所定義之本發明的範疇。The invention will be better understood from the following examples and comparative examples (see Table 1). The examples are provided for illustrative purposes only and are not intended to limit the scope of the invention as defined by the scope of the appended claims.

實施例1Example 1

配於甲苯內之40 wt%的胺酯樹脂(D-ACE-540T,Dongsung Chemical(韓國))的一溶液(固體含量:50%)、配於甲基乙基酮(MEK)內之10 wt%的苯氧基樹脂(E4275,Japan Epoxy Resins Co.,Ltd.)的一溶液(固體含量:40%)、40 wt%的環氧(甲基)丙烯酸酯(SP1509,Showa Highpolymer)、2 wt%的2-甲基丙烯醯氧乙基磷酸酯、3 wt%的季戊四醇三(甲基)丙烯酸酯、3 wt%的2-羥乙基(甲基)丙烯酸酯以及2 wt%的過氧化苯甲醯係使用來形成一25 μm厚的絕緣黏合層,其具有2,000 Pa‧s的最低熔化黏度。A solution of 40 wt% amine ester resin (D-ACE-540T, Dongsung Chemical (Korea)) in toluene (solid content: 50%), 10 wt in methyl ethyl ketone (MEK) % solution of phenoxy resin (E4275, Japan Epoxy Resins Co., Ltd.) (solid content: 40%), 40 wt% of epoxy (meth) acrylate (SP1509, Showa Highpolymer), 2 wt % of 2-methylpropenyloxyethyl phosphate, 3 wt% of pentaerythritol tri(meth)acrylate, 3 wt% of 2-hydroxyethyl (meth) acrylate, and 2 wt% of benzoyl peroxide Formamidine is used to form a 25 μm thick insulating bond layer with a minimum melt viscosity of 2,000 Pa‧s.

配於甲苯內之10 wt%的丙烯腈-丁二烯樹脂(Nipol 1072,Nippon Zeon)的一溶液(固體含量:25%)、配於甲苯內之10 wt%的胺酯樹脂(D-ACE-540T,Dongsung Chemical(韓國))的一溶液(固體含量:50%)、配於MEK內之25 wt%的苯氧樹脂(E4275,Japan Epoxy Resins Co.,Ltd.)的一溶液(固體含量:40%)、30 wt%的環氧(甲基)丙烯酸酯(SP1509,Showa Highpolymer)、2 wt%的2-甲基丙烯醯氧乙基磷酸酯、8 wt%的季戊四醇三(甲基)丙烯酸酯、2 wt%的過氧化月桂醯、具有4.5 μm的平均顆粒直徑之8 wt%的鎳粉末以及具有1 μm的平均顆粒直徑之5 wt%的熔矽石係使用來形成一10 μm厚的導電黏合層,其具有7,000 Pa‧s的最低熔化黏度。A solution of 10 wt% acrylonitrile-butadiene resin (Nipol 1072, Nippon Zeon) in toluene (solid content: 25%), 10 wt% amine ester resin in toluene (D-ACE) a solution of -540T, Dongsung Chemical (Korea)) (solid content: 50%), a solution of 25 wt% of phenoxy resin (E4275, Japan Epoxy Resins Co., Ltd.) in MEK (solid content) : 40%), 30 wt% epoxy (meth) acrylate (SP1509, Showa Highpolymer), 2 wt% 2-methyl propylene oxyethyl phosphate, 8 wt% pentaerythritol tri (methyl) Acrylate, 2 wt% of barium peroxide, 8 wt% of nickel powder having an average particle diameter of 4.5 μm, and 5 wt% of vermiculite having an average particle diameter of 1 μm are used to form a 10 μm thick A conductive adhesive layer having a minimum melt viscosity of 7,000 Pa‧s.

該絕緣黏合層和該導電黏合層係予以層合以產生一35 μm厚的異向性導電膜。將該異向性導電膜切開成2 mm寬的樣本。The insulating adhesive layer and the conductive adhesive layer are laminated to produce a 35 μm thick anisotropic conductive film. The anisotropic conductive film was cut into a sample having a width of 2 mm.

實施例2Example 2

一異向性導電膜係以實施例1中之相同的方式予以產生,除了2-羥乙基(甲基)丙烯酸酯以及3-縮水甘油氧丙基三乙氧基矽烷係各別地以2 wt%和1 wt%的量來使用之外,來形成具有2,000 Pa‧s的最低熔化黏度之一絕緣黏合層。An anisotropic conductive film was produced in the same manner as in Example 1, except that 2-hydroxyethyl (meth) acrylate and 3-glycidoxypropyl triethoxy decane were each independently 2 An amount of wt% and 1 wt% was used to form an insulating bonding layer having a minimum melt viscosity of 2,000 Pa‧s.

比較實施例1Comparative Example 1

一異向性導電膜係以實施例1中之相同的方式予以產生,除了絕緣黏合層和導電黏合層的厚度各別地改變成10 μm和25 μm之外。An anisotropic conductive film was produced in the same manner as in Example 1 except that the thicknesses of the insulating adhesive layer and the conductive adhesive layer were changed to 10 μm and 25 μm, respectively.

比較實施例2Comparative Example 2

配於甲苯內之10 wt%的丙烯腈丁二烯樹脂(Nipol 1072,Nippon Zeon)的一溶液(固體含量:25%)、配於甲苯內之10 wt%的胺酯樹脂(D-ACE-540T,Dongsung Chemical(韓國))的一溶液(固體含量:50%)、配於MEK內之33 wt%的苯氧樹脂(E4275,Japan Epoxy Resins Co.,Ltd.)的一溶液(固體含量:40%)、30 wt%的環氧(甲基)丙烯酸酯(SP1509,Showa Highpolymer)、2 wt%的2-甲基丙烯醯氧乙基磷酸酯、8 wt%的季戊四醇三(甲基)丙烯酸酯、2 wt%的過氧化月桂醯以及具有1 μm的平均顆粒直徑之5 wt%的熔矽石係使用來形成一25 μm厚的絕緣黏合層,其具有9,000 Pa‧s的最低熔化黏度。A solution of 10 wt% acrylonitrile butadiene resin (Nipol 1072, Nippon Zeon) in toluene (solid content: 25%), 10 wt% amine ester resin in toluene (D-ACE- 540T, a solution of Dongsung Chemical (Korea)) (solid content: 50%), a solution of 33 wt% of phenoxy resin (E4275, Japan Epoxy Resins Co., Ltd.) in MEK (solid content: 40%), 30 wt% epoxy (meth) acrylate (SP1509, Showa Highpolymer), 2 wt% 2-methyl propylene oxyethyl phosphate, 8 wt% pentaerythritol tri (meth) acrylate Ester, 2 wt% of lauricium laurate and 5 wt% of fused vermiculite having an average particle diameter of 1 μm were used to form a 25 μm thick insulating bonding layer having a minimum melt viscosity of 9,000 Pa‧s.

配於甲苯內之40 wt%的胺酯樹脂(D-ACE-540T,Dongsung Chemical(韓國))的一溶液(固體含量:50%)、配於MEK內之2 wt%的苯氧樹脂(E4275,Japan Epoxy Resins Co.,Ltd.)的一溶液(固體含量:40%)、40 wt%的環氧(甲基)丙烯酸酯(SP1509,Showa Highpolymer)、2 wt%的2-甲基丙烯醯氧乙基磷酸酯、3 wt%的季戊四醇三(甲基)丙烯酸酯、3 wt%的2-羥乙基(甲基)丙烯酸酯、2 wt%的過氧化苯甲醯以及具有4.5 μm的平均顆粒直徑之8 wt%的鎳粉末係使用來形成一10 μm厚的導電黏合層,其具有2,000 Pa‧s的最低熔化黏度。A solution of 40 wt% of an amine ester resin (D-ACE-540T, Dongsung Chemical (Korea)) in toluene (solid content: 50%), 2 wt% of phenoxy resin (ME4275) in MEK , Japan Epoxy Resins Co., Ltd.) a solution (solid content: 40%), 40 wt% epoxy (meth) acrylate (SP1509, Showa Highpolymer), 2 wt% 2-methyl propylene oxime Oxyethyl phosphate, 3 wt% pentaerythritol tri(meth)acrylate, 3 wt% 2-hydroxyethyl (meth) acrylate, 2 wt% benzammonium peroxide and having an average of 4.5 μm A nickel powder of 8 wt% of the particle diameter was used to form a 10 μm thick conductive adhesive layer having a minimum melt viscosity of 2,000 Pa‧s.

該絕緣黏合層和該導電黏合層係予以層合以產生一異向性導電膜。The insulating adhesive layer and the conductive adhesive layer are laminated to produce an anisotropic conductive film.

比較實施例3Comparative Example 3

一具有1,500 Pa‧s的最低熔化黏度之25 μm厚的絕緣黏合層係以實施例1中之相同的方式予以形成,除了使用配於MEK內之5 wt%的苯氧樹脂(E4275,Japan Epoxy Resins Co.,Ltd.)的一溶液(固體含量:40%)以及45 wt%的環氧(甲基)丙烯酸酯(SP1509,Showa Highpolymer)。A 25 μm thick insulating adhesive layer having a minimum melt viscosity of 1,500 Pa‧s was formed in the same manner as in Example 1, except that 5 wt% of phenoxy resin (E4275, Japan Epoxy) was used in MEK. A solution of Resins Co., Ltd. (solid content: 40%) and 45 wt% of epoxy (meth) acrylate (SP1509, Showa Highpolymer).

一具有4,000 Pa‧s的最低熔化黏度之10 μm厚的導電黏合層係以實施例1中之相同的方式予以形成,除了使用配於MEK內之20 wt%的苯氧樹脂(E4275,Japan Epoxy Resins Co.,Ltd.)的一溶液(固體含量:40%)和40 wt%的環氧(甲基)丙烯酸酯(SP1509,Showa Highpolymer)以及不使用矽石之外。A 10 μm thick conductive adhesive layer having a minimum melt viscosity of 4,000 Pa‧s was formed in the same manner as in Example 1, except that 20 wt% of phenoxy resin (E4275, Japan Epoxy) was used in MEK. A solution of Resins Co., Ltd. (solid content: 40%) and 40 wt% of epoxy (meth) acrylate (SP1509, Showa Highpolymer) and no use of vermiculite.

該絕緣黏合層和該導電黏合層係予以層合以產生一異向性導電膜。The insulating adhesive layer and the conductive adhesive layer are laminated to produce an anisotropic conductive film.

於實施例1-2以及比較實施例1-3中產生的異向性導電膜的特徵係藉由下列的方法予以評估。結果係顯示於表2中。The characteristics of the anisotropic conductive film produced in Example 1-2 and Comparative Example 1-3 were evaluated by the following methods. The results are shown in Table 2.

[最低熔化黏度][minimum melt viscosity]

最低熔化黏度值係使用一ARES G2流變計(TA Instruments)於下列的條件下予以測量:The lowest melt viscosity values were measured using an ARES G2 rheometer (TA Instruments) under the following conditions:

熱率:10℃/minHeat rate: 10 ° C / min

應變:5%Strain: 5%

頻率:1 rad/sFrequency: 1 rad/s

溫度區域:30-200℃Temperature range: 30-200 ° C

關於測量,使用一平行板以及一鋁可丟棄板(直徑:8 mm)。For the measurement, a parallel plate and an aluminum discardable plate (diameter: 8 mm) were used.

[黏合強度及連接電阻][Binding strength and connection resistance]

使用一PCB(終端寬度:100 μm,終端之間的間隔:100 μm)以及COF(終端寬度:100 μm,終端之間的間隔:100 μm來評估異向性導電膜的性能。PCB和COF具有200 μm的間距。The performance of the anisotropic conductive film was evaluated using a PCB (terminal width: 100 μm, spacing between terminals: 100 μm) and COF (terminal width: 100 μm, spacing between terminals: 100 μm. PCB and COF have 200 μm spacing.

在異向性導電膜的各個以1 MPa和70℃對著PCB的電路終端預備性壓擠歷時1 sec之後,移除一離形薄膜。隨後,把COF的電路終端放在面對PCB的電路終端的位置,跟隨以3.0 MPa和160℃熱壓歷時5 sec以產生一樣本。測量該樣本的90°的黏合強度及連接電阻。在儲存於85℃的溫度和85%之相對溼度歷時500 hr之後,測量該樣本的連接電阻。A release film was removed after each of the anisotropic conductive films was preliminarily pressed against the circuit terminals of the PCB at 1 MPa and 70 ° C for 1 sec. Subsequently, the circuit terminal of the COF was placed at the position of the circuit terminal facing the PCB, followed by a thermal pressure of 3.0 MPa and 160 ° C for 5 sec to produce the same. The 90° bond strength and connection resistance of the sample were measured. The connection resistance of the sample was measured after storage at a temperature of 85 ° C and a relative humidity of 85% for 500 hr.

該樣本的黏合強度係使用一萬能試驗機(UTM)(H5KT,TINIUS OLSEN)予以測量以及該樣本的連接電阻係使用MULTIMETER 2000(KEITHLEY)予以測量。The adhesion strength of the sample was measured using a universal testing machine (UTM) (H5KT, TINIUS OLSEN) and the connection resistance of the sample was measured using a MULTIMETER 2000 (KEITHLEY).

[可辨識性][identifiability]

對著PCB終端預備性壓擠的異向性導電膜之影像係使用一顯微鏡(BX51,OLYMPUS)來取得以及其等之亮度值由0(黑色)至255(白色)予以評分。當該異向性導電膜的亮度為比PCB終端的亮度更低至少20%時,判斷該異向性導電膜為可辨識的。The image of the anisotropic conductive film which is preliminarily pressed against the PCB terminal is obtained by using a microscope (BX51, OLYMPUS) and the luminance values thereof are scored from 0 (black) to 255 (white). When the brightness of the anisotropic conductive film is at least 20% lower than the brightness of the PCB terminal, it is judged that the anisotropic conductive film is discernible.

[壓擠後之面積比][area ratio after crushing]

將玻璃基材放置於異向性導電膜的各個之一樣本(尺寸:2mm×10mm)之上以及於一樣本之下,跟隨以3 MPa(以該樣本區為主)及160℃(以該異向性導電膜的偵測溫度為基礎)壓擠歷時5 sec。在壓擠之後,該絕緣層的面積對該導電層的面積之比率(以最外邊的顆粒為基準)係被予以測量的。The glass substrate was placed on one of the samples (size: 2 mm × 10 mm) of each of the anisotropic conductive films and under the same, followed by 3 MPa (mainly in the sample area) and 160 ° C (in the case The detection temperature of the anisotropic conductive film is based on the pressing time of 5 sec. After the extrusion, the ratio of the area of the insulating layer to the area of the conductive layer (based on the outermost particles) was measured.

於實施例1-2中產生的異向性導電膜的各個中,該導電層的最低熔化黏度係比該絕緣層的最低熔化黏度更大的以及該絕緣層的厚度係大於該導電層。於比較實施例2的異向性導電膜中,該絕緣層的最低熔化黏度係比該導電層的最低熔化黏度更大。如同可以由表2中的結果看見的,實施例1-2的異向性導電膜就黏合強度、連接電阻和可辨識性方面來說顯示出更好的特徵,而比較實施例2的異向性導電膜顯示出較低的黏合強度以及較高的連接電阻。特別地,比較實施例2的異向性導電膜在儲存於85℃的溫度和85%之相對溼度歷時500 hr之後具有非常高的連接電阻,指示出該膜之非常差的可靠性。於比較實施例1的異向性導電膜中,該絕緣層係比該導電層更薄。比較實施例1的異向性導電膜具有非常低的黏合強度以及高的連接電阻。In each of the anisotropic conductive films produced in Example 1-2, the lowest melt viscosity of the conductive layer is greater than the lowest melt viscosity of the insulating layer and the thickness of the insulating layer is greater than the conductive layer. In the anisotropic conductive film of Comparative Example 2, the lowest melt viscosity of the insulating layer was greater than the lowest melt viscosity of the conductive layer. As can be seen from the results in Table 2, the anisotropic conductive films of Examples 1-2 showed better characteristics in terms of adhesive strength, connection resistance, and identifiability, while the anisotropy of Comparative Example 2 was observed. The conductive film exhibits a lower bonding strength and a higher connection resistance. In particular, the anisotropic conductive film of Comparative Example 2 had a very high connection resistance after storage at a temperature of 85 ° C and a relative humidity of 85% for 500 hr, indicating a very poor reliability of the film. In the anisotropic conductive film of Comparative Example 1, the insulating layer was thinner than the conductive layer. The anisotropic conductive film of Comparative Example 1 had a very low adhesive strength and a high connection resistance.

於比較實施例3的異向性導電膜中,介於該絕緣層和該導電層之間的最低熔化黏度之差異為2,500 Pa‧s。比較實施例3的異向性導電膜具有低的黏合強度以及在儲存於85℃的溫度和85%之相對溼度歷時500 hr之後之高的連接電阻,指示出該膜之非常差的可靠性。比較實施例3的異向性導電膜具有如同實施例1-2的異向性導電膜之相同的厚度,但是其顯示出不好的可辨識性,其係由於缺少矽石顆粒作為絕緣顆粒。In the anisotropic conductive film of Comparative Example 3, the difference in the lowest melt viscosity between the insulating layer and the conductive layer was 2,500 Pa‧s. The anisotropic conductive film of Comparative Example 3 had a low adhesive strength and a high connection resistance after storage at a temperature of 85 ° C and a relative humidity of 85% for 500 hr, indicating a very poor reliability of the film. The anisotropic conductive film of Comparative Example 3 had the same thickness as the anisotropic conductive film of Example 1-2, but it showed poor recognizability due to the lack of vermiculite particles as insulating particles.

如同由前述而為明顯的,本發明的異向性導電膜係如此的建構以致導電層的最低熔化黏度係比絕緣層的最低熔化黏度更大。由於此建構,介於導電顆粒之間的短路可以防止以及連接電阻可以減少。As is apparent from the foregoing, the anisotropic conductive film of the present invention is constructed such that the lowest melt viscosity of the conductive layer is greater than the lowest melt viscosity of the insulating layer. Due to this construction, a short circuit between the conductive particles can be prevented and the connection resistance can be reduced.

此外,本發明的異向性導電膜係如此的建構以致絕緣層係比導電層為更厚的以及含有絕緣顆粒。此提供足夠的黏附力於電路構件之間以及導致顯著地改善的可辨識性。Further, the anisotropic conductive film of the present invention is constructed such that the insulating layer is thicker than the conductive layer and contains insulating particles. This provides sufficient adhesion between the circuit components and results in significantly improved identifiability.

本發明的異向性導電膜可以應用至各種各樣的電子裝置,包括需要電氣接連之用於監視器、TVs、筆記型電腦、輸入板個人電腦以及行動電話之平板顯示器,因為其之低的連接電阻、足夠的黏合強度以及良好的可辨識性。The anisotropic conductive film of the present invention can be applied to various electronic devices, including flat panel displays for monitors, TVs, notebook computers, tablet personal computers, and mobile phones, which are required to be electrically connected, because of their low Connection resistance, sufficient bond strength and good identifiability.

100...異向性導電膜100. . . Anisotropic conductive film

102...絕緣黏合層/絕緣層102. . . Insulating adhesive layer / insulation layer

104/102...導電黏合層/導電層104/102. . . Conductive adhesive layer / conductive layer

106...導電顆粒106. . . Conductive particles

108...絕緣顆粒108. . . Insulating particles

120...絕緣層120. . . Insulation

200...TCP200. . . TCP

202...電路終端202. . . Circuit terminal

300...LCD面板300. . . LCD panel

302...電極302. . . electrode

第1圖為依據本發明的一例示性具體例之一異向性導電膜的一橫截面圖;1 is a cross-sectional view showing an anisotropic conductive film according to an exemplary embodiment of the present invention;

第2圖為用於解釋依據本發明的一例示性具體例之一異向性導電膜的組分層之最低熔化黏度之測量的一概念圖;以及2 is a conceptual diagram for explaining measurement of a minimum melt viscosity of a constituent layer of an anisotropic conductive film according to an exemplary specific example of the present invention;

第3圖為用於解釋使用依據本發明的一例示性具體例之一異向性導電膜的捲帶式自動接合(TAB)方法的一橫截面圖。Fig. 3 is a cross-sectional view for explaining a tape automated bonding (TAB) method using an anisotropic conductive film according to an exemplary embodiment of the present invention.

100...異向性導電膜100. . . Anisotropic conductive film

102...絕緣黏合層/絕緣層102. . . Insulating adhesive layer / insulation layer

104...導電黏合層/導電層104. . . Conductive adhesive layer / conductive layer

106...導電顆粒106. . . Conductive particles

108...絕緣顆粒108. . . Insulating particles

200...TCP200. . . TCP

202...電路終端202. . . Circuit terminal

300...LCD面板300. . . LCD panel

302...電極302. . . electrode

Claims (24)

一種異向性導電膜,其包含一絕緣層和一導電層,該導電層係被層合於該絕緣層之上且含有導電顆粒,其中在把玻璃基材面朝彼此放在該異向性導電膜的上部表面和下部表面之上並且在以3MPa及160℃對著該異向性導電膜壓擠歷時5sec之後,該絕緣層的面積對該導電層的面積之比率為由1.4:1至3.0:1,其中該壓力係以該樣本區為主來量測,且該溫度係以該異向性導電膜的偵測溫度為主。 An anisotropic conductive film comprising an insulating layer and a conductive layer laminated on the insulating layer and containing conductive particles, wherein the glass substrates are placed facing each other in the anisotropy After the upper surface and the lower surface of the conductive film are pressed against the anisotropic conductive film at 3 MPa and 160 ° C for 5 sec, the ratio of the area of the insulating layer to the area of the conductive layer is from 1.4:1 to 3.0:1, wherein the pressure is measured mainly by the sample area, and the temperature is mainly based on the detection temperature of the anisotropic conductive film. 如申請專利範圍第1項之異向性導電膜,其中該導電層的最低熔化黏度係高於該絕緣層的最低熔化黏度3,000至48,000Pa‧s。 The anisotropic conductive film of claim 1, wherein the conductive layer has a lowest melt viscosity higher than a minimum melt viscosity of the insulating layer of 3,000 to 48,000 Pa‧s. 如申請專利範圍第1項之異向性導電膜,其中該導電層的最低熔化黏度為4,000至50,000Pa‧s。 The anisotropic conductive film of claim 1, wherein the conductive layer has a minimum melt viscosity of 4,000 to 50,000 Pa‧s. 如申請專利範圍第1項之異向性導電膜,其中該絕緣層的最低熔化黏度係2,000至10,000Pa‧s。 The anisotropic conductive film of claim 1, wherein the insulating layer has a minimum melt viscosity of 2,000 to 10,000 Pa‧s. 如申請專利範圍第1項之異向性導電膜,其中該絕緣層係比該導電層更厚。 The anisotropic conductive film of claim 1, wherein the insulating layer is thicker than the conductive layer. 如申請專利範圍第1項之異向性導電膜,其中該絕緣層係比該導電層更厚但低於其4倍厚。 The anisotropic conductive film of claim 1, wherein the insulating layer is thicker than the conductive layer but less than 4 times thicker. 如申請專利範圍第1項之異向性導電膜,其中該導電層或該絕緣層包含絕緣顆粒。 The anisotropic conductive film of claim 1, wherein the conductive layer or the insulating layer comprises insulating particles. 如申請專利範圍第7項之異向性導電膜,其中該等絕緣顆粒係以0.1至20重量%之數量存在,以用於該導電層之 組成物或用於該絕緣層之組成物的總量為基準。 The anisotropic conductive film of claim 7, wherein the insulating particles are present in an amount of 0.1 to 20% by weight for use in the conductive layer. The total amount of the composition or the composition for the insulating layer is used as a reference. 如申請專利範圍第7項之異向性導電膜,其中在該導電層內之該等絕緣顆粒的含量(重量%)(其係相對於用於該導電層之組成物的總量),係高於在該絕緣層內之該等絕緣顆粒的含量(其係相對於用於該絕緣層內之組成物的總量)。 The anisotropic conductive film of claim 7, wherein the content (% by weight) of the insulating particles in the conductive layer (which is relative to the total amount of the composition for the conductive layer) is It is higher than the content of the insulating particles in the insulating layer (which is relative to the total amount of the composition used in the insulating layer). 如申請專利範圍第7項之異向性導電膜,其中該等絕緣顆粒係以2至20重量%之數量存在,以用於該導電層之組成物的總量為基準。 The anisotropic conductive film of claim 7, wherein the insulating particles are present in an amount of from 2 to 20% by weight based on the total amount of the composition of the conductive layer. 如申請專利範圍第7項之異向性導電膜,其中該等絕緣顆粒係以0.1至10重量%之數量存在,以用於該絕緣層之組成物的總量為基準。 The anisotropic conductive film of claim 7, wherein the insulating particles are present in an amount of 0.1 to 10% by weight based on the total amount of the composition for the insulating layer. 如申請專利範圍第1項之異向性導電膜,其中該導電層包含1至30重量%之該等導電顆粒,以用於該導電層之組成物的總量為基準。 The anisotropic conductive film of claim 1, wherein the conductive layer contains 1 to 30% by weight of the conductive particles based on the total amount of the composition of the conductive layer. 如申請專利範圍第1項之異向性導電膜,其中一用於該導電層之組成物或一用於該絕緣層之組成物包含一聚合物樹脂、一可自由基聚合型材料以及一自由基起始劑。 An anisotropic conductive film according to claim 1, wherein a composition for the conductive layer or a composition for the insulating layer comprises a polymer resin, a radical polymerizable material, and a free Base initiator. 如申請專利範圍第13項之異向性導電膜,其中該聚合物樹脂包含選自於以下之至少一樹脂:烯烴型樹脂、丁二烯樹脂、丙烯腈-丁二烯共聚物、羧基終止型丙烯腈-丁二烯共聚物、聚醯亞胺樹脂、聚醯胺樹脂、聚酯樹脂、聚乙烯丁醛樹脂、乙烯-乙酸乙烯酯共聚物、苯乙烯-丁 烯-苯乙烯(SBS)樹脂、苯乙烯-乙烯-丁烯-苯乙烯(SEBS)樹脂、丙烯腈-丁二烯橡膠(NBRs)、胺甲酸酯(urethane)樹脂、(甲基)丙烯酸樹脂以及苯氧基樹脂。 The anisotropic conductive film of claim 13, wherein the polymer resin comprises at least one resin selected from the group consisting of an olefin resin, a butadiene resin, an acrylonitrile-butadiene copolymer, and a carboxyl terminated type. Acrylonitrile-butadiene copolymer, polyimine resin, polyamide resin, polyester resin, polyvinyl butyral resin, ethylene-vinyl acetate copolymer, styrene-butyl Alkene-styrene (SBS) resin, styrene-ethylene-butylene-styrene (SEBS) resin, acrylonitrile-butadiene rubber (NBRs), urethane resin, (meth)acrylic resin And phenoxy resin. 如申請專利範圍第1項之異向性導電膜,其中該導電層和該絕緣層的各個包含一聚合物樹脂,其具有50,000至1,000,000的分子量。 The anisotropic conductive film of claim 1, wherein each of the conductive layer and the insulating layer comprises a polymer resin having a molecular weight of 50,000 to 1,000,000. 如申請專利範圍第15項之異向性導電膜,其中該聚合物樹脂係以20至60重量%之數量存在,以用於該導電層之組成物的總量為基準。 The anisotropic conductive film of claim 15, wherein the polymer resin is present in an amount of from 20 to 60% by weight based on the total amount of the composition for the conductive layer. 如申請專利範圍第15項之異向性導電膜,其中該聚合物樹脂係以30至70重量%之數量存在,以用於該絕緣層之組成物的總量為基準。 The anisotropic conductive film of claim 15, wherein the polymer resin is present in an amount of from 30 to 70% by weight based on the total amount of the composition for the insulating layer. 如申請專利範圍第13項之異向性導電膜,其中該可自由基聚合型材料包含一(甲基)丙烯酸酯單體(寡聚物)或一胺酯丙烯酸酯單體(寡聚物)。 The anisotropic conductive film of claim 13, wherein the radically polymerizable material comprises a (meth) acrylate monomer (oligomer) or a urethane acrylate monomer (oligomer) . 如申請專利範圍第13項之異向性導電膜,其中該可自由基聚合型材料係以20至60重量%之數量存在,以用於該導電層之該組成物或用於該絕緣層之該組成物的總量為基準。 The anisotropic conductive film of claim 13, wherein the radically polymerizable material is present in an amount of from 20 to 60% by weight for the composition of the conductive layer or for the insulating layer The total amount of the composition is based on the benchmark. 如申請專利範圍第13項之異向性導電膜,其中該自由基起始劑包含選自於光聚合化起始劑及熱固化起始劑之至少一個起始劑。 The anisotropic conductive film of claim 13, wherein the radical initiator comprises at least one initiator selected from the group consisting of a photopolymerization initiator and a heat curing initiator. 如申請專利範圍第13項之異向性導電膜,其中該可自由基聚合型材料係以0.5至10重量%之數量存在,以用於該 導電層之組成物或用於該絕緣層之組成物的總量為基準。 The anisotropic conductive film of claim 13, wherein the radically polymerizable material is present in an amount of from 0.5 to 10% by weight for use in the The total amount of the composition of the conductive layer or the composition for the insulating layer is used as a reference. 如申請專利範圍第13項之異向性導電膜,其中用於該導電層之該組成物或用於該絕緣層之該組成物進一步包含一矽烷偶合劑。 The anisotropic conductive film of claim 13, wherein the composition for the conductive layer or the composition for the insulating layer further comprises a decane coupling agent. 如申請專利範圍第22項之異向性導電膜,其中該矽烷偶合劑係以0.1至5重量%之數量存在,以用於該導電層之該組成物或用於該絕緣層之該組成物的總量為基準。 The anisotropic conductive film of claim 22, wherein the decane coupling agent is present in an amount of 0.1 to 5% by weight for the composition of the conductive layer or the composition for the insulating layer The total amount is based on the benchmark. 如申請專利範圍第1項之異向性導電膜,其中該導電層的最低熔化黏度係比該絕緣層的最低熔化黏度更大。 The anisotropic conductive film of claim 1, wherein the conductive layer has a lowest melt viscosity that is greater than a lowest melt viscosity of the insulating layer.
TW100112426A 2010-10-08 2011-04-11 Anisotropic conductive film TWI539471B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20100098506 2010-10-08
KR1020100138817A KR20120036721A (en) 2010-10-08 2010-12-30 Anisotropic conducting film

Publications (2)

Publication Number Publication Date
TW201216301A TW201216301A (en) 2012-04-16
TWI539471B true TWI539471B (en) 2016-06-21

Family

ID=45927898

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100112426A TWI539471B (en) 2010-10-08 2011-04-11 Anisotropic conductive film

Country Status (4)

Country Link
KR (2) KR20120036721A (en)
CN (1) CN103155050B (en)
TW (1) TWI539471B (en)
WO (1) WO2012046923A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101479658B1 (en) * 2011-11-18 2015-01-06 제일모직 주식회사 Anisotropic conductive film with easy pre-bonding process
KR101597726B1 (en) * 2013-04-29 2016-02-25 제일모직주식회사 Anisotropic conductive film and display device using the same
KR101659128B1 (en) 2013-09-30 2016-09-22 제일모직주식회사 Anisotropic conductive film and the semiconductor device using thereof
WO2015064961A1 (en) * 2013-10-29 2015-05-07 삼성에스디아이 주식회사 Anisotropic conductive film and semiconductor device using same
TWI722980B (en) * 2014-02-04 2021-04-01 日商迪睿合股份有限公司 Anisotropic conductive film and manufacturing method thereof
JP6261386B2 (en) * 2014-03-04 2018-01-17 デクセリアルズ株式会社 Multilayer thermal conductive sheet and method for producing multilayer thermal conductive sheet
KR20170037878A (en) * 2014-07-31 2017-04-05 다츠다 덴센 가부시키가이샤 Conductive composition and conductive sheet provided with same
JP6661969B2 (en) * 2014-10-28 2020-03-11 デクセリアルズ株式会社 Anisotropic conductive film and connection structure
KR101702718B1 (en) 2014-11-20 2017-02-06 삼성에스디아이 주식회사 Anisotropic conductive film, the composition thereof and the semiconductor device using thereof
US11901325B2 (en) * 2015-01-13 2024-02-13 Dexerials Corporation Multilayer substrate
CN105225729B (en) * 2015-08-26 2017-02-22 京东方科技集团股份有限公司 Anisotropic conductive film and method for bonding chip on film and flexible circuit board
KR101893248B1 (en) * 2015-11-26 2018-10-04 삼성에스디아이 주식회사 Anisotropic conductive film and a connecting structure using thereof
JP6859136B2 (en) * 2017-03-03 2021-04-14 日東電工株式会社 A method for manufacturing a photosensitive epoxy resin composition for forming an optical waveguide core, a photosensitive film for forming an optical waveguide core, an optical waveguide, a photoelectric mixed substrate, and an optical waveguide.
CN112423463A (en) * 2019-08-23 2021-02-26 鹏鼎控股(深圳)股份有限公司 Multilayer circuit board and manufacturing method thereof
CN111234718A (en) * 2020-01-19 2020-06-05 京东方科技集团股份有限公司 Conductive adhesive structure, display device and binding method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3449948B2 (en) * 1998-10-13 2003-09-22 住友ベークライト株式会社 Method of manufacturing anisotropic conductive adhesive and electronic device manufactured using adhesive manufactured by the method
JP2004111162A (en) * 2002-09-17 2004-04-08 Sekisui Chem Co Ltd Manufacturing method of coated conductive fine particle and coated conductive fine particle
JP2005146043A (en) * 2003-11-12 2005-06-09 Sumitomo Electric Ind Ltd Anisotropic conductive adhesive
KR100662176B1 (en) * 2004-12-30 2006-12-27 제일모직주식회사 Anisotropic conductive film composition
JP5067355B2 (en) * 2007-12-17 2012-11-07 日立化成工業株式会社 Circuit connection material and circuit member connection structure
KR20100073595A (en) * 2008-12-23 2010-07-01 주식회사 효성 Double layered anisotropic conductive adhesive

Also Published As

Publication number Publication date
CN103155050B (en) 2017-05-03
WO2012046923A1 (en) 2012-04-12
KR20140090585A (en) 2014-07-17
CN103155050A (en) 2013-06-12
TW201216301A (en) 2012-04-16
KR20120036721A (en) 2012-04-18
KR101748004B1 (en) 2017-06-16

Similar Documents

Publication Publication Date Title
TWI539471B (en) Anisotropic conductive film
US10141084B2 (en) Electronic device
JP4905352B2 (en) Adhesive sheet, circuit member connection structure using the same, and semiconductor device
WO2005002002A1 (en) Circuit connecting material, film-like circuit connecting material using the same, circuit member connecting structure, and method of producing the same
US20130127038A1 (en) Semiconductor device bonded by an anisotropic conductive film
TWI577727B (en) Anisotropic conductive film, composition included in the anisotropic conductive film and device including the anisotropic conductive film
TWI484504B (en) Anisotropic conductive film, method for producing the same and method for pressing circuit terminals
US11008488B2 (en) Adhesive composition and film roll
JP5972564B2 (en) Connection method, connection structure, anisotropic conductive film, and manufacturing method thereof
US9171820B2 (en) Method of manufacturing semiconductor device including thermal compression
JP6337630B2 (en) Circuit connection material and circuit connection structure
JP5956362B2 (en) Anisotropic conductive film, connection method, and joined body
JP2019065062A (en) Conductive adhesive film
JP2010100840A (en) Adhesive film and circuit connection material
JP2008133411A (en) Adhesive film for electrical connection
KR100714794B1 (en) Low temperature and rapid curable anisotropic conductive film, and method for preparing the same
CN107118706B (en) Anisotropic conductive film and display device connected by the same
JP2005325161A (en) Anisotropically conductive adhesive film, method for producing the same and circuit connection structure using the same
CN115516057A (en) Conductive adhesive, method for manufacturing circuit connection structure, and circuit connection structure
KR20100073595A (en) Double layered anisotropic conductive adhesive
KR102467385B1 (en) Connection structure, circuit connection member and adhesive composition
JP2011119154A (en) Connection method and connection structure
JP2006016580A (en) Adhesive composition, film adhesive and circuit-connecting material using the same, coupling structure of circuit member and production method thereof
US10090075B2 (en) Display device connected by anisotropic conductive film
JP7435001B2 (en) Anisotropic conductive adhesive film, connected structure and manufacturing method thereof