JP6661969B2 - Anisotropic conductive film and connection structure - Google Patents

Anisotropic conductive film and connection structure Download PDF

Info

Publication number
JP6661969B2
JP6661969B2 JP2015211174A JP2015211174A JP6661969B2 JP 6661969 B2 JP6661969 B2 JP 6661969B2 JP 2015211174 A JP2015211174 A JP 2015211174A JP 2015211174 A JP2015211174 A JP 2015211174A JP 6661969 B2 JP6661969 B2 JP 6661969B2
Authority
JP
Japan
Prior art keywords
conductive
particles
conductive film
conductive particles
anisotropic conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015211174A
Other languages
Japanese (ja)
Other versions
JP2016085983A (en
JP2016085983A5 (en
Inventor
怜司 塚尾
怜司 塚尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Publication of JP2016085983A publication Critical patent/JP2016085983A/en
Publication of JP2016085983A5 publication Critical patent/JP2016085983A5/ja
Application granted granted Critical
Publication of JP6661969B2 publication Critical patent/JP6661969B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/314Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive layer and/or the carrier being conductive
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/408Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the adhesive layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/136Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13644Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/27001Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/27001Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate
    • H01L2224/27003Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate for holding or transferring the layer preform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/271Manufacture and pre-treatment of the layer connector preform
    • H01L2224/2711Shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • H01L2224/2746Plating
    • H01L2224/27462Electroplating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • H01L2224/2746Plating
    • H01L2224/27464Electroless plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29344Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29347Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29355Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29357Cobalt [Co] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29363Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/29364Palladium [Pd] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/2939Base material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29438Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29444Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29438Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29455Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29499Shape or distribution of the fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • H01L2224/83862Heat curing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • H01L2224/83874Ultraviolet [UV] curing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/04Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation using electrically conductive adhesives

Description

本発明は、異方性導電フィルム、及び異方性導電フィルムを用いて接続された接続構造体に関する。   The present invention relates to an anisotropic conductive film and a connection structure connected using the anisotropic conductive film.

ICチップなどの電子部品の実装に異方性導電フィルムは広く使用されており、近年では、高密度実装への適用の観点から、導電粒子捕捉効率や接続信頼性を向上させ、ショート発生率を低下させるために、絶縁性接着剤層に、導電粒子を接触又は近接して配列させた粒子部位(即ち、導電粒子ユニット)を格子状に配置し、その導電粒子ユニット同士の間隔を電極パターンに応じて変えることが提案されている(特許文献1)。   Anisotropic conductive films are widely used for mounting electronic components such as IC chips.In recent years, from the viewpoint of application to high-density mounting, conductive particle trapping efficiency and connection reliability have been improved, and the occurrence rate of short circuits has been reduced. In order to lower the particle size, the insulating adhesive layer is provided with a particle portion (i.e., a conductive particle unit) in which conductive particles are arranged in contact or close proximity to each other in a grid pattern. It has been proposed to change according to it (Patent Document 1).

特表2002−519473号公報JP 2002-519473 A

しかしながら、特許文献1に記載の異方性導電フィルムでは、導電粒子ユニット同士の間隔を、該ユニットを形成する転写型の凹み同士の距離により規制しているため、異方性導電フィルムで接続する電子部品の接続端子間距離が10μm程度のファインピッチであると導電粒子を十分に捕捉できない接続端子が発生したり、ショートが発生したりし、導通信頼性に問題があった。   However, in the anisotropic conductive film described in Patent Literature 1, since the distance between the conductive particle units is regulated by the distance between the transfer mold dents forming the unit, the conductive particle units are connected by the anisotropic conductive film. If the distance between the connection terminals of the electronic component is a fine pitch of about 10 μm, connection terminals that cannot sufficiently capture the conductive particles may occur, or a short circuit may occur, and there has been a problem in conduction reliability.

これに対し、本発明は、異方性導電フィルムを用いてファインピッチの接続端子を接続する場合でも、ショートの発生を抑制しつつ各接続端子に導電粒子を十分に捕捉させ、導通信頼性を向上させることを課題とする。   On the other hand, according to the present invention, even when connecting fine-pitch connection terminals using an anisotropic conductive film, the connection particles are sufficiently captured by the connection terminals while suppressing the occurrence of short-circuit, thereby improving conduction reliability. The task is to improve it.

本発明者は、特許文献1に記載の異方性導電フィルムでは、導電粒子ユニット同士の間隔が転写型の凹みの間隔として規制されており、隣接する導電粒子の最近接距離を規制したものではなく、さらにこの転写型の凹みの間隔はファインピッチの接続端子に適応していないことに対し、隣接する導電粒子ユニットの導電粒子同士の最近接距離を規制することにより上述の課題を解決できることを見出し、本発明を想到した。   In the anisotropic conductive film described in Patent Document 1, the distance between the conductive particle units is regulated as the distance between the transfer-type dents, and the closest distance between adjacent conductive particles is not regulated. In addition, the gap between the dents of the transfer mold is not adapted to the connection terminal of fine pitch, and the above-mentioned problem can be solved by regulating the closest distance between the conductive particles of adjacent conductive particle units. Heading, the present invention has been conceived.

即ち、本発明は、導電粒子が一列に配列した導電粒子ユニット、又は導電粒子が一列に配列した導電粒子ユニットと単独の導電粒子が、絶縁接着剤層中に格子状に配置された異方性導電フィルムであって、隣接する導電粒子ユニット及び単独の導電粒子から選ばれる導電粒子同士の最近接距離が、導電粒子の粒子径の0.5倍以上である異方性導電フィルムを提供する。   That is, the present invention provides an anisotropic conductive particle unit in which conductive particles are arranged in a line, or a conductive particle unit in which conductive particles are arranged in a line and a single conductive particle are arranged in a grid in an insulating adhesive layer. Provided is a conductive film, wherein the closest distance between conductive particles selected from adjacent conductive particle units and a single conductive particle is 0.5 times or more the particle diameter of the conductive particles.

また、本発明は、上述の異方性導電フィルムを用いて第1電子部品の接続端子と第2電子部品の接続端子とを異方性導電接続した接続構造体を提供する。   The present invention also provides a connection structure in which the connection terminal of the first electronic component and the connection terminal of the second electronic component are anisotropically conductively connected using the above-described anisotropic conductive film.

本発明の異方性導電フィルムによれば、導電粒子が一列に配列した導電粒子ユニット、又は導電粒子が一列に配列した導電粒子ユニットと単独の導電粒子が格子状に配置されているので、単独の導電粒子を格子状に配列した異方性導電フィルムに比して導電粒子を高密度に配置することができ、特に、隣接する導電粒子ユニット及び単独の導電粒子から選ばれる導電粒子同士の最近接距離を特定の範囲とすることにより、ショートの発生を抑制しつつ、異方性導電フィルムにおける導電粒子の配置密度を最大限に高めることができる。よって、異方性導電フィルムで接続する接続端子がファインピッチであっても各接続端子で十分に導電粒子が捕捉されるので、導通信頼性を向上させることが可能となる。   According to the anisotropic conductive film of the present invention, since the conductive particle unit in which the conductive particles are arranged in a line, or the conductive particles unit in which the conductive particles are arranged in a line and the single conductive particles are arranged in a lattice, Conductive particles can be arranged at a higher density than an anisotropic conductive film in which conductive particles are arranged in a grid pattern. In particular, the recent conductive particles selected from adjacent conductive particle units and single conductive particles can be used. By setting the contact distance in a specific range, the arrangement density of the conductive particles in the anisotropic conductive film can be maximized while suppressing occurrence of a short circuit. Therefore, even if the connection terminals connected by the anisotropic conductive film have a fine pitch, the conductive particles are sufficiently captured by each connection terminal, so that the conduction reliability can be improved.

図1Aは実施例の異方性導電フィルム1Aにおける導電粒子の配置図である。FIG. 1A is an arrangement diagram of conductive particles in an anisotropic conductive film 1A of an example. 図1Bは実施例の異方性導電フィルム1AのA−A断面図である。FIG. 1B is an AA cross-sectional view of the anisotropic conductive film 1A of the example. 図2Aは実施例の異方性導電フィルム1Aの製造に使用する型の平面図である。FIG. 2A is a plan view of a mold used for manufacturing the anisotropic conductive film 1A of the example. 図2Bは実施例の異方性導電フィルム1Aの製造に使用する型のB−B断面図である。FIG. 2B is a BB cross-sectional view of a mold used for manufacturing the anisotropic conductive film 1A of the example. 図3は実施例の異方性導電フィルム1Bにおける導電粒子の配置図である。FIG. 3 is an arrangement diagram of conductive particles in the anisotropic conductive film 1B of the example. 図4は実施例の異方性導電フィルム1Cにおける導電粒子の配置図である。FIG. 4 is an arrangement diagram of conductive particles in the anisotropic conductive film 1C of the example. 図5は実施例の異方性導電フィルム1Dにおける導電粒子の配置図である。FIG. 5 is an arrangement diagram of conductive particles in the anisotropic conductive film 1D of the example. 図6は実施例の異方性導電フィルム1Eにおける導電粒子の配置図である。FIG. 6 is an arrangement diagram of conductive particles in the anisotropic conductive film 1E of the example. 図7は実施例の異方性導電フィルム1Fにおける導電粒子の配置図である。FIG. 7 is an arrangement diagram of conductive particles in the anisotropic conductive film 1F of the example. 図8は実施例の異方性導電フィルム1Gにおける導電粒子の配置図である。FIG. 8 is an arrangement diagram of conductive particles in the anisotropic conductive film 1G of the example. 図9は実施例の異方性導電フィルム1Hにおける導電粒子の配置図である。FIG. 9 is a layout diagram of conductive particles in the anisotropic conductive film 1H of the example. 図10は実施例の異方性導電フィルム1Iにおける導電粒子の配置図である。FIG. 10 is an arrangement diagram of conductive particles in the anisotropic conductive film 1I of the example. 図11は実施例の異方性導電フィルム1Jにおける導電粒子の配置図である。FIG. 11 is an arrangement diagram of conductive particles in the anisotropic conductive film 1J of the example. 図12は実施例の異方性導電フィルム1Kにおける導電粒子の配置図である。FIG. 12 is an arrangement diagram of conductive particles in the anisotropic conductive film 1K of the example. 図13Aは実施例の異方性導電フィルム1Lにおける導電粒子の配置図である。FIG. 13A is a layout view of conductive particles in an anisotropic conductive film 1L of an example. 図13Bは実施例の異方性導電フィルム1LのC−C断面図である。FIG. 13B is a CC cross-sectional view of the anisotropic conductive film 1L of the example. 図14Aは実施例の異方性導電フィルム1Lの製造方法の説明図である。FIG. 14A is an explanatory diagram of a method for manufacturing an anisotropic conductive film 1L of an example. 図14Bは実施例の異方性導電フィルム1Lの製造方法の説明図である。FIG. 14B is an explanatory diagram of the method for manufacturing the anisotropic conductive film 1L of the example. 図14Cは実施例の異方性導電フィルム1Lの製造方法の説明図である。FIG. 14C is an explanatory diagram of the method for manufacturing the anisotropic conductive film 1L of the example. 図15Aは、接続端子に対する導電粒子ユニットの好ましい配置の説明図である。FIG. 15A is an explanatory diagram of a preferred arrangement of the conductive particle unit with respect to the connection terminal. 図15Bは、接続端子に対する導電粒子ユニットの好ましい配置の説明図である。FIG. 15B is an explanatory diagram of a preferred arrangement of the conductive particle unit with respect to the connection terminal. 図15Cは、接続端子に対する導電粒子ユニットの好ましい配置の説明図である。FIG. 15C is an explanatory diagram of a preferable arrangement of the conductive particle unit with respect to the connection terminal.

以下、図面を参照しつつ本発明を詳細に説明する。なお、各図中、同一符号は、同一又は同等の構成要素を表している。   Hereinafter, the present invention will be described in detail with reference to the drawings. In each drawing, the same reference numerals represent the same or equivalent components.

図1Aは、本発明の一実施例の異方性導電フィルム1Aにおける導電粒子2の配置図である。この異方性導電フィルム1Aでは、2個の導電粒子2が配列した導電粒子ユニット3が絶縁接着剤層4中に格子状に配置されている。より具体的には、導電粒子ユニット3の中心が破線で示した正方格子の格子点に配置されている。   FIG. 1A is a layout view of conductive particles 2 in anisotropic conductive film 1A of one embodiment of the present invention. In the anisotropic conductive film 1 </ b> A, conductive particle units 3 in which two conductive particles 2 are arranged are arranged in a grid in an insulating adhesive layer 4. More specifically, the center of the conductive particle unit 3 is arranged at a lattice point of a square lattice shown by a broken line.

各導電粒子ユニット3内において、導電粒子2は接触していてもよく、間隙をあけて近接していてもよいが、各導電粒子ユニット3内における間隙の大きさの合計(一つの導電粒子ユニットがn個の導電粒子の配列で構成される場合、n−1個の間隙の大きさの合計)は、導電粒子ユニットが格子状に配列されているという本発明の効果をより高めるため、導電粒子2の粒子径Leよりも小さく、粒子径Leの1/4未満が好ましい。なお、導電粒子ユニット3内における間隙の大きさの合計は、異方性導電フィルムの長手方向に対する導電粒子ユニットの長手方向の角度θが大きい場合には、角度θが小さい場合に比して大きくすることができ、後述する図3で示すように、この角度θが90°の場合には、導電粒子2の粒子径Leの1/2であっても本発明の効果を得ることができる。   In each conductive particle unit 3, the conductive particles 2 may be in contact with each other or may be close to each other with a gap, but the total size of the gaps in each conductive particle unit 3 (one conductive particle unit) Is composed of an array of n conductive particles, the sum of the size of the n-1 gaps) is higher than that of the present invention in which the conductive particle units are arranged in a lattice. It is preferably smaller than the particle diameter Le of the particles 2 and less than 1/4 of the particle diameter Le. The sum of the sizes of the gaps in the conductive particle unit 3 is larger when the angle θ in the longitudinal direction of the conductive particle unit with respect to the longitudinal direction of the anisotropic conductive film is large than when the angle θ is small. As shown in FIG. 3 described later, when the angle θ is 90 °, the effect of the present invention can be obtained even if the particle diameter Le of the conductive particles 2 is 2.

また、本発明において、導電粒子2の粒子径Leは揃っている方が好ましい。そこで、特に断らない限り、本発明において導電粒子2の粒子径Leは、異方性導電フィルムを構成する導電粒子2の平均粒子径を意味する。   In the present invention, it is preferable that the particle diameters Le of the conductive particles 2 are uniform. Therefore, unless otherwise specified, the particle diameter Le of the conductive particles 2 in the present invention means the average particle diameter of the conductive particles 2 constituting the anisotropic conductive film.

各導電粒子ユニット3の長手方向の向きは揃っており、異方性導電フィルム1Aの長手方向D1に対して傾いている。より具体的には、異方性導電フィルム1Aの長手方向に対する導電粒子ユニット3の長手方向の角度θが45°となっている。また、各導電粒子ユニット3の長手方向が、導電粒子ユニット3の格子状配列を形成する直線(図中の破線で示した直線)と重なっている。このように導電粒子ユニット3の長手方向を異方性導電フィルム1Aの長手方向に対して傾斜させると、異方性導電フィルム1Aを用いて電子部品の接続端子を接続する場合に、接続端子20における導電粒子2の捕捉数を高めることができる。   The longitudinal directions of the conductive particle units 3 are uniform, and are inclined with respect to the longitudinal direction D1 of the anisotropic conductive film 1A. More specifically, the angle θ in the longitudinal direction of the conductive particle unit 3 with respect to the longitudinal direction of the anisotropic conductive film 1A is 45 °. In addition, the longitudinal direction of each conductive particle unit 3 overlaps a straight line (a straight line indicated by a broken line in the figure) forming a grid-like arrangement of the conductive particle units 3. As described above, when the longitudinal direction of the conductive particle unit 3 is inclined with respect to the longitudinal direction of the anisotropic conductive film 1A, when connecting the connection terminal of the electronic component using the anisotropic conductive film 1A, the connection terminal 20 is not used. The number of captured conductive particles 2 can be increased.

図1Bは、異方性導電フィルム1Aを導電粒子ユニット3の長手方向に切断したA−A断面図である。同図に示すように、導電粒子2は、絶縁接着剤層4中に一定の深さで埋まっている。   FIG. 1B is an AA cross-sectional view of the anisotropic conductive film 1 </ b> A cut in the longitudinal direction of the conductive particle unit 3. As shown in the figure, the conductive particles 2 are buried in the insulating adhesive layer 4 at a certain depth.

本発明の異方性導電フィルム1Aでは、隣接する導電粒子ユニット3の導電粒子同士の最近接距離La(後述するように、格子点に単独の導電粒子も存在する場合には、隣接する導電粒子ユニット及び単独の導電粒子から選ばれる導電粒子同士の最近接距離La)が、異方性導電フィルム1Aにおける導電粒子2の配置密度をできる限り高め、かつ異方性導電フィルム1Aで第1、第2の電子部品を異方性導電接続した場合の端子間のショートを防止する点から、導電粒子2の粒子径の0.5倍以上である。ここで、最近接距離Laを導電粒子2の粒子径の0.5倍以上とするのは次の理由による。即ち、異方性導電フィルム1Aを用いて第1、第2の電子部品を異方性導電接続すると対向する第1、第2の電子部品の接続端子間で導電粒子2は潰れ、図1Aにおいて破線円で示すように導電粒子2の粒子径は接続前の粒子径の1.2〜1.3倍になる。そこで、隣接する導電粒子ユニット3の導電粒子同士であって最近接距離にあるものが双方とも異方性導電接続時に最大限潰れたとしても、それらの間に少なくとも粒子径の約1/4の間隙があくことを確保してショートの発生を防止するため、隣接する導電粒子ユニット同士の最近接距離Laを粒子径の0.5倍以上とする。   In the anisotropic conductive film 1 </ b> A of the present invention, the closest distance La between the conductive particles of the adjacent conductive particle units 3 (as described later, when there is a single conductive particle at a lattice point, the adjacent conductive particle The closest distance La) between the conductive particles selected from the unit and the single conductive particles makes the arrangement density of the conductive particles 2 in the anisotropic conductive film 1A as high as possible, and the first and second conductive particles in the anisotropic conductive film 1A. In order to prevent a short circuit between terminals when the electronic component 2 is anisotropically conductively connected, it is 0.5 times or more the particle diameter of the conductive particles 2. Here, the reason why the closest distance La is set to 0.5 times or more of the particle diameter of the conductive particles 2 is as follows. That is, when the first and second electronic components are anisotropically conductively connected using the anisotropic conductive film 1A, the conductive particles 2 are crushed between the connection terminals of the opposing first and second electronic components. As shown by the broken-line circle, the particle diameter of the conductive particles 2 is 1.2 to 1.3 times the particle diameter before connection. Therefore, even if the conductive particles of the adjacent conductive particle units 3 that are closest to each other are crushed to the maximum during the anisotropic conductive connection, at least about の of the particle diameter is between them. In order to ensure that there is a gap and to prevent occurrence of a short circuit, the closest distance La between adjacent conductive particle units is set to 0.5 times or more the particle diameter.

また、本発明においては、最近接距離Laの異方性導電フィルム長手方向D1の長さLa1を導電粒子2の粒子径Leの10倍以下とすることが好ましい。これは導電粒子の個数密度を一定値以上にすることが接続端子20で導電粒子の捕捉を安定して行えることにつながり、ファインピッチ接続の安定性に寄与するためである。   Further, in the present invention, the length La1 of the anisotropic conductive film in the longitudinal direction D1 of the closest distance La is preferably 10 times or less the particle diameter Le of the conductive particles 2. This is because setting the number density of the conductive particles to a certain value or more leads to stable capture of the conductive particles at the connection terminal 20 and contributes to the stability of the fine pitch connection.

さらに、導電粒子ユニット3の格子状の配列態様によっては、導電粒子ユニット3の異方性導電フィルム長手方向D1の外接線が、同方向D1で隣接する導電粒子ユニット3とオーバーラップする(外接線が隣接するユニットの導電粒子を貫く)ことが、導電粒子の個数密度を高めてファインピッチにおける接続の安定性に寄与するので好ましい。   Furthermore, depending on the grid-shaped arrangement of the conductive particle units 3, the external tangent of the conductive particle unit 3 in the longitudinal direction D1 of the anisotropic conductive film overlaps with the adjacent conductive particle unit 3 in the same direction D1 (external tangent). Preferably penetrates the conductive particles of the adjacent unit) because it increases the number density of the conductive particles and contributes to the connection stability at fine pitch.

なお、図1Aに示した異方性導電フィルム1Aではこの最近接距離Laの方向が導電粒子ユニット3の長手方向となっているが、本発明において、最近接距離Laの方向は導電粒子ユニット3の長手方向に限られない。   In the anisotropic conductive film 1A shown in FIG. 1A, the direction of the closest distance La is the longitudinal direction of the conductive particle unit 3, but in the present invention, the direction of the closest distance La is the direction of the conductive particle unit 3. Is not limited to the longitudinal direction.

異方性導電フィルム1Aを接続端子間の異方性導電接続に使用する場合、接続前後の導電粒子の比較がし易くなる点から、異方性導電フィルム1Aの長手方向D1を、図1Aに二点鎖線で示した接続端子20の配列方向(接続端子20の短手方向)に合わせることが好ましい。言い換えると、異方性導電フィルム1Aの短手方向D2を接続端子20の長手方向に合わせる。この場合に、各導電粒子ユニット3の異方性導電フィルム1Aの長手方向D1の長さLbと、異方性導電フィルム1Aで接続する接続端子20間の距離Lxと、導電粒子の粒子径Leが、次式の関係を満たすようにすることが好ましい。
Lx>(Lb+Le)
When the anisotropic conductive film 1A is used for anisotropic conductive connection between connection terminals, the longitudinal direction D1 of the anisotropic conductive film 1A is shown in FIG. It is preferable to match the arrangement direction of the connection terminals 20 indicated by the two-dot chain line (the short direction of the connection terminals 20). In other words, the short direction D2 of the anisotropic conductive film 1A is aligned with the long direction of the connection terminal 20. In this case, the length Lb of the longitudinal direction D1 of the anisotropic conductive film 1A of each conductive particle unit 3, the distance Lx between the connection terminals 20 connected by the anisotropic conductive film 1A, and the particle diameter Le of the conductive particles However, it is preferable to satisfy the following expression.
Lx> (Lb + Le)

また、隣接する導電粒子ユニット3の導電粒子2であって、異方性導電フィルム1Aの長手方向D1で重なる最近接導電粒子(即ち、導電粒子2を異方性導電フィルム1Aの長手方向に投影した場合の投影像が重なる導電粒子であって最も近接したもの)同士の該長手方向D1の距離Lcが導電粒子の粒子径の0.5倍以上となるようにすることが好ましい。即ち、この距離Lcは、導電粒子ユニット3の格子状の配列自体は同じでも、異方性導電フィルム1Aの長手方向D1に対する導電粒子ユニット3の長手方向の角度θに応じて変化する。そのため、角度θの大きさによらず、隣接する接続端子20間のショートを防止するため、距離Lcとして導電粒子の粒子径の0.5倍以上を確保することが好ましい。   In addition, the conductive particles 2 of the adjacent conductive particle unit 3 which are the closest conductive particles that overlap in the longitudinal direction D1 of the anisotropic conductive film 1A (that is, project the conductive particles 2 in the longitudinal direction of the anisotropic conductive film 1A). In this case, it is preferable that the distance Lc in the longitudinal direction D1 between the conductive particles whose projected images overlap each other (the closest conductive particles) is 0.5 times or more the particle diameter of the conductive particles. That is, this distance Lc changes according to the angle θ in the longitudinal direction of the conductive particle unit 3 with respect to the longitudinal direction D1 of the anisotropic conductive film 1A, even if the grid-like arrangement of the conductive particle units 3 is the same. Therefore, in order to prevent a short circuit between adjacent connection terminals 20 irrespective of the magnitude of the angle θ, it is preferable to secure the distance Lc to be at least 0.5 times the particle diameter of the conductive particles.

本発明において、導電粒子2の粒子径は、短絡防止と接続端子間の接続の安定性の点から好ましくは1〜10μm、より好ましくは2〜4μmである。また、導電粒子2の配置密度は、好ましくは2000〜250000個/mm2、より好ましくは4000〜100000個/mm2である。導電粒子の配置密度は、導電粒子ユニット3を構成する導電粒子2の数と導電粒子ユニット3の配置によって適宜調整される。 In the present invention, the particle diameter of the conductive particles 2 is preferably 1 to 10 μm, more preferably 2 to 4 μm, from the viewpoint of preventing short-circuit and stability of connection between connection terminals. The arrangement density of the conductive particles 2 is preferably 2000 to 250,000 particles / mm 2 , and more preferably 4000 to 100,000 particles / mm 2 . The arrangement density of the conductive particles is appropriately adjusted by the number of the conductive particles 2 constituting the conductive particle unit 3 and the arrangement of the conductive particle units 3.

本発明において、導電粒子2自体の構成や、絶縁接着剤層4の層構成又は構成樹脂については特に制限がない。即ち、導電粒子2としては公知の異方性導電フィルムに用いられているものを適宜選択して使用することができる。例えば、ニッケル、コバルト、銀、銅、金、パラジウムなどの金属粒子、金属被覆樹脂粒子などが挙げられる。2種以上を併用することもできる。   In the present invention, the configuration of the conductive particles 2 itself, the layer configuration of the insulating adhesive layer 4 or the constituent resin is not particularly limited. That is, as the conductive particles 2, those used for known anisotropic conductive films can be appropriately selected and used. For example, metal particles such as nickel, cobalt, silver, copper, gold, and palladium, and metal-coated resin particles are included. Two or more can be used in combination.

絶縁接着剤層4としては、公知の異方性導電フィルムで使用される絶縁性樹脂層を適宜採用することができる。例えば、アクリレート化合物と光ラジカル重合開始剤とを含む光ラジカル重合型樹脂層、アクリレート化合物と熱ラジカル重合開始剤とを含む熱ラジカル重合型樹脂層、エポキシ化合物と熱カチオン重合開始剤とを含む熱カチオン重合型樹脂層、エポキシ化合物と熱アニオン重合開始剤とを含む熱アニオン重合型樹脂層等を使用することができる。また、これらの樹脂層は、必要に応じて、それぞれ重合したものとすることができる。また、絶縁接着剤層4を、複数の樹脂層から形成してもよい。   As the insulating adhesive layer 4, an insulating resin layer used in a known anisotropic conductive film can be appropriately adopted. For example, a photo-radical polymerization type resin layer containing an acrylate compound and a photo-radical polymerization initiator, a thermo-radical polymerization type resin layer containing an acrylate compound and a heat radical polymerization initiator, and a heat containing an epoxy compound and a thermo-cationic polymerization initiator A cationic polymerization type resin layer, a thermal anion polymerization type resin layer containing an epoxy compound and a thermal anion polymerization initiator, and the like can be used. Further, these resin layers can be polymerized as necessary. Further, the insulating adhesive layer 4 may be formed from a plurality of resin layers.

さらに、絶縁接着剤層4には、必要に応じてシリカ微粒子、アルミナ、水酸化アルミ等の絶縁性フィラーを加えても良い。絶縁性フィラーの配合量は、絶縁接着剤層を形成する樹脂100質量部に対して3〜40質量部とすることが好ましい。これにより、異方性導電接続時に絶縁接着剤層4が溶融しても、溶融した樹脂で導電粒子2が不用に移動することを抑制することができる。   Further, an insulating filler such as silica fine particles, alumina, aluminum hydroxide, etc. may be added to the insulating adhesive layer 4 as necessary. The amount of the insulating filler is preferably 3 to 40 parts by mass based on 100 parts by mass of the resin forming the insulating adhesive layer. Thereby, even if the insulating adhesive layer 4 melts at the time of anisotropic conductive connection, it is possible to suppress the conductive particles 2 from being unnecessarily moved by the molten resin.

絶縁接着剤層4に導電粒子2が上述の配置で固定されている異方性導電フィルムの製造方法としては、導電粒子ユニット3の配置に対応した凹みを有する型を機械加工やレーザー加工、フォトリソグラフィなど公知の方法で作製し、その型に導電粒子を入れ、その上に絶縁接着剤層形成用組成物を充填し、硬化させ、型から取り出し、必要に応じてさらに絶縁性接着剤層を積層すればよい。なお、導電粒子2を入れる型としては、一旦剛性の強い型を作製し、その型を利用して、剛性の低い材質で形成した型を使用してもよい。   As a method for manufacturing an anisotropic conductive film in which the conductive particles 2 are fixed to the insulating adhesive layer 4 in the above-described arrangement, a mold having a recess corresponding to the arrangement of the conductive particle units 3 may be machined, laser-processed, or photo-processed. Prepared by a known method such as lithography, put conductive particles in the mold, fill the composition for forming an insulating adhesive layer thereon, cure, remove from the mold, and further form an insulating adhesive layer as necessary. What is necessary is just to laminate. As the mold for containing the conductive particles 2, a mold having high rigidity may be prepared once, and a mold formed of a material having low rigidity may be used.

図2Aは、異方性導電フィルム1Aの製造において、導電粒子2を上述の配置で固定するために使用する型10の平面図であり、図2Bは型10に導電粒子2を充填した状態のB−B断面図である。この型10は、導電粒子2を2個充填し得る矩形の凹み11を有する。本実施例の異方性導電フィルム1Aでは凹み11の長手方向に隣接する凹み11同士の距離Lhが、隣接する導電粒子ユニット3同士の最近接距離Laに対応するため、この距離Lhは導電粒子2の粒子径の0.5倍以上とする。また、凹み11の長手方向の長さLiは、凹み11に充填する導電粒子2の数によるが、凹み11に導電粒子2を充填した後の間隙s1、s2、s3の、凹み11の長手方向の長さの合計Ljが導電粒子2の粒子径の1/4未満となる長さとなるようにすることが好ましい。これは、導電粒子ユニットが格子状に配列されているという本発明の効果をより高めるため、導電粒子が導電粒子ユニットとして格子状に配列されている状態を、導電粒子がユニットを形成せずに格子状に配列されている状態に対して明確に区別できるようにするためである。   FIG. 2A is a plan view of a mold 10 used for fixing the conductive particles 2 in the above-described arrangement in the production of the anisotropic conductive film 1 </ b> A, and FIG. 2B is a state in which the mold 10 is filled with the conductive particles 2. It is BB sectional drawing. The mold 10 has a rectangular recess 11 capable of filling two conductive particles 2. In the anisotropic conductive film 1 </ b> A of the present embodiment, the distance Lh between the recesses 11 adjacent in the longitudinal direction of the recess 11 corresponds to the closest distance La between the adjacent conductive particle units 3. 0.5 or more times the particle size of No. 2. The length Li of the recess 11 in the longitudinal direction depends on the number of the conductive particles 2 filling the recess 11, but the gaps s 1, s 2, and s 3 after the recess 11 is filled with the conductive particles 2 are in the longitudinal direction of the recess 11. It is preferable that the total length Lj be less than 1 / of the particle diameter of the conductive particles 2. This is because, in order to further enhance the effect of the present invention that the conductive particle units are arranged in a lattice, the state in which the conductive particles are arranged in a lattice as the conductive particle unit is changed without forming the unit. This is to make it possible to clearly distinguish the state of being arranged in a lattice.

一方、絶縁接着剤層4に導電粒子2を上述の配置に置くために、絶縁接着剤層形成用組成物層の上に、貫通孔が所定の配置で形成されている部材を設け、その上から導電粒子2を供給し、貫通孔を通過させるなどの方法でもよい。   On the other hand, in order to place the conductive particles 2 on the insulating adhesive layer 4 in the above-described arrangement, a member having through holes formed in a predetermined arrangement is provided on the insulating adhesive layer forming composition layer. For example, the conductive particles 2 may be supplied from the substrate and passed through the through holes.

本発明の異方性導電フィルムは種々の態様をとることができる。例えば、図3に示した異方性導電フィルム1B、及び図4に示した異方性導電フィルム1Cは、それぞれ導電粒子2自体の配列は図1Aに示した異方性導電フィルム1Aと同様に、導電粒子ユニット3が2個の導電粒子2から形成され、各導電粒子ユニット3の長手方向の向きが揃い、導電粒子ユニット3が正方格子状に配置されているが、図3に示した異方性導電フィルム1Bでは、異方性導電フィルム1Bの長手方向に対する導電粒子ユニット3の長手方向の角度θが90°であり、図4に示した異方性導電フィルム1Cでは、異方性導電フィルム1Cの長手方向に対する導電粒子ユニット3の長手方向の角度θが0°である。   The anisotropic conductive film of the present invention can take various aspects. For example, in the anisotropic conductive film 1B shown in FIG. 3 and the anisotropic conductive film 1C shown in FIG. 4, the arrangement of the conductive particles 2 is the same as that of the anisotropic conductive film 1A shown in FIG. 1A. The conductive particle units 3 are formed from two conductive particles 2, the conductive particles units 3 are aligned in the longitudinal direction, and the conductive particle units 3 are arranged in a square lattice. In the anisotropic conductive film 1B, the angle θ in the longitudinal direction of the conductive particle unit 3 with respect to the longitudinal direction of the anisotropic conductive film 1B is 90 °, and in the anisotropic conductive film 1C shown in FIG. The angle θ in the longitudinal direction of the conductive particle unit 3 with respect to the longitudinal direction of the film 1C is 0 °.

ショート防止の観点からは、角度θは90°に近い方が好ましい。また、異方性導電接続における導電粒子の捕捉の観点からは0°に近い方が好ましい。そのため、各導電粒子ユニット3を形成する導電粒子数と各導電粒子ユニット3の長手方向の角度θを揃える場合には、ショート防止と導電粒子の捕捉を両立させる観点から角度θは6〜84°が好ましく、16〜74°がより好ましい。   From the viewpoint of preventing short circuit, the angle θ is preferably closer to 90 °. Further, from the viewpoint of capturing the conductive particles in the anisotropic conductive connection, it is preferable that the angle is closer to 0 °. Therefore, when the number of conductive particles forming each conductive particle unit 3 and the angle θ in the longitudinal direction of each conductive particle unit 3 are made equal, the angle θ is 6 to 84 ° from the viewpoint of achieving both short-circuit prevention and capture of conductive particles. Is preferred, and 16 to 74 ° is more preferred.

図5に示した異方性導電フィルム1Dは、図1Aに示した異方性導電フィルム1Aにおいて、導電粒子ユニット3の中心点が6方格子を形成するように導電粒子ユニット3を配置し、異方性導電フィルム1Dの長手方向に対する導電粒子ユニット3の長手方向の角度θを30°にしたものである。   In the anisotropic conductive film 1D shown in FIG. 5, the conductive particle units 3 are arranged such that the center point of the conductive particle units 3 forms a hexagonal lattice in the anisotropic conductive film 1A shown in FIG. 1A. The angle θ in the longitudinal direction of the conductive particle unit 3 with respect to the longitudinal direction of the anisotropic conductive film 1D is 30 °.

この他、本発明において導電粒子ユニット3の格子状の配列は種々の態様をとることができる。例えば、導電粒子ユニット3を斜方格子状、長方格子状等に配置してもよい。   In addition, in the present invention, the grid-like arrangement of the conductive particle units 3 can take various forms. For example, the conductive particle units 3 may be arranged in an oblique lattice shape, a rectangular lattice shape, or the like.

図6に示した異方性導電フィルム1Eは、3個の導電粒子2を一列に配列したものから各導電粒子ユニット3を形成し、各導電粒子ユニット3を斜方配列に配置し、異方性導電フィルム1Eの長手方向に対する各導電粒子ユニット3の長手方向の角度θを45°にしたものである。   In the anisotropic conductive film 1E shown in FIG. 6, each conductive particle unit 3 is formed from three conductive particles 2 arranged in a line, and each conductive particle unit 3 is arranged in an oblique arrangement. The angle θ in the longitudinal direction of each conductive particle unit 3 with respect to the longitudinal direction of the conductive film 1E is 45 °.

このように導電粒子ユニット3を構成する導電粒子2の数は2個に限られず、導電粒子径、接続する端子間距離、端子のサイズおよびレイアウト等に応じて定めることができるため特に上限はない。ファインピッチ化や小面積化が進んでも、導電粒子径に応じた十分な端子間距離があればショート発生のリスクは減るからである。ショート発生リスクをより低減させて、接続構造体の製造時の品質を安定させる点から、格子状に配置されている導電粒子ユニットの間に、導電粒子ユニットを形成しない単独の導電粒子2aを存在させても良く、また、一つの導電粒子ユニット3を構成する導電粒子2を2〜8個とすることができ、より好ましくは2〜5個とする。   As described above, the number of the conductive particles 2 constituting the conductive particle unit 3 is not limited to two, and can be determined according to the conductive particle diameter, the distance between connected terminals, the size of the terminals, the layout, and the like, and there is no particular upper limit. . This is because, even if the fine pitch and the area are reduced, if there is a sufficient distance between terminals according to the diameter of the conductive particles, the risk of occurrence of a short circuit is reduced. From the viewpoint of further reducing the risk of occurrence of short circuit and stabilizing the quality of the connection structure during manufacture, there is a single conductive particle 2a that does not form a conductive particle unit between the conductive particle units arranged in a grid. Alternatively, the number of the conductive particles 2 constituting one conductive particle unit 3 may be 2 to 8, more preferably 2 to 5.

例えば、図7に示す異方性導電フィルム1Fのように正方格子状に配置されている導電粒子ユニット3の単位格子の中心に、導電粒子ユニットを形成しない単独の導電粒子2aを存在させても良い。これにより、ファインピッチの接続端子で異方性導電フィルムを使用する場合でも、接続端子における導電粒子の捕捉性を向上させると共にショートの回避を可能とすることができる。   For example, a single conductive particle 2a which does not form a conductive particle unit may be present at the center of the unit lattice of the conductive particle unit 3 arranged in a square lattice like the anisotropic conductive film 1F shown in FIG. good. Thus, even when the anisotropic conductive film is used for the fine pitch connection terminal, it is possible to improve the trapping property of the conductive particles in the connection terminal and to avoid the short circuit.

また、図8に示す異方性導電フィルム1Gのように、導電粒子ユニットを形成する導電粒子数が異なる複数通りの導電粒子ユニット3i、3kを格子状に配置し、格子点以外に単独の導電粒子2aを配置してもよい。なお、導電粒子ユニットを形成する導電粒子数が異なる複数通りの導電粒子ユニット3i、3kを格子状に配置する場合、各導電粒子ユニット3i、3kの中心を格子点に配置すればよい。   In addition, as in an anisotropic conductive film 1G shown in FIG. 8, a plurality of conductive particle units 3i and 3k having different numbers of conductive particles forming conductive particle units are arranged in a grid, and a single conductive particle unit other than the lattice points is used. Particles 2a may be arranged. When a plurality of conductive particle units 3i and 3k having different numbers of conductive particles forming the conductive particle unit are arranged in a lattice, the center of each of the conductive particle units 3i and 3k may be arranged at a lattice point.

導電粒子ユニットを形成する導電粒子数が異なる複数通りの導電粒子ユニットを格子状に配置する場合に、図9に示す異方性導電フィルム1Hのように、各導電粒子ユニット3i、3j、3kの長手方向を揃え、かつその短手方向に配置される導電粒子ユニットの導電粒子数が、漸次増加又は減少を繰り返すようにしてもよい。なお、図9には、3通りの導電粒子ユニット3i、3j、3kの長手方向を異方性導電フィルム1Hの長手方向としたが、各導電粒子ユニット3i、3j、3kの長手方向が揃っていれば、その長手方向は任意の方向とすることができる。   When a plurality of types of conductive particle units forming the conductive particle units and having different numbers of conductive particles are arranged in a grid pattern, each of the conductive particle units 3i, 3j, and 3k, as in the anisotropic conductive film 1H shown in FIG. The number of conductive particles of the conductive particle unit arranged in the longitudinal direction and arranged in the lateral direction may gradually increase or decrease. In FIG. 9, the three longitudinal directions of the conductive particle units 3i, 3j, and 3k are the longitudinal directions of the anisotropic conductive film 1H. However, the longitudinal directions of the conductive particle units 3i, 3j, and 3k are aligned. If so, the longitudinal direction can be any direction.

このように導電粒子ユニットを形成する導電粒子数が異なる複数通りの導電粒子ユニットを設けることにより、小面積のバンプにおける導電粒子の補足効率を向上させ、かつショートの発生を抑えることができるので、より一層ファインピッチの接続に対応させることができる。   By providing a plurality of types of conductive particle units having different numbers of conductive particles forming the conductive particle unit in this manner, the efficiency of capturing conductive particles in small-area bumps can be improved, and the occurrence of short circuits can be suppressed. It is possible to cope with fine pitch connection.

本発明においては、導電粒子ユニットと単独の導電粒子とが格子状に配置されてもよい。言い換えると、単独の導電粒子が格子点に存在してもよい。例えば、図10に示す異方性導電フィルム1Iのように、導電粒子ユニットを形成する導電粒子数が異なる3通りの導電粒子ユニット3i、3j、3kと、単独の導電粒子2aとを格子状に配置することができる。この場合、導電粒子ユニット3i、3j、3k及び単独の導電粒子2aから選ばれる導電粒子同士の最近接距離Laを導電粒子2、2aの導電粒子径の0.5倍以上とする。   In the present invention, the conductive particle unit and the single conductive particles may be arranged in a lattice. In other words, a single conductive particle may exist at a lattice point. For example, as in an anisotropic conductive film 1I shown in FIG. 10, three types of conductive particle units 3i, 3j, and 3k having different numbers of conductive particles forming conductive particle units, and a single conductive particle 2a are formed in a lattice shape. Can be arranged. In this case, the closest distance La between the conductive particles selected from the conductive particle units 3i, 3j, and 3k and the single conductive particle 2a is set to 0.5 times or more of the conductive particle diameter of the conductive particles 2 and 2a.

導電粒子数が異なる複数通りの導電粒子ユニットと単独の導電粒子とを格子状に配置するにあたり、図10に示した異方性導電フィルム1Iのように、異方性導電フィルムの短手方向に配列した導電粒子ユニット3i、3j、3k及び単独の導電粒子2aのそれぞれを形成する導電粒子数が、漸次増加及び減少を繰り返すようにしてもよく、図11に示した異方性導電フィルム1Jのように、漸次増加又は減少を繰り返すようにしてもよい。図11示すように導電粒子が漸次増加又は減少を繰り返す場合、異方性導電フィルム内の小領域における導電粒子の個数密度のばらつきが少なくなる。これにより、例えば異方性導電フィルムの貼り付け時にフィルムの貼り付け位置が接続端子の長手方向に微小に(フィルム幅の数%としても数十μm以上)ずれたとしても、接続端子に捕捉される導電粒子の個数のばらつきが少なくなり、位置ずれの無い場合とある場合との導電粒子にかかる押圧力のばらつきが少なくなるので好ましい。   In arranging a plurality of types of conductive particle units having different numbers of conductive particles and a single conductive particle in a grid pattern, as in the anisotropic conductive film 1I shown in FIG. The number of conductive particles forming each of the arranged conductive particle units 3i, 3j, 3k and the single conductive particle 2a may be gradually increased and decreased. Thus, the gradual increase or decrease may be repeated. When the conductive particles repeatedly increase or decrease as shown in FIG. 11, the variation in the number density of the conductive particles in a small region in the anisotropic conductive film is reduced. Thereby, for example, even when the attachment position of the film is slightly shifted (several% of the film width or tens of μm or more) in the longitudinal direction of the connection terminal when attaching the anisotropic conductive film, the film is captured by the connection terminal. This is preferable because the variation in the number of conductive particles is reduced, and the variation in the pressing force applied to the conductive particles between the case where there is no displacement and the case where there is no displacement is reduced.

ここで、ファインピッチの接続端子としては、その接続面の大きさが、幅4〜60μm、長さ400μm以下(下限は幅と等倍)のもの、もしくは接続面の幅が導電粒子径の4倍未満もしくは導電粒子ユニット3の長手方向の長さの2倍未満のもの、接続端子間の最小距離が、例えば8〜30μmのものを挙げることができる。また、接続端子の面積が小さい場合に接続端子間距離が相対的に大きくなることがあるため、上述の端子間距離に限定されるものではない。なお、端子面積を小さくすることは、高集積化など技術上の理由以外に、端子として使用する金属(Auなど)の削減になるためコストの面でメリットがあるので、小さい端子面積に対応できる異方性導電フィルムの意義は大きい。   Here, as the fine pitch connection terminal, the size of the connection surface is 4 to 60 μm in width and 400 μm or less in length (the lower limit is equal to the width), or the width of the connection surface is 4 μm of the conductive particle diameter. It is less than twice or less than twice the length of the conductive particle unit 3 in the longitudinal direction, and the minimum distance between the connection terminals is, for example, 8 to 30 μm. In addition, when the area of the connection terminals is small, the distance between the connection terminals may be relatively large, and thus the distance is not limited to the above-described distance between the terminals. It is to be noted that reducing the terminal area is advantageous in terms of cost because the metal (Au or the like) used as a terminal is reduced in addition to technical reasons such as high integration, so that the terminal area can be reduced. The significance of the anisotropic conductive film is great.

導電粒子ユニット3を構成する導電粒子を3個以上とする場合、ファインピッチにおける導電粒子の捕捉性を向上させる点から、各導電粒子ユニット3において導電粒子は一列に配列させる。   When the number of the conductive particles constituting the conductive particle unit 3 is three or more, the conductive particles in each conductive particle unit 3 are arranged in a line from the viewpoint of improving the capturing property of the conductive particles in fine pitch.

図12に示した異方性導電フィルム1Kは、導電粒子ユニット3の長手方向を、千鳥格子状に異ならせたものである。より具体的には、図3に示した異方性導電フィルム1Bと同様に導電粒子ユニット3(3a、3b)の中心点は正方格子状に配置されているが、導電粒子ユニット3内の導電粒子2の配列方向が、異方性導電フィルム1Gの長手方向に対して0°の導電粒子ユニット3aと、90°の導電粒子ユニット3bを千鳥格子状に配置したものである。   The anisotropic conductive film 1 </ b> K shown in FIG. 12 is one in which the longitudinal directions of the conductive particle units 3 are different in a staggered lattice shape. More specifically, the center points of the conductive particle units 3 (3a, 3b) are arranged in a square lattice like the anisotropic conductive film 1B shown in FIG. The arrangement direction of the particles 2 is such that the conductive particle units 3a at 0 ° and the conductive particle units 3b at 90 ° with respect to the longitudinal direction of the anisotropic conductive film 1G are arranged in a zigzag pattern.

このように導電粒子ユニット3における導電粒子2の配列方向が、互いに異なる第1の方向と第2の方向をとることによっても、ファインピッチの接続端子20における導電粒子の捕捉性の向上とショート回避を両立させることができる。   As described above, the arrangement direction of the conductive particles 2 in the conductive particle unit 3 is different from each other in the first direction and the second direction. Can be compatible.

図13Aに示した異方性導電フィルム1Lは、平面視では導電粒子2の配置が図1に示した異方性導電フィルム1Aと同様であるが、図13Bに示すC−C断面図のように、異方性導電フィルム1Lの厚み方向の第1の深さに導電粒子2が配置されている第1の導電粒子ユニット3pと、第2の深さに導電粒子2が配置されている第2の導電粒子ユニット3qとが、導電粒子ユニット3p、3qの短手方向に交互に配置されている。   The anisotropic conductive film 1L shown in FIG. 13A has the same arrangement of the conductive particles 2 as the anisotropic conductive film 1A shown in FIG. 1 in plan view, but is similar to the CC sectional view shown in FIG. 13B. The first conductive particle unit 3p in which the conductive particles 2 are disposed at a first depth in the thickness direction of the anisotropic conductive film 1L, and the first in which the conductive particles 2 are disposed at a second depth. The two conductive particle units 3q are alternately arranged in the short direction of the conductive particle units 3p and 3q.

このような異方性導電フィルム1Lの製造方法としては、例えば図14Aに示すように、第1の導電粒子ユニット3pに導電粒子を配置するための第1の型10pと第2の導電粒子ユニット3qに導電粒子を配置するための第2の型10qとを使用して、それぞれの型10p、10qの凹み11に導電粒子2を充填し、図14Bに示すように、それぞれの型10p、10q上に、剥離シート6上に形成した絶縁接着剤層形成用組成物層5を配置してその絶縁接着剤層形成用組成物層5を型10p、10qの凹み11に押し込み、乾燥、加熱等により絶縁接着剤層形成用組成物層5を半硬化させる。次に、半硬化させた絶縁接着剤層形成用組成物層5を型10p、10qから外し、図14Cに示すようにそれらを対向させ、加圧し、加熱又は紫外線照射等により完全硬化させる。こうして図13Bに示す断面の異方性導電フィルム1Lを得ることができる。   As a method for manufacturing such an anisotropic conductive film 1L, for example, as shown in FIG. 14A, a first mold 10p for disposing conductive particles in a first conductive particle unit 3p and a second conductive particle unit Using the second mold 10q for arranging the conductive particles in 3q, the recesses 11 of the respective molds 10p, 10q are filled with the conductive particles 2, and as shown in FIG. 14B, the respective molds 10p, 10q The insulating adhesive layer forming composition layer 5 formed on the release sheet 6 is disposed thereon, and the insulating adhesive layer forming composition layer 5 is pressed into the recesses 11 of the molds 10p and 10q, and dried, heated, etc. The composition layer 5 for insulating adhesive layer formation is semi-cured by the above. Next, the semi-cured composition layer 5 for forming an insulating adhesive layer is removed from the molds 10p and 10q, and they are opposed to each other as shown in FIG. 14C, pressurized, and completely cured by heating or irradiation with ultraviolet rays. Thus, an anisotropic conductive film 1L having a cross section shown in FIG. 13B can be obtained.

このように第1の型10pと第2の型10qを使用する製造方法によれば、単一の型を使用する場合に比して各型における凹み11の配置ピッチを広げることができるので、異方性導電フィルム1Lの生産性を向上させることができる。   As described above, according to the manufacturing method using the first mold 10p and the second mold 10q, the arrangement pitch of the recesses 11 in each mold can be increased as compared with the case where a single mold is used. The productivity of the anisotropic conductive film 1L can be improved.

本発明の異方性導電フィルムは、ICチップ、ICモジュール、FPCなどの第1電子部品の接続端子と、FPC、ガラス基板、プラスチック基板、リジット基板、セラミック基板などの第2電子部品の接続端子とを異方性導電接続する際に好ましく使用することができる。このようにして得られる接続構造体も本発明の一部である。また、ICチップやICモジュールをスタックして第1電子部品同士を異方性導電接続することもできる。このようにして得られる接続構造体も本発明の一部である。   The anisotropic conductive film of the present invention includes connection terminals for a first electronic component such as an IC chip, an IC module, and an FPC, and connection terminals for a second electronic component such as an FPC, a glass substrate, a plastic substrate, a rigid substrate, and a ceramic substrate. Can be preferably used for anisotropic conductive connection. The connection structure thus obtained is also part of the present invention. Further, the first electronic components can be anisotropically conductively connected by stacking IC chips or IC modules. The connection structure thus obtained is also part of the present invention.

本発明の異方性導電フィルムを用いて電子部品の接続端子を接続する場合、図15Aの(a)に示すように、導電粒子ユニット3を構成する導電粒子2が、接続端子20の縁に載らない位置で接続されることが好ましいが、同図(b)に示すように、接続端子20の端子間距離Lxと、該端子間距離の方向の導電粒子ユニット3の長さLdと、導電粒子2の粒子径Leとの関係が、
Lx>(Ld+Le)
を満たすように接続端子20の端子間距離Lxに対し、該端子間距離Lxの方向の導電粒子ユニット3の長さLdと導電粒子2の粒子径Leを調整すればよい。
When connecting the connection terminals of the electronic component using the anisotropic conductive film of the present invention, the conductive particles 2 constituting the conductive particle unit 3 are attached to the edge of the connection terminal 20 as shown in FIG. It is preferable that the connection be made at a position where the connection terminal 20 is not mounted. However, as shown in FIG. 4B, the distance Lx between the terminals of the connection terminal 20, the length Ld of the conductive particle unit 3 in the direction of the distance between the terminals, and The relationship between the particle diameter Le of the particles 2 and
Lx> (Ld + Le)
What is necessary is to adjust the length Ld of the conductive particle unit 3 and the particle diameter Le of the conductive particles 2 in the direction of the distance Lx between the terminals with respect to the distance Lx between the terminals of the connection terminal 20 so as to satisfy the condition.

これに対し、図15Bの(a)に示すように、
Lx>(Ld+Le)
が満たされないと接続端子20間でショートが発生し易くなる。しかしながら、導電粒子ユニット3を構成する導電粒子2の粒子径Leや導電粒子2の配列数が等しくても、同図(b)に示すように、端子間距離Lxの方向に対して導電粒子ユニット3の長手方向を傾け、端子間距離Lxの方向の導電粒子ユニット3の長さLdを短くし、上述の式が満たされるようにすればよい。
On the other hand, as shown in FIG.
Lx> (Ld + Le)
Is not satisfied, a short circuit easily occurs between the connection terminals 20. However, even if the particle diameter Le of the conductive particles 2 constituting the conductive particle unit 3 and the arrangement number of the conductive particles 2 are equal, as shown in FIG. 3, the length Ld of the conductive particle unit 3 in the direction of the inter-terminal distance Lx may be shortened so that the above equation is satisfied.

また、図15Cに示すように、導電粒子2の粒子径Leを小さくすることにより上述の式が満たされるようにしても良い。   Further, as shown in FIG. 15C, the above expression may be satisfied by reducing the particle diameter Le of the conductive particles 2.

以下、実施例により本発明を具体的に説明する。
実施例1〜11及び比較例1、2
<異方導性導電フィルムの製造の概要>
導電粒子ユニットの中心の配列が長方格子を形成し、一つの導電粒子ユニットあたりの導電粒子の個数(以下、連結個数という)、導電粒子の粒子径(μm)、導電粒子ユニットの最大長(μm)、異方性導電フィルムの長手方向に対する導電粒子ユニットの長手方向の角度θ、隣接する導電粒子ユニットの導電粒子同士の最近接距離La(μm)、導電粒子の配置密度(個/mm)が表1に示す数値の異方性導電フィルムを製造した。
Hereinafter, the present invention will be specifically described with reference to examples.
Examples 1 to 11 and Comparative Examples 1 and 2
<Summary of production of anisotropic conductive film>
The arrangement of the centers of the conductive particle units forms a rectangular lattice, the number of conductive particles per conductive particle unit (hereinafter, referred to as the number of connections), the particle diameter of conductive particles (μm), and the maximum length of conductive particle units ( μm), the angle θ in the longitudinal direction of the conductive particle unit with respect to the longitudinal direction of the anisotropic conductive film, the closest distance La (μm) between the conductive particles of adjacent conductive particle units, the arrangement density of the conductive particles (pieces / mm 2 ) Produced anisotropic conductive films having the numerical values shown in Table 1.

この場合、導電粒子としては、次のように作製した導電粒子(粒子径2μm、3μm又は6μm)を使用した。   In this case, conductive particles (particle diameter 2 μm, 3 μm or 6 μm) prepared as follows were used as the conductive particles.

<導電粒子(粒子径2μm、3μm又は6μm)の作製>
ジビニルベンゼン、スチレン、ブチルメタクリレートの混合比を調整した溶液に、重合開始剤としてベンゾイルパーオキサイドを投入して高速で均一攪拌しながら加熱を行い、重合反応を行うことにより微粒子分散液を得た。前記微粒子分散液をろ過し減圧乾燥することにより微粒子の凝集体であるブロック体を得た。更に、前記ブロック体を粉砕し分級することにより、平均粒子径2μm、3μmおよび6μmのジビニルベンゼン系樹脂粒子を得た。
<Preparation of conductive particles (particle diameter 2 μm, 3 μm or 6 μm)>
Benzoyl peroxide was added as a polymerization initiator to a solution in which the mixing ratio of divinylbenzene, styrene, and butyl methacrylate was adjusted, and the mixture was heated with uniform stirring at high speed, and a polymerization reaction was performed to obtain a fine particle dispersion. The fine particle dispersion was filtered and dried under reduced pressure to obtain a block as an aggregate of fine particles. Further, the block was pulverized and classified to obtain divinylbenzene resin particles having an average particle diameter of 2 μm, 3 μm and 6 μm.

このようにして得た、ジビニルベンゼン系樹脂粒子(5g)に、パラジウム触媒を浸漬法により担持させた。次いで、この樹脂粒子に対し、硫酸ニッケル六水和物、次亜リン酸ナトリウム、クエン酸ナトリウム、トリエタノールアミン及び硝酸タリウムから調製された無電解ニッケルメッキ液(pH12、メッキ液温50℃)を用いて無電解ニッケルメッキを行い、ニッケルメッキ層(金属層)が表面に形成されたニッケル被覆樹脂粒子を導電粒子として得た。得られた導電粒子の平均粒子径は2μm、3μmおよび6μmであった。   The thus obtained divinylbenzene resin particles (5 g) were loaded with a palladium catalyst by a dipping method. Next, an electroless nickel plating solution (pH 12, plating solution temperature 50 ° C.) prepared from nickel sulfate hexahydrate, sodium hypophosphite, sodium citrate, triethanolamine and thallium nitrate was applied to the resin particles. And electroless nickel plating was performed to obtain nickel-coated resin particles having a nickel plating layer (metal layer) formed on the surface as conductive particles. The average particle diameter of the obtained conductive particles was 2 μm, 3 μm and 6 μm.

塩化金酸ナトリウム10gをイオン交換水1000mLに溶解させた溶液に、上述のニッケル被覆樹脂粒子12gを混合して水性懸濁液を調整した。得られた水性懸濁液に、チオ硫酸アンモニウム15g、亜硫酸アンモニウム80g、及びリン酸水素アンモニウム40gを投入することにより金メッキ浴を調整した。得られた金メッキ浴にヒドロキシルアミン4gを投入後、アンモニアを用いて金メッキ浴のpHを9に調整し、そして浴温を60℃に15〜20分程度維持することにより、平均粒子径2μm、3μmおよび6μmの金/ニッケル被覆樹脂粒子を得、これを導電粒子とした。   An aqueous suspension was prepared by mixing 12 g of the above-mentioned nickel-coated resin particles with a solution of 10 g of sodium chloroaurate dissolved in 1000 mL of ion-exchanged water. The gold plating bath was adjusted by adding 15 g of ammonium thiosulfate, 80 g of ammonium sulfite, and 40 g of ammonium hydrogen phosphate to the obtained aqueous suspension. After charging 4 g of hydroxylamine to the obtained gold plating bath, the pH of the gold plating bath was adjusted to 9 using ammonia, and the bath temperature was maintained at 60 ° C. for about 15 to 20 minutes, whereby the average particle diameter was 2 μm and 3 μm. And 6 μm gold / nickel-coated resin particles were obtained, which were used as conductive particles.

<異方性導電フィルムの製造>
この導電粒子が絶縁接着剤層中に表1の配列で含まれている異方性導電フィルムを次のようにして製造した。まず、フェノキシ樹脂(新日鉄住金化学(株)、YP−50)60質量部、エポキシ樹脂(三菱化学(株)、jER828)40質量部、カチオン重合開始剤(潜在性硬化剤)(三新化学工業(株)、SI−60L)2質量部を含有する熱重合性の絶縁性樹脂組成物を調製し、これをフィルム厚さ50μmのPETフィルム上に塗布し、80℃のオーブンにて5分間乾燥させ、PETフィルム上に厚み20μmの粘着層を形成した。
<Production of anisotropic conductive film>
An anisotropic conductive film in which the conductive particles were contained in the insulating adhesive layer in the arrangement shown in Table 1 was produced as follows. First, 60 parts by mass of a phenoxy resin (Nippon Steel & Sumikin Chemical Co., Ltd., YP-50), 40 parts by mass of an epoxy resin (Mitsubishi Chemical Corporation, jER828), and a cationic polymerization initiator (latent curing agent) (Sanshin Chemical Industry) (Co., Ltd., SI-60L) A thermopolymerizable insulating resin composition containing 2 parts by mass was prepared, applied on a PET film having a film thickness of 50 μm, and dried in an oven at 80 ° C. for 5 minutes. Then, an adhesive layer having a thickness of 20 μm was formed on the PET film.

次に、凸みの配置が、表1の導電粒子ユニットの配置となる金型を作製し、透明性樹脂のペレットを溶融させてその金型に流し込み、冷やして固めることで凹みが表1の導電粒子ユニットの配置となる樹脂型を作製し、この樹脂型に導電粒子を充填し、その上に上述の粘着層を被せ、その粘着層を紫外線照射により硬化させ、型から剥がし、異方性導電フィルムを製造した。   Next, a mold in which the arrangement of the protrusions is the arrangement of the conductive particle units shown in Table 1 is prepared, the pellets of the transparent resin are melted, poured into the mold, cooled, and solidified, whereby the dents shown in Table 1 are formed. Prepare a resin mold in which the conductive particle unit is arranged, fill the resin mold with conductive particles, cover the adhesive layer described above, cure the adhesive layer by ultraviolet irradiation, peel off from the mold, A conductive film was manufactured.

評価
(a)導通抵抗、(b)ショート数、(c)バンプ1個当たりの粒子最小捕捉数、(d)バンプ間の粒子状態を次のように評価した。結果を表1A及び表1Bに示す。
Evaluation
(a) the conduction resistance, (b) the number of shorts, (c) the minimum number of particles captured per bump, and (d) the state of particles between bumps were evaluated as follows. The results are shown in Tables 1A and 1B.

(a)導通抵抗
有効接続面積(バンプと基板とが対峙する面積)が異なる3通りの評価用接続物の導通抵抗を接続した。
(a-1)導通抵抗(有効接続面積400μm2
各実施例及び比較例の異方性導電フィルムを、導通抵抗評価用ICとガラス基板の間に挟み、加熱加圧(180℃、80MPa、5秒)して各評価用接続物を得、この評価用接続物の導通抵抗はデジタルマルチメータを用いて4端子法で2mAの電流を通電したときの値で測定した。1Ω未満であれば、実用上問題はない。
ここで、この各評価用ICとガラス基板は、それらの端子パターンが対応しており、サイズは次の通りである。
また、異方性導電フィルムを用いて評価用ICとガラス基板を接続する場合、異方性導電フィルムの長手方向をバンプの短手方向(端子間距離の方向)に合わせた。結果を表1Aに示す。
(a) Conduction Resistance The conduction resistances of three types of connection for evaluation having different effective connection areas (areas where the bump and the substrate face each other) were connected.
(A-1) Conduction resistance (effective connection area 400 μm 2 )
The anisotropic conductive film of each example and comparative example was sandwiched between an IC for conducting resistance evaluation and a glass substrate, and heated and pressed (180 ° C., 80 MPa, 5 seconds) to obtain a connection for each evaluation. The conduction resistance of the connection for evaluation was measured at a value when a current of 2 mA was applied by a four-terminal method using a digital multimeter. If it is less than 1Ω, there is no practical problem.
Here, the terminal patterns correspond to the evaluation ICs and the glass substrate, and the sizes are as follows.
When the evaluation IC and the glass substrate were connected using the anisotropic conductive film, the longitudinal direction of the anisotropic conductive film was adjusted to the short direction of the bumps (direction of the distance between terminals). The results are shown in Table 1A.

導通抵抗評価用IC
外径 0.7×20mm
厚み 0.2mm
バンプ仕様 金メッキ、高さ12μm、サイズ10×40μm、バンプ間距離10μm
Conduction resistance evaluation IC
Outer diameter 0.7 × 20mm
Thickness 0.2mm
Bump specifications Gold plating, height 12 μm, size 10 × 40 μm, distance between bumps 10 μm

ガラス基板
ガラス材質 コーニング社製
外径 30×50mm
厚み 0.5mm
電極 ITO配線
Glass substrate Glass material Corning external diameter 30 × 50mm
Thickness 0.5mm
Electrode ITO wiring

(a-2)導通抵抗(有効接続面積300μm2)及び(a-3)導通抵抗(有効接続面積200μm2
導通抵抗評価用ICのバンプ仕様を以下のものに変更し、評価用ICのアライメントをバンプの短手(幅)方向に6μmおよび8μm意図的にずらし、有効接続面積を300μm2又は200μm2とする以外は、(a-1)と同様にして接続して評価用接続物を得、その導通抵抗を(a-1)と同様に測定した。結果を表1Bに示す。なお、表1Bには、実質的なバンプの大きさとICのバンプ−バンプ間スペース(即ち、同一ICのバンプ間での水平方向の導体距離)の数値を示した。
バンプ仕様 金メッキ、高さ12μm、サイズ12×50μm、バンプ間距離10μm
(A-2) Conduction resistance (effective connection area 300 μm 2 ) and (a-3) Conduction resistance (effective connection area 200 μm 2 )
The bump specification of the conduction resistance evaluation IC was changed to the following, the alignment of the evaluation IC was intentionally shifted by 6 μm and 8 μm in the short (width) direction of the bump, and the effective connection area was set to 300 μm 2 or 200 μm 2 . Other than the above, connection was made in the same manner as in (a-1) to obtain a connection article for evaluation, and the conduction resistance was measured in the same manner as in (a-1). The results are shown in Table 1B. In Table 1B, the values of the substantial bump size and the space between the bumps of the IC (that is, the horizontal conductor distance between the bumps of the same IC) are shown.
Bump specifications Gold plating, height 12μm, size 12 × 50μm, distance between bumps 10μm

(b)ショート数
実施例1〜11及び比較例1〜2の導通抵抗評価用接続物のバンプ間100個においてショートしているチャンネル数を計測し、ショート数とした。
(b) Number of Shorts The number of short-circuited channels was measured between the 100 bumps of the conductive resistance evaluation connectors of Examples 1 to 11 and Comparative Examples 1 and 2, and the number was defined as the number of shorts.

なお、次のショート発生率評価用ICを用い、実施例1〜11の異方性導電フィルムのショート発生率を測定したところ、全てが200ppm未満となり、実用上問題ない結果を示した。   In addition, when the short-circuit occurrence rates of the anisotropic conductive films of Examples 1 to 11 were measured using the following short-circuit occurrence rate evaluation ICs, all of them were less than 200 ppm, which was a practically satisfactory result.

ショート発生率評価用IC
櫛歯TEG(test element group))
外径 1.5×13mm
厚み 0.5mm
バンプ仕様 金メッキ、高さ15μm、サイズ25×140μm、バンプ間距離7.5μm
Short circuit rate evaluation IC
Comb teeth TEG (test element group))
Outer diameter 1.5 × 13mm
Thickness 0.5mm
Bump specifications Gold plating, height 15μm, size 25 × 140μm, distance between bumps 7.5μm

(c)バンプ1個当たりの粒子最小捕捉数
各実施例及び比較例の異方性導電フィルムを用いて、(a-1)と同様にして評価用接続物(バンプ100個)を得、各バンプにおける粒子捕捉数を計測し、その最小数を求めた。なお、この接続においても、異方性導電フィルムの長手方向をバンプの短手方向(端子間距離の方向)に合わせた。結果を表1Aに示す。
(c) Minimum number of captured particles per bump Using the anisotropic conductive films of Examples and Comparative Examples, a connection article for evaluation (100 bumps) was obtained in the same manner as (a-1). The number of captured particles in the bump was measured, and the minimum number was obtained. In this connection, also in this connection, the longitudinal direction of the anisotropic conductive film was aligned with the short direction of the bump (the direction of the distance between terminals). The results are shown in Table 1A.

また、(a-2)、(a-3)と同様にして評価用接続物(バンプ100個ずつ)を得、上記と同様にして各バンプにおける粒子捕捉数の最小数を求め、以下の基準で評価した。C評価以上であれば実用上問題はない。結果を表1Bに示す。
(評価基準)
A(非常に良好):10個以上
B(良好):5個以上、10個未満
C(普通):3個以上、5個未満
D(不良):3個未満
In addition, in the same manner as in (a-2) and (a-3), connection articles for evaluation (100 bumps each) were obtained, and the minimum number of captured particles in each bump was determined in the same manner as described above. Was evaluated. There is no practical problem if the evaluation is C or higher. The results are shown in Table 1B.
(Evaluation criteria)
A (very good): 10 or more B (good): 5 or more and less than 10 C (normal): 3 or more and less than 5 D (bad): less than 3

(d)バンプ間の粒子状態
(c)の評価用接続物(即ち、(a-1)、(a-2)、(a-3)と同様にして得た評価用接続物)において、バンプ−バンプ間においてバンプと接続していない導電粒子が互いに連結することにより形成された導電粒子群の発生数をカウントした。表1Aに、(a-1)と同様にして得た評価用接続物について、バンプ−バンプ間の個数100あたりの、接続前の状態に対して導電粒子ユニットもしくは導電粒子が連結した導電粒子群のカウント値を示す。このカウント値により、異方性導電接続における導電粒子の移動のし易さ(即ち、導電粒子の接触によるショートの発生リスク)を評価することができる。
(d) Particle state between bumps In the connection for evaluation of (c) (that is, the connection for evaluation obtained in the same manner as in (a-1), (a-2) and (a-3)), -The number of conductive particles formed by connecting conductive particles not connected to the bumps between the bumps was counted. In Table 1A, for the connection article for evaluation obtained in the same manner as in (a-1), the conductive particle unit or the conductive particle group in which the conductive particles were connected to the state before connection per 100 pieces between bumps and bumps Shows the count value of. Based on this count value, it is possible to evaluate the ease of movement of the conductive particles in the anisotropic conductive connection (that is, the risk of occurrence of a short circuit due to the contact of the conductive particles).

(a-2)、(a-3)と同様にして得た評価用接続物では、意図的にアライメントをずらしているため、(a-1)と同様にして得た評価用接続物の評価と同じ尺度で比較はできないが、バンプ−バンプ間の個数100を観察したところ、著しく悪化していないことは確認できた。また、これらの評価用接続物について、ショートが発生していると見られる箇所をランダムに抽出し、接続物の断面状態を確認したところ、(a-1)と同様にして得た評価用接続物に比して、(a-2)、(a-3)と同様にして得た評価用接続物の断面形状が著しくが悪化しているとは認められなかった。
Since the alignment of the evaluation connection obtained in the same manner as in (a-2) and (a-3) was intentionally shifted, the evaluation of the evaluation connection in the same manner as in (a-1) was evaluated. Although the comparison cannot be carried out on the same scale as in the above, it was confirmed that the number of bumps between bumps was not significantly deteriorated when the number of bumps was observed. In addition, for these connection pieces for evaluation, locations where a short circuit was observed were randomly extracted, and the cross-sectional state of the connection article was confirmed. The connection for evaluation obtained in the same manner as (a-1) was obtained. It was not recognized that the cross-sectional shape of the connection article for evaluation obtained in the same manner as (a-2) and (a-3) was significantly deteriorated as compared with the article.

Figure 0006661969
Figure 0006661969

Figure 0006661969
Figure 0006661969

表1Aから、実施例1〜11では、導電粒子ユニットの最近接距離Laが導電粒子の粒子径の0.5〜3倍の範囲で導通抵抗が0.4〜0.6Ωであるが、導電粒子ユニットが形成されていない比較例1では、導電粒子の最近接距離が導電粒子の粒子径の0.5倍であっても導通抵抗が0.8Ωと高く、ショートも比較的高い頻度で生じることがわかる。   From Table 1A, in Examples 1 to 11, the conduction resistance is 0.4 to 0.6Ω when the closest distance La of the conductive particle unit is 0.5 to 3 times the particle diameter of the conductive particles. In Comparative Example 1 in which the particle unit was not formed, even when the closest distance of the conductive particles was 0.5 times the particle diameter of the conductive particles, the conduction resistance was as high as 0.8Ω and short-circuiting occurred relatively frequently. You can see that.

また、比較例2から、導電粒子ユニットの最近接距離Laが導電粒子の粒子径の0.5倍未満であるとショート数が顕著に多くなることがわかる。   Also, from Comparative Example 2, it can be seen that when the closest distance La of the conductive particle unit is less than 0.5 times the particle diameter of the conductive particles, the number of shorts is significantly increased.

さらに、比較例1、比較例2では、バンプ間の粒子状態から、バンプ間距離に対して導電粒子の粒子径が大きすぎるため、バンプレイアウトと適合していないことが分かる。特に比較例2では、バンプ1個あたりの粒子最小捕捉数が0であり、導電粒子がバンプに捕捉されない状態が発生しており、異方性接続が安定していないことがわかる。これにより、導電粒子の粒子径を大きくすることにより導電粒子の占有面積率を大きくするだけでは、ファインピッチにおける異方性接続には対応できないことがわかる。   Furthermore, in Comparative Example 1 and Comparative Example 2, it can be seen from the particle state between the bumps that the conductive particles have too large a particle diameter with respect to the distance between the bumps, and thus are not compatible with the bump layout. In particular, in Comparative Example 2, the minimum number of particles captured per bump was 0, and a state where the conductive particles were not captured by the bumps occurred, indicating that the anisotropic connection was not stable. Accordingly, it is understood that simply increasing the occupied area ratio of the conductive particles by increasing the particle diameter of the conductive particles cannot cope with anisotropic connection at a fine pitch.

さらに、実施例1〜11から、導電粒子ユニットの最近接距離Laが互いに等しい場合、導電粒子ユニットの長手方向が異方性導電フィルムの長手方向に対して傾いているとバンプ1個当たりの粒子最小捕捉数が増加し、導通信頼性が高いことがわかる。   Further, from Examples 1 to 11, when the closest distances La of the conductive particle units are equal to each other, if the longitudinal direction of the conductive particle unit is inclined with respect to the longitudinal direction of the anisotropic conductive film, particles per bump It can be seen that the minimum capture number increases and the conduction reliability is high.

一方、表1Bから、(a-2)及び(a-3)では(a-1)と同等以上の導通性能が得られ、バンプ1個当たりの粒子最小捕捉数も良好であったことがわかる。   On the other hand, from Table 1B, it can be seen that in (a-2) and (a-3), conduction performance equal to or higher than (a-1) was obtained, and the minimum number of particles per bump was good. .

また、(a-1)、(a-2)及び(a-3)で得られた評価用接続物を、温度85℃、湿度85%RHの恒温槽に500時間おいた後の導通抵抗を(a-1)と同様に測定した。その結果、実施例の評価用接続物の全てにおいて導通抵抗が5Ω未満であることを確認し、実用上問題ないことを確認した。   Further, the conduction resistance after placing the connection for evaluation obtained in (a-1), (a-2) and (a-3) in a thermostat at a temperature of 85 ° C. and a humidity of 85% RH for 500 hours is shown. It measured similarly to (a-1). As a result, it was confirmed that the conduction resistance was less than 5Ω in all of the evaluation connection products of the examples, and that there was no practical problem.

参考例1〜5
表2に示す導電粒子の連結個数と配置とし、実施例1と同様にして異方性導電フィルムを製造し、評価した。結果を表2に示す。
Reference Examples 1 to 5
Anisotropic conductive films were produced and evaluated in the same manner as in Example 1 with the number and arrangement of the conductive particles shown in Table 2 being connected. Table 2 shows the results.

表2から、導電粒子ユニットにおける導電粒子の連結個数は、異方性導電フィルムの短手方向(バンプの長手方向)については、特に制限はないが(参考例1、2)、バンプ間距離の方向については、導電粒子ユニットの最大長と導電粒子径の和がバンプ間距離の大きさよりも大きいとショート数が多くなることがわかる(参考例3〜5)。したがって、実施例の異方性導電フィルムを使用する場合でも、導電粒子ユニットの最大長と接続端子の端子間距離に応じて異方性導電フィルムの向きを調整するのが好ましいことがわかる。   From Table 2, the number of connected conductive particles in the conductive particle unit is not particularly limited in the short direction (longitudinal direction of the bump) of the anisotropic conductive film (Reference Examples 1 and 2). As for the direction, when the sum of the maximum length of the conductive particle unit and the diameter of the conductive particles is larger than the distance between the bumps, the number of shorts increases (Reference Examples 3 to 5). Therefore, even when the anisotropic conductive film of the example is used, it is understood that it is preferable to adjust the direction of the anisotropic conductive film according to the maximum length of the conductive particle unit and the distance between the connection terminals.

参考例4、5のようにバンプ間距離に対して、ユニット長が90%以上になるとショートが発生し、また、バンプ間の粒子状態の評価結果から、バンプ間でユニット同士が接触しているものが増加していることがわかるので、バンプ間距離と平行なユニット長は、所定の個数と大きさに設定しなければならないことがわかる。   As in Reference Examples 4 and 5, when the unit length is 90% or more with respect to the distance between the bumps, a short circuit occurs, and from the evaluation result of the particle state between the bumps, the units are in contact with each other between the bumps. It can be seen that the number of units has increased, so that the unit length parallel to the inter-bump distance must be set to a predetermined number and size.

Figure 0006661969
Figure 0006661969

実施例1、12〜14
表3に示す導電粒子の連結個数の配置とし、実施例1と同様にして異方性導電フィルムを製造し、評価した。結果を表3に示す。
表3から、導電粒子ユニットの長手方向と異方性導電フィルムの短手方向(接続端子の長手方向)とが揃っている場合、個々の導電粒子ユニット内の導電粒子の間隙をゼロから導電粒子の粒子径の1/2の大きさまで任意に変更しても導電粒子ユニットが格子状に配列した状態を形成することができ、ショート数を低減し導通信頼性を高められることがわかる。
Example 1, 12-14
Anisotropic conductive films were manufactured and evaluated in the same manner as in Example 1 with the arrangement of the number of connected conductive particles shown in Table 3. Table 3 shows the results.
From Table 3, when the longitudinal direction of the conductive particle unit and the short direction (longitudinal direction of the connection terminal) of the anisotropic conductive film are aligned, the gap between the conductive particles in each conductive particle unit is reduced from zero to the conductive particles. It can be seen that even if the particle size is arbitrarily changed up to の of the particle size, a state in which the conductive particle units are arranged in a lattice can be formed, the number of short circuits can be reduced, and the conduction reliability can be improved.

Figure 0006661969
Figure 0006661969

1A、1B、1C、1D、1E、1F、1G、1H、1I、1J、1K、1L 異方性導電フィルム
2、2a 導電粒子
3、3a、3b、3p、3q、3i、3j、3k 導電粒子ユニット
4 絶縁接着剤層
5 絶縁接着剤層形成用組成物層
6 剥離シート
10、10p、10q 型
11 凹み
20 接続端子
D1 異方性導電フィルムの長手方向
D2 異方性導電フィルムの短手方向
La 隣接する導電粒子ユニット及び単独の導電粒子から選ばれる導電粒子同士の最近接距離
La1 隣接する導電粒子ユニットの最近接距離の異方性導電フィルムの長手方向の長さ
Lb 導電粒子ユニットの異方性導電フィルムの長手方向の長さ
Lc 隣接する導電粒子ユニットの導電粒子であって、異方性導電フィルムの長手方向で重なる最近接導電粒子同士の該長手方向の距離
Ld 接続端子間距離の方向の導電粒子ユニットの長さ
Le 導電粒子の粒子径
Lh 型の凹みの長手方向に隣接する凹み同士の距離
Li 型の凹みの、該凹みの長手方向の長さ
Lj 型の凹みに導電粒子を充填した後の間隙の、該凹みの長手方向の長さの合計
Lx 接続端子間距離
s1、s2、s3 間隙
θ 異方性導電フィルムの長手方向に対する導電粒子ユニットの長手方向の角度
1A, 1B, 1C, 1D, 1E, 1F, 1G, 1H, 1I, 1J, 1K, 1L Anisotropic conductive film 2, 2a Conductive particles 3, 3a, 3b, 3p, 3q, 3i, 3j, 3k Conductive particles Unit 4 Insulating adhesive layer 5 Composition layer for forming an insulating adhesive layer 6 Release sheet 10, 10p, 10q type 11 Depression 20 Connection terminal D1 Longitudinal direction of anisotropic conductive film D2 Short direction of anisotropic conductive film La The closest distance between the adjacent conductive particle units and the conductive particles selected from a single conductive particle La1 The length in the longitudinal direction of the anisotropic conductive film of the closest distance between the adjacent conductive particle units Lb The anisotropy of the conductive particle units The length in the longitudinal direction of the conductive film Lc is the length of the conductive particles of adjacent conductive particle units, and the length of the closest conductive particles overlapping in the longitudinal direction of the anisotropic conductive film. Ld The length of the conductive particle unit in the direction of the distance between the connection terminals Le The particle diameter of the conductive particles L The distance between the dents adjacent in the longitudinal direction of the L-type dent The length of the Li-type dent in the longitudinal direction of the dent The sum of the longitudinal lengths of the gaps after the conductive particles are filled in the Lj-shaped recesses Lx Distances between connection terminals s1, s2, s3 Gap θ of conductive particle unit in the longitudinal direction of anisotropic conductive film Longitudinal angle

Claims (12)

導電粒子が一列に配列した導電粒子ユニット、又は導電粒子が一列に配列した導電粒子ユニットと単独の導電粒子が、絶縁接着剤層中に格子状に配置された異方性導電フィルムであって、隣接する導電粒子ユニット及び単独の導電粒子から選ばれる導電粒子同士の最近接距離が導電粒子の粒子径の0.5倍以上であり、導電粒子ユニットとして、該ユニットにおける導電粒子の配列方向が第1の方向の導電粒子ユニットと、第2の方向の導電粒子ユニットとを有する異方性導電フィルム。 A conductive particle unit in which conductive particles are arranged in a row, or a conductive particle unit in which conductive particles are arranged in a row and a single conductive particle, an anisotropic conductive film arranged in a grid in an insulating adhesive layer, der 0.5 times of the particle diameter of the closest distance is the conductive particles of the conductive particles are selected from the adjacent conductive particles units and a single conductive particle is, as the conductive particle units, the array direction of the conductive particles in the unit the anisotropic conductive film that Yusuke conductive particle unit in a first direction, and a conductive particle unit in the second direction. 隣接する導電粒子ユニットの導電粒子であって、異方性導電フィルムの長手方向で重なる最近接導電粒子同士の該長手方向の距離が、導電粒子の粒子径の0.5倍以上である請求項1記載の異方性導電フィルム。   The conductive particles of adjacent conductive particle units, wherein the distance in the longitudinal direction between the closest conductive particles overlapping in the longitudinal direction of the anisotropic conductive film is at least 0.5 times the particle diameter of the conductive particles. 2. The anisotropic conductive film according to 1. 各導電粒子ユニットの長手方向が、異方性導電フィルムの長手方向に対して傾いている請求項1又は2に記載の異方性導電フィルム。   The anisotropic conductive film according to claim 1, wherein a longitudinal direction of each conductive particle unit is inclined with respect to a longitudinal direction of the anisotropic conductive film. 導電粒子ユニットを形成する導電粒子数が異なる複数通りの導電粒子ユニットが配置されている請求項1〜3いずれかに記載の異方性導電フィルム。 The anisotropic conductive film according to any one of claims 1 to 3, wherein a plurality of types of conductive particle units having different numbers of conductive particles forming the conductive particle unit are arranged. 導電粒子ユニットが2個の導電粒子から構成されている請求項1〜4のいずれかに記載の異方性導電フィルム。The anisotropic conductive film according to claim 1, wherein the conductive particle unit is composed of two conductive particles. 導電粒子ユニットが3個以上の導電粒子から構成されている請求項1〜5のいずれかに記載の異方性導電フィルム。The anisotropic conductive film according to any one of claims 1 to 5, wherein the conductive particle unit includes three or more conductive particles. 導電粒子が金属粒子及び/又は金属被覆樹脂粒子である請求項1〜6のいずれかに記載の異方性導電フィルム。The anisotropic conductive film according to claim 1, wherein the conductive particles are metal particles and / or metal-coated resin particles. 導電粒子が2種以上の金属粒子及び/又は金属被覆樹脂粒子である請求項1〜6のいずれかに記載の異方性導電フィルム。The anisotropic conductive film according to claim 1, wherein the conductive particles are two or more kinds of metal particles and / or metal-coated resin particles. 絶縁接着剤層に更に別の絶縁接着剤層が積層されている請求項1〜8のいずれかに記載の異方性導電フィルム。The anisotropic conductive film according to claim 1, wherein another insulating adhesive layer is further laminated on the insulating adhesive layer. 請求項1〜のいずれかに記載の異方性導電フィルムを用いて第1電子部品の接続端子と第2電子部品の接続端子とを異方性導電接続した接続構造体。 The first electronic component connection terminals and connection structure in which the connection terminal of the second electronic component connected anisotropic conductive by using an anisotropic conductive film according to any one of claims 1-9. 接続端子間の距離が、該接続端子間の距離方向の導電粒子ユニットの長さと、導電粒子の粒子径との和よりも大きい請求項10記載の接続構造体。 The connection structure according to claim 10 , wherein a distance between the connection terminals is larger than a sum of a length of the conductive particle unit in a distance direction between the connection terminals and a particle diameter of the conductive particles. 請求項1〜10のいずれかに記載の異方性導電フィルムを用いて第1電子部品の接続端子と第2電子部品の接続端子とを異方性導電接続する、接続構造体の製造方法。 Method of manufacturing according to claim 1 connection terminals of the first electronic component and the connection terminal of the second electronic component anisotropic conductive connection using anisotropic conductive film according to any one of 10, connection structure.
JP2015211174A 2014-10-28 2015-10-27 Anisotropic conductive film and connection structure Active JP6661969B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014219788 2014-10-28
JP2014219788 2014-10-28

Publications (3)

Publication Number Publication Date
JP2016085983A JP2016085983A (en) 2016-05-19
JP2016085983A5 JP2016085983A5 (en) 2018-11-15
JP6661969B2 true JP6661969B2 (en) 2020-03-11

Family

ID=55857504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015211174A Active JP6661969B2 (en) 2014-10-28 2015-10-27 Anisotropic conductive film and connection structure

Country Status (6)

Country Link
US (1) US9953947B2 (en)
JP (1) JP6661969B2 (en)
KR (1) KR101937601B1 (en)
CN (1) CN106797082B (en)
TW (1) TWI648913B (en)
WO (1) WO2016068169A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI613684B (en) * 2012-08-01 2018-02-01 Dexerials Corp Method for producing anisotropic conductive film, anisotropic conductive film, and connection structure
CN104541417B (en) * 2012-08-29 2017-09-26 迪睿合电子材料有限公司 Anisotropic conductive film and preparation method thereof
TWI732746B (en) 2014-11-17 2021-07-11 日商迪睿合股份有限公司 Manufacturing method of anisotropic conductive film
JP7274811B2 (en) 2016-05-05 2023-05-17 デクセリアルズ株式会社 anisotropic conductive film
WO2017191772A1 (en) * 2016-05-05 2017-11-09 デクセリアルズ株式会社 Filler alignment film
CN113707361B (en) * 2016-05-05 2023-08-22 迪睿合株式会社 Anisotropic Conductive Film
US20170338204A1 (en) * 2016-05-17 2017-11-23 Taiwan Semiconductor Manufacturing Company, Ltd. Device and Method for UBM/RDL Routing
JP7077963B2 (en) * 2017-01-27 2022-05-31 昭和電工マテリアルズ株式会社 Insulation coated conductive particles, anisotropic conductive film, method for manufacturing anisotropic conductive film, connection structure and method for manufacturing connection structure
JP2019029135A (en) * 2017-07-27 2019-02-21 日立化成株式会社 Anisotropic conductive film, manufacturing method thereof, connecting structure, and manufacturing method thereof
KR102519126B1 (en) * 2018-03-30 2023-04-06 삼성디스플레이 주식회사 Display device
TWI826476B (en) * 2018-06-26 2023-12-21 日商力森諾科股份有限公司 Anisotropic conductive film, method for manufacturing same, and method for manufacturing connected structure
US20200156291A1 (en) * 2018-11-21 2020-05-21 Shin-Etsu Chemical Co., Ltd. Anisotropic film and method for manufacturing anisotropic film
TW202130748A (en) * 2019-10-15 2021-08-16 國立大學法人京都大學 Conductive film, dispersion, manufacturing methods for these, and device including conductive film
JPWO2021193911A1 (en) * 2020-03-26 2021-09-30

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5502889A (en) * 1988-06-10 1996-04-02 Sheldahl, Inc. Method for electrically and mechanically connecting at least two conductive layers
JPH0582199A (en) 1991-05-28 1993-04-02 Minato Electron Kk Structure for arranging connector having anisotropic conducting connector and anisotropic conducting connector
JPH09320345A (en) * 1996-05-31 1997-12-12 Whitaker Corp:The Anisotropic conductive film
US20010008169A1 (en) * 1998-06-30 2001-07-19 3M Innovative Properties Company Fine pitch anisotropic conductive adhesive
US20070212521A1 (en) * 2004-03-30 2007-09-13 Tokai Rubber Industries, Ltd. Anisotropic Conductive Film and a Method of Manufacturing the Same
JP2006049783A (en) 2004-06-29 2006-02-16 Yuji Suda Manufacturing method and electrode connection method for anisotropic conductive adhesive film
JP4887700B2 (en) * 2005-09-09 2012-02-29 住友ベークライト株式会社 Anisotropic conductive film and electronic / electrical equipment
JP4735229B2 (en) * 2005-12-12 2011-07-27 住友ベークライト株式会社 Anisotropic conductive film
JP5145110B2 (en) * 2007-12-10 2013-02-13 富士フイルム株式会社 Method for manufacturing anisotropic conductive junction package
JP5226562B2 (en) * 2008-03-27 2013-07-03 デクセリアルズ株式会社 Anisotropic conductive film, joined body and method for producing the same
JP5049176B2 (en) * 2008-03-27 2012-10-17 ソニーケミカル&インフォメーションデバイス株式会社 BONDED BODY AND ITS MANUFACTURING METHOD, AND ANISOTROPIC CONDUCTIVE MATERIAL AND ITS MANUFACTURING METHOD
KR20120036721A (en) * 2010-10-08 2012-04-18 제일모직주식회사 Anisotropic conducting film
JP6245792B2 (en) 2012-03-29 2017-12-13 デクセリアルズ株式会社 Conductive particle, circuit connection material, mounting body, and manufacturing method of mounting body
JP6056700B2 (en) * 2012-08-03 2017-01-11 デクセリアルズ株式会社 Anisotropic conductive film and manufacturing method thereof
KR102520294B1 (en) * 2014-10-31 2023-04-10 데쿠세리아루즈 가부시키가이샤 Anisotropic conductive film

Also Published As

Publication number Publication date
TW201637290A (en) 2016-10-16
US20170309590A1 (en) 2017-10-26
JP2016085983A (en) 2016-05-19
KR101937601B1 (en) 2019-01-10
US9953947B2 (en) 2018-04-24
TWI648913B (en) 2019-01-21
KR20170039284A (en) 2017-04-10
CN106797082A (en) 2017-05-31
CN106797082B (en) 2019-07-30
WO2016068169A1 (en) 2016-05-06

Similar Documents

Publication Publication Date Title
JP6661969B2 (en) Anisotropic conductive film and connection structure
JP6380591B2 (en) Anisotropic conductive film and connection structure
JP6504307B1 (en) Anisotropic conductive film
JP7397357B2 (en) Manufacturing method of anisotropically conductive film and anisotropically conductive film
JP7176550B2 (en) Anisotropic conductive film and connection structure
WO2015141830A1 (en) Anisotropic conductive film and manufacturing method thereof
JP7207382B2 (en) multilayer board
CN110265843B (en) Anisotropic conductive film
JP6750205B2 (en) Anisotropic conductive film
WO2015076234A1 (en) Anisotropic electroconductive film and connection structure
US11685137B2 (en) Anisotropic conductive film and connection structure
WO2016067828A1 (en) Anisotropic conductive film and connection structure
US10854571B2 (en) Anisotropic conductive film with conductive particles forming repeating units of polygons
JP2018093194A (en) Connection structure
JP2020129559A (en) Anisotropically conductive film
CN112534650A (en) Anisotropic conductive film
JP2020109764A (en) Anisotropically conductive film
WO2020121787A1 (en) Anisotropic electrically conductive film, connection structure, and method for manufacturing connection structure
JP2020109763A (en) Anisotropically conductive film

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181005

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190618

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200127

R150 Certificate of patent or registration of utility model

Ref document number: 6661969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250