TWI528420B - Method for forming patterned doping regions - Google Patents

Method for forming patterned doping regions Download PDF

Info

Publication number
TWI528420B
TWI528420B TW104119222A TW104119222A TWI528420B TW I528420 B TWI528420 B TW I528420B TW 104119222 A TW104119222 A TW 104119222A TW 104119222 A TW104119222 A TW 104119222A TW I528420 B TWI528420 B TW I528420B
Authority
TW
Taiwan
Prior art keywords
doped region
patterned
forming
substrate
type
Prior art date
Application number
TW104119222A
Other languages
Chinese (zh)
Other versions
TW201535481A (en
Inventor
孫文檠
游勝閔
王泰瑞
林澤勝
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW104119222A priority Critical patent/TWI528420B/en
Publication of TW201535481A publication Critical patent/TW201535481A/en
Application granted granted Critical
Publication of TWI528420B publication Critical patent/TWI528420B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

形成圖案化摻雜區的方法 Method of forming patterned doped regions

本揭露係有關於一種形成圖案化摻雜區的方法,特別是有關於一種形成太陽能電池之圖案化摻雜區的方法。 The present disclosure relates to a method of forming a patterned doped region, and more particularly to a method of forming a patterned doped region of a solar cell.

近年來由於環保意識抬頭及全球暖化的議題不斷地高漲,綠能產業也隨著蓬勃發展。而太陽電池更是綠能產業中的主流。高效率、低成本的太陽電池技術為研發的重點,其可被安裝於房屋等建築構件上、汽車等行動裝置上、室內、甚至各種便攜式電子裝置上,用於將太陽光能轉化為電能。 In recent years, due to the rising awareness of environmental protection and global warming, the green energy industry has also flourished. Solar cells are the mainstream in the green energy industry. High-efficiency, low-cost solar cell technology is the focus of research and development. It can be installed on building components such as houses, mobile devices such as automobiles, indoors, and even various portable electronic devices to convert solar energy into electrical energy.

第1圖顯示包括選擇性射極之太陽能電池的剖面圖。如第1圖所示,具有選擇性射極的太陽能電池係於電極110下之部分基底102形成高濃度摻雜區106,於其它區域之基底102形成低濃度摻雜區104,且於基底上形成抗反射層108。由於電極間的低濃度摻雜射極可減少載子在電池表面的再結合,此外電極下方的較高濃度摻雜射極能夠維持良好的電極接觸,因此相較單一摻雜濃度射極結構的傳統太陽能電池,具有選擇性射極的太陽能電池一般擁有較高的開路電壓(Voc)與短路電流(Isc),也因此擁有較高的光電轉換效率。 Figure 1 shows a cross-sectional view of a solar cell including a selective emitter. As shown in FIG. 1, a solar cell having a selective emitter is formed on a portion of the substrate 102 under the electrode 110 to form a high concentration doped region 106, and a substrate 102 in other regions forms a low concentration doped region 104 on the substrate. An anti-reflection layer 108 is formed. Due to the low concentration of doped emitters between the electrodes, the recombination of the carriers on the surface of the cell can be reduced, and the higher concentration of doped emitters under the electrodes can maintain good electrode contact, thus being compared to a single doping concentration emitter structure Conventional solar cells, solar cells with selective emitters generally have higher open circuit voltage (Voc) and short circuit current (Isc), and therefore have higher photoelectric conversion efficiency.

另外,Sunpower公司於2010年提出效率可高達24.2%之交指狀背電極太陽能電池,此種結構之太陽能電池雖 然可達到良好的效率,卻因包含多步驟的黃光和高溫製程,使得成本非常昂貴。 In addition, in 2010, Sunpower proposed an interdigitated back electrode solar cell with an efficiency of up to 24.2%. However, good efficiency can be achieved, but it is very expensive due to the multi-step yellow light and high temperature process.

根據上述,無論是選擇性射極之太陽能電池或交 指狀背電極太陽能電池皆使用圖案化摻雜區之結構,提高太陽能電池之轉換效率。然而,形成圖案化摻雜區之製程較複雜,且因需要使用到精準度較高之製程(例如微影),增加太陽能電池之製造成本。 According to the above, whether it is a selective emitter of solar cells or The finger-shaped back electrode solar cells all use the structure of the patterned doping region to improve the conversion efficiency of the solar cell. However, the process of forming a patterned doped region is complicated, and the manufacturing cost of the solar cell is increased due to the need to use a highly precise process such as lithography.

根據上述,本揭露提供一種形成圖案化摻雜區的方法,包括:提供一基底;形成一第一型態摻雜材料於基底上;形成一第二型態摻雜材料於基底上,其中第一型態摻雜材料與第二型態摻雜材料相隔一間距;形成一覆蓋層,覆蓋基底、第一型態摻雜材料和第二型態摻雜材料;及進行一熱擴散製程,使第一型態摻雜材料和第二型態摻雜材料擴散入基底中。 In accordance with the above, the present disclosure provides a method of forming a patterned doped region, comprising: providing a substrate; forming a first type dopant material on the substrate; forming a second type dopant material on the substrate, wherein The first type doping material is spaced apart from the second type doping material by a spacing; forming a capping layer covering the substrate, the first type doping material and the second type doping material; and performing a thermal diffusion process to The first type dopant material and the second type dopant material diffuse into the substrate.

本揭露提供一種形成圖案化摻雜區的方法,包括:提供一基底;形成一第一型態摻雜材料於基底上;形成至少一圖案化覆蓋層於第一型態摻雜材料之部分表面上,其中部分第一型態摻雜材料係被至少一圖案化覆蓋層覆蓋,未被至少一圖案化覆蓋層覆蓋之第一型態摻雜材料係暴露;及進行一熱擴散製程,使第一型態摻雜材料擴散入基底中,於圖案化覆蓋層下方的部份基底中形成第一摻雜區,於未被圖案化覆蓋層覆蓋的部份基底中形成第二摻雜區,其中第一摻雜區之摻雜濃度大於第二摻雜區之摻雜濃度。 The present disclosure provides a method of forming a patterned doped region, comprising: providing a substrate; forming a first type dopant material on the substrate; forming at least one patterned cap layer on a portion of the surface of the first type dopant material Upper part of the first type doping material is covered by at least one patterned covering layer, the first type doping material not covered by the at least one patterned covering layer is exposed; and a thermal diffusion process is performed to enable a type of doping material diffuses into the substrate, a first doped region is formed in a portion of the substrate below the patterned cap layer, and a second doped region is formed in a portion of the substrate not covered by the patterned cap layer, wherein The doping concentration of the first doping region is greater than the doping concentration of the second doping region.

為讓本揭露之上述目的、特徵及優點能更明顯易 懂,下文特舉一較佳實施例,並配合所附的圖式,作詳細說明如下。 To make the above objects, features and advantages of the present disclosure more obvious It is to be understood that the following detailed description of the preferred embodiments and the accompanying drawings are set forth below.

102‧‧‧基底 102‧‧‧Base

104‧‧‧低濃度摻雜區 104‧‧‧Low concentration doping zone

106‧‧‧高濃度摻雜區 106‧‧‧High concentration doping zone

108‧‧‧抗反射層 108‧‧‧Anti-reflective layer

110‧‧‧電極 110‧‧‧Electrode

202‧‧‧基底 202‧‧‧Base

204‧‧‧第一罩幕 204‧‧‧First curtain

206‧‧‧第一開口 206‧‧‧ first opening

208‧‧‧第一型態摻雜材料 208‧‧‧First type doping material

210‧‧‧第二罩幕 210‧‧‧Second curtain

211‧‧‧第二開口 211‧‧‧ second opening

212‧‧‧第二型態摻雜材料 212‧‧‧Second type doping material

214‧‧‧覆蓋層 214‧‧‧ Coverage

216‧‧‧第一摻雜區 216‧‧‧First doped area

218‧‧‧第二摻雜區 218‧‧‧Second doped area

302‧‧‧基底 302‧‧‧Base

304‧‧‧摻雜材料 304‧‧‧Doped materials

306‧‧‧圖案化覆蓋層 306‧‧‧ patterned overlay

308‧‧‧第一摻雜區 308‧‧‧First doped area

310‧‧‧第二摻雜區 310‧‧‧Second doped area

第1圖顯示包括選擇性射極之太陽能電池的剖面圖。 Figure 1 shows a cross-sectional view of a solar cell including a selective emitter.

第2A圖~第2G圖顯示本揭露一實施例包括p型與n型之圖案化摻雜區之製作方法中間步驟的剖面圖。 2A to 2G are cross-sectional views showing an intermediate step of a method of fabricating a patterned doped region of p-type and n-type according to an embodiment of the present disclosure.

第3A圖~第3D圖描述揭示本揭露一實施例包括p型或n型之圖案化摻雜區之製作方法中間步驟的剖面圖。 3A-3D depict a cross-sectional view showing an intermediate step of a method of fabricating a patterned doped region of the present invention, including a p-type or n-type.

第4A圖顯示時間和溫度的曲線圖。 Figure 4A shows a graph of time and temperature.

第4B圖顯示加熱時間和電阻的曲線圖。 Figure 4B shows a graph of heating time and resistance.

以下詳細討論實施本揭露之實施例。可以理解的是,實施例提供許多可應用的發明概念,其可以較廣的變化實施。所討論之特定實施例僅用來揭示使用實施例的特定方法,而不用來限定揭示的範疇。 Embodiments implementing the present disclosure are discussed in detail below. It will be appreciated that the embodiments provide many applicable inventive concepts that can be implemented in a wide variety of variations. The specific embodiments discussed are merely illustrative of specific ways of using the embodiments and are not intended to limit the scope of the disclosure.

以下內文中之「一實施例」是指與本揭露至少一實施例相關之特定圖樣、結構或特徵。因此,以下「在一實施例中」的敘述並不是指同一實施例。另外,在一或多個實施例中的特定圖樣、結構或特徵可以適當的方式結合。值得注意的是,本說明書的圖式並未按照比例繪示,其僅用來揭示本揭露。 In the following, "an embodiment" means a specific pattern, structure or feature associated with at least one embodiment of the present disclosure. Therefore, the following "in one embodiment" does not refer to the same embodiment. In addition, specific patterns, structures, or features in one or more embodiments may be combined in a suitable manner. It is noted that the drawings of the present specification are not to scale, and are merely used to disclose the disclosure.

本揭露一實施例係以噴塗硼酸或磷酸製作低成本之p型或n型之圖案化摻雜區,其除了以網版印刷取代黃光微影 製程之外,且使用一覆蓋層避免噴塗後之硼酸或磷酸的圖案擴開,並可僅使用一次退火得到p型與n型之圖案化摻雜區。 An embodiment of the present invention is to produce a low-cost p-type or n-type patterned doped region by spraying boric acid or phosphoric acid, in addition to replacing the yellow lithography by screen printing. Outside the process, a cover layer is used to avoid pattern expansion of boric acid or phosphoric acid after spraying, and p-type and n-type patterned doped regions can be obtained using only one annealing.

以下配合第2A圖~第3B圖描述揭示本揭露一實施 例包括p型與n型之圖案化摻雜區之製作方法。在一實施例中,包括p型與n型之圖案化摻雜區係用於製作交指狀背電極太陽能電池。首先,請參照第2A圖,提供一基底202,基底202可以由矽、砷化鎵、氮化鎵、矽鍺、碳化矽、鑽石及/或其它材料組成。在本揭露一實施例中,基底202較佳由矽組成。接著,提供一包括第一開口206之第一罩幕204於基底202上,在本揭露一實施例中,第一罩幕204較佳為網版。其後,形成一第一型態摻雜材料208於第一罩幕204之第一開口206中。形成第一型態摻雜材料208之方法可以為噴塗法、旋塗法、網印法。在第一型態摻雜材料208為p型之實施例中,其可以為硼化物、鋁化物、或鎵化物,其中第一型態摻雜材料208較佳為硼玻璃(BSG),且其可以下列製程形成:噴塗硼酸於例如網版之第一罩幕204上且填入第一開口206中,後續,進行一熱製程,使液態之硼酸形成其膠態或固態之化合物,例如膠態或固態硼化物,此熱製程之溫度可為200℃~600℃,較佳為250℃~350℃。在第一型態摻雜材料208為n型之實施例中,其可以為磷化物、砷化物或碲化物,其中第一型態摻雜材料208較佳為磷玻璃(PSG),且其可以下列製程形成:噴塗磷酸於例如網版之第一罩幕204上且填入第一開口206中,後續,進行一熱製程,使液態之磷酸形成其膠態或固態之化合物,例如膠態或固態磷化物,此熱製程之溫度可為200℃~600℃,較佳為250℃~350℃。 The following describes an implementation of the disclosure in conjunction with FIG. 2A to FIG. 3B. Examples include fabrication methods of patterned doped regions of p-type and n-type. In one embodiment, a patterned doped region comprising p-type and n-type is used to fabricate an interdigitated back electrode solar cell. First, please refer to FIG. 2A to provide a substrate 202 which may be composed of germanium, gallium arsenide, gallium nitride, germanium, tantalum carbide, diamonds, and/or other materials. In an embodiment of the present disclosure, the substrate 202 is preferably composed of tantalum. Next, a first mask 204 including a first opening 206 is provided on the substrate 202. In an embodiment of the disclosure, the first mask 204 is preferably a screen. Thereafter, a first type dopant material 208 is formed in the first opening 206 of the first mask 204. The method of forming the first type dopant material 208 may be a spray coating method, a spin coating method, or a screen printing method. In the embodiment where the first type dopant material 208 is p-type, it may be a boride, an aluminide, or a gallium, wherein the first type dopant material 208 is preferably borosilicate glass (BSG), and It can be formed by spraying boric acid onto a first mask 204, such as a screen, and filling it into a first opening 206, followed by a thermal process to form a liquid boric acid into a colloidal or solid compound, such as a colloidal state. Or a solid boride, the temperature of the hot process may be from 200 ° C to 600 ° C, preferably from 250 ° C to 350 ° C. In an embodiment in which the first type dopant material 208 is an n-type, it may be a phosphide, an arsenide or a germanide, wherein the first type dopant material 208 is preferably a phosphor glass (PSG), and The following processes are formed by spraying phosphoric acid onto a first mask 204, such as a screen, and filling the first opening 206, followed by a thermal process to form the liquid phosphoric acid into a colloidal or solid compound, such as a colloidal or The solid phosphide may have a temperature of from 200 ° C to 600 ° C, preferably from 250 ° C to 350 ° C.

請參照第2C圖,提供一包括第二開口211之第二罩 幕210於基底202上,第二罩幕210較佳為網版。其後,形成一第二型態摻雜材料212於第二罩幕210之第二開口211中。形成第二型態摻雜材料212之方法可以為噴塗法、旋塗法、網印法。 在本揭露一實施例中,第一型態摻雜材料208為p型,且第二型態摻雜材料212為n型,在另一實施例中,第一型態摻雜材料208為n型,且第二型態摻雜材料212為p型。在第二型態摻雜材料212為n型之實施例中,其可以為磷化物、砷化物或碲化物,其中第二型態摻雜材料212較佳為磷玻璃(PSG),且其可以下列製程形成:噴塗磷酸於例如網版之第二罩幕210上且填入第二開口211中,後續,進行一熱製程,使液態之磷酸形成其膠態或固態之化合物,例如膠態或固態磷化物,此熱製程之溫度可為200℃~600℃,較佳為250℃~350℃。在第二型態摻雜材料212為p型之實施例中,其可以為硼化物、鋁化物、或鎵化物,其中第二型態摻雜材料212較佳為硼玻璃(BSG),且其可以下列製程形成:噴塗硼酸於例如網版之第二罩幕210上且填入第二開口211中,後續,進行一熱製程,使液態之硼酸形成其膠態或固態之化合物,例如膠態或固態硼化物,此熱製程之溫度可為200℃~600℃,較佳為250℃~350℃。 Please refer to FIG. 2C to provide a second cover including the second opening 211. The curtain 210 is on the substrate 202, and the second mask 210 is preferably a screen. Thereafter, a second type doping material 212 is formed in the second opening 211 of the second mask 210. The method of forming the second type doping material 212 may be a spray coating method, a spin coating method, or a screen printing method. In an embodiment of the disclosure, the first type dopant material 208 is p-type, and the second type dopant material 212 is n-type. In another embodiment, the first type dopant material 208 is n. And the second type dopant material 212 is p-type. In the embodiment in which the second type dopant material 212 is an n-type, it may be a phosphide, an arsenide or a germanide, wherein the second type dopant material 212 is preferably a phosphorous glass (PSG), and The following processes are formed by spraying phosphoric acid on a second mask 210, such as a screen, and filling it into a second opening 211, followed by a thermal process to form a liquid phosphate to form a colloidal or solid compound, such as a colloidal or The solid phosphide may have a temperature of from 200 ° C to 600 ° C, preferably from 250 ° C to 350 ° C. In the embodiment where the second type dopant material 212 is p-type, it may be a boride, an aluminide, or a gallium, wherein the second type dopant material 212 is preferably borosilicate glass (BSG), and It can be formed by spraying boric acid onto a second mask 210, such as a screen, and filling it into a second opening 211, followed by a thermal process to form a liquid boric acid to form its colloidal or solid compound, such as a colloidal state. Or a solid boride, the temperature of the hot process may be from 200 ° C to 600 ° C, preferably from 250 ° C to 350 ° C.

後續,請參照第2D圖,移除第二罩幕210。在本揭 露一實施例中,第一型態摻雜材料208和第二型態摻雜材料212間的距離d為5μm~30μm。 Subsequently, please refer to FIG. 2D to remove the second mask 210. In this disclosure In one embodiment, the distance d between the first type dopant material 208 and the second type dopant material 212 is 5 μm to 30 μm.

請參照第2E圖,形成一覆蓋層214於基底202、第 一型態摻雜材料208和第二型態摻雜材料212上,形成覆蓋層 214之方法可以為噴塗法、旋塗法、網印法、電漿輔助化學氣相沉積法(PECVD)或原子層沉積法(ALD)。在本揭露一實施例中,覆蓋層214可以為氮化矽(SiNx)或氧化鋁(Al2O3),覆蓋層214較佳為氧化鋁,理由是氧化鋁大體上不與硼摻雜材料或磷摻雜材料產生反應,在高溫下穩定,且很容易移除,再者,氧化鋁大體上不影響硼摻雜材料和磷摻雜材料擴散至基板。與傳統氧化矽相比,本實施例氧化鋁覆蓋層能夠避免影響例如硼或磷的擴散。 Referring to FIG. 2E, a cap layer 214 is formed on the substrate 202, the first type doping material 208, and the second type doping material 212. The method of forming the cap layer 214 may be spray coating, spin coating, or mesh. Printing, plasma assisted chemical vapor deposition (PECVD) or atomic layer deposition (ALD). In an embodiment of the present disclosure, the cap layer 214 may be tantalum nitride (SiN x ) or aluminum oxide (Al 2 O 3 ), and the cap layer 214 is preferably alumina because the aluminum oxide is substantially not doped with boron. The material or the phosphorus doped material reacts, is stable at high temperatures, and is easily removed. Further, the alumina does not substantially affect the diffusion of the boron doping material and the phosphorus doping material to the substrate. The alumina coating of this embodiment can avoid affecting the diffusion of, for example, boron or phosphorus, as compared to conventional cerium oxide.

後續,請參照第2F圖,進行一熱擴散製程,使第 一型態摻雜材料208擴散入基底202中,形成第一摻雜區216,且使第二型態摻雜材料212擴散入基底202中,形成第二摻雜區218。在本揭露一實施例中,此熱擴散製程之溫度為800℃~1000℃。值得注意的是,由於本實施例於第一型態摻雜材料208、第二型態摻雜材料212和基底202上形成之覆蓋層214,限制了第一型態摻雜材料208和第二型態摻雜材料212兩側的擴散,使第一型態摻雜材料208和第二型態摻雜材料212大體上為向下進行摻雜,提高了形成第一摻雜區216和第二摻雜區218之精準度。在本揭露一實施例中,此熱擴散製程之溫度為700℃~1200℃。後續,請參照第2G圖,移除覆蓋層214、第一型態摻雜材料208和第二型態摻雜材料212。在本揭露一實施例中,移除覆蓋層214、第一型態摻雜材料208和第二型態摻雜材料212的方法可以為浸泡含氟的溶液。 Follow-up, please refer to Figure 2F for a thermal diffusion process to make A type of doping material 208 diffuses into the substrate 202 to form a first doped region 216 and diffuse the second type dopant material 212 into the substrate 202 to form a second doped region 218. In an embodiment of the present disclosure, the temperature of the thermal diffusion process is 800 ° C to 1000 ° C. It should be noted that, due to the cap layer 214 formed on the first type doping material 208, the second type doping material 212, and the substrate 202 in this embodiment, the first type doping material 208 and the second are limited. The diffusion of the two sides of the type doping material 212 causes the first type doping material 208 and the second type doping material 212 to be doped substantially downward, which improves the formation of the first doping region 216 and the second. The accuracy of the doped region 218. In an embodiment of the present disclosure, the temperature of the thermal diffusion process is from 700 ° C to 1200 ° C. Subsequently, referring to FIG. 2G, the cap layer 214, the first type doping material 208, and the second type doping material 212 are removed. In an embodiment of the present disclosure, the method of removing the cap layer 214, the first type dopant material 208, and the second type dopant material 212 may be a solution of immersing fluorine.

以下配合第3A圖~第3D圖描述揭示本揭露之一實 施例包括p型或n型之圖案化摻雜區之製作方法。在一實施例中, 包括p型或n型之圖案化摻雜區係用於製作選擇性射極太陽能電池。首先,請參照第3A圖,提供一基底302,基底302可以由矽、砷化鎵、氮化鎵、矽鍺、碳化矽、鑽石及/或其它材料組成。形成一摻雜材料304於基底302上。在摻雜材料304為p型之實施例中,其可以為硼化物、鋁化物、或鎵化物,較佳為硼玻璃(BSG),其可以下列製程形成:噴塗硼酸於基底上,後續,進行一熱製程,使液態之硼酸形成其固態之化合物,例如固態硼化物。在摻雜材料304為n型之實施例中,其可以為磷化物、砷化物或碲化物,較佳為磷玻璃(PSG),其可以下列製程形成:噴塗磷酸於基底上,後續,進行一熱製程,使液態之磷酸形成其固態之化合物,例如固態磷化物。接著,請參照第3B圖,形成圖案化覆蓋層306於摻雜材料304上,圖案化覆蓋層306可以網板印刷之方法形成,圖案化覆蓋層306可以為氮化矽(SiNx)或氧化鋁(Al2O3),較佳為氧化鋁,理由是氧化鋁大體上不與摻雜材料304產生反應,且大體上不影響摻雜材料304之擴散。 The method for fabricating a patterned doped region of p-type or n-type is disclosed in the following description with reference to FIGS. 3A to 3D. In one embodiment, a patterned doped region comprising p-type or n-type is used to fabricate a selective emitter solar cell. First, referring to FIG. 3A, a substrate 302 is provided. The substrate 302 can be composed of tantalum, gallium arsenide, gallium nitride, tantalum, tantalum carbide, diamond, and/or other materials. A dopant material 304 is formed on the substrate 302. In the embodiment where the dopant material 304 is p-type, it may be a boride, an aluminide, or a gallium compound, preferably a borosilicate glass (BSG), which may be formed by spraying boric acid on a substrate, followed by A thermal process allows the liquid boric acid to form a solid compound such as a solid boride. In embodiments where the dopant material 304 is n-type, it may be a phosphide, arsenide or telluride, preferably phosphorous glass (PSG), which may be formed by spraying phosphoric acid onto the substrate, followed by a The thermal process allows the liquid phosphoric acid to form a solid compound such as a solid phosphide. Next, referring to FIG. 3B, a patterned capping layer 306 on the doping material 304, a patterned capping layer 306 may be formed of a screen printing method, patterning the capping layer 306 may be a silicon nitride (SiN x) or oxidation Aluminum (Al 2 O 3 ), preferably alumina, is based on the fact that the alumina does not substantially react with the dopant material 304 and does not substantially affect the diffusion of the dopant material 304.

後續,請參照第3C圖,進行一熱製程,使摻雜材 料304擴散至基底302中,於圖案化覆蓋層306下方的部份基底302形成第一摻雜區308,於未被圖案化覆蓋層306覆蓋的部份基底302形成第二摻雜區310。值得注意的是,圖案化覆蓋層306下方的部份摻雜材料304由於有覆蓋圖案化覆蓋層306,摻雜材料不會揮發向上擴散,使得大部分的摻雜材料向下擴散,而未被圖案化覆蓋層306下方的部份摻雜材料304的摻雜材料則會揮發向上擴散,因此,圖案化覆蓋層306下方的第一摻雜區308相較於未被圖案化覆蓋層306覆蓋的第二摻雜區310有較高的 摻雜濃度和相對較低的阻值,藉此,本實施例可於單一熱製程步驟形成具有不同摻雜濃度(和阻值)之第一摻雜區308和第二摻雜區310。後續,請參照第3D圖,移除摻雜材料304。在本揭露一實施例中,移除摻雜材料304的方法可以為浸泡含氟的溶液。 Follow-up, please refer to the 3C figure for a thermal process to make the doping material The material 304 is diffused into the substrate 302. A portion of the substrate 302 below the patterned cap layer 306 forms a first doped region 308, and a portion of the substrate 302 that is not covered by the patterned cap layer 306 forms a second doped region 310. It should be noted that a portion of the doping material 304 under the patterned cap layer 306 has a capping coating layer 306, and the doping material does not volatilize upward, so that most of the doping material diffuses downward without being The doped material of the portion of the doping material 304 under the patterned cap layer 306 will volatilize upwardly, and thus, the first doped region 308 under the patterned cap layer 306 is compared to the unmasked cap layer 306. The second doping region 310 has a higher The doping concentration and the relatively low resistance value, whereby the first doping region 308 and the second doping region 310 having different doping concentrations (and resistance values) can be formed in a single thermal processing step. Subsequently, please refer to the 3D figure to remove the doping material 304. In an embodiment of the present disclosure, the method of removing the dopant material 304 may be a solution of immersing the fluorine-containing solution.

根據上述,藉由於摻雜材料304上形成圖案化覆蓋 層306,本實施例可於一次熱製程步驟製作出摻雜濃度不同的第一摻雜區308和第二摻雜區310。以下配合第4A圖和第4B圖描述升溫條件與第一摻雜區和第二摻雜區的阻值關係,其中第4A圖顯示時間和溫度的曲線圖,4B圖揭示各升溫條件之範例的電阻。請參照第4A圖和第4B圖,A0對應到的是覆蓋有圖案化覆蓋層之第一摻雜區的阻值,A1對應到的為沒有覆蓋圖案化覆蓋層之第二摻雜區在1分鐘升溫至875℃之條件下的阻值,A3.5對應到的為沒有覆蓋圖案化覆蓋層之第二摻雜區在3.5分鐘升溫至875℃之條件下的阻值,A5對應到的為沒有覆蓋圖案化覆蓋層之第二摻雜區在5分鐘升溫至875℃之條件下的阻值,A7對應到的為沒有覆蓋圖案化覆蓋層之第二摻雜區在7分鐘升溫至875℃之條件下的阻值。由第4A圖和第4B圖可得到,覆蓋有圖案化覆蓋層之第二摻雜區具有最低的阻值,而在875℃下升溫的時間越久,阻值越高。根據上述,本實施例可調整例如升溫至一固定溫度(875℃)之時間的製程參數,調整第一摻雜區和第二摻雜區達到預定的阻值。此外,本實施例尚可調整摻雜材料之厚度和濃度,調控第一摻雜區和第二摻雜區之濃度(阻值)。 According to the above, by forming patterned coverage on the doping material 304 The layer 306, in this embodiment, can produce the first doping region 308 and the second doping region 310 having different doping concentrations in a single thermal process step. The relationship between the temperature rise condition and the resistance relationship between the first doped region and the second doped region is described below in conjunction with FIGS. 4A and 4B, wherein FIG. 4A shows a graph of time and temperature, and FIG. 4B shows an example of each of the temperature rising conditions. resistance. Referring to FIG. 4A and FIG. 4B, A0 corresponds to the resistance of the first doped region covered with the patterned cap layer, and A1 corresponds to the second doped region without overlying the patterned cap layer. The resistance is increased to 875 ° C in minutes, and A3.5 corresponds to the resistance of the second doped region without covering the patterned cap layer to 3.5 ° C for 3.5 minutes. A5 corresponds to There is no resistance of the second doped region covering the patterned cap layer to 875 ° C in 5 minutes, and A7 corresponds to the second doping region without covering the patterned cap layer heating up to 875 ° C in 7 minutes. The resistance under the conditions. As can be seen from Figures 4A and 4B, the second doped region covered with the patterned cap layer has the lowest resistance, and the longer the temperature rises at 875 ° C, the higher the resistance. According to the above, the embodiment can adjust the process parameters such as the time of raising the temperature to a fixed temperature (875 ° C), and adjust the first doped region and the second doped region to reach a predetermined resistance value. In addition, in this embodiment, the thickness and concentration of the doping material can be adjusted to adjust the concentration (resistance) of the first doped region and the second doped region.

根據上述,本實施例形成圖案化摻雜區的方法具 有以下優點:可僅使用一次熱製程步驟,形成具有不同摻雜濃度之第一摻雜區和第二摻雜區,以較少的黃光微影和高溫製程步驟製作圖案化摻雜區,可減低形成包括圖案化摻雜區之太陽能電池的製作成本。 According to the above, the method for forming a patterned doped region in this embodiment has The method has the following advantages: the first doped region and the second doped region having different doping concentrations can be formed by using only one thermal process step, and the patterned doped region can be formed with less yellow photolithography and high temperature process steps, which can be reduced The fabrication cost of a solar cell including a patterned doped region is formed.

雖然本揭露已以數個較佳實施例揭露如上,然其並非用以限定本揭露,任何所屬技術領域中具有通常知識者,在不脫離本揭露之精神和範圍內,當可作任意之更動與潤飾,因此本揭露之保護範圍當視後附之申請專利範圍所界定者為準。 The present disclosure has been disclosed in the above-described preferred embodiments, and is not intended to limit the disclosure. Any one of ordinary skill in the art can make any changes without departing from the spirit and scope of the disclosure. And the scope of protection of this disclosure is subject to the definition of the scope of the patent application.

302‧‧‧基底 302‧‧‧Base

304‧‧‧摻雜材料 304‧‧‧Doped materials

306‧‧‧圖案化覆蓋層 306‧‧‧ patterned overlay

308‧‧‧第一摻雜區 308‧‧‧First doped area

310‧‧‧第二摻雜區 310‧‧‧Second doped area

Claims (10)

一種形成圖案化摻雜區的方法,包括:提供一基底;形成一摻雜材料於該基底上;形成至少一圖案化覆蓋層於該摻雜材料的部份表面上,其中部分該摻雜材料係被該至少一圖案化覆蓋層覆蓋,未被該至少一圖案化覆蓋層覆蓋之該摻雜材料係暴露;以及進行一熱擴散製程,使該摻雜材料擴散入該基底中,於該圖案化覆蓋層下方的部份該基底中形成一第一摻雜區,於未被該圖案化覆蓋層覆蓋的部份該基底中形成一第二摻雜區,其中該第一摻雜區之摻雜濃度大於該第二摻雜區之摻雜濃度。 A method of forming a patterned doped region, comprising: providing a substrate; forming a doping material on the substrate; forming at least one patterned capping layer on a portion of the surface of the doping material, wherein a portion of the doping material Covered by the at least one patterned cap layer, the doped material not covered by the at least one patterned cap layer is exposed; and a thermal diffusion process is performed to diffuse the doping material into the substrate, the pattern Forming a first doped region in the portion under the cap layer, and forming a second doped region in the portion not covered by the patterned cap layer, wherein the first doped region is doped The impurity concentration is greater than the doping concentration of the second doped region. 如申請專利範圍第1項所述之形成圖案化摻雜區的方法,其中該摻雜材料為硼化物、鋁化物、鎵化物、磷化物、砷化物或碲化物。 A method of forming a patterned doped region as described in claim 1, wherein the dopant material is a boride, an aluminide, a gallium, a phosphide, an arsenide or a telluride. 如申請專利範圍第2項所述之形成圖案化摻雜區的方法,其中形成該摻雜材料於該基底上之步驟包括:塗佈該摻雜材料於該基底上;以及進行一熱製程,使該摻雜材料形成其固態化合物。 The method for forming a patterned doped region according to claim 2, wherein the step of forming the dopant material on the substrate comprises: coating the dopant material on the substrate; and performing a thermal process, The dopant material is formed into its solid compound. 如申請專利範圍第3項所述之形成圖案化摻雜區的方法,其中該熱製程之溫度介於200℃~600℃。 The method for forming a patterned doped region according to claim 3, wherein the temperature of the thermal process is between 200 ° C and 600 ° C. 如申請專利範圍第1項所述之形成圖案化摻雜區的方法,其中該圖案化覆蓋層為氮化矽(SiNx)或氧化鋁(Al2O3)。 The method of forming a patterned doped region according to claim 1, wherein the patterned cap layer is tantalum nitride (SiN x ) or aluminum oxide (Al 2 O 3 ). 如申請專利範圍第1項所述之形成圖案化摻雜區的方法,其中形成該圖案化覆蓋層之方法為網版印刷法或噴塗法。 A method of forming a patterned doped region as described in claim 1, wherein the method of forming the patterned cap layer is a screen printing method or a spray coating method. 如申請專利範圍第1項所述之形成圖案化摻雜區的方法,其中該熱擴散製程之溫度介於700℃~1200℃。 The method for forming a patterned doped region according to claim 1, wherein the temperature of the thermal diffusion process is between 700 ° C and 1200 ° C. 如申請專利範圍第1項所述之形成圖案化摻雜區的方法,其中該第一摻雜區與該第二摻雜區具有相同的導電型態。 The method of forming a patterned doped region according to claim 1, wherein the first doped region and the second doped region have the same conductivity type. 如申請專利範圍第1項所述之形成圖案化摻雜區的方法,更包括自該基底上移除該摻雜材料。 The method of forming a patterned doped region as described in claim 1, further comprising removing the dopant material from the substrate. 如申請專利範圍第9項所述之形成圖案化摻雜區的方法,其中移除該摻雜材料之方法為將該基底浸泡於一含氟溶液。 A method of forming a patterned doped region as described in claim 9, wherein the doping material is removed by immersing the substrate in a fluorine-containing solution.
TW104119222A 2012-09-26 2012-09-26 Method for forming patterned doping regions TWI528420B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104119222A TWI528420B (en) 2012-09-26 2012-09-26 Method for forming patterned doping regions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104119222A TWI528420B (en) 2012-09-26 2012-09-26 Method for forming patterned doping regions

Publications (2)

Publication Number Publication Date
TW201535481A TW201535481A (en) 2015-09-16
TWI528420B true TWI528420B (en) 2016-04-01

Family

ID=54695292

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104119222A TWI528420B (en) 2012-09-26 2012-09-26 Method for forming patterned doping regions

Country Status (1)

Country Link
TW (1) TWI528420B (en)

Also Published As

Publication number Publication date
TW201535481A (en) 2015-09-16

Similar Documents

Publication Publication Date Title
TWI489641B (en) Solar cell and fabrication method thereof
US8420517B2 (en) Methods of forming a multi-doped junction with silicon-containing particles
TWI549306B (en) Method for fabricating back-contact type solar cell
US9871156B2 (en) Solar cell and method of manufacturing the same
JP2014197578A (en) Method for manufacturing solar cell
JP6199727B2 (en) Manufacturing method of solar cell
WO2016047564A1 (en) Solar cell element
JP2003209271A (en) Solar battery and its manufacturing method
TWI501292B (en) Method for forming patterned doping regions
US20120107997A1 (en) Method of manufacturing solar cell
TWI528420B (en) Method for forming patterned doping regions
JP2928433B2 (en) Method for manufacturing photoelectric conversion element
TWI481060B (en) Method for manufacturing solar cell
JP5715509B2 (en) Solar cell and method for manufacturing solar cell
JP6114170B2 (en) Manufacturing method of solar cell
KR101503794B1 (en) Method for manufactoring a solar cell using optical system
KR101507855B1 (en) Method for manufacturing a solar cell using hydrophobic process
KR101172611B1 (en) Method for Fabricating Solar Cell
KR101061681B1 (en) Method for fabricating solar cell
KR20120026700A (en) Method for fabricating solar cell
KR20150098517A (en) The method for preparing the bifacial solar cell
TW201324831A (en) Manufacturing method of solar cell
KR20110071674A (en) Method for forming selective emitter in a solar cell