TWI514520B - 半導體基底及其製造方法 - Google Patents

半導體基底及其製造方法 Download PDF

Info

Publication number
TWI514520B
TWI514520B TW097120754A TW97120754A TWI514520B TW I514520 B TWI514520 B TW I514520B TW 097120754 A TW097120754 A TW 097120754A TW 97120754 A TW97120754 A TW 97120754A TW I514520 B TWI514520 B TW I514520B
Authority
TW
Taiwan
Prior art keywords
film
insulating film
substrate
semiconductor
semiconductor substrate
Prior art date
Application number
TW097120754A
Other languages
English (en)
Other versions
TW200915496A (en
Inventor
Tetsuya Kakehata
Original Assignee
Semiconductor Energy Lab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Lab filed Critical Semiconductor Energy Lab
Publication of TW200915496A publication Critical patent/TW200915496A/zh
Application granted granted Critical
Publication of TWI514520B publication Critical patent/TWI514520B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1262Multistep manufacturing methods with a particular formation, treatment or coating of the substrate
    • H01L27/1266Multistep manufacturing methods with a particular formation, treatment or coating of the substrate the substrate on which the devices are formed not being the final device substrate, e.g. using a temporary substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B20/00Read-only memory [ROM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B20/00Read-only memory [ROM] devices
    • H10B20/27ROM only
    • H10B20/30ROM only having the source region and the drain region on the same level, e.g. lateral transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/66772Monocristalline silicon transistors on insulating substrates, e.g. quartz substrates

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

半導體基底及其製造方法
本發明涉及具有SOI(Silicon On Insulator;絕緣體上矽)結構的半導體裝置製造用基底及其製造方法。
在本說明書中,半導體裝置指的是能夠藉由利用半導體特性而工作的所有裝置,電光學裝置、半導體電路及電子產品全部包括在內。
隨著VLSI技術的發展,要求超過體單晶矽能夠實現的等比例縮放定律的低耗電量化及高速化。為了滿足這些要求,SOI結構受到關注。這個技術是在現有由體單晶矽構成的場效應電晶體(FET;Field Effect Transistor)的有源極區域(溝道形成區域)中使用單晶矽薄膜的技術。已知可以藉由使用SOI結構製造場效應電晶體而使其寄生電容比使用體單晶矽基底的情況小,這有利於高速化。
作為SOI基底,已知SIMOX基底或貼合基底。關於SIMOX基底,藉由將氧離子植入到單晶矽基底並以1300℃以上進行加熱處理來形成掩埋氧化膜,從而在表面上形成單晶矽膜,以獲得SOI結構。SIMOX基底由於能夠精確地控制氧離子的植入而可以以均勻的膜厚度形成單晶矽膜。但是,氧離子的植入需要花費長時間,因此有時間及成本的問題。另外,還有如下問題:當植入氧離子時單晶矽基底容易受到損傷,這影響到所獲得的單晶矽膜。
關於貼合基底,中間夾著絕緣膜貼合兩個單晶矽基底,並將一個單晶矽基底薄膜化來形成單晶矽膜,以獲得SOI結構。作為薄膜化方法之一,已知氫離子植入剝離法。在氫離子植入剝離法中,藉由將氫離子植入到一個單晶矽基底,在離矽基底的表面預定的深度處形成微小氣泡層,並以該微小氣泡層為劈開面,從而可以將薄單晶矽膜固定於另一個單晶矽基底上(參照專利文件1)。
近年來,進行研究來在諸如玻璃的具有絕緣表面的基底上形成單晶矽膜。作為在玻璃基底上形成有單晶矽膜的SOI基底的一個例子,已知本案申請人所提出的技術方案(參照專利文件2)。
專利文件1日本專利申請公開2000-124092號公報專利文件2日本專利申請公開平11-163363號公報
在利用氫離子植入剝離法形成SOI結構的情況下,由於將離子直接植入到作為半導體膜的基礎的半導體基底,所以在所獲得的半導體膜上容易產生懸空鍵(dangling bond)等的結構缺陷。懸空鍵有可能成為在半導體膜中產生局域態(localized level)的原因,而使半導體裝置的電特性退化。
鑒於上述問題,本發明的目的在於提供一種能夠製造電特性提高了的半導體裝置的半導體裝置製造用基底及其製造方法。本發明的目的還在於提供一種可靠性高的半導 體裝置。
藉由將從半導體基底分離的半導體膜轉移到具有絕緣表面的支撐基底上,製造半導體裝置製造用基底。在作為半導體膜的基礎的半導體基底上依次形成在成份中包含矽和氧的絕緣膜及在成份中包含矽和氮的絕緣膜,然後將離子植入到半導體基底以在預定深度處形成分離層。接著,將鹵素離子植入到形成在半導體基底上的在成份中包含矽和氧的絕緣膜以獲得包含鹵素離子的在成份中包含矽和氧的絕緣膜,然後在在成份中包含矽和氮的絕緣膜上形成接合層。將半導體基底和支撐基底重疊並貼合,其中間夾著從所述半導體基底一側依次層疊的所述在成份中包含矽和氧的絕緣膜、所述在成份中包含矽和氮的絕緣膜及所述接合層。藉由進行加熱處理,以分離層為境界來分離半導體基底的一部分,並使半導體膜殘留在支撐基底上,以製造半導體裝置製造用基底。
在本說明書中,“植入離子”指的是藉由照射由電場加速了的離子將構成該照射了的離子的元素引入到半導體基底中。另外,“分離層”指的是藉由將離子照射到半導體基底而具有微小空洞的脆弱化區域,可以藉由進行之後的加熱處理在分離層處分離來在支撐基底上形成半導體層。再者,“接合層”指的是形成在與支撐基底(或形成在支撐基底上的絕緣膜)實現接合的接合面上的膜(典型地是絕緣膜)。
本發明之一是一種半導體裝置製造用基底的製造方法 ,包括如下步驟:在單晶半導體基底的一個表面上依次層疊在成份中包含矽和氧的絕緣膜和在成份中包含矽和氮的絕緣膜;藉由將離子照射到單晶半導體基底,在單晶半導體基底的預定深度處形成分離層;藉由將鹵素離子照射到在成份中包含矽和氧的絕緣膜,使在成份中包含矽和氧的絕緣膜中包含鹵素;在在成份中包含矽和氮的絕緣膜上形成接合層;將單晶半導體基底和支撐基底重疊並接合,其中間夾著從單晶半導體基底一側依次層疊的在成份中包含矽和氧的絕緣膜、在成份中包含矽和氮的絕緣膜及接合層;藉由以550℃以上的溫度進行加熱處理,以分離層為境界來分離單晶半導體基底的一部分,以在支撐基底上形成單晶半導體膜。
本發明之一是一種半導體裝置製造用基底的製造方法,包括如下步驟:在單晶半導體基底的一個表面上依次層疊在成份中包含矽和氧的絕緣膜和在成份中包含矽和氮的絕緣膜;藉由將離子照射到單晶半導體基底,在單晶半導體基底的預定深度處形成分離層;藉由將鹵素離子照射到在成份中包含矽和氧的絕緣膜,使在成份中包含矽和氧的絕緣膜中包含鹵素;在在成份中包含矽和氮的絕緣膜上形成接合層;將單晶半導體基底和支撐基底重疊並接合,其中間夾著從單晶半導體基底一側依次層疊的在成份中包含矽和氧的絕緣膜、在成份中包含矽和氮的絕緣膜及接合層;藉由以550℃以上的溫度進行加熱處理,以分離層為境界來分離單晶半導體基底的一部分,以在支撐基底上形成 單晶半導體膜,並使鹵素分佈在單晶半導體膜中。
在上述結構中,優選使用氟或氯作為鹵素。
在上述結構中,優選形成氧化矽膜或氧氮化矽膜作為在成份中包含矽和氧的絕緣膜。優選形成氮化矽膜或氮氧化矽膜作為在成份中包含矽和氮的絕緣膜。
另外,優選形成氧化矽膜或具有矽氧烷鍵的膜作為接合層。形成接合層的氧化矽膜優選藉由將有機矽烷或無機矽烷用作原料氣體並使用化學氣相沉積法而形成。
在上述結構中,可以使用玻璃基底、石英基底、陶瓷基底、藍寶石基底、或其表面被絕緣膜覆蓋的金屬基底作為支撐基底。
本發明之一是一種半導體裝置製造用基底,包括:固定於支撐基底上並包含鹵素的單晶半導體膜;與該單晶半導體膜接觸並包含與該單晶半導體膜所包含的鹵素相同的鹵素的在成份中包含矽和氧的絕緣膜,該在成份中包含矽和氧的絕緣膜形成在支撐基底和單晶半導體膜之間;與所述在成份中包含矽和氧的絕緣膜接觸的在成份中包含矽和氮的絕緣膜;以及與所述在成份中包含矽和氮的絕緣膜接觸的接合層。
在上述結構中,包含在單晶半導體膜及在成份中包含矽和氧的絕緣膜中的鹵素優選是氟或氯。
在上述結構中,優選地是,在成份中包含矽和氧的絕緣膜是氧化矽膜或氧氮化矽膜,而在成份中包含矽和氮的絕緣膜是氮化矽膜或氮氧化矽膜。另外,接合層優選是氧 化矽膜或具有矽氧烷鍵的膜。
在上述結構中,可以使用玻璃基底、石英基底、陶瓷基底、藍寶石基底、或其表面被絕緣膜覆蓋的金屬基底作為支撐基底。
藉由應用根據本發明的半導體裝置製造用基底,可以製造具有良好電特性的半導體裝置。還可以實現可靠性提高了的半導體裝置的製造。
下面,參照附圖說明本發明的實施方式。注意,本發明不局限於以下說明,本領域的技術人員可以很容易地理解一個事實就是,其方式和詳細內容可以在不脫離本發明的宗旨及其範圍的情況下被變換為各種各樣的形式。因此,本發明不應該被解釋為僅限定在下述實施方式所記載的內容中。在以下所說明的本發明的結構中,有時在不同附圖之間共同使用同一附圖標記表示同一部分。
實施方式1
根據本實施方式的半導體裝置製造用基底具有SOI結構,藉由將從半導體基底分離的半導體膜轉移到支撐基底上而形成。作為支撐基底,使用與半導體基底不同種類的基底。圖1表示根據本實施方式的半導體裝置製造用基底的一個方式。
在圖1所示的半導體裝置製造用基底100中,在支撐 基底120上設置有半導體膜140。在支撐基底120和半導體膜140之間設置有與該半導體膜140接觸的在成份中包含矽和氧的絕緣膜107、與該在成份中包含矽和氧的絕緣膜107接觸的在成份中包含矽和氮的絕緣膜106、以及與該在成份中包含矽和氮的絕緣膜106接觸的接合層114。就是說,半導體裝置製造用基底100在支撐基底120上固定有半導體膜140,其中間夾著依次層疊的接合層114、在成份中包含矽和氮的絕緣膜106及在成份中包含矽和氧的絕緣膜107而形成的疊層膜。
作為半導體膜140,可以使用單晶半導體或多晶半導體。尤其是,優選使用單晶矽。除此以外,還可以使用能夠藉由利用離子植入剝離法從半導體基底剝離的半導體。例如,可以使用矽、鍺、鍺化矽、或砷化鎵、磷化銦等的化合物半導體。半導體膜140的厚度為5nm以上且500nm以下,優選為10nm以上且200nm以下。
在本實施方式中,半導體膜140包含鹵素。至於該半導體膜140的鹵素含量,峰值濃度優選在1×1017 atoms/cm3 以上且1×1021 atoms/cm3 以下的範圍內。
作為支撐基底120,使用具有絕緣表面的基底或具有絕緣性的基底。具體地說,使用與半導體基底不同種類的基底,例如,鋁矽酸鹽玻璃、鋁硼矽酸鹽玻璃、鋇硼矽酸鹽玻璃等的各種電子工業用玻璃基底(也稱為無堿玻璃基底)、石英基底、陶瓷基底、藍寶石基底、或其表面被絕緣膜覆蓋的金屬基底、等等。優選使用電子工業用玻璃基 底,以實現低成本化。
作為在成份中包含矽和氧的絕緣膜107,形成氧化矽膜或氧氮化矽膜。在成份中包含矽和氧的絕緣膜107的厚度為10nm以上且500nm以下,優選為50nm以上且200nm以下。注意,在成份中包含矽和氧的絕緣膜107含有鹵素。
作為在成份中包含矽和氮的絕緣膜106,形成氮化矽膜或氮氧化矽膜。在成份中包含矽和氮的絕緣膜106的厚度為10nm以上且200nm以下,優選為50nm以上且100nm以下。
在本說明書中,氧氮化矽膜中的氧含量多於氮含量,在藉由盧瑟福回向散射分析(RBS,即Rutherford Backscattering Spectrometry)及氫前向散射分析(HFS,即Hydrogen Forward Scattering)測量的情況下,其包含氧、氮、Si及氫,它們的濃度範圍如下:50atoms%以上70atoms%以下的氧;0.5atoms%以上15atoms%以下的氮;25atoms%以上35atoms%以下的Si;以及0.1atoms%以上10atoms%以下的氫。另一方面,氮氧化矽膜的氮含量多於氧含量,在藉由RBS及HFS測量的情況下,其包含氧、氮、Si及氫,它們的濃度範圍如下:5atoms%以上30atoms%以下的氧;20atoms%以上55atoms%以下的氮;25atoms%以上35 atoms%以下的Si;以及10atoms%以上30atoms%以下的氫。注意,當將構成氧氮化矽或氮氧化矽的原子總量設定為100原子%時,氮、氧、Si及氫的 含量比例在上述範圍內。
作為接合層114,優選形成具有平滑性並能夠形成親水性表面的膜。例如,形成氧化矽膜或具有矽氧烷鍵的膜等的絕緣膜作為接合層114。接合層114的厚度可以為5nm以上500nm以下,優選為10nm以上100nm以下。
下面,參照附圖說明具體製造方法的例子。圖2A至2E及圖3A至3E是表示根據本實施方式的半導體裝置製造用基底的製造方法的一個例子的截面圖。
首先,準備半導體基底102(參照圖2A)。作為半導體基底102,使用矽基底和鍺基底等的半導體基底、或砷化鎵和磷化銦等的化合物半導體基底。優選使用單晶半導體基底作為半導體基底102,但是也可以使用多晶半導體基底。另外,所使用的半導體基底既可是矩形又可是圓形。
在清潔了的半導體基底102的一個表面上依次形成在成份中包含矽和氧的絕緣膜104(以下稱為第一在成份中包含矽和氧的絕緣膜104)和在成份中包含矽和氮的絕緣膜106(參照圖2B)。這些疊層膜形成在半導體基底102與支撐基底實現接合的面一側。
第一在成份中包含矽和氧的絕緣膜104和在成份中包含矽和氮的絕緣膜106可以藉由使用化學氣相沉積(CVD,即Chemical Vapor Deposition)法、濺射法、或原子層外延(ALE,即Atomic Layer Epitaxy)法而形成。在本說明書中,CVD法包括電漿CVD法、熱CVD法及光CVD法 在內。另外,第一在成份中包含矽和氧的絕緣膜104也可以藉由在包含氧的氣氛中的加熱處理或電漿處理、或UV臭氧處理等的氧化處理而形成。
作為第一在成份中包含矽和氧的絕緣膜104,形成氧化矽膜或氧氮化矽膜。第一在成份中包含矽和氧的絕緣膜104的厚度為10nm以上500nm以下,優選為50nm以上200nm以下。
作為在成份中包含矽和氮的絕緣膜106,形成氮化矽膜或氮氧化矽膜。在成份中包含矽和氮的絕緣膜106的厚度為10nm以上200nm以下,優選為50nm以上100nm以下。在成份中包含矽和氮的絕緣膜106用作防止金屬雜質如鹼金屬或鹼土金屬等擴散到半導體膜一側的阻擋膜。因此,即使使用玻璃基底如鋁矽酸鹽玻璃作為之後被接合的支撐基底,也可以阻擋包含在玻璃基底中的鈉等金屬雜質的擴散。
若將在成份中包含矽和氮的絕緣膜106以直接接觸的方式形成在半導體基底102上,則能夠發揮阻擋效果,但是有可能會形成陷井能級而引起介面特性的問題。為了避免這個問題,優選在半導體基底102和在成份中包含矽和氮的絕緣膜106之間形成第一在成份中包含矽和氧的絕緣膜104。藉由從半導體膜140一側依次層疊第一在成份中包含矽和氧的絕緣膜104和在成份中包含矽和氮的絕緣膜106,可以防止半導體膜被金屬雜質污染,並可以提高介面的電特性。
另外,優選連續形成第一在成份中包含矽和氧的絕緣膜104和在成份中包含矽和氮的絕緣膜106。這是因為藉由連續形成而可以防止介面污染的緣故。
接下來,將由電場加速了的離子108照射到半導體基底102,以在半導體基底102的預定深度處形成分離層112(參照圖2C)。在本實施方式中,從半導體基底102的形成有第一在成份中包含矽和氧的絕緣膜104和在成份中包含矽和氮的絕緣膜106的面一側照射離子108。
形成在半導體基底102中的分離層112的深度可以根據被照射的離子108的種類、離子108的加速電壓、及離子108的照射角度來控制。分離層112形成在離半導體基底102的表面接近於離子平均進入深度的深度處。另外,之後被轉移到支撐基底上的半導體膜的厚度取決於分離層112的深度。因此,根據被轉移的半導體膜的厚度,調整在照射離子108時的加速電壓及離子108的劑量。調整離子108的照射,使得半導體膜的厚度優選為5nm以上500nm以下,更優選為10nm以上200nm以下。
優選使用離子摻雜設備照射離子108。就是說,優選採用藉由對原料氣體進行電漿激發而產生的多種離子不進行質量分離地照射的摻雜方式。在本實施方式中,優選照射由一種或多種相同原子構成的質量相同的離子、或由一種或多種相同原子構成的質量不相同的離子。在所述離子摻雜方式中,加速電壓為10kV以上100kV以下,優選為30kV以上80kV以下,劑量為1×1016 ions/cm2 以上4× 1016 ions/cm2 以下,束電流密度為2 μ A/cm2 以上,優選為5 μ A/cm2 以上,更優選為10 μ A/cm2 以上。
作為離子108,優選照射藉由對選自氫或氘中的原料氣體進行電漿激發而產生的由一種或多種相同原子構成的質量相同的離子、或由一種或多種相同原子構成的質量不相同的離子。在照射氫離子的情況下,藉由包含H 離子、H2 離子、H3 離子並提高H3 離子的比例,可以提高離子的照射效率,並可以縮短照射時間,因此是很優選的。據此,可以在形成在半導體基底102中的分離層112的區域中包含1×1020 atoms/cm3 (優選為1×1021 atoms/cm3 )以上的氫。在半導體基底102中局部地形成高濃度氫摻雜區域,由此打亂了結晶結構而形成微小的空洞,可以使分離層112具有多孔結構。在此情況下,藉由進行溫度比較低的加熱處理,引起形成在分離層112中的微小空洞的體積變化。然後,藉由沿分離層112劈開,可以形成薄半導體膜。
另外,即使對離子進行質量分離來將特定種類的離子照射到半導體基底102,也可以同樣地形成分離層112。在此情況下,藉由選擇性地照射質量大的離子,可以發揮與上述相同的效果,因此也是優選的。
另外,還有如下情況:以高劑量條件植入離子108,以在預定深度處形成分離層112。在本實施方式中,隔著形成在半導體基底102上的第一在成份中包含矽和氧的絕緣膜104和在成份中包含矽和氮的絕緣膜106的疊層膜照 射離子108,因此可以防止由離子引入導致的半導體基底102的表面粗糙。
接著,藉由將由電場加速了的鹵素離子113照射到第一在成份中包含矽和氧的絕緣膜104,獲得在第一在成份中包含矽和氧的絕緣膜104中包含鹵素的在成份中包含矽和氧的絕緣膜105(以下稱為第二在成份中包含矽和氧的絕緣膜105)(參照圖2D)。
鹵素離子113經過在成份中包含矽和氮的絕緣膜106而照射到第一在成份中包含矽和氧的絕緣膜104,由此將構成該鹵素離子113的鹵素引入到第一在成份中包含矽和氧的絕緣膜104中。引入鹵素離子113的深度可以根據鹵素離子113的種類、鹵素離子113的加速電壓、以及鹵素離子113的照射角度來控制。
另外,可以使用離子摻雜設備或離子照射設備照射鹵素離子113。就是說,既可採用多種離子不被進行質量分離就被照射的摻雜方式,又可採用進行質量分離來照射特定種類的離子的方式。例如,將鹵素離子113照射到第一在成份中包含矽和氧的絕緣膜104的條件如下:加速電壓為30kV以上100kV以下,劑量為1×1014 ions/cm2 以上1×1016 ions/cm2 以下。
關於鹵素離子113,只要將鹵素如氟或氯等離子化即可,優選使用氟。雖然可以將鹵素均勻地分佈在第二在成份中包含矽和氧的絕緣膜105中,但是在照射離子的情況下鹵素通常根據高斯分佈(Gaussian distribution)而分佈 。就是說,在第二在成份中包含矽和氧的絕緣膜105的預定深度處形成有高濃度鹵素區域,並以該高濃度區域為峰值濃度來在廣範圍內分佈。這裏,關於第二在成份中包含矽和氧的絕緣膜105的鹵素含量,優選峰值濃度在1×1019 atoms/cm3 以上1×1021 atoms/cm3 以下的範圍內。
接下來,在在成份中包含矽和氮的絕緣膜106上形成接合層114(參照圖2E及圖3A)。
作為接合層114,優選形成具有平滑性並能夠形成親水性表面的膜。作為該接合層114,優選使用利用化學反應而形成的絕緣膜。例如,利用熱或化學反應而形成的絕緣膜是適合的。這是因為利用化學反應而形成的絕緣膜容易確保表面的平滑性的緣故。具有平滑性並形成親水性表面的接合層114的厚度為5nm以上500nm以下,優選為10nm以上100nm以下。藉由在上述範圍內設定接合層114的厚度,可以降低被成膜表面的粗糙度,並可以確保該膜的生長表面的平滑性。
作為滿足上述條件的接合層114,優選使用將有機矽烷用作原料氣體藉由CVD法而形成的氧化矽膜。作為有機矽烷,可以使用四乙氧基矽烷(TEOS:Si(OC2 H5 )4 )、四甲基矽烷(TMS:Si(CH3 )4 )、三甲基矽烷((CH3 )3 SiH)、四甲基環四矽氧烷(TMCTS)、八甲基環四矽氧烷(OMCTS)、六甲基二矽氮烷(HMDS)、三乙氧基矽烷(SiH(OC2 H5 )3 )、三(二甲基氨基)矽烷(SiH(N(CH3 )2 )3 )等的含矽化合物。在將有機矽烷用作原料氣體藉由CVD 法形成氧化矽膜的情況下,優選混合提供氧的氣體。作為提供氧的氣體,可以使用氧、一氧化二氮、或二氧化氮等。還可以混合氬、氦、或氮等的惰性氣體、或氫氣。另外,可以使用將甲矽烷、二矽烷、或三矽烷等的無機矽烷用作原料氣體藉由CVD法而形成的氧化矽膜作為接合層114。在此情況下,優選混合提供氧的氣體或惰性氣體等。注意,形成接合層114的成膜溫度優選低於之後進行的從半導體基底如單晶半導體基底或多晶半導體基底等分離半導體膜的加熱處理的溫度。例如,當形成接合層114時,採用350℃以下的成膜溫度。
作為接合層114,還可以使用具有矽氧烷(Si-O-Si)鍵的膜。在本說明書中,具有矽氧烷鍵的膜指的是包括矽(Si)和氧(O)的鍵且由矽和氧的鍵構成其骨架結構的膜。矽氧烷具有取代基。作為取代基,可以舉出至少含有氫的有機基(例如烷基、芳烴等)。還可以使用氟基作為取代基。還可以使用至少含有氫的有機基、以及氟基作為取代基。具有矽氧烷鍵的膜可以藉由旋塗法等的塗敷法而形成。
準備支撐基底120(參照圖3B)。作為支撐基底120,如上所述那樣使用具有絕緣表面的基底或具有絕緣性的基底。具體地說,可以舉出鋁矽酸鹽玻璃、鋁硼矽酸鹽玻璃、鋇硼矽酸鹽玻璃等的各種電子工業用玻璃基底、石英基底、陶瓷基底、藍寶石基底、或其表面被絕緣膜覆蓋的金屬基底、等等。
將半導體基底102和支撐基底120重疊並貼合,其中間夾著依次層疊在半導體基底102上的第二在成份中包含矽和氧的絕緣膜105、在成份中包含矽和氮的絕緣膜106及接合層114(參照圖3C)。
預先使半導體基底102及支撐基底120的實現接合的面充分潔淨。然後,藉由將作為形成在半導體基底102上的疊層膜中的最上層的接合層114與支撐基底120緊密接觸,實現接合。關於接合,在初步階段中認為是範德瓦耳斯力在起作用,藉由壓接支撐基底120和半導體基底102,可以實現利用氫鍵的牢固接合。
在貼合支撐基底120和半導體基底102之後,優選進行加熱處理或加壓處理。藉由進行加熱處理或加壓處理,可以提高接合強度。在進行加熱處理時,其溫度範圍在支撐基底120的耐熱溫度以下而且不超過之後進行的分離半導體基底的加熱處理的溫度。另外,在加壓處理中,沿垂直於接合面的方向施加壓力,考慮支撐基底120及半導體基底102的耐壓性地進行該處理。
為了實現半導體基底102和支撐基底120的良好接合,也可以在使支撐基底120和半導體基底102緊密接觸之前使某一方或雙方的接合面活化。例如,藉由照射原子束或離子束,具體地說,照射氬等惰性氣體原子束或惰性氣體離子束,可以使接合面活化。除此以外,也可以藉由進行自由基處理使接合面活化。藉由進行這種表面活化處理,可以提高異種材料之間的接合強度。另外,也可以使用 含臭氧水、含氧水、含氫水、或純水等對某一方或雙方的接合面進行清洗處理。這樣,藉由進行使接合面具有親水性的處理,接合面的OH基可以增大。其結果是,可以使利用氫鍵的接合更牢固。
接下來,進行加熱處理,以分離層112為境界來分離半導體基底102的一部分。由於半導體基底102與支撐基底120接合,其中間夾著絕緣膜,所以藉由以分離層112為境界來分離半導體基底102的一部分,半導體膜140殘留在支撐基底120上(參照圖3D)。
加熱處理優選在接合層114的成膜溫度以上且支撐基底120的應變點溫度以下的溫度下進行。藉由進行加熱處理,在分離層112中形成的微小空洞的體積發生變化,從而可以沿分離層112劈開半導體基底102。形成在半導體基底102上的接合層114與支撐基底120接合,因此成為結晶性與半導體基底102相同的半導體膜140殘留在支撐基底120上的形態。例如,藉由使用單晶矽基底作為半導體基底102並使用玻璃基底作為支撐基底120,可以在玻璃基底上形成單晶矽膜,其中間夾著絕緣膜。注意,在使用玻璃基底作為支撐基底120的情況下,加熱處理的溫度優選為650℃以下。
在進行圖3D所示的加熱處理時,優選以550℃以上且30分鐘以上進行加熱處理,從而包含在第二在成份中包含矽和氧的絕緣膜105中的鹵素再分佈而擴散到半導體膜140(半導體基底102)一側。在本實施方式中,半導 體膜140是藉由由以氫為原料氣體而產生的離子的照射導致的半導體基底的脆弱化及加熱處理來分離半導體基底而形成的,在該半導體膜140的分離面(成為劈開面的區域)及半導體膜140中形成有許多懸空鍵。另外,在與作為下層的第二在成份中包含矽和氧的絕緣膜105的介面上,也因該介面上的原子間鍵遮斷而形成懸空鍵。從第二在成份中包含矽和氧的絕緣膜105擴散的鹵素起到對形成在半導體膜140的分離面、半導體膜140中、以及半導體膜140和第二在成份中包含矽和氧的絕緣膜105的介面的懸空鍵終端的作用。例如,當半導體膜140為矽膜且第二在成份中包含矽和氧的絕緣膜105包含氟時,在懸空鍵被終端了的區域中產生Si-F鍵。
在被鹵素終端了的半導體膜140中包含鹵素。半導體膜140的鹵素含量取決於該半導體膜140的懸空鍵的生成量與分離半導體基底的加熱處理溫度以及包含在第二在成份中包含矽和氧的絕緣膜105中的鹵素的擴散係數的關係。在半導體膜140中包含的鹵素的峰值濃度優選在1×1017 atoms/cm3 以上1×1021 atoms/cm3 以下的範圍內。注意,包含在半導體膜140中的鹵素有均勻地分佈的情況,也有局部地具有峰值濃度並從具有該峰值濃度的區域擴散而分佈的情況。另外,包含在半導體膜140(在以分離層112境界來進行分離之前的半導體基底102)中的鹵素從與該半導體膜140接觸的第二在成份中包含矽和氧的絕緣膜105擴散,因此有時在與第二在成份中包含矽和氧的絕 緣膜105的介面附近具有峰值濃度,鹵素分佈為其濃度從該介面附近向半導體膜140的分離面降低。
這裏,鹵素,尤其是氟的電負性大。因此,當對鹵素與一個元素形成鍵的情況、以及鹵素以外的元素與上述一個元素形成鍵的情況進行比較時,在鹵素與一個元素形成鍵的情況下的結合能高,而容易形成穩定結構。例如,已知矽膜等的半導體膜被氫終端,但是氫即使藉由400℃左右的加熱處理也容易從矽脫離。另一方面,以氟為代表的鹵素和矽的結合能比氫和矽的結合能高,因而比氫穩定。因此,藉由將鹵素擴散到半導體膜及其介面,可以實現有效的懸空鍵的終端。就是說,藉由以550℃以上且支撐基底120的應變點溫度以下(在使用玻璃基底作為支撐基底120的情況下,以550℃以上650℃以下)進行圖3D所示的加熱處理,可以以分離層112為境界來分離半導體基底102,並可以實現所獲得的半導體膜140的懸空鍵的終端。
雖然可以將鹵素直接引入到半導體基底或半導體膜以對懸空鍵終端,但是如果直接引入鹵素,則對半導體基底或半導體膜的損傷大。因此,藉由使預先包含在絕緣膜(這裏,第二在成份中包含矽和氧的絕緣膜105)中的鹵素再分佈,可以抑制對半導體膜的損傷,並實現懸空鍵的終端。
懸空鍵是結構缺陷。若在半導體膜或其介面上產生懸空鍵,這會導致半導體特性的退化等的負面影響。因此, 藉由利用鹵素對懸空鍵終端,可以提高半導體特性,並可以製造具有良好電特性的半導體裝置。
另外,藉由進行加熱處理,包含在第二在成份中包含矽和氧的絕緣膜105中的鹵素再分佈而向半導體膜140(半導體基底102)一側擴散,因此第二在成份中包含矽和氧的絕緣膜105的鹵素含量減少。就是說,在進行加熱處理之後,可以獲得第二在成份中包含矽和氧的絕緣膜105中的鹵素含量減少了的在成份中包含矽和氧的絕緣膜107(以下稱為第三在成份中包含矽和氧的絕緣膜107)。
注意,鹵素包含在第三在成份中包含矽和氧的絕緣膜107中,從而可以得到金屬雜質的吸雜效果及阻擋效果。因此,可以防止半導體膜140被金屬雜質污染。
另外,藉由進行分離半導體基底102的加熱處理,還可以提高支撐基底120與半導體基底102的接合面的接合強度。另外,也可以在進行以分離為目的的加熱處理之前進行以提高接合強度為目的的加熱處理,以進行兩個階段以上的加熱處理。例如,可以在200℃以上400℃以下的溫度範圍內進行加熱處理,然後在550℃以上的溫度範圍內進行加熱處理。
藉由分離半導體基底102,製造將半導體膜140夾著接合層114、在成份中包含矽和氮的絕緣膜106、及第三在成份中包含矽和氧的絕緣膜107地固定在支撐基底120上的SOI結構的半導體裝置製造用基底。藉由在分離半導體基底102時的加熱處理,在半導體膜140及其介面處實 現利用鹵素的終端。另外,在半導體膜140和支撐基底120之間形成有具有高阻擋效果的在成份中包含矽和氮的絕緣膜。因此,藉由使用根據本實施方式的半導體裝置製造用基底,可以製造電特性良好且可靠性高的半導體裝置。
因為離子照射步驟及分離步驟,轉移到支撐基底120上的半導體膜140的表面平坦性受到損害,在其表面上形成有凹凸。另外,也有分離層112殘留在半導體膜140的表面上的情況。若在半導體膜140的表面形成有凹凸,則當使用所獲得的半導體裝置製造用基底製造半導體裝置時難以形成薄且絕緣耐壓性良好的閘極絕緣膜。因此,優選對半導體膜140進行平坦化處理(參照圖3E)。
例如,作為平坦化處理,優選對半導體膜140進行化學機械抛光(CMP,即Chemical Mechanical Polishing)。另外,也可以對半導體膜140照射雷射光束,或者利用電爐、燈退火爐、或快速熱退火(RTA)裝置等進行加熱處理,以實現半導體膜140的平坦化。再者,也可以組合CMP處理及雷射光束照射、或加熱處理。藉由對半導體膜照射雷射光束或者進行加熱處理,還可以在實現半導體膜的平坦化的同時恢復結晶缺陷或損傷等。另外,可以在進行CMP處理之後照射雷射光束或進行加熱處理,以修復因CMP處理而形成的表面損傷層。還可以進行CMP處理等,以實現所獲得的半導體膜的薄膜化。
當對半導體膜照射雷射光束時,優選在氧濃度為 10ppm以下的氮氣氛中照射雷射光束。這是因為若在氧氣氛中照射雷射光束則半導體膜表面會粗糙的緣故。另外,在對半導體膜照射雷射光束之後,優選再次進行550℃以上的加熱處理,以使包含在作為下層的在成份中包含矽和氧的絕緣膜中的鹵素再擴散。這是因為當對半導體膜照射雷射光束時有對該半導體膜的懸空鍵終端的鹵素脫離的情況的緣故。注意,半導體膜的加熱處理是為了對由於鹵素脫離而再次產生的懸空鍵終端,因此優選將其上限設定為以分離層境界來分離半導體基底的加熱處理溫度。
藉由使用如上所述那樣製造的半導體裝置製造用基底,可以製造各種半導體裝置。
在本實施方式中,圖示了支撐基底120的面積比半導體基底102大的例子。但是,對本發明沒有特別的限制。還可以使用其面積與半導體基底102大致相同的支撐基底120。另外,也可以使用其形狀與半導體基底102不相同的基底。
另外,可以再利用被分離半導體膜140的半導體基底102。就是說,可以再利用如圖3D所示那樣分離的半導體基底102作為圖2A所示的半導體基底。當再利用半導體基底102時,優選對半導體膜140的分離面(成為劈開面的分離層112)進行平坦化處理。這裏的平坦化處理可以與上述半導體膜140的平坦化同樣地進行,可以適當地進行CMP處理、雷射光束照射、或加熱處理等。也可以組合多種處理來實現平坦化並修復結晶缺陷。藉由再利用當 製造半導體裝置製造用基底時用作基礎的半導體基底,可以大幅度減少成本。當然,在分離半導體膜140之後的半導體基底102也可以用於製造半導體裝置製造用基底以外的用途。
另外,也可以是在支撐基底120一側也設置接合層的結構。下面,參照圖4A至4E說明將接合層設置在支撐基底120一側的半導體裝置製造用基底的製造方法的一個例子。
準備半導體基底102,在潔淨的半導體基底102的一個表面上依次層疊第一在成份中包含矽和氧的絕緣膜及在成份中包含矽和氮的絕緣膜106。從半導體基底102上的形成有第一在成份中包含矽和氧的絕緣膜及在成份中包含矽和氮的絕緣膜106的面一側照射使氫或氘離子化了的離子,以在半導體基底102的預定深度處形成分離層112。接著,使鹵素離子經過在成份中包含矽和氮的絕緣膜106來將它照射到第一在成份中包含矽和氧的絕緣膜,以獲得第二在成份中包含矽和氧的絕緣膜105。然後,在在成份中包含矽和氮的絕緣膜106上形成接合層114(參照圖4A)。注意,圖4A的說明援引圖2A至2E的說明。
準備支撐基底120。然後,在支撐基底120上形成接合層124(參照圖4B)。這裏,示出在支撐基底120上夾著阻擋膜122形成接合層124的例子。
作為支撐基底120,如上所述那樣使用具有絕緣表面的基底或具有絕緣性的基底。具體地說,可以舉出鋁矽酸 鹽玻璃、鋁硼矽酸鹽玻璃、鋇硼矽酸鹽玻璃等的各種電子工業用玻璃基底、石英基底、陶瓷基底、藍寶石基底、或其表面被絕緣膜覆蓋的金屬基底、等等。
作為接合層124,與接合層114同樣地形成具有平滑性並能夠形成親水性表面的膜。例如,可以使用將TEOS等的有機矽烷或甲矽烷等的無機矽烷用作原料氣體藉由CVD法而形成的氧化矽膜、或具有矽氧烷鍵的膜、等等。
接合層124的成膜溫度需要為支撐基底的應變點溫度以下。例如,在使用玻璃基底作為支撐基底120的情況下,接合層124的成膜溫度為玻璃的應變點溫度以下,優選為650℃以下。
藉由使用鋁矽酸鹽玻璃、鋁硼矽酸鹽玻璃、鋇硼矽酸鹽玻璃等的電子工業用玻璃基底作為支撐基底120,可以降低成本。但是,在玻璃基底中包含微量的鈉等的鹼金屬或鹼土金屬的金屬雜質,該金屬雜質會從支撐基底擴散到半導體膜而影響到所製造的半導體裝置的特性退化。如上所述,藉由利用設置在半導體基底102一側的在成份中包含矽和氮的絕緣膜106得到金屬雜質的阻擋效果,但是藉由還在支撐基底120一側設置能夠阻擋金屬雜質的阻擋膜122,可以提高阻擋效果。阻擋膜122可以由單層膜或疊層膜構成,其厚度可以為10nm以上400nm以下。阻擋膜122包含至少一層阻擋鹼金屬或鹼土金屬等的金屬雜質的效果高的膜。作為這種膜,可以舉出氮化矽膜、氮氧化矽膜或氮化鋁膜等。
例如,在阻擋膜122由單層膜構成的情況下,可以形成10nm以上200nm以下厚的氮化矽膜、氮氧化矽膜或氮化鋁膜。在阻擋膜122具有兩層的疊層結構的情況下,例如可以形成氮化矽膜和氧化矽膜的疊層膜、氮化矽膜和氧氮化矽膜的疊層膜、氮氧化矽膜和氧化矽膜的疊層膜、氮氧化矽膜和氧氮化矽膜的疊層膜。注意,在所述兩層的疊層膜中,前者的膜優選是形成在支撐基底120上的膜。這是因為如下緣故:在具有兩層結構的阻擋膜122中,對於下層(支撐基底120一側)形成阻擋效果高的膜,並對於上層(接合層124一側)形成緩和下層膜的內部應力的膜,以不使阻擋膜122的內部應力影響到半導體膜。
將半導體基底102和支撐基底120重疊並貼合,其中間夾著依次層疊在半導體基底102上的第二在成份中包含矽和氧的絕緣膜105、在成份中包含矽和氮的絕緣膜106及接合層114、依次層疊在支撐基底120上的阻擋膜122及接合層124(參照圖4C)。
這裏,將形成在支撐基底120上的接合層124和形成在半導體基底102上的接合層114相對並緊密接觸(接觸)來實現接合。預先使實現接合的面充分潔淨。藉由壓接支撐基底120和半導體基底102,可以實現利用氫鍵的牢固接合。另外,藉由將接合層114和接合層124接合,可以提高接合強度。為了實現支撐基底120和半導體基底102的良好接合,也可以使接合層114及接合層124中的某一方或雙方的接合面活化(包含親水化)。另外,也可 以在貼合支撐基底120和半導體基底102之後進行加熱處理或加壓處理,以提高接合強度。當進行加熱處理時,其溫度範圍不超過之後進行的分離半導體基底的加熱處理的溫度。
藉由進行加熱處理,以分離層112為境界來分離半導體基底102的一部分,來獲得半導體膜140固定於支撐基底120上的SOI結構(參照圖4D)。優選地是,進行半導體膜140的平坦化處理(參照圖4E)。圖4D和4E援引圖3D和3E的說明。
在進行圖4D所示的加熱處理時,包含在第二在成份中包含矽和氧的絕緣膜105中的鹵素再分佈而向半導體膜140(半導體基底102)一側擴散。其結果是,在半導體膜140的分離面、半導體膜140中、以及半導體膜140和在成份中包含矽和氧的絕緣膜的介面上將懸空鍵終端。例如,當半導體膜140為矽膜且第二在成份中包含矽和氧的絕緣膜105包含氟時,在懸空鍵被終端的區域中產生Si-F鍵。
藉由上述加熱處理,鹵素從第二在成份中包含矽和氧的絕緣膜105擴散到半導體膜140,因此第二在成份中包含矽和氧的絕緣膜105的鹵素含量減少。因此,在進行加熱處理之後,可以獲得第二在成份中包含矽和氧的絕緣膜105中的鹵素含量減少了的第三在成份中包含矽和氧的絕緣膜107。另外,第三在成份中包含矽和氧的絕緣膜107包含鹵素,可以期待金屬雜質的吸雜效果。
半導體膜140被鹵素終端,而在該半導體膜140中包含鹵素。半導體膜140的鹵素含量取決於該半導體膜140的懸空鍵的生成量與加熱處理溫度以及鹵素的擴散係數的關係。這裏,半導體膜140的鹵素含量的峰值濃度優選為1×1017 atoms/cm3 以上1×1021 atoms/cm3 以下左右。
如上所述,可以製造半導體裝置製造用基底100,其中半導體膜140隔著在支撐基底120上依次層疊了阻擋膜122、接合層124、接合層114、在成份中包含矽和氮的絕緣膜106及第三在成份中包含矽和氧的絕緣膜107的疊層膜固定於支撐基底120上。
另外,形成在半導體基底102上的在成份中包含矽和氧的絕緣膜也可以由熱氧化膜構成。下面,參照圖5A至5E及圖6A至6E進行說明。
準備半導體基底102,使潔淨的半導體基底102熱氧化,以形成熱氧化膜103(以下稱為第一熱氧化膜103)(參照圖5A)。
作為半導體基底102,例如可以舉出矽、鍺等的半導體基底、或砷化鎵、磷化銦等的化合物半導體基底。這裏,使用單晶矽基底。
作為熱氧化,雖然可以進行濕法氧化,但是優選進行幹法氧化。例如,優選在氧氣氛中以800℃以上1200℃以下,優選以1000℃以上1100℃以下的溫度範圍進行熱氧化。實施者適當地決定第一熱氧化膜103的厚度即可,但其厚度為10nm以上500nm以下,優選為50nm以上 200nm以下。第一熱氧化膜103的厚度可以根據處理氣氛或處理時間等而控制。由於使半導體基底102熱氧化,所以該半導體基底102的厚度有減少的情況。這裏,使用單晶矽基底作為半導體基底102,並形成氧化矽膜作為第一熱氧化膜103。
在表面上形成有第一熱氧化膜103的半導體基底102的一個表面上形成在成份中包含矽和氮的絕緣膜106(參照圖5B)。從半導體基底102的隔著第一熱氧化膜103形成有在成份中包含矽和氮的絕緣膜106的面一側照射將氫或氘離子化了的離子108,以在半導體基底102的預定深度處形成分離層112(參照圖5C)。注意,圖5B和5C的說明援引圖2B和2C的說明。
接著,使鹵素離子113經過在成份中包含矽和氮的絕緣膜106來將它照射到第一熱氧化膜103,以獲得包含鹵素的熱氧化膜153(以下稱為第二熱氧化膜153)。
對第一熱氧化膜103照射鹵素離子113的優選條件如下:加速電壓為30kV以上100kV以下,劑量為1×1014 ions/cm2 以上1×1016 ions/cm2 以下的程度。藉由在這種條件下進行照射,可以使第二熱氧化膜153包含鹵素,其峰值濃度在1×1019 atoms/cm3 以上1×1021 atoms/cm3 以下的範圍內。另外,包含在第二熱氧化膜153中的鹵素可以為高斯分佈。
接著,在在成份中包含矽和氮的絕緣膜106上形成接合層114(參照圖5E和圖6A)。作為接合層114,形成 具有平滑性並能夠形成親水性表面的膜。例如,可以形成氧化矽膜或具有矽氧烷鍵的膜。其詳細內容援引圖2E的說明。
準備支撐基底120(參照圖6B)。作為支撐基底120,例如可以舉出鋁矽酸鹽玻璃、鋁硼矽酸鹽玻璃、鋇硼矽酸鹽玻璃等的各種電子工業用玻璃基底、石英基底、陶瓷基底、藍寶石基底、或其表面被絕緣膜覆蓋的金屬基底、等等。這裏,使用玻璃基底。
將支撐基底120和半導體基底102重疊並貼合,其中間夾著形成在半導體基底102上的第二熱氧化膜153、在成份中包含矽和氮的絕緣膜106及接合層114(參照圖6C)。
這裏,將支撐基底120和形成在半導體基底102上的接合層114相對並密接來實現接合。預先使實現接合的接合面充分潔淨。藉由壓接支撐基底120和半導體基底102,可以實現利用氫鍵的牢固接合。
為了提高支撐基底120和半導體基底102的接合強度,也可以使接合面中的單方或雙方活化(包含親水化)。作為接合面的活化方法,可以舉出利用惰性氣體的原子束或離子束的照射、自由基處理、或利用臭氧水等的清洗處理等。另外,也可以在貼合支撐基底120和半導體基底102之後進行加熱處理或加壓處理,以提高接合強度。當進行加熱處理時,其溫度範圍不超過之後進行的分離半導體基底的加熱處理的溫度。
藉由進行加熱處理,以分離層112為境界來分離半導體基底102的一部分。由於半導體基底102與支撐基底120接合,其中間夾著絕緣膜,所以藉由分離半導體基底102的一部分,可以使半導體膜140殘留在支撐基底120上,並可以獲得半導體膜140固定於支撐基底120上的SOI結構(參照圖6D)。另外,半導體膜140的分離面的平坦性受到損害,而且殘留著藉由照射氫離子或氘離子而形成的分離層。因此,優選對半導體膜140進行CMP處理或加熱處理(包括雷射光束照射)等(參照圖6E)。圖6E和6D援引圖3D和3E的說明。這裏,使用單晶矽基底作為半導體基底102,因此可以獲得單晶矽薄膜作為半導體膜140。
在進行圖6D所示的加熱處理時,包含在第二熱氧化膜153中的鹵素再分佈而向半導體膜140(半導體基底102)一側擴散。其結果是,在半導體膜140的分離面、半導體膜140中、以及半導體膜140和熱氧化膜的介面中將懸空鍵終端。這裏,形成有單晶矽膜作為半導體膜140。當第二熱氧化膜153包含氟作為鹵素時,在懸空鍵被終端的區域中產生Si-F鍵。
藉由在分離半導體基底102時的加熱處理,鹵素從第二熱氧化膜153擴散到半導體膜140,因此第二熱氧化膜153的鹵素含量減少。因此,在進行加熱處理之後,可以獲得第二熱氧化膜153中的鹵素含量減少了的熱氧化膜155(以下稱為第三熱氧化膜155)。另外,第三熱氧化膜 155包含鹵素,而可以期待金屬雜質等的吸雜效果。
半導體膜140被鹵素終端,而在該半導體膜140中包含鹵素。半導體膜140包含鹵素,其峰值濃度優選在1×1017 atoms/cm3 以上1×1021 atoms/cm3 以下的範圍內。
如上所述,可以獲得半導體裝置製造用基底,其中半導體膜140隔著依次在支撐基底120上層疊了接合層114、在成份中包含矽和氮的絕緣膜106及第三熱氧化膜155的疊層膜固定於支撐基底120上。
在本實施方式的半導體裝置製造用基底的製造方法中,只要藉由利用形成在支撐基底和半導體膜之間的絕緣膜預先包含的鹵素實現半導體膜的懸空鍵的終端,該半導體膜藉由利用由以氫作為原料氣體而產生的離子的照射導致的半導體基底的脆弱化及加熱處理來分離半導體基底而形成,即可。對製造步驟的順序沒有特別的限制。在本實施方式中,示出如下例子:在半導體基底102上層疊在成份中包含矽和氧的絕緣膜104(或熱氧化膜103)及在成份中包含矽和氮的絕緣膜106,使氫或氘離子化來將它照射到所述半導體基底102以形成分離層112,然後將鹵素離子照射到所述在成份中包含矽和氧的絕緣膜104(或熱氧化膜103),並在在成份中包含矽和氮的絕緣膜106上形成接合層114。但是,直到將接合層114形成在半導體基底102上為止的製造步驟的順序可以適當地改變。
例如,既可在將在成份中包含矽和氧的絕緣膜104及在成份中包含矽和氮的絕緣膜106形成在半導體基底102 上之前進行形成分離層112的步驟,又可在形成在成份中包含矽和氧的絕緣膜104之後且在形成在成份中包含矽和氮的絕緣膜106之前進行形成分離層112的步驟。注意,在將熱氧化膜103形成在半導體基底102上的情況下,優選在形成該熱氧化膜103之後形成分離層112。這是因為當進行熱氧化時可能會引起以分離層112為境界的半導體基底102分離的緣故。另外,既可在將鹵素離子113照射到在成份中包含矽和氧的絕緣膜104之後進行形成分離層112的步驟,又可在將接合層114形成在在成份中包含矽和氮的絕緣膜106上之後進行形成分離層112的步驟。另外,可以在至少將在成份中包含矽和氧的絕緣膜104形成在半導體基底102上之後進行照射鹵素離子113的步驟,從而既可在形成在成份中包含矽和氮的絕緣膜106之前進行照射鹵素離子113的步驟,又可在形成接合層114之後進行照射鹵素離子113的步驟。
作為一個例子,在半導體基底102上形成在成份中包含矽和氧的絕緣膜104、在成份中包含矽和氮的絕緣膜106及接合層114,並將使氫或氘離子化了的離子108照射到半導體基底102來形成分離層112,然後將鹵素離子113照射到在成份中包含矽和氧的絕緣膜104,以獲得包含該鹵素的在成份中包含矽和氧的絕緣膜105。在此情況下,也可以在形成接合層114並將鹵素離子113照射到在成份中包含矽和氧的絕緣膜104以獲得包含該鹵素的在成份中包含矽和氧的絕緣膜105之後將使氫或氘離子化了的 離子108照射到半導體基底102來形成分離層112。
在本實施方式中,半導體裝置製造用基底具有的半導體膜的懸空鍵被鹵素終端。因此,提高了半導體特性,由此藉由使用根據本實施方式的半導體裝置製造用基底,可以製造具有良好電特性的半導體裝置。
本實施方式可以與本說明書所示的其他實施方式適當地組合。
實施方式2
在本實施方式中,參照圖11A至11D及圖12A和12B說明使用根據本發明的半導體裝置製造用基底製造半導體裝置的一個例子。
準備半導體裝置製造用基底(參照圖11A)。本實施方式示出使用圖1所示的具有SOI結構的半導體裝置製造用基底的例子,在該半導體裝置製造用基底中,半導體膜140固定於支撐基底120上,其中間夾著依次層疊的接合層114、在成份中包含矽和氮的絕緣膜106、及第三在成份中包含矽和氧的絕緣膜107。注意,對本發明沒有特別的限制,可以使用本說明書所示的其他結構的半導體裝置製造用基底。
作為支撐基底120,使用具有絕緣表面的基底或具有絕緣性的基底。例如,可以使用鋁矽酸鹽玻璃、鋁硼矽酸鹽玻璃、鋇硼矽酸鹽玻璃等的各種電子工業用玻璃基底(也稱為無堿玻璃基底)、石英基底、陶瓷基底、藍寶石基 底、或其表面被絕緣膜覆蓋的金屬基底、等等。
作為接合層114,形成具有平滑性並能夠形成親水性表面的膜。例如,使用氧化矽膜或具有矽氧烷鍵的膜。在成份中包含矽和氮的絕緣膜106用作阻擋膜,例如可以由氮化矽膜或氮氧化矽膜構成。藉由形成在成份中包含矽和氮的絕緣膜106,可以避免金屬雜質從支撐基底120擴散到半導體膜140一側。另外,接合層114位於在成份中包含矽和氮的絕緣膜106和支撐基底120之間,該接合層114緩和在成份中包含矽和氮的絕緣膜106的內部應力,並緩和異種材料的應力應變。
第三在成份中包含矽和氧的絕緣膜107包含鹵素。作為第三在成份中包含矽和氧的絕緣膜107,可以形成氧化矽膜或氧氮化矽膜。當然,也可以使用熱氧化膜作為第三在成份中包含矽和氧的絕緣膜107。第三在成份中包含矽和氧的絕緣膜107包含鹵素,從而具有金屬雜質等的吸雜效果。另外,第三在成份中包含矽和氧的絕緣膜107位於半導體膜140和在成份中包含矽和氮的絕緣膜106之間,由此可以防止在半導體膜140的介面中形成陷井能級,並可以提高電特性。
實施者可以適當地決定接合層114、在成份中包含矽和氮的絕緣膜106及第三在成份中包含矽和氧的絕緣膜107的厚度。例如,接合層114的厚度可以為5nm以上500nm以下,優選為10nm以上100nm以下;在成份中包含矽和氮的絕緣膜106的厚度可以為10nm以上200nm以 下,優選為50nm以上100nm以下;並且第三在成份中包含矽和氧的絕緣膜107的厚度可以為10nm以上500nm以下,優選為50nm以上200nm以下。
半導體膜140的厚度為5nm以上500nm以下,優選為10nm以上200nm以下,更優選為10nm以上60nm以下。半導體膜140的厚度可以藉由控制上述實施方式所說明的形成分離層112的深度而適當地決定。另外,也可以藉由蝕刻等使半導體裝置製造用基底的半導體膜140薄膜化來得到所希望的膜厚度。為了實現半導體膜140的薄膜化,可以藉由使用氯類氣體如Cl2 、BCl3 、或SiCl4 、氟類氣體如CF4 、NF3 、或SF6 等、或HBr氣體等進行幹法蝕刻。另外,也可以藉由進行氧化處理或氮化處理等改變半導體膜140的一部分的性質,來選擇性地蝕刻該變質部分。
半導體膜140含有鹵素。關於該半導體膜140的鹵素含量,峰值濃度優選在1×1017 atoms/cm3 以上1×1021 atoms/cm3 以下的範圍內。另外,包含在半導體膜140中的鹵素可以均勻地分佈,也可以局部地具有峰值濃度地分佈。在鹵素局部地具有峰值濃度地分佈在半導體膜140中的情況下,其峰值濃度優選位於容易形成懸空鍵的介面附近或與分離面接近的一側。
另外,優選地是,根據n溝道型場效應電晶體及p溝道型場效應電晶體的形成區域,對半導體膜140添加硼、鋁、鎵等的p型雜質元素、或磷、砷等的n型雜質元素。就是說,藉由根據n溝道型場效應電晶體的形成區域添加 p型雜質元素並根據p溝道型場效應電晶體的形成區域添加n型雜質元素,形成所謂的井區。雜質離子的劑量可以設定為1×1012 ions/cm2 以上1×1014 ions/cm2 以下左右。再者,對於控制場效應電晶體的閾值電壓的情況,對這些井區添加p型或n型雜質元素,即可。
接下來,藉由選擇性地蝕刻半導體膜140,形成按照半導體元件的配置分離為島狀的半導體膜140a和半導體膜140b(參照圖11B)。
在本實施方式中示出藉由將半導體膜140蝕刻為島狀而實現元件分離的例子,但是對本發明沒有特別的限制。例如,也可以藉由按照半導體元件的配置將絕緣膜掩埋在半導體膜之間來實現元件分離。
接著,在半導體膜140a和半導體膜140b上分別形成閘極絕緣膜711、閘電極712、以及側壁絕緣膜713。側壁絕緣膜713被設置在閘電極712的側面。在半導體膜140a中形成第一雜質區域714a及第二雜質區域715a,並在半導體膜140b中形成第一雜質區域714b及第二雜質區域715b。在閘電極712上形成絕緣膜716。絕緣膜716由氮化矽膜構成,並用作當形成閘電極712時的蝕刻用硬質光罩(參照圖11C)。
形成閘極絕緣膜711、側壁絕緣膜713、絕緣膜716、以及形成閘電極712的導電膜的成膜溫度優選低於分離半導體裝置製造用基底的半導體基底的加熱處理的溫度。這是為了防止對半導體膜140終端的鹵素的脫離。
接下來,覆蓋設置在半導體裝置製造用基底上的閘電極712等地形成保護膜717(參照圖11D)。在成份中包含矽和氮的絕緣膜106具有防止金屬雜質從支撐基底120一側擴散的效果,而保護膜717具有防止來自上層一側的金屬雜質的污染的效果。在本實施方式中,藉由使用阻擋可移動性高的金屬雜質如鈉等的效果高的絕緣膜覆蓋具有良好結晶性的半導體膜140的下層一側及上層一側。因此,可以對由半導體膜140構成的半導體元件的電特性的提高發揮巨大的效果。
在保護膜717上形成層間絕緣膜718。層間絕緣層718可以藉由形成BPSG(Boron Phosphorus Silicon Glass:硼磷矽玻璃)膜或者塗敷以聚醯亞胺為代表的有機樹脂來形成。然後,在層間絕緣層718中形成接觸孔719。注意,將保護膜717及層間絕緣膜718的成膜溫度設定為低於分離半導體裝置製造用基底的半導體基底的加熱處理的溫度,以防止半導體膜140的鹵素的脫離。
下面,說明形成佈線的步驟。在接觸孔719中形成接觸插塞723。接觸插塞723藉由使用WF6 氣體和SiH4 氣體藉由CVD法形成矽化鎢並將它掩埋在接觸孔719中而形成。另外,也可以對WF6 進行氫還原來形成鎢並將它嵌入在接觸孔719中。然後,根據接觸插塞723形成佈線721。佈線721由鋁或鋁合金形成,在其上層和下層形成鉬、鉻、鈦等金屬膜作為阻擋金屬。進而在其上層形成層間絕緣膜718(參照圖12B)。佈線可以適當地設置,也 可以在其上層形成佈線層以實現多層佈線。在此情況下,可以採用鑲嵌法。
注意,將形成佈線等的處理溫度設定為低於分離半導體裝置製造用基底的半導體基底的加熱處理的溫度,以防止半導體膜140的鹵素的脫離。如上所述,藉由將分離半導體基底的加熱處理設定為製造步驟中的最高溫度並將其他步驟的處理溫度設定為低於該加熱處理的溫度,可以防止對半導體膜140的懸空鍵終端的鹵素的脫離。
藉由上述步驟,可以使用具有中間夾著絕緣膜的疊層結構固定於支撐基底上的半導體膜的半導體裝置製造用基底製造場效應電晶體。根據本發明的半導體裝置製造用基底實現電特性的提高,因此可以提供工作特性良好的場效應電晶體。另外,在半導體膜和支撐基底之間形成有金屬雜質的吸雜效果或阻擋效果高的包含鹵素的在成份中包含矽和氧的絕緣膜和在成份中包含矽和氮的絕緣膜,因此可以製造可靠性高的半導體裝置。再者,藉由使用本發明,可以以單晶半導體形成半導體膜140,並可以實現半導體裝置的高性能化。
本實施方式可以與本說明書所示的其他實施方式適當地組合。
實施方式3
在本實施方式中,參照圖7A至10B說明使用根據本發明的半導體裝置製造用基底製造半導體裝置的一個例子 。這裏,示出製造電致發光(EL)顯示裝置的一個例子。
準備半導體裝置製造用基底(參照圖7A)。本實施方式示出使用具有SOI結構的半導體裝置製造用基底的例子,在該半導體裝置製造用基底中,半導體膜140固定於支撐基底120上,其中間夾著依次層疊的阻擋膜122、接合層124、接合層114、在成份中包含矽和氮的絕緣膜106、及第三熱氧化膜155。本實施方式所示的半導體裝置製造用基底具有在圖6A至6E所示的結構中將另外的接合層設置在支撐基底上的結構。就是說,採用圖4B所示的支撐基底的結構。注意,對本發明沒有特別的限制,可以使用本說明書所示的其他結構的半導體裝置製造用基底。
作為支撐基底120,使用具有絕緣表面的基底或具有絕緣性的基底。例如,可以使用鋁矽酸鹽玻璃、鋁硼矽酸鹽玻璃、鋇硼矽酸鹽玻璃等的各種電子工業用玻璃基底(也稱為無堿玻璃基底)、石英基底、陶瓷基底、藍寶石基底、或其表面被絕緣膜覆蓋的金屬基底、等等。
作為接合層114及接合層124,形成具有平滑性並能夠形成親水性表面的膜。例如,使用氧化矽膜或具有矽氧烷鍵的膜。關於接合層124,需要考慮支撐基底120的耐熱性。當使用玻璃基底作為支撐基底120時,採用650℃以下的成膜溫度。例如,可以將TEOS等的有機矽烷用作原料氣體藉由CVD法形成。作為設置在支撐基底120和接合層124之間的阻擋膜122,形成具有金屬雜質的阻擋效果的膜如氮化矽膜、氮氧化矽膜、或氮化鋁膜等。當在 支撐基底120上形成接合層124和阻擋膜122時,藉由在下層(支撐基底120一側)上形成阻擋膜122並在上層(半導體膜140一側)上形成接合層124,可以緩和阻擋膜122的內部應力。在成份中包含矽和氮的絕緣膜106由氮化矽膜或氮氧化矽膜構成即可。
第三熱氧化膜155藉由將半導體基底熱氧化而形成。另外,第三熱氧化膜155含有鹵素。
實施者可以適當地決定阻擋膜122、接合層124、接合層114、在成份中包含矽和氮的絕緣膜106及第三熱氧化膜155的厚度。第三熱氧化膜155的厚度可以根據熱氧化的處理時間等而控制。
半導體膜140的厚度為5nm以上500nm以下,優選為10nm以上200nm以下,更優選為10nm以上60nm以下。半導體膜140的厚度可以藉由控制上述實施方式所說明的形成分離層112的深度而適當地決定。另外,也可以藉由蝕刻等使半導體裝置製造用基底的半導體膜140薄膜化來得到所希望的膜厚度。為了實現半導體膜140的薄膜化,可以藉由使用氯類氣體如Cl2 、BCl3 、或SiCl4 、氟類氣體如CF4 、NF3 、或SF6 等、或HBr氣體等進行幹法蝕刻。另外,也可以藉由進行氧化處理或氮化處理等改變半導體膜140的一部分的性質,來選擇性地蝕刻該變質部分。
半導體膜140含有鹵素。關於該半導體膜140的鹵素含量,峰值濃度優選在1×1017 atoms/cm3 以上1×1021 atoms/cm3 以下的範圍內。另外,包含在半導體膜140 中的鹵素可以均勻地分佈,也可以局部地具有峰值濃度地分佈。在鹵素局部地具有峰值濃度地分佈在半導體膜140中的情況下,其峰值濃度優選位於容易形成懸空鍵的介面附近或與分離面接近的一側。優選地是,根據場效應電晶體的形成區域,添加硼、鋁、鎵等的p型雜質元素、或磷、砷等的n型雜質元素。就是說,藉由根據n溝道型場效應電晶體的形成區域添加p型雜質元素並根據p溝道型場效應電晶體的形成區域添加n型雜質元素,形成所謂的井區。雜質離子的劑量可以設定為1×1012 ions/cm2 以上1×1014 ions/cm2 以下左右。再者,在控制場效應電晶體的閾值電壓的情況下,對這些井區添加p型或n型雜質元素即可。
接下來,藉由選擇性地蝕刻半導體膜140,形成按照半導體元件的配置分離為島狀的半導體膜140c和半導體膜140d(參照圖7B)。
接著,在半導體膜140c和半導體膜140d上依次形成閘極絕緣膜810、形成閘電極的第一導電膜812及第二導電膜814(參照圖7C)。
閘極絕緣膜810藉由使用CVD法、濺射法、或原子層外延法等並使用氧化矽膜、氧氮化矽膜、氮化矽膜、或氮氧化矽膜等的絕緣膜以單層膜或疊層膜而形成。
另外,閘極絕緣膜810可以藉由對半導體膜140c和半導體膜140d進行電漿處理來使其表面氧化或氮化而形成。在此情況下,電漿處理包括利用藉由使用微波(典型 地為2.45GHz)而激發的電漿的電漿處理。例如,包括利用如下電漿的電漿處理,該電漿藉由使用微波而激發,其電子密度為1×1011 cm3 以上1×1011 cm3 以下,而且其電子溫度為0.5eV以上1.5eV以下。藉由進行上述電漿處理對半導體膜表面進行氧化處理或氮化處理,可以形成薄且緻密的膜。另外,由於對半導體表面直接進行氧化,所以可以獲得介面特性良好的膜。閘極絕緣膜810也可以藉由對使用CVD法、濺射法、或原子層外延法而形成的膜進行利用微波的電漿處理來形成。
閘極絕緣膜810與半導體膜形成介面,因此優選以氧化矽膜或氧氮化矽膜為介面來形成閘極絕緣膜810。這是因為如下緣故:若形成氮含量多於氧含量的膜如氮化矽膜或氮氧化矽膜,則會有形成陷井能級而產生固定電荷等的介面特性的問題。
形成閘電極的導電膜藉由使用選自鉭、氮化鉭、鎢、鈦、鉬、鋁、銅、鉻、或鈮等中的元素、以這些元素為主要成分的合金材料或化合物材料、摻雜有磷等的雜質元素的多晶矽為代表的半導體材料,並使用CVD法或濺射法以單層膜或疊層膜形成。在採用疊層膜的情況下,既可使用不相同的導電材料來形成,又可使用相同的導電材料來形成。在本實施方式中,示出形成閘電極的導電膜由第一導電膜812及第二導電膜814構成的例子。
在形成閘電極的導電膜具有第一導電膜812及第二導電膜814的兩層的疊層結構的情況下,例如可以形成氮化 鉭膜和鎢膜、氮化鎢膜和鎢膜、氮化鉬膜和鉬膜的疊層膜。當採用氮化鉭膜和鎢膜的疊層膜時,容易有差異地設定兩者的蝕刻速度,並得到高選擇比,因此是優選的。在上述兩層的疊層膜中,前者的膜優選是形成在閘極絕緣膜810上的膜。這裏,第一導電膜812的厚度為20nm以上100nm以下,而第二導電膜814的厚度為100nm以上400nm以下。另外,閘電極可以具有三層以上的疊層結構,在此情況下,優選採用鉬膜、鋁膜、鉬膜的疊層結構。
優選在低於分離半導體基底的加熱處理溫度的溫度下形成閘極絕緣膜810、形成閘電極的第一導電膜812及第二導電膜814。這是為了防止對半導體膜140終端的鹵素的脫離。
接下來,在第二導電膜814上選擇性地形成抗蝕劑光罩820c和抗蝕劑光罩820d。然後,使用抗蝕劑光罩820c和抗蝕劑光罩820d進行第一蝕刻處理及第二蝕刻處理。
首先,進行第一蝕刻處理來選擇性地蝕刻第一導電膜812及第二導電膜814,以在半導體膜140c上形成第一導電膜816c及第二導電膜818c,並在半導體膜140d上形成第一導電膜816d及第二導電膜818d(參照圖7D)。
然後,進行第二蝕刻處理來選擇性地蝕刻第二導電膜818c及第二導電膜818d的端部,以形成第二導電膜822c及第二導電膜822d(參照圖7E)。第二導電膜822c及第二導電膜822d形成為寬度(平行於載流子流過溝道形成區域的方向(連接源極區和汲極區的方向)的方向的長度 )小於第一導電膜816c及第一導電膜816d的寬度。由此,可以獲得由第一導電膜816c和第二導電膜822c構成的閘電極824c、以及由第一導電膜816d和第二導電膜822d構成的閘電極824d。
適用於第一蝕刻處理及第二蝕刻處理的蝕刻法可以適當地選擇。為了提高蝕刻速度,可以使用利用ECR(Electron Cyclotron Resonance,即電子迴旋共振)方式或ICP(Inductively Coupled Plasma,即感應耦合電漿)方式等的高密度電漿源的幹法蝕刻設備。藉由適當地調整第一蝕刻處理及第二蝕刻處理的蝕刻條件,可以將第一導電膜816c及816d、第二導電膜822c及822d的側面形成為所希望的錐形。在形成所希望的閘電極824c和閘電極824d之後去除抗蝕劑光罩820c和抗蝕劑光罩820d即可。
接下來,以閘電極824c和閘電極824d為光罩,對半導體膜140c及140d添加雜質元素880。在半導體膜140c中,以第一導電膜816c及第二導電膜822c為光罩來以自對準方式形成一對第一雜質區域826c。另外,在半導體膜140d中,以第一導電膜816d及第二導電膜822d為光罩來以自對準方式形成一對第一雜質區域826d(參照圖8A)。
作為雜質元素880,添加硼、鋁、鎵等的p型雜質元素、或磷、砷等的n型雜質元素。這裏,進行添加,來使半導體膜以1×1017 atoms/cm3 以上5×1018 atoms/cm3 以下左右的濃度包含作為n型雜質元素的磷。
接下來,以覆蓋半導體膜140d的方式選擇性地形成抗蝕劑光罩882。另外,覆蓋半導體膜140c的一部分地形成抗蝕劑光罩881。然後,以抗蝕劑光罩882及抗蝕劑光罩881為光罩來添加雜質元素884,以在半導體膜140c中形成一對第二雜質區域828c、一對第三雜質區域830c、溝道形成區域142c(參照圖8B)。
作為雜質元素884,添加硼、鋁、鎵等的p型雜質元素、或磷、砷等的n型雜質元素。這裏,進行添加,來使半導體膜以5×1019 atoms/cm3 以上5×1020 atoms/cm3 以下左右的濃度包含作為n型雜質元素的磷。
在半導體膜140c中,第二雜質區域828c形成在不與第一導電膜816c及第二導電膜822c重疊的區域中。溝道形成區域142c形成在與第一導電膜816c及第二導電膜822c重疊的區域中。第三雜質區域830c形成在位於溝道形成區域142c和第二雜質區域828c之間且不與第一導電膜816c及第二導電膜822c重疊的區域中。另外,第三雜質區域830c形成在不與第一導電膜816c及第二導電膜822c重疊且與抗蝕劑光罩881重疊的區域中。第二雜質區域828c用作源極區或汲極區,而第三雜質區域830c用作LDD區域。在本實施方式中,第二雜質區域828c的雜質濃度高於第三雜質區域830c的雜質濃度。
LDD區域指的是以低濃度添加有雜質元素的區域,該LDD區域形成在溝道形成區域和藉由以高濃度添加雜質元素而形成的源極區或汲極區之間。藉由設置LDD區域, 可以緩和汲極區附近的電場並防止由熱載流子注入導致的退化。另外,為了防止由熱載流子導致的導通電流值的退化,可以採用LDD區域隔著閘極絕緣膜與閘電極重疊的結構(也稱為GOLD(Gate-drain Overlapped LDD,即閘極汲極重疊LDD)結構)。
接著,去除抗蝕劑光罩881及抗蝕劑光罩882,然後覆蓋半導體膜140c地形成抗蝕劑光罩886。然後,以抗蝕劑光罩886、第一導電膜816d及第二導電膜822d為光罩來添加雜質元素888,以在半導體膜140d中形成一對第二雜質區域828d、一對第三雜質區域830d、溝道形成區域142d(參照圖8C)。
作為雜質元素888,添加硼、鋁、鎵等的p型雜質元素、或磷、砷等的n型雜質元素。這裏,進行添加,來使半導體膜以1×1020 atoms/cm3 以上5×1021 atoms/cm3 以下左右的濃度包含作為p型雜質元素的硼。
在半導體膜140d中,第二雜質區域828d形成在不與第一導電膜816d及第二導電膜822d重疊的區域中。第三雜質區域830d形成在與第一導電膜816d重疊且不與第二導電膜822d重疊的區域中,是雜質元素888貫穿第一導電膜816d而形成的。第二雜質區域828d用作源極區或汲極區,而第三雜質區域830d用作LDD區域。在本實施方式中,第二雜質區域828d的雜質濃度高於第三雜質區域830d的雜質濃度。
接著,形成層間絕緣膜。層間絕緣膜可以由單層膜或 疊層膜構成。這裏,層間絕緣膜具有絕緣膜832及絕緣膜834的兩層的疊層結構(參照圖9A)。
作為層間絕緣膜,可以藉由CVD法或濺射法形成氧化矽膜、氧氮化矽膜、氮化矽膜、或氮氧化矽膜等。也可以使用聚醯亞胺、聚醯胺、聚乙烯苯酚、苯並環丁烯、丙烯酸、或環氧等的有機材料、矽氧烷樹脂等的矽氧烷材料、或噁唑樹脂等藉由旋塗法等的塗敷法來形成。注意,矽氧烷材料相當於具有Si-O-Si鍵的材料。矽氧烷是一種具有矽(Si)和氧(O)的鍵的骨架結構的材料。作為取代基,可以舉出至少含有氫的有機基(例如烷基、芳烴)。還可以使用氟基作為取代基。還可以使用至少含有氫的有機基、以及氟基作為取代基。噁唑樹脂例如是光敏聚苯噁唑等。光敏聚苯噁唑為介電常數低(1MHz時常溫下的介電常數為2.9)、耐熱性高(藉由熱重/差熱分析儀(TG/DTA,即Thermogravimetry-Differential Thermal Analysis)確定在5℃/min的溫升時的熱分解溫度為550℃)、以及吸水率低(常溫下24小時約0.3wt%)的材料。與聚醯亞胺等的相對介電常數(約為3.2至3.4)相比,噁唑樹脂具有低的介電常數(約2.9)。因此可以抑制寄生電容的產生並實現高速工作。
例如,形成100nm厚的氮氧化矽膜作為絕緣膜832,並形成900nm厚的氧氮化矽膜作為絕緣膜834。另外,藉由使用電漿CVD法連續形成絕緣膜832及絕緣膜834。層間絕緣膜也可以具有三層以上的疊層結構。另外,可以採 用氧化矽膜、氧氮化矽膜、或氮化矽膜、與藉由使用聚醯亞胺、聚醯胺、聚乙烯苯酚、苯並環丁烯、丙烯酸、或環氧等的有機材料、矽氧烷樹脂等的矽氧烷材料、或噁唑樹脂而形成的絕緣膜的疊層結構。
優選在低於分離半導體基底的加熱處理溫度的溫度下形成層間絕緣膜(在本實施方式中,絕緣膜832及834),以防止對半導體膜140的懸空鍵終端的鹵素的脫離。
接著,在層間絕緣膜(在本實施方式中,絕緣膜832及834)中形成接觸孔,在該接觸孔中形成用作源電極或汲電極的導電膜836(參照圖9B)。
接觸孔以到達形成在半導體膜140c中的第二雜質區域828c、及形成在半導體膜140d中的第二雜質區域828d的方式選擇性地形成在絕緣膜832及絕緣膜834中。
導電膜836可以使用由選自鋁、鎢、鈦、鉭、鉬、鎳及釹中的一種元素或包含這些元素的合金構成的單層膜或疊層膜。例如,可以形成包含鈦的鋁合金、包含釹的鋁合金等作為由包含這些元素的合金構成的導電膜。在採用疊層膜的情況下,例如可以採用由鈦膜夾著鋁膜或上述鋁合金膜的結構。
其次,說明形成發光元件850的步驟(參照圖10A)。這裏,說明形成具有包含有機化合物的層作為發光層的有機發光元件的例子。
首先,形成像素電極840以使它電連接到導電膜836。像素電極840電連接到形成在半導體膜140d中的第二 雜質區域828d,其中間夾著導電膜836。在形成覆蓋像素電極840的端部的隔離壁膜842之後,在像素電極840上層疊包含有機化合物的層844和對置電極846。
這裏,雖然示出像素電極840形成在設置在導電膜836上的絕緣膜838上的例子,但是對本發明沒有特別的限制。例如,可以在絕緣膜834上形成像素電極840。在此情況下,像素電極840也可以形成為用作源電極或汲電極的導電膜836的一部分。
作為絕緣膜838,可以藉由CVD法或濺射法形成氧化矽膜、氧氮化矽膜、氮化矽膜等。也可以使用聚醯亞胺、聚醯胺、聚乙烯苯酚、苯並環丁烯、丙烯酸、或環氧等的有機材料、矽氧烷樹脂等的矽氧烷材料、噁唑樹脂等藉由旋塗法等的塗敷法來形成。絕緣膜838可以藉由使用上述材料以單層膜或疊層膜來形成。
像素電極840及對置電極846中的一個電極用作陽極,而另一個用作陰極。發光元件的發光有從支撐基底120一側取出(也稱為底部發射)的情況,從與支撐基底120相反一側的面取出(也稱為頂部發射)的情況,或者從支撐基底120一側及從與支撐基底120相反一側的面取出(也稱為兩面發射)的情況。在採用底部發射的情況下,優選地是,像素電極840為透光電極,而對置電極846為反射電極。在採用頂部發射的情況下,優選地是,像素電極840為反射電極,而對置電極846為透光電極。在採用兩面發射的情況下,優選地是,像素電極840及對置電極 846雙方均為透光電極。
在形成反射電極作為像素電極840或對置電極846的情況下,可以使用鉭、鎢、鈦、鉬、鋁、鉻、銀等的金屬元素、包含該金屬元素的合金材料或化合物材料等的具有反射性的導電材料。
在形成透光電極作為像素電極840或對置電極846的情況下,可以使用氧化銦錫(ITO)、氧化鋅(ZnO)、氧化銦鋅(IZO)、或添加有鎵的氧化鋅(GZO)等的具有透光性的導電材料。另外,藉由形成幾nm至幾十nm厚的具有反射性的導電材料,可以獲得透射可見光的電極。
另外,可以使用包含導電高分子(導電聚合物)的導電組成物形成透光電極。優選地是,藉由使用導電組成物而形成的電極的薄膜中的薄層電阻(sheet resistance)為10000Ω/以下,波長550nm處的透光率為70%以上。另外,包含在導電組成物中的導電高分子的電阻率優選為0.1 Ω.cm以下。
作為導電高分子,可以使用所謂的π電子共軛類導電高分子。例如,可以舉出聚苯胺或其衍生物、聚吡咯或其衍生物、聚噻吩或其衍生物、或這些兩種以上的共聚物等。
作為共軛導電高分子的具體例子,可以舉出聚吡咯、聚(3-甲基吡咯)、聚(3-丁基吡咯)、聚(3-辛基吡咯)、聚(3-癸基吡咯)、聚(3,4-二甲基吡咯)、聚(3 ,4-二丁基吡咯)、聚(3-羥基吡咯)、聚(3-甲基-4-羥基吡咯)、聚(3-甲氧基吡咯)、聚(3-乙氧基吡咯)、聚(3-辛氧基吡咯)、聚(3-羧基吡咯)、聚(3-甲基-4-羧基吡咯)、聚N-甲基吡咯、聚噻吩、聚(3-甲基噻吩)、聚(3-丁基噻吩)、聚(3-辛基噻吩)、聚(3-癸基噻吩)、聚(3-十二烷基噻吩)、聚(3-甲氧基噻吩)、聚(3-乙氧基噻吩)、聚(3-辛氧基噻吩)、聚(3-羧基噻吩)、聚(3-甲基-4-羧基噻吩)、聚(3,4-乙烯基二氧基噻吩)、聚苯胺、聚(2-甲基苯胺)、聚(2-辛基苯胺)、聚(2-異丁基苯胺)、聚(3-異丁基苯胺)、聚(2-苯胺磺酸)、聚(3-苯胺磺酸)、等等。
可以單獨地使用上述導電高分子作為導電組成物來形成透光電極。也可以將有機樹脂添加到導電高分子,以調整由導電組成物構成的透光電極的膜性質、膜強度等的膜特性。
作為有機樹脂,可以使用能夠與導電高分子相溶或混合分散的熱固化樹脂、熱塑性樹脂、或光固化樹脂等。例如,可以舉出聚酯類樹脂如聚對苯二甲酸乙二醇酯、聚對苯二甲酸丁二醇酯、或聚萘二甲酸乙二醇酯等、聚醯亞胺類樹脂如聚醯亞胺或聚醯胺-醯亞胺、聚醯胺樹脂如聚醯胺6、聚醯胺66、聚醯胺12、或聚醯胺11等、氟樹脂如聚偏二氟乙烯、聚氟乙烯、聚四氟乙烯、乙烯-四氟乙烯共聚物、或聚氯三氟乙烯等、乙烯樹脂如聚乙烯醇、聚乙烯基***、聚乙烯醇縮丁醛、聚醋酸乙烯酯、或聚氯乙稀 等、環氧樹脂、二甲苯樹脂、芳香族聚醯胺樹脂、聚氨酯類樹脂、聚脲類樹脂、蜜胺樹脂、酚醛類樹脂、聚醚、丙烯酸類樹脂、或這些樹脂的共聚物等。
再者,也可以藉由將具有受主性或施主性的摻雜物摻雜到導電組成物中來改變共軛導電高分子的共軛電子的氧化還原電位,以調整導電組成物的導電度。
作為受主性摻雜物,可以使用鹵素化合物、路易斯酸、質子酸、有機氰化合物、有機金屬化合物等。作為鹵素化合物,可以舉出氯、溴、碘、氯化碘、溴化碘、氟化碘等。作為路易斯酸,可以舉出五氟化磷、五氟化砷、五氟化銻、三氟化硼、三氯化硼、三溴化硼等。作為質子酸,可以舉出鹽酸、硫酸、硝酸、磷酸、氟硼化氫酸、氟化氫酸、高氯酸等的無機酸、有機羧酸、有機磺酸等的有機酸。作為有機羧酸及有機磺酸,可以使用上述羧酸化合物及磺酸化合物。作為有機氰化合物,可以使用共軛鍵包含兩個以上的氰基的化合物。例如,可以舉出四氰基乙烯、四氰基乙烯氧化物、四氰基苯、四氰基醌二甲烷、四氰基氮雜萘(tetracyanoazanaphthalene)等。
作為施主性摻雜物,可以舉出鹼金屬、鹼土金屬、或季銨化合物等。
另外,可以將導電組成物溶解在水或有機溶劑(醇類溶劑、酮類溶劑、酯類溶劑、烴類溶劑、或芳香類溶劑等)中藉由濕法形成作為透光電極的薄膜。
對溶解導電組成物的溶劑沒有特別的限制,可以使用 溶解上述導電高分子及有機樹脂等的高分子樹脂化合物的溶劑。例如,可以溶解在水、甲醇、乙醇、碳酸丙烯酯、N-甲基吡咯烷酮、二甲基甲醯胺、二甲基乙醯胺、環己酮、丙酮、甲基乙基酮、甲基異丁基甲酮、或甲苯等的單獨或混合溶劑中。
在如上所述那樣將導電組成物溶解在溶劑中之後,藉由使用塗敷法、液滴噴射法(也稱為噴墨法)、印刷法等的濕法,可以在絕緣膜838上形成像素電極840。溶劑的乾燥既可藉由加熱處理而進行,又可藉由減壓而進行。在採用熱固化有機樹脂的情況下,可以進行加熱處理,而在採用光固化有機樹脂的情況下,可以進行光照射處理。
隔離壁膜842可以藉由在使用CVD法、濺射法、塗敷法等在基底的整個面上形成絕緣膜之後選擇性地蝕刻而形成。也可以藉由液滴噴射法或印刷法等選擇性地形成。另外,也可以在使用正型光敏樹脂在整個面上形成絕緣膜之後對該絕緣膜進行曝光及顯影,以得到所希望的形狀。
作為包含有機化合物的層844,至少形成發光層。除該發光層外,還可以適當地形成空穴注入層、空穴傳輸層、電子傳輸層或電子注入層。包含有機化合物的層844可以藉由噴墨法等的塗敷法或蒸鍍法而形成。
藉由進行上述步驟,可以獲得發光元件850,其中至少具有發光層的包含有機化合物的層844夾在像素電極840和對置電極846之間。
接著,以與支撐基底120相對置的方式設置對置基底 860(參照圖10B)。在對置基底860和對置電極846之間,既可設置填充劑858又可使用惰性氣體來填充。另外,可以覆蓋對置電極846地形成保護膜。
注意,優選將直到形成發光元件850並被對置基底860密封為止的處理溫度設定為低於分離半導體基底的加熱處理的溫度,以防止對半導體膜140的懸空鍵終端的鹵素的脫離。像這樣,藉由將分離半導體基底的加熱處理設定為製造步驟中的最高溫度並將其他步驟的處理溫度設定為低於該加熱處理的溫度,可以防止對半導體膜140的懸空鍵終端的鹵素的脫離。
藉由進行上述步驟,完成根據本實施方式的EL顯示裝置。
在構成根據本實施方式的顯示裝置的電晶體中,形成溝道形成區域的半導體膜被鹵素終端,而實現電特性的提高。另外,在基底上形成有金屬雜質的吸雜效果或阻擋效果高的包含鹵素的在成份中包含矽和氧的絕緣膜和在成份中包含矽和氮的絕緣膜,因此可以製造可靠性高的顯示裝置。另外,可以使用單晶半導體形成溝道形成區域,因此與將多晶半導體用作溝道形成區域的顯示裝置相比,可以降低每個像素中的電晶體特性的不均勻性。因此,可以抑制發光裝置的顯示不均勻。
對構成根據本實施方式的顯示裝置的電晶體的結構沒有特別的限制。例如,可以使用具有實施方式2所示的結構的電晶體。
本實施方式可以與本說明書所示的其他實施方式適當地組合。
實施方式4
在本實施方式中,說明應用了根據本發明的半導體裝置製造用基底的半導體裝置的例子。
圖13示出微處理器200作為半導體裝置的一個例子。該微處理器200藉由使用根據上述實施方式的半導體裝置製造用基底而完成。微處理器200包括算術邏輯單元201(Arithmetic logic unit,也稱為ALU)、ALU控制器202(ALU Controller)、指令解碼器203(Instruction Decoder)、中斷控制器204(Interrupt Controller)、時序控制器205(Timing Controller)、暫存器206(Register)、暫存器控制器207(Register Controller)、匯流排界面208(Bus I/F)、唯讀記憶體209、以及記憶體介面210(ROM I/F)。
通過匯流排界面208輸入到微處理器200的指令在輸入到指令解碼器203並被解碼之後輸入到ALU控制器202、中斷控制器204、暫存器控制器207、以及時序控制器205。ALU控制器202、中斷控制器204、暫存器控制器207、以及時序控制器205根據被解碼了的指令而進行各種控制。具體地說,ALU控制器202產生用來控制算術邏輯單元201的動作的信號。中斷控制器204當在執行微處理器200的程式時對來自外部輸入輸出裝置或週邊電路的 中斷要求根據其優先順序或遮罩狀態而進行判斷來處理。暫存器控制器207產生暫存器206的位址,並根據微處理器200的狀態進行暫存器206的讀出或寫入。時序控制器205產生控制算術邏輯單元201、ALU控制器202、指令解碼器203、中斷控制器204及暫存器控制器207的工作時序的信號。例如,時序控制器205包括根據基準時鐘信號CLK1產生內部時鐘信號CLK2的內部時鐘產生部,並將時鐘信號CLK2提供給上述各種電路。注意,圖13所示的微處理器200只是將其結構簡化了的一個例子,在實際上,可以根據其用途具有各種各樣的結構。
在上述微處理器200中,藉由使用根據上述實施方式的半導體裝置製造用基底及半導體裝置,可以提高電特性,並可以形成具有良好特性的積體電路。另外,可以使用單晶半導體膜形成積體電路,並可以實現高性能化及處理速度的高速化等。
參照圖14說明能夠非接觸地進行資料收發且具有計算功能的半導體裝置的一個例子。圖14表示以無線通信與外部裝置進行信號收發來工作的電腦(以下稱為RFCPU)的一個例子。RFCPU 211包括類比電路部212和數位電路部213。類比電路部212包括具有諧振電容的諧振電路214、整流電路215、恒壓電路216、重定電路217、振盪電路218、解調電路219、以及調變電路220。數位電路部213包括RF介面221、控制暫存器222、時鐘控制器223、介面224、中央處理單元225、隨機存取記憶體226、以 及唯讀記憶體227。
具有這種結構的RFCPU 211的工作概要如下:天線228所接收的信號利用諧振電路214而產生感應電動勢。感應電動勢經過整流電路215而充電到電容部229。該電容部229優選由電容器如陶瓷電容器或電雙層電容器等構成。電容部229不需要與RFCPU 211一體形成,而可以作為另一部件安裝在構成RFCPU 211的具有絕緣表面的基底上。
重定電路217產生將數位電路部213重定並初始化的信號。例如,產生在電源電壓升高之後延遲升高的信號作為重定信號。振盪電路218根據由恒壓電路216產生的控制信號改變時鐘信號的頻率和占空比。由低通濾波器構成的解調電路219例如將調幅(ASK)方式的接收信號的振幅的變動二值化。調變電路220使調幅(ASK)方式的發送信號的振幅變動來發送資料。調變電路220藉由使諧振電路214的諧振點變化來改變通信信號的振幅。時鐘控制器223根據電源電壓或中央處理單元225的消耗電流,產生用來改變時鐘信號的頻率和占空比的控制信號。電源電壓的監視由電源管理電路230進行。
從天線228輸入到RFCPU 211的信號被解調電路219解調後,在RF介面221中被分解為控制指令、資料等。控制指令存儲在控制暫存器222中。控制指令包括存儲在唯讀記憶體227中的資料的讀出、向隨機存取記憶體226的資料寫入、向中央處理單元225的計算指令等。中央處 理單元225通過介面224對唯讀記憶體227、隨機存取記憶體226及控制暫存器222進行存取。介面224具有如下功能:根據中央處理單元225所要求的位址,產生對唯讀記憶體227、隨機存取記憶體226及控制暫存器222中的某一個的存取信號。
作為中央處理單元225的計算方式,可以採用將OS(作業系統)存儲在唯讀記憶體227中並在啟動的同時讀出並執行程式的方式。另外,也可以採用由專用電路構成計算電路並以硬體方式對計算處理進行處理的方式。作為並用硬體和軟體這雙方的方式,可以採用如下方式:由專用計算電路進行一部分的處理,使用程式由中央處理單元225進行另一部分的計算。
在上述RFCPU 211中,藉由使用根據上述實施方式的半導體裝置製造用基底及半導體裝置,可以提高電特性,並可以形成具有良好特性的積體電路。另外,可以使用單晶半導體膜形成積體電路,並可以實現高性能化及處理速度的高速化等。圖14雖然表示RFCPU的方式,但是只要具有通信功能、計算處理功能、存儲功能即可,可以是IC標簽那樣的裝置。
另外,根據本發明的半導體裝置製造用基底也可以藉由使用製造顯示面板的稱為母玻璃的大型玻璃基底作為支撐基底並將半導體膜接合在該大型玻璃基底上而形成。圖15表示使用母玻璃作為支撐基底120來接合半導體膜140的情況。母玻璃被分割成多個顯示面板,優選根據顯示面 板522的形成區域接合半導體膜140。半導體膜140被鹵素終端,優選地是,半導體膜140以1×1017 atoms/cm3 以上1×1021 atoms/cm3 以下的範圍內的峰值濃度包含鹵素。母玻璃的面積比半導體基底大,因此,如圖15所示,優選在顯示面板522的形成區域的內側配置多個半導體膜140。藉由採用這種結構,可以從母玻璃獲得更多個面板,可以飛躍性地提高產率。顯示面板522具有掃描線驅動電路區域523、信號線驅動電路區域524及像素形成區域525,以包括這些區域的方式將半導體膜140接合到支撐基底120。
稱為母玻璃的大型玻璃基底具有包含鈉等的金屬雜質的問題。但是,根據本發明的半導體裝置製造用基底在玻璃基底和半導體膜之間形成有吸雜效果或阻擋效果高的在成份中包含矽和氮的絕緣膜和包含鹵素的在成份中包含矽和氧的絕緣膜,因此可以防止顯示面板等的特性退化,而可以提高可靠性。
圖16A和16B表示液晶顯示裝置的像素的一個例子,其中使用根據本發明的半導體裝置製造用基底,而且像素部的電晶體由該半導體裝置製造用基底的半導體膜構成。圖16A是像素的平面圖,其中半導體膜與掃描線526交叉,並連接有信號線527、像素電極528。圖16B是沿圖16A所示的虛線J-K截斷的截面圖。
在圖16B中,存在著如下區域:半導體膜140層疊在支撐基底120上,其中間夾著依次層疊的接合層114、在 成份中包含矽和氮的絕緣膜106及第三在成份中包含矽和氧的絕緣膜107。根據本實施方式的像素電晶體包括上述區域。在本實施方式中,半導體膜140是單晶半導體膜。半導體膜140被鹵素終端,優選地是,半導體膜140以1×1017 atoms/cm3 以上1×1021 atoms/cm3 以下的範圍內的峰值濃度包含鹵素。
在層間絕緣膜518上設置有像素電極528。在層間絕緣膜518中形成有連接半導體膜140和信號線527的接觸孔。在信號線527上,以填埋由形成在層間絕緣膜518中的接觸孔產生的臺階的方式設置柱狀間隔物531。在對置基底529上形成有對置電極530,並在柱狀間隔物531的間隙形成有被取向膜545及取向膜546夾住的液晶532。雖然未圖示,但是根據需要在支撐基底120或對置基底529的外側設置偏振片。
層間絕緣膜518由單層膜或疊層膜構成。層間絕緣膜518優選形成能夠將由形成在下層中的電晶體等的結構體產生的凹凸平滑化來形成平坦的表面的平坦化膜。例如,可以藉由旋塗法等的塗敷法使用聚醯亞胺、聚醯胺、聚乙烯苯酚、苯並環丁烯、丙烯酸、或環氧等的有機材料、矽氧烷樹脂等的矽氧烷材料、噁唑樹脂等來形成。作為層間絕緣膜518,也可以形成BPSG膜。另外,也可以藉由CVD法或濺射法等形成氧化矽膜、氮化矽膜、氧氮化矽膜、或氮氧化矽膜等的絕緣膜。另外,可以層疊使用有機材料而形成的絕緣膜和使用無機材料而形成的絕緣膜。
在採用反射型液晶顯示裝置的情況下,可以形成反射電極作為像素電極528。具體地說,可以使用鉭、鎢、鈦、鉬、鋁、鉻、銀等的金屬元素、包含該金屬元素的合金材料或化合物材料等的具有反射性的導電材料。另外,在形成與像素電極528不同的反射膜的情況下,或在形成透過型液晶顯示裝置的情況下,可以形成透光電極作為像素電極,它可以由具有透光性的導電材料構成。作為具有透光性的導電材料,可以使用氧化銦錫(ITO)、氧化鋅(ZnO)、氧化銦鋅(IZO)、或添加有鎵的氧化鋅(GZO)等。
另外,可以使用包含導電高分子(導電聚合物)的導電組成物形成像素電極528。優選地是,藉由使用導電組成物而形成的像素電極的薄膜中的薄層電阻為10000Ω/以下,波長550nm處的透光率為70%以上。另外,包含在導電組成物中的導電高分子的電阻率為0.1 Ω.cm以下。注意,導電高分子的具體說明援引可以適用於實施方式3的像素電極840或對置電極846的導電高分子。
柱狀間隔物531可以藉由在使用環氧、聚醯亞胺、聚醯胺、聚醯亞胺醯胺、丙烯酸等的有機材料、或氧化矽、氮化矽、氧氮化矽、氮氧化矽等的無機材料將絕緣膜形成在基底的整個面上之後將該絕緣膜蝕刻加工為所希望的形狀來獲得。
取向膜545及546的材料可以根據所利用的液晶工作模式而選擇,形成能夠使液晶沿一定方向排列的膜。例如 ,使用聚醯亞胺、聚醯胺等的材料並進行取向處理,來形成取向膜。作為取向處理,可以進行摩擦處理、紫外線等的光照射等。對取向膜545及546的形成方法沒有特別的限制。藉由使用各種印刷法或液滴噴射法,可以選擇性地形成取向膜545及546。
液晶532藉由使用所希望的液晶材料而形成。例如,液晶532可以藉由在由密封材料構成的框狀密封圖案內滴下液晶材料而形成。液晶材料的滴下藉由使用劑量分配器法或液滴噴射法進行,即可。液晶材料優選在減壓下預先脫氣,或者在滴下之後在減壓下脫氣。另外,優選採用惰性氣氛,以避免在滴下液晶材料時的雜質等的混入。優選地是,在減壓下進行處理,直到在藉由滴下液晶材料形成液晶532之後貼合支撐基底120和對置基底529為止,以防止氣泡等混入液晶532。另外,液晶532也可以藉由在貼合支撐基底120和對置基底529之後利用毛細現象向由密封材料構成的框狀圖案內注入液晶材料而形成。在此情況下,預先在密封材料等中形成用作液晶注入口的部分。液晶材料優選在減壓下注入。
作為對置基底529,例如可以使用鋁矽酸鹽玻璃、鋁硼矽酸鹽玻璃、鋇硼矽酸鹽玻璃等的各種玻璃基底、石英基底、陶瓷基底、藍寶石基底等。在採用反射型液晶顯示裝置的情況下,使用透光基底(具體地說,玻璃基底或石英基底等)作為對置基底529。在採用透過型液晶顯示裝置的情況下,除了透光基底以外,還可以使用非透光基底 (例如,陶瓷基底或藍寶石基底等)。在貼合支撐基底120和對置基底529之前,在對置基底529上形成對置電極530和取向膜546,即可。還可以在對置基底529上設置濾色片或黑底等。
圖17A表示EL顯示裝置的一個例子,其中應用根據本發明的半導體裝置製造用基底,而且像素部的電晶體由該半導體裝置製造用基底的半導體膜構成。注意,電晶體的結構與上述實施方式3所示的顯示裝置不相同。圖17A是像素的平面圖,包括與信號線527連接的選擇電晶體533、以及與電流供給線535連接的顯示控制電晶體534。在上述顯示裝置中,具有包含有機化合物的層作為發光層的發光元件被設置在各像素中。像素電極528連接到顯示控制電晶體534。圖17B是表示上述像素的主要部分的截面圖。
在圖17B中,存在著如下區域:半導體膜140層疊在支撐基底120上,其中間夾著依次層疊的接合層114、在成份中包含矽和氮的絕緣膜106及第三在成份中包含矽和氧的絕緣膜107。顯示控制電晶體534包括上述區域。在本實施方式中,半導體膜140是單晶半導體膜。半導體膜140被鹵素終端,優選地是,半導體膜140以1×1017 atoms/cm3 以上1×1021 atoms/cm3 以下的範圍內的峰值濃度包含鹵素。接合層114、在成份中包含矽和氮的絕緣膜106、第三在成份中包含矽和氧的絕緣膜107、半導體膜140及層間絕緣膜518等的結構與圖16B相同。像素電 極528的周圍部被具有絕緣性的隔離壁膜536包圍。在像素電極528上形成有至少具有發光層的包含有機化合物的層537。在包含有機化合物的層537上形成有對置電極530。使用密封樹脂538填充像素部,並設置對置基底529作為增強板。
本實施方式的EL顯示裝置將上述像素排列為矩陣狀來構成顯示幕。在此情況下,像素的電晶體的溝道部由作為單晶半導體的半導體膜140構成,從而具有各電晶體之間的特性不均勻性低、每個像素的發光亮度均勻的優點。因此,容易以利用電流來控制發光元件的亮度的方式驅動,並且不需要用來校正電晶體特性的不均勻的校正電路,從而可以減輕驅動電路的負擔。再者,可以選擇透光基底作為支撐基底120,因此可以構成從支撐基底120一側發射光的底部發射型EL顯示裝置。
如上所述,還可以在製造液晶顯示裝置或EL顯示裝置的母玻璃上形成單晶半導體膜,並使用該單晶半導體膜形成電晶體。關於由單晶半導體膜構成的電晶體,電流驅動能力等的所有工作特性都比非晶矽電晶體優良,可以減少電晶體的尺寸。由此,可以提高顯示面板中的像素部的開口率。另外,由於在母玻璃和單晶半導體膜之間設置具有高阻擋效果的膜,所以可以提供可靠性高的顯示裝置。此外,由於可以形成圖13及14所示的微處理器,所以可以在顯示裝置內提供電腦的功能。還可以製造能夠非接觸地進行資料收發的顯示器。
藉由使用根據本發明的半導體裝置製造用基底,可以構成各種各樣的電器。作為電器,可以舉出影像拍攝裝置如攝像機或數位照相機、導航系統、音頻再現裝置(汽車音響、音響元件等)、電腦、遊戲機、攜帶型資訊終端(移動電腦、移動電話、攜帶型遊戲機或電子書等)、具有記錄媒質的圖像再現裝置(具體地說,能夠再現記錄媒質例如數位通用盤(DVD)等並且具有能夠顯示其圖像的顯示器的裝置)等。
圖18A示出移動電話的一個例子。本實施方式所示的移動電話301包括顯示部302、操作開關303等。在顯示部302中,可以使用圖16A和16B所示的液晶顯示裝置、或圖10A和10B及圖17A和17B所示的EL顯示裝置。藉由使用根據本實施方式的顯示裝置,可以構成具有高圖像質量的顯示部。還可將根據本發明的半導體裝置適用於包括在移動電話301中的微處理器或記憶體。
圖18B示出數位播放器304作為音響裝置的一個典型實例。圖18B所示的數位播放器304包括顯示部302、操作開關303、以及耳機305等。還可以使用頭戴式耳機或無線耳機代替耳機305。在數位播放器304中,可以將本發明的半導體裝置適用於存儲音樂資訊的存儲部或使數位播放器304工作的微處理器。具有上述結構的數位播放器304可以實現小型輕量化。藉由將圖16A和16B所示的液晶顯示裝置、或圖10A和10B及圖17A和17B所示的EL顯示裝置適用於顯示部302,即使螢幕尺寸為0.3英寸至 2英寸左右也能夠顯示高清晰圖像或文字資訊。
圖18C示出電子書306。該電子書306包括顯示部302及操作開關303。另外,既可在其內部裝有數據機,又可具有以無線方式輸出/輸入資訊的結構。在電子書306中,可以將根據本發明的半導體裝置適用於存儲資訊的存儲部或使電子書306工作的微處理器。在存儲部中,使用存儲容量為20千百萬位元組(GB)以上200千百萬位元組以下的NOR型非易失性記憶體,來可以存儲並再現圖像或音頻(音樂)。藉由將圖16A和16B所示的液晶顯示裝置、或圖10A和10B及圖17A和17B所示的EL顯示裝置適用於顯示部302,可以進行高圖像質量的顯示。
本實施方式可以與本說明書所示的其他實施方式適當地組合。
本說明書根據2007年6月20日對日本專利局申請的日本專利申請編號2007-162106而製作,所述申請內容包括在本說明書中。
100‧‧‧製造用基底
102‧‧‧半導體基底
103‧‧‧熱氧化膜
104‧‧‧絕緣膜
105‧‧‧絕緣膜
106‧‧‧絕緣膜
107‧‧‧絕緣膜
108‧‧‧離子
112‧‧‧分離層
113‧‧‧鹵素離子
114‧‧‧接合層
120‧‧‧支撐基底
122‧‧‧阻擋膜
124‧‧‧接合層
140‧‧‧半導體膜
140a‧‧‧半導體膜
140b‧‧‧半導體膜
140c‧‧‧半導體膜
140d‧‧‧半導體膜
142c‧‧‧溝道形成區域
142d‧‧‧溝道形成區域
153‧‧‧熱氧化膜
155‧‧‧熱氧化膜
200‧‧‧微處理器
201‧‧‧算術邏輯單元
202‧‧‧ALU控制器
203‧‧‧指令解碼器
204‧‧‧中斷控制器
205‧‧‧時序控制器
206‧‧‧暫存器
207‧‧‧暫存器控制器
208‧‧‧匯流排界面
209‧‧‧唯讀記憶體
210‧‧‧記憶體介面
211‧‧‧RFCPU
212‧‧‧類比電路部
213‧‧‧數位電路部
214‧‧‧諧振電路
215‧‧‧整流電路
216‧‧‧恒壓電路
217‧‧‧重定電路
218‧‧‧振盪電路
219‧‧‧解調電路
220‧‧‧調變電路
221‧‧‧RF介面
222‧‧‧控制暫存器
223‧‧‧時鐘控制器
224‧‧‧介面
225‧‧‧中央處理單元
226‧‧‧隨機存取記憶體
227‧‧‧唯讀記憶體
228‧‧‧天線
229‧‧‧電容部
230‧‧‧電源管理電路
301‧‧‧移動電話
302‧‧‧顯示部
303‧‧‧操作開關
304‧‧‧數位播放器
305‧‧‧耳機
306‧‧‧電子書
518‧‧‧在層間絕緣膜
522‧‧‧顯示面板
523‧‧‧掃描線驅動電路區域
524‧‧‧信號線驅動電路區域
525‧‧‧像素形成區域
526‧‧‧掃描線
527‧‧‧信號線
528‧‧‧像素電極
529‧‧‧對置基底
530‧‧‧對置電極
531‧‧‧柱狀間隔物
532‧‧‧液晶
533‧‧‧選擇電晶體
534‧‧‧顯示控制電晶體
535‧‧‧電流供給線
536‧‧‧隔離壁膜
537‧‧‧層
538‧‧‧密封樹脂
545‧‧‧取向膜
546‧‧‧取向膜
711‧‧‧閘極絕緣膜
712‧‧‧閘電極
713‧‧‧側壁絕緣膜
714a‧‧‧第一雜質區域
714b‧‧‧第一雜質區域
715a‧‧‧第二雜質區域
715b‧‧‧第二雜質區域
716‧‧‧絕緣膜
717‧‧‧保護膜
718‧‧‧層間絕緣層
719‧‧‧接觸孔
721‧‧‧佈線
723‧‧‧接觸插塞
810‧‧‧閘極絕緣膜
812‧‧‧第一導電膜
814‧‧‧第二導電膜
816c‧‧‧第一導電膜
816d‧‧‧第一導電膜
818c‧‧‧第二導電膜
818d‧‧‧第二導電膜
820c‧‧‧抗蝕劑光罩
820d‧‧‧抗蝕劑光罩
822c‧‧‧第二導電膜
822d‧‧‧第二導電膜
824c‧‧‧閘電極
824d‧‧‧閘電極
826c‧‧‧第一雜質區域
826d‧‧‧第一雜質區域
828c‧‧‧第二雜質區域
828d‧‧‧第二雜質區域
830c‧‧‧第三雜質區域
830d‧‧‧第三雜質區域
832‧‧‧絕緣膜
834‧‧‧絕緣膜
836‧‧‧導電膜
838‧‧‧導電膜
840‧‧‧像素電極
842‧‧‧隔離壁膜
844‧‧‧層
846‧‧‧對置電極
850‧‧‧發光元件
858‧‧‧填充劑
860‧‧‧對置基底
880‧‧‧雜質元素
881‧‧‧抗蝕劑光罩
882‧‧‧抗蝕劑光罩
884‧‧‧雜質元素
886‧‧‧抗蝕劑光罩
888‧‧‧雜質元素
圖1是表示半導體裝置製造用基底的結構例子的圖;圖2A至2E是表示半導體裝置製造用基底的製造方法的例子的圖;圖3A至3E是表示半導體裝置製造用基底的製造方法的例子的圖;圖4A至4E是表示半導體裝置製造用基底的製造方法 的例子的圖;圖5A至5E是表示半導體裝置製造用基底的製造方法的例子的圖;圖6A至6E是表示半導體裝置製造用基底的製造方法的例子的圖;圖7A至7E是表示電致發光顯示裝置的製造方法的例子的圖;圖8A至8C是表示電致發光顯示裝置的製造方法的例子的圖;圖9A和9B是表示電致發光顯示裝置的製造方法的例子的圖;圖10A和10B是表示電致發光顯示裝置的製造方法的例子的圖;圖11A至11D是表示半導體裝置的製造方法的例子的圖;圖12A和12B是表示半導體裝置的製造方法的例子的圖;圖13是表示藉由使用半導體裝置製造用基底而獲得的微處理器的結構的區塊圖;圖14是表示藉由使用半導體裝置製造用基底而獲得的RFCPU的結構的區塊圖;圖15是表示將半導體膜接合到顯示面板製造用母玻璃的例子的圖;圖16A和16B是表示液晶顯示裝置的例子的圖; 圖17A和17B是表示電致發光顯示裝置的例子的圖;圖18A至18C是表示電器的例子的圖。
100‧‧‧製造用基底
102‧‧‧半導體基底
106‧‧‧絕緣膜
107‧‧‧絕緣膜
112‧‧‧分離層
114‧‧‧接合層
120‧‧‧支撐基底
140‧‧‧半導體膜

Claims (25)

  1. 一種半導體基底的製造方法,包括如下步驟:在單晶半導體基底上形成在成份中包含矽和氧的第一絕緣膜;在該第一絕緣膜上形成在成份中包含矽和氮的第二絕緣膜;向該第二絕緣膜照射第一離子,以在該單晶半導體基底中形成分離層;向該第二絕緣膜照射第二離子,以使該第一絕緣膜中包含鹵素,其中該第二離子為鹵素離子;在該第二絕緣膜上形成接合層;接合該單晶半導體基底和支撐基底,其中間夾著該接合層;以及進行加熱處理,以單晶半導體膜殘留在該支撐基底上的方式分離該單晶半導體基底,並由此使該單晶半導體膜中包含該鹵素。
  2. 根據申請專利範圍第1項之半導體基底的製造方法,其中在成份中包含矽和氧的該第一絕緣膜為熱氧化膜。
  3. 根據申請專利範圍第1項之半導體基底的製造方法,其中在成份中包含矽和氧的該第一絕緣膜為氧化矽膜或氧氮化矽膜。
  4. 根據申請專利範圍第1項之半導體基底的製造方法,其中在成份中包含矽和氮的該第二絕緣膜為氮化矽膜 或氮氧化矽膜。
  5. 根據申請專利範圍第1項之半導體基底的製造方法,其中該鹵素為氟或氯。
  6. 根據申請專利範圍第1項之半導體基底的製造方法,其中該接合層為氧化矽膜或具有矽氧烷鍵的膜。
  7. 根據申請專利範圍第1項之半導體基底的製造方法,其中該接合層為氧化矽膜,並且該氧化矽膜藉由以有機矽烷或無機矽烷作為原料氣體並使用化學氣相沉積法而形成。
  8. 根據申請專利範圍第1項之半導體基底的製造方法,其中該支撐基底為選自包括玻璃基底、石英基底、陶瓷基底、藍寶石基底、以及表面被絕緣膜覆蓋的金屬基底的組中的一種。
  9. 根據申請專利範圍第1項之半導體基底的製造方法,其中在該支撐基底上設置有第二接合層和阻擋膜。
  10. 一種半導體基底的製造方法,包括如下步驟:在單晶半導體基底上形成在成份中包含矽和氧的第一絕緣膜;在該第一絕緣膜上形成在成份中包含矽和氮的第二絕緣膜;向該第二絕緣膜照射第一離子,以在該單晶半導體基底中形成分離層;向該第二絕緣膜照射第二離子,以使該第一絕緣膜中包含鹵素,其中該第二離子為鹵素離子; 在該第二絕緣膜上形成接合層;接合該單晶半導體基底和支撐基底,其中間夾著該接合層;以及進行加熱處理,以單晶半導體膜殘留在該支撐基底上的方式分離該單晶半導體基底,並由此使該單晶半導體膜中包含該鹵素,其中,該加熱處理是以550℃以上且該支撐基底的應變點以下的溫度進行的。
  11. 根據申請專利範圍第10項之半導體基底的製造方法,其中在成份中包含矽和氧的該第一絕緣膜為熱氧化膜。
  12. 根據申請專利範圍第10項之半導體基底的製造方法,其中在成份中包含矽和氧的該第一絕緣膜為氧化矽膜或氧氮化矽膜。
  13. 根據申請專利範圍第10項之半導體基底的製造方法,其中在成份中包含矽和氮的該第二絕緣膜為氮化矽膜或氮氧化矽膜。
  14. 根據申請專利範圍第10項之半導體基底的製造方法,其中該鹵素為氟或氯。
  15. 根據申請專利範圍第10項之半導體基底的製造方法,其中該接合層為氧化矽膜或具有矽氧烷鍵的膜。
  16. 根據申請專利範圍第10項之半導體基底的製造方法,其中該接合層為氧化矽膜,並且該氧化矽膜藉由以有機矽烷或無機矽烷作為原料氣體並使用化學氣相沉積法而 形成。
  17. 根據申請專利範圍第10項之半導體基底的製造方法,其中該支撐基底為選自包括玻璃基底、石英基底、陶瓷基底、藍寶石基底、以及其表面被絕緣膜覆蓋的金屬基底的組中的一種。
  18. 根據申請專利範圍第10項之半導體基底的製造方法,其中在該支撐基底上設置有第二接合層和阻擋膜。
  19. 一種半導體基底,包括:包含鹵素的單晶半導體膜;與該單晶半導體膜重疊的、在成份中包含矽和氧的第一絕緣膜;與該第一絕緣膜重疊的、在成份中包含矽和氮的第二絕緣膜;與該第二絕緣膜重疊的、具有矽氧烷鍵的第一接合層;與該第一接合層重疊的阻擋膜,該阻擋膜包含選自包括氮化矽膜及氧化矽膜的堆疊膜、氮化矽膜及氧氮化矽膜的堆疊膜、氮氧化矽膜及氧化矽膜的堆疊膜與氮氧化矽膜及氧氮化矽膜的堆疊膜的組中的一種;以及與該阻擋膜重疊的支撐基底,其中從該第一絕緣膜擴散的鹵素使該單晶半導體膜在該單晶半導體膜與該第一絕緣膜之間的介面上的懸空鍵被終止。
  20. 根據申請專利範圍第19項之半導體基底,其中在 成份中包含矽和氧的該第一絕緣膜為熱氧化膜。
  21. 根據申請專利範圍第19項之半導體基底,其中在成份中包含矽和氧的該第一絕緣膜為氧化矽膜或氧氮化矽膜。
  22. 根據申請專利範圍第19項之半導體基底,其中在成份中包含矽和氮的該第二絕緣膜為氮化矽膜或氮氧化矽膜。
  23. 根據申請專利範圍第19項之半導體基底,其中該鹵素為氟或氯。
  24. 根據申請專利範圍第19項之半導體基底,其中該支撐基底為選自包括玻璃基底、石英基底、陶瓷基底、藍寶石基底、以及其表面被絕緣膜覆蓋的金屬基底的組中的一種。
  25. 根據申請專利範圍第19項之半導體基底,其中在該阻擋膜和該第一接合層之間設置有第二接合層。
TW097120754A 2007-06-20 2008-06-04 半導體基底及其製造方法 TWI514520B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007162106 2007-06-20

Publications (2)

Publication Number Publication Date
TW200915496A TW200915496A (en) 2009-04-01
TWI514520B true TWI514520B (zh) 2015-12-21

Family

ID=40135601

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097120754A TWI514520B (zh) 2007-06-20 2008-06-04 半導體基底及其製造方法

Country Status (4)

Country Link
US (2) US7781306B2 (zh)
JP (1) JP5395370B2 (zh)
CN (2) CN101329999B (zh)
TW (1) TWI514520B (zh)

Families Citing this family (234)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4811317U (zh) * 1971-06-19 1973-02-08
JP2009088500A (ja) * 2007-09-14 2009-04-23 Semiconductor Energy Lab Co Ltd Soi基板の作製方法
JP2009135430A (ja) * 2007-10-10 2009-06-18 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
JP5275608B2 (ja) * 2007-10-19 2013-08-28 株式会社半導体エネルギー研究所 半導体基板の作製方法
US8163628B2 (en) * 2007-11-01 2012-04-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor substrate
JP5404064B2 (ja) 2008-01-16 2014-01-29 株式会社半導体エネルギー研究所 レーザ処理装置、および半導体基板の作製方法
US8193071B2 (en) * 2008-03-11 2012-06-05 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8624357B2 (en) * 2008-08-28 2014-01-07 The Regents Of The University Of California Composite semiconductor substrates for thin-film device layer transfer
JP2010114409A (ja) * 2008-10-10 2010-05-20 Sony Corp Soi基板とその製造方法、固体撮像装置とその製造方法、および撮像装置
US8536629B2 (en) 2009-02-24 2013-09-17 Nec Corporation Semiconductor device and method for manufacturing the same
US8378715B2 (en) 2009-04-14 2013-02-19 Monolithic 3D Inc. Method to construct systems
US9509313B2 (en) 2009-04-14 2016-11-29 Monolithic 3D Inc. 3D semiconductor device
US9577642B2 (en) 2009-04-14 2017-02-21 Monolithic 3D Inc. Method to form a 3D semiconductor device
US8669778B1 (en) 2009-04-14 2014-03-11 Monolithic 3D Inc. Method for design and manufacturing of a 3D semiconductor device
US8427200B2 (en) * 2009-04-14 2013-04-23 Monolithic 3D Inc. 3D semiconductor device
US7986042B2 (en) 2009-04-14 2011-07-26 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US8384426B2 (en) 2009-04-14 2013-02-26 Monolithic 3D Inc. Semiconductor device and structure
US9711407B2 (en) 2009-04-14 2017-07-18 Monolithic 3D Inc. Method of manufacturing a three dimensional integrated circuit by transfer of a mono-crystalline layer
US8258810B2 (en) 2010-09-30 2012-09-04 Monolithic 3D Inc. 3D semiconductor device
US8058137B1 (en) 2009-04-14 2011-11-15 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US8395191B2 (en) 2009-10-12 2013-03-12 Monolithic 3D Inc. Semiconductor device and structure
US8362800B2 (en) 2010-10-13 2013-01-29 Monolithic 3D Inc. 3D semiconductor device including field repairable logics
US8362482B2 (en) 2009-04-14 2013-01-29 Monolithic 3D Inc. Semiconductor device and structure
US8405420B2 (en) 2009-04-14 2013-03-26 Monolithic 3D Inc. System comprising a semiconductor device and structure
US8754533B2 (en) 2009-04-14 2014-06-17 Monolithic 3D Inc. Monolithic three-dimensional semiconductor device and structure
US8373439B2 (en) 2009-04-14 2013-02-12 Monolithic 3D Inc. 3D semiconductor device
US10910364B2 (en) 2009-10-12 2021-02-02 Monolitaic 3D Inc. 3D semiconductor device
US9099424B1 (en) 2012-08-10 2015-08-04 Monolithic 3D Inc. Semiconductor system, device and structure with heat removal
US10366970B2 (en) 2009-10-12 2019-07-30 Monolithic 3D Inc. 3D semiconductor device and structure
US8148728B2 (en) 2009-10-12 2012-04-03 Monolithic 3D, Inc. Method for fabrication of a semiconductor device and structure
US10354995B2 (en) 2009-10-12 2019-07-16 Monolithic 3D Inc. Semiconductor memory device and structure
US10043781B2 (en) 2009-10-12 2018-08-07 Monolithic 3D Inc. 3D semiconductor device and structure
US8536023B2 (en) 2010-11-22 2013-09-17 Monolithic 3D Inc. Method of manufacturing a semiconductor device and structure
US10157909B2 (en) 2009-10-12 2018-12-18 Monolithic 3D Inc. 3D semiconductor device and structure
US11018133B2 (en) 2009-10-12 2021-05-25 Monolithic 3D Inc. 3D integrated circuit
US10388863B2 (en) 2009-10-12 2019-08-20 Monolithic 3D Inc. 3D memory device and structure
US11984445B2 (en) 2009-10-12 2024-05-14 Monolithic 3D Inc. 3D semiconductor devices and structures with metal layers
US8742476B1 (en) 2012-11-27 2014-06-03 Monolithic 3D Inc. Semiconductor device and structure
US11374118B2 (en) 2009-10-12 2022-06-28 Monolithic 3D Inc. Method to form a 3D integrated circuit
US8476145B2 (en) 2010-10-13 2013-07-02 Monolithic 3D Inc. Method of fabricating a semiconductor device and structure
US8450804B2 (en) 2011-03-06 2013-05-28 Monolithic 3D Inc. Semiconductor device and structure for heat removal
US8581349B1 (en) 2011-05-02 2013-11-12 Monolithic 3D Inc. 3D memory semiconductor device and structure
US8461035B1 (en) 2010-09-30 2013-06-11 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US8373230B1 (en) 2010-10-13 2013-02-12 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US8026521B1 (en) 2010-10-11 2011-09-27 Monolithic 3D Inc. Semiconductor device and structure
US9099526B2 (en) 2010-02-16 2015-08-04 Monolithic 3D Inc. Integrated circuit device and structure
US8541819B1 (en) 2010-12-09 2013-09-24 Monolithic 3D Inc. Semiconductor device and structure
US8492886B2 (en) 2010-02-16 2013-07-23 Monolithic 3D Inc 3D integrated circuit with logic
US8298875B1 (en) 2011-03-06 2012-10-30 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
CN101950757A (zh) * 2010-07-13 2011-01-19 中国科学院上海微***与信息技术研究所 基于soi衬底的高介电常数材料栅结构及其制备方法
US10217667B2 (en) 2011-06-28 2019-02-26 Monolithic 3D Inc. 3D semiconductor device, fabrication method and system
US8642416B2 (en) * 2010-07-30 2014-02-04 Monolithic 3D Inc. Method of forming three dimensional integrated circuit devices using layer transfer technique
DE102010038739B4 (de) * 2010-07-30 2018-10-11 Globalfoundries Dresden Module One Llc & Co. Kg Verfahren zur Herstellung eines Halbleiterbauelements mit erhöhter Stabilität eines komplexen Materialstapels durch Vorsehen von fluorangereicherten Grenzflächen
US9953925B2 (en) 2011-06-28 2018-04-24 Monolithic 3D Inc. Semiconductor system and device
US8901613B2 (en) 2011-03-06 2014-12-02 Monolithic 3D Inc. Semiconductor device and structure for heat removal
US9219005B2 (en) 2011-06-28 2015-12-22 Monolithic 3D Inc. Semiconductor system and device
US8273610B2 (en) 2010-11-18 2012-09-25 Monolithic 3D Inc. Method of constructing a semiconductor device and structure
US10497713B2 (en) 2010-11-18 2019-12-03 Monolithic 3D Inc. 3D semiconductor memory device and structure
US11482440B2 (en) 2010-12-16 2022-10-25 Monolithic 3D Inc. 3D semiconductor device and structure with a built-in test circuit for repairing faulty circuits
US8163581B1 (en) 2010-10-13 2012-04-24 Monolith IC 3D Semiconductor and optoelectronic devices
US11018191B1 (en) 2010-10-11 2021-05-25 Monolithic 3D Inc. 3D semiconductor device and structure
US11227897B2 (en) 2010-10-11 2022-01-18 Monolithic 3D Inc. Method for producing a 3D semiconductor memory device and structure
US10896931B1 (en) 2010-10-11 2021-01-19 Monolithic 3D Inc. 3D semiconductor device and structure
US8114757B1 (en) 2010-10-11 2012-02-14 Monolithic 3D Inc. Semiconductor device and structure
US11257867B1 (en) 2010-10-11 2022-02-22 Monolithic 3D Inc. 3D semiconductor device and structure with oxide bonds
US11600667B1 (en) 2010-10-11 2023-03-07 Monolithic 3D Inc. Method to produce 3D semiconductor devices and structures with memory
US11469271B2 (en) 2010-10-11 2022-10-11 Monolithic 3D Inc. Method to produce 3D semiconductor devices and structures with memory
US10290682B2 (en) 2010-10-11 2019-05-14 Monolithic 3D Inc. 3D IC semiconductor device and structure with stacked memory
US11024673B1 (en) 2010-10-11 2021-06-01 Monolithic 3D Inc. 3D semiconductor device and structure
US11158674B2 (en) 2010-10-11 2021-10-26 Monolithic 3D Inc. Method to produce a 3D semiconductor device and structure
US11315980B1 (en) 2010-10-11 2022-04-26 Monolithic 3D Inc. 3D semiconductor device and structure with transistors
US11164898B2 (en) 2010-10-13 2021-11-02 Monolithic 3D Inc. Multilevel semiconductor device and structure
US11984438B2 (en) 2010-10-13 2024-05-14 Monolithic 3D Inc. Multilevel semiconductor device and structure with oxide bonding
US11163112B2 (en) 2010-10-13 2021-11-02 Monolithic 3D Inc. Multilevel semiconductor device and structure with electromagnetic modulators
US8283215B2 (en) 2010-10-13 2012-10-09 Monolithic 3D Inc. Semiconductor and optoelectronic devices
US11855100B2 (en) 2010-10-13 2023-12-26 Monolithic 3D Inc. Multilevel semiconductor device and structure with oxide bonding
US11929372B2 (en) 2010-10-13 2024-03-12 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors and wafer bonding
US11133344B2 (en) 2010-10-13 2021-09-28 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors
US11043523B1 (en) 2010-10-13 2021-06-22 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors
US11327227B2 (en) 2010-10-13 2022-05-10 Monolithic 3D Inc. Multilevel semiconductor device and structure with electromagnetic modulators
US11437368B2 (en) 2010-10-13 2022-09-06 Monolithic 3D Inc. Multilevel semiconductor device and structure with oxide bonding
US11063071B1 (en) 2010-10-13 2021-07-13 Monolithic 3D Inc. Multilevel semiconductor device and structure with waveguides
US10679977B2 (en) 2010-10-13 2020-06-09 Monolithic 3D Inc. 3D microdisplay device and structure
US10833108B2 (en) 2010-10-13 2020-11-10 Monolithic 3D Inc. 3D microdisplay device and structure
US9197804B1 (en) 2011-10-14 2015-11-24 Monolithic 3D Inc. Semiconductor and optoelectronic devices
US11404466B2 (en) 2010-10-13 2022-08-02 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors
US11869915B2 (en) 2010-10-13 2024-01-09 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors and wafer bonding
US10943934B2 (en) 2010-10-13 2021-03-09 Monolithic 3D Inc. Multilevel semiconductor device and structure
US8379458B1 (en) 2010-10-13 2013-02-19 Monolithic 3D Inc. Semiconductor device and structure
US11694922B2 (en) 2010-10-13 2023-07-04 Monolithic 3D Inc. Multilevel semiconductor device and structure with oxide bonding
US11855114B2 (en) 2010-10-13 2023-12-26 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors and wafer bonding
US10998374B1 (en) 2010-10-13 2021-05-04 Monolithic 3D Inc. Multilevel semiconductor device and structure
US11605663B2 (en) 2010-10-13 2023-03-14 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors and wafer bonding
US10978501B1 (en) 2010-10-13 2021-04-13 Monolithic 3D Inc. Multilevel semiconductor device and structure with waveguides
US11355381B2 (en) 2010-11-18 2022-06-07 Monolithic 3D Inc. 3D semiconductor memory device and structure
US11569117B2 (en) 2010-11-18 2023-01-31 Monolithic 3D Inc. 3D semiconductor device and structure with single-crystal layers
US11508605B2 (en) 2010-11-18 2022-11-22 Monolithic 3D Inc. 3D semiconductor memory device and structure
US11610802B2 (en) 2010-11-18 2023-03-21 Monolithic 3D Inc. Method for producing a 3D semiconductor device and structure with single crystal transistors and metal gate electrodes
US11901210B2 (en) 2010-11-18 2024-02-13 Monolithic 3D Inc. 3D semiconductor device and structure with memory
US11031275B2 (en) 2010-11-18 2021-06-08 Monolithic 3D Inc. 3D semiconductor device and structure with memory
US11121021B2 (en) 2010-11-18 2021-09-14 Monolithic 3D Inc. 3D semiconductor device and structure
US11107721B2 (en) 2010-11-18 2021-08-31 Monolithic 3D Inc. 3D semiconductor device and structure with NAND logic
US11443971B2 (en) 2010-11-18 2022-09-13 Monolithic 3D Inc. 3D semiconductor device and structure with memory
US11004719B1 (en) 2010-11-18 2021-05-11 Monolithic 3D Inc. Methods for producing a 3D semiconductor memory device and structure
US11784082B2 (en) 2010-11-18 2023-10-10 Monolithic 3D Inc. 3D semiconductor device and structure with bonding
US11018042B1 (en) 2010-11-18 2021-05-25 Monolithic 3D Inc. 3D semiconductor memory device and structure
US11211279B2 (en) 2010-11-18 2021-12-28 Monolithic 3D Inc. Method for processing a 3D integrated circuit and structure
US11495484B2 (en) 2010-11-18 2022-11-08 Monolithic 3D Inc. 3D semiconductor devices and structures with at least two single-crystal layers
US11355380B2 (en) 2010-11-18 2022-06-07 Monolithic 3D Inc. Methods for producing 3D semiconductor memory device and structure utilizing alignment marks
US11482438B2 (en) 2010-11-18 2022-10-25 Monolithic 3D Inc. Methods for producing a 3D semiconductor memory device and structure
US11094576B1 (en) 2010-11-18 2021-08-17 Monolithic 3D Inc. Methods for producing a 3D semiconductor memory device and structure
US11164770B1 (en) 2010-11-18 2021-11-02 Monolithic 3D Inc. Method for producing a 3D semiconductor memory device and structure
US11854857B1 (en) 2010-11-18 2023-12-26 Monolithic 3D Inc. Methods for producing a 3D semiconductor device and structure with memory cells and multiple metal layers
US11521888B2 (en) 2010-11-18 2022-12-06 Monolithic 3D Inc. 3D semiconductor device and structure with high-k metal gate transistors
US11735462B2 (en) 2010-11-18 2023-08-22 Monolithic 3D Inc. 3D semiconductor device and structure with single-crystal layers
US11923230B1 (en) 2010-11-18 2024-03-05 Monolithic 3D Inc. 3D semiconductor device and structure with bonding
US11482439B2 (en) 2010-11-18 2022-10-25 Monolithic 3D Inc. Methods for producing a 3D semiconductor memory device comprising charge trap junction-less transistors
US11804396B2 (en) 2010-11-18 2023-10-31 Monolithic 3D Inc. Methods for producing a 3D semiconductor device and structure with memory cells and multiple metal layers
US11862503B2 (en) 2010-11-18 2024-01-02 Monolithic 3D Inc. Method for producing a 3D semiconductor device and structure with memory cells and multiple metal layers
US11615977B2 (en) 2010-11-18 2023-03-28 Monolithic 3D Inc. 3D semiconductor memory device and structure
US8975670B2 (en) 2011-03-06 2015-03-10 Monolithic 3D Inc. Semiconductor device and structure for heat removal
CN102222637A (zh) * 2011-06-23 2011-10-19 北京大学 一种绝缘体上锗衬底的制备方法
US10388568B2 (en) 2011-06-28 2019-08-20 Monolithic 3D Inc. 3D semiconductor device and system
WO2013035298A1 (ja) * 2011-09-08 2013-03-14 シャープ株式会社 表示装置及びその製造方法
US8687399B2 (en) 2011-10-02 2014-04-01 Monolithic 3D Inc. Semiconductor device and structure
US9029173B2 (en) 2011-10-18 2015-05-12 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US9000557B2 (en) 2012-03-17 2015-04-07 Zvi Or-Bach Semiconductor device and structure
CN102610553A (zh) * 2012-03-20 2012-07-25 北京大学 一种绝缘体上锗衬底的制备方法
US8557632B1 (en) 2012-04-09 2013-10-15 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US11594473B2 (en) 2012-04-09 2023-02-28 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and a connective path
US11410912B2 (en) 2012-04-09 2022-08-09 Monolithic 3D Inc. 3D semiconductor device with vias and isolation layers
US11088050B2 (en) 2012-04-09 2021-08-10 Monolithic 3D Inc. 3D semiconductor device with isolation layers
US11694944B1 (en) 2012-04-09 2023-07-04 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and a connective path
US10600888B2 (en) 2012-04-09 2020-03-24 Monolithic 3D Inc. 3D semiconductor device
US11616004B1 (en) 2012-04-09 2023-03-28 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and a connective path
US11476181B1 (en) 2012-04-09 2022-10-18 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US11881443B2 (en) 2012-04-09 2024-01-23 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and a connective path
US11735501B1 (en) 2012-04-09 2023-08-22 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and a connective path
US11164811B2 (en) 2012-04-09 2021-11-02 Monolithic 3D Inc. 3D semiconductor device with isolation layers and oxide-to-oxide bonding
JP6175294B2 (ja) * 2012-06-25 2017-08-02 株式会社半導体エネルギー研究所 機能性基板の作製方法および半導体装置の作製方法
US10094988B2 (en) 2012-08-31 2018-10-09 Micron Technology, Inc. Method of forming photonics structures
US8574929B1 (en) 2012-11-16 2013-11-05 Monolithic 3D Inc. Method to form a 3D semiconductor device and structure
US8686428B1 (en) 2012-11-16 2014-04-01 Monolithic 3D Inc. Semiconductor device and structure
US11916045B2 (en) 2012-12-22 2024-02-27 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US11018116B2 (en) 2012-12-22 2021-05-25 Monolithic 3D Inc. Method to form a 3D semiconductor device and structure
US11063024B1 (en) 2012-12-22 2021-07-13 Monlithic 3D Inc. Method to form a 3D semiconductor device and structure
US8674470B1 (en) 2012-12-22 2014-03-18 Monolithic 3D Inc. Semiconductor device and structure
US11217565B2 (en) 2012-12-22 2022-01-04 Monolithic 3D Inc. Method to form a 3D semiconductor device and structure
US11961827B1 (en) 2012-12-22 2024-04-16 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US11784169B2 (en) 2012-12-22 2023-10-10 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US11309292B2 (en) 2012-12-22 2022-04-19 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US11967583B2 (en) 2012-12-22 2024-04-23 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US11430668B2 (en) 2012-12-29 2022-08-30 Monolithic 3D Inc. 3D semiconductor device and structure with bonding
US11087995B1 (en) 2012-12-29 2021-08-10 Monolithic 3D Inc. 3D semiconductor device and structure
US9871034B1 (en) 2012-12-29 2018-01-16 Monolithic 3D Inc. Semiconductor device and structure
US10651054B2 (en) 2012-12-29 2020-05-12 Monolithic 3D Inc. 3D semiconductor device and structure
US10115663B2 (en) 2012-12-29 2018-10-30 Monolithic 3D Inc. 3D semiconductor device and structure
US9385058B1 (en) 2012-12-29 2016-07-05 Monolithic 3D Inc. Semiconductor device and structure
US11430667B2 (en) 2012-12-29 2022-08-30 Monolithic 3D Inc. 3D semiconductor device and structure with bonding
US10892169B2 (en) 2012-12-29 2021-01-12 Monolithic 3D Inc. 3D semiconductor device and structure
US10600657B2 (en) 2012-12-29 2020-03-24 Monolithic 3D Inc 3D semiconductor device and structure
US11177140B2 (en) 2012-12-29 2021-11-16 Monolithic 3D Inc. 3D semiconductor device and structure
US10903089B1 (en) 2012-12-29 2021-01-26 Monolithic 3D Inc. 3D semiconductor device and structure
US11004694B1 (en) 2012-12-29 2021-05-11 Monolithic 3D Inc. 3D semiconductor device and structure
US11869965B2 (en) 2013-03-11 2024-01-09 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and memory cells
US10325651B2 (en) 2013-03-11 2019-06-18 Monolithic 3D Inc. 3D semiconductor device with stacked memory
US11935949B1 (en) 2013-03-11 2024-03-19 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and memory cells
US8902663B1 (en) 2013-03-11 2014-12-02 Monolithic 3D Inc. Method of maintaining a memory state
US11923374B2 (en) 2013-03-12 2024-03-05 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US11398569B2 (en) 2013-03-12 2022-07-26 Monolithic 3D Inc. 3D semiconductor device and structure
US8994404B1 (en) 2013-03-12 2015-03-31 Monolithic 3D Inc. Semiconductor device and structure
US11088130B2 (en) 2014-01-28 2021-08-10 Monolithic 3D Inc. 3D semiconductor device and structure
US10840239B2 (en) 2014-08-26 2020-11-17 Monolithic 3D Inc. 3D semiconductor device and structure
US10224279B2 (en) 2013-03-15 2019-03-05 Monolithic 3D Inc. Semiconductor device and structure
US9117749B1 (en) 2013-03-15 2015-08-25 Monolithic 3D Inc. Semiconductor device and structure
US9021414B1 (en) 2013-04-15 2015-04-28 Monolithic 3D Inc. Automation for monolithic 3D devices
US11270055B1 (en) 2013-04-15 2022-03-08 Monolithic 3D Inc. Automation for monolithic 3D devices
US11341309B1 (en) 2013-04-15 2022-05-24 Monolithic 3D Inc. Automation for monolithic 3D devices
US11574109B1 (en) 2013-04-15 2023-02-07 Monolithic 3D Inc Automation methods for 3D integrated circuits and devices
US11487928B2 (en) 2013-04-15 2022-11-01 Monolithic 3D Inc. Automation for monolithic 3D devices
US11030371B2 (en) 2013-04-15 2021-06-08 Monolithic 3D Inc. Automation for monolithic 3D devices
US11720736B2 (en) 2013-04-15 2023-08-08 Monolithic 3D Inc. Automation methods for 3D integrated circuits and devices
US8999803B2 (en) * 2013-05-31 2015-04-07 Globalfoundries Singapore Pte. Ltd. Methods for fabricating integrated circuits with the implantation of fluorine
US9064789B2 (en) * 2013-08-12 2015-06-23 International Business Machines Corporation Bonded epitaxial oxide structures for compound semiconductor on silicon substrates
CN103700673B (zh) * 2013-12-24 2017-07-04 京东方科技集团股份有限公司 一种显示装置、阵列基板及其制作方法
US10297586B2 (en) 2015-03-09 2019-05-21 Monolithic 3D Inc. Methods for processing a 3D semiconductor device
US11031394B1 (en) 2014-01-28 2021-06-08 Monolithic 3D Inc. 3D semiconductor device and structure
US11107808B1 (en) 2014-01-28 2021-08-31 Monolithic 3D Inc. 3D semiconductor device and structure
US9299600B2 (en) * 2014-07-28 2016-03-29 United Microelectronics Corp. Method for repairing an oxide layer and method for manufacturing a semiconductor structure applying the same
KR102301976B1 (ko) * 2014-10-08 2021-09-15 삼성디스플레이 주식회사 투명 유기 발광 표시 장치
CN105528101A (zh) * 2014-10-21 2016-04-27 宸鸿科技(厦门)有限公司 触控面板及其立体盖板结构
CN105589587B (zh) * 2014-10-21 2018-10-26 宸鸿科技(厦门)有限公司 透明复合基板与其制备方法及触控面板
WO2016083928A1 (en) * 2014-11-28 2016-06-02 Semiconductor Energy Laboratory Co., Ltd. Image processing device, display system, and electronic device
US10148265B2 (en) 2015-01-30 2018-12-04 Psemi Corporation Radio frequency switching circuit with distributed switches
US11011507B1 (en) 2015-04-19 2021-05-18 Monolithic 3D Inc. 3D semiconductor device and structure
US10825779B2 (en) 2015-04-19 2020-11-03 Monolithic 3D Inc. 3D semiconductor device and structure
US11056468B1 (en) 2015-04-19 2021-07-06 Monolithic 3D Inc. 3D semiconductor device and structure
US10381328B2 (en) 2015-04-19 2019-08-13 Monolithic 3D Inc. Semiconductor device and structure
CN106252458B (zh) 2015-06-10 2017-12-12 Lg电子株式会社 制造太阳能电池的方法
US11956952B2 (en) 2015-08-23 2024-04-09 Monolithic 3D Inc. Semiconductor memory device and structure
DE112016004265T5 (de) 2015-09-21 2018-06-07 Monolithic 3D Inc. 3d halbleitervorrichtung und -struktur
US11978731B2 (en) 2015-09-21 2024-05-07 Monolithic 3D Inc. Method to produce a multi-level semiconductor memory device and structure
US10522225B1 (en) 2015-10-02 2019-12-31 Monolithic 3D Inc. Semiconductor device with non-volatile memory
CN106601663B (zh) * 2015-10-20 2019-05-31 上海新昇半导体科技有限公司 Soi衬底及其制备方法
US10847540B2 (en) 2015-10-24 2020-11-24 Monolithic 3D Inc. 3D semiconductor memory device and structure
US11296115B1 (en) 2015-10-24 2022-04-05 Monolithic 3D Inc. 3D semiconductor device and structure
US11114464B2 (en) 2015-10-24 2021-09-07 Monolithic 3D Inc. 3D semiconductor device and structure
US10418369B2 (en) 2015-10-24 2019-09-17 Monolithic 3D Inc. Multi-level semiconductor memory device and structure
US11991884B1 (en) 2015-10-24 2024-05-21 Monolithic 3D Inc. 3D semiconductor device and structure with logic and memory
US11937422B2 (en) 2015-11-07 2024-03-19 Monolithic 3D Inc. Semiconductor memory device and structure
US11114427B2 (en) 2015-11-07 2021-09-07 Monolithic 3D Inc. 3D semiconductor processor and memory device and structure
JP6620034B2 (ja) * 2016-02-24 2019-12-11 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
CN107154378B (zh) * 2016-03-03 2020-11-20 上海新昇半导体科技有限公司 绝缘层上顶层硅衬底及其制造方法
CN107154379B (zh) * 2016-03-03 2020-01-24 上海新昇半导体科技有限公司 绝缘层上顶层硅衬底及其制造方法
KR102632796B1 (ko) 2016-03-10 2024-02-02 비엘라 바이오, 인크. Ilt7 결합 분자 및 이의 사용 방법
US10580666B2 (en) * 2016-07-01 2020-03-03 Corning Incorporated Carrier substrates for semiconductor processing
US11711928B2 (en) 2016-10-10 2023-07-25 Monolithic 3D Inc. 3D memory devices and structures with control circuits
US11930648B1 (en) 2016-10-10 2024-03-12 Monolithic 3D Inc. 3D memory devices and structures with metal layers
US11812620B2 (en) 2016-10-10 2023-11-07 Monolithic 3D Inc. 3D DRAM memory devices and structures with control circuits
US11251149B2 (en) 2016-10-10 2022-02-15 Monolithic 3D Inc. 3D memory device and structure
US11869591B2 (en) 2016-10-10 2024-01-09 Monolithic 3D Inc. 3D memory devices and structures with control circuits
US11329059B1 (en) 2016-10-10 2022-05-10 Monolithic 3D Inc. 3D memory devices and structures with thinned single crystal substrates
US10727219B2 (en) * 2018-02-15 2020-07-28 Invensas Bonding Technologies, Inc. Techniques for processing devices
JP7045929B2 (ja) * 2018-05-28 2022-04-01 東京エレクトロン株式会社 半導体装置の製造方法および基板処理装置
TWI727515B (zh) * 2018-11-30 2021-05-11 台灣積體電路製造股份有限公司 形成soi結構的方法
KR102397179B1 (ko) * 2018-12-21 2022-05-11 삼성에스디아이 주식회사 하드마스크 조성물, 하드마스크 층 및 패턴 형성 방법
US11158652B1 (en) 2019-04-08 2021-10-26 Monolithic 3D Inc. 3D memory semiconductor devices and structures
US11296106B2 (en) 2019-04-08 2022-04-05 Monolithic 3D Inc. 3D memory semiconductor devices and structures
US11018156B2 (en) 2019-04-08 2021-05-25 Monolithic 3D Inc. 3D memory semiconductor devices and structures
US10892016B1 (en) 2019-04-08 2021-01-12 Monolithic 3D Inc. 3D memory semiconductor devices and structures
US11763864B2 (en) 2019-04-08 2023-09-19 Monolithic 3D Inc. 3D memory semiconductor devices and structures with bit-line pillars
JP7267882B2 (ja) * 2019-09-17 2023-05-02 キオクシア株式会社 基板、パターン、及び計測装置の較正方法
JP7088218B2 (ja) * 2020-01-22 2022-06-21 セイコーエプソン株式会社 波長変換素子、波長変換素子の製造方法、光源装置およびプロジェクター
CN115803851B (zh) * 2021-01-21 2023-06-30 信越工程株式会社 工件分离装置及工件分离方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6380046B1 (en) * 1998-06-22 2002-04-30 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US6388652B1 (en) * 1997-08-20 2002-05-14 Semiconductor Energy Laboratory Co., Ltd. Electrooptical device
US6602761B2 (en) * 1998-07-29 2003-08-05 Semiconductor Energy Laboratory Co., Ltd. Process for production of SOI substrate and process for production of semiconductor device
US20030207545A1 (en) * 2000-11-30 2003-11-06 Seiko Epson Corporation SOI substrate, element substrate, semiconductor device, electro-optical apparatus, electronic equipment, method of manufacturing the SOI substrate, method of manufacturing the element substrate, and method of manufacturing the electro-optical apparatus

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0547726A (ja) * 1991-08-20 1993-02-26 Fujitsu Ltd 半導体装置の製造方法
FR2681472B1 (fr) 1991-09-18 1993-10-29 Commissariat Energie Atomique Procede de fabrication de films minces de materiau semiconducteur.
JPH05217822A (ja) * 1992-02-07 1993-08-27 Fujitsu Ltd シリコンオンインシュレータ基板の製造方法
US6100562A (en) * 1996-03-17 2000-08-08 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
JP4103968B2 (ja) * 1996-09-18 2008-06-18 株式会社半導体エネルギー研究所 絶縁ゲイト型半導体装置
US6191007B1 (en) * 1997-04-28 2001-02-20 Denso Corporation Method for manufacturing a semiconductor substrate
US6686623B2 (en) * 1997-11-18 2004-02-03 Semiconductor Energy Laboratory Co., Ltd. Nonvolatile memory and electronic apparatus
JPH11163363A (ja) 1997-11-22 1999-06-18 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
JP4476390B2 (ja) * 1998-09-04 2010-06-09 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP2000124092A (ja) 1998-10-16 2000-04-28 Shin Etsu Handotai Co Ltd 水素イオン注入剥離法によってsoiウエーハを製造する方法およびこの方法で製造されたsoiウエーハ
JP2001144170A (ja) * 1999-11-11 2001-05-25 Mitsubishi Electric Corp 半導体装置およびその製造方法
JP4507395B2 (ja) * 2000-11-30 2010-07-21 セイコーエプソン株式会社 電気光学装置用素子基板の製造方法
JP2005116607A (ja) * 2003-10-03 2005-04-28 Seiko Epson Corp 半導体基板、半導体装置、半導体基板の製造方法および半導体装置の製造方法
DE102004008442A1 (de) 2004-02-19 2005-09-15 Degussa Ag Siliciumverbindungen für die Erzeugung von SIO2-haltigen Isolierschichten auf Chips
JP2006216826A (ja) * 2005-02-04 2006-08-17 Sumco Corp Soiウェーハの製造方法
US20060270192A1 (en) * 2005-05-24 2006-11-30 International Business Machines Corporation Semiconductor substrate and device with deuterated buried layer
JP5090658B2 (ja) * 2006-04-06 2012-12-05 三菱電機株式会社 薄膜トランジスタ、及びその製造方法、並びにアクティブマトリクス型表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6388652B1 (en) * 1997-08-20 2002-05-14 Semiconductor Energy Laboratory Co., Ltd. Electrooptical device
US6380046B1 (en) * 1998-06-22 2002-04-30 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US6602761B2 (en) * 1998-07-29 2003-08-05 Semiconductor Energy Laboratory Co., Ltd. Process for production of SOI substrate and process for production of semiconductor device
US20030207545A1 (en) * 2000-11-30 2003-11-06 Seiko Epson Corporation SOI substrate, element substrate, semiconductor device, electro-optical apparatus, electronic equipment, method of manufacturing the SOI substrate, method of manufacturing the element substrate, and method of manufacturing the electro-optical apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Applied Physics Letters, vol. 61, no. 11, pp.1310-1312, Sep. 14, 1992 *

Also Published As

Publication number Publication date
US20100237458A1 (en) 2010-09-23
CN101329999A (zh) 2008-12-24
CN102324398B (zh) 2016-03-30
US7781306B2 (en) 2010-08-24
JP2009027150A (ja) 2009-02-05
US20080315351A1 (en) 2008-12-25
US8912624B2 (en) 2014-12-16
CN102324398A (zh) 2012-01-18
TW200915496A (en) 2009-04-01
JP5395370B2 (ja) 2014-01-22
CN101329999B (zh) 2011-09-07

Similar Documents

Publication Publication Date Title
TWI514520B (zh) 半導體基底及其製造方法
JP5438919B2 (ja) 半導体装置製造用基板の作製方法
US8263476B2 (en) Manufacturing method of SOI substrate
JP5522917B2 (ja) Soi基板の製造方法
US8273611B2 (en) Method for manufacturing semiconductor substrate
KR101561855B1 (ko) Soi기판의 제작방법
JP5619474B2 (ja) Soi基板の作製方法
KR101494627B1 (ko) 반도체 기판 및 반도체 장치의 제작 방법
JP5507063B2 (ja) 半導体装置の作製方法
KR20080101653A (ko) 반도체 기판 및 반도체 장치 및 그 제조 방법
JP2009111375A (ja) 半導体装置の作製方法
JP2009151293A (ja) 表示装置及び表示装置の作製方法、並びに電子機器
US8518797B2 (en) Method of making an SOI substrate by using a separation layer with regions of non-uniform concentration
JP2009088500A (ja) Soi基板の作製方法

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees