TWI513818B - 岩藻糖基化(fucosylation)-缺乏之細胞 - Google Patents

岩藻糖基化(fucosylation)-缺乏之細胞 Download PDF

Info

Publication number
TWI513818B
TWI513818B TW099117652A TW99117652A TWI513818B TW I513818 B TWI513818 B TW I513818B TW 099117652 A TW099117652 A TW 099117652A TW 99117652 A TW99117652 A TW 99117652A TW I513818 B TWI513818 B TW I513818B
Authority
TW
Taiwan
Prior art keywords
cell
cells
protein
glycoprotein
fucosylation
Prior art date
Application number
TW099117652A
Other languages
English (en)
Other versions
TW201107469A (en
Inventor
Gang Chen
Darya Burakov
James P Fandl
Original Assignee
Regeneron Pharma
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Regeneron Pharma filed Critical Regeneron Pharma
Publication of TW201107469A publication Critical patent/TW201107469A/zh
Application granted granted Critical
Publication of TWI513818B publication Critical patent/TWI513818B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/005Glycopeptides, glycoproteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2863Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for growth factors, growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2866Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for cytokines, lymphokines, interferons
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01271GDP-L-fucose synthase (1.1.1.271)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/10Immunoglobulins specific features characterized by their source of isolation or production
    • C07K2317/14Specific host cells or culture conditions, e.g. components, pH or temperature
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/40Immunoglobulins specific features characterized by post-translational modification
    • C07K2317/41Glycosylation, sialylation, or fucosylation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Description

岩藻糖基化(fucosylation)-缺乏之細胞
本發明是有關於一種岩藻糖基化途徑的經修飾哺乳動物酵素,其中帶有該經修飾哺乳動物酵素之細胞展現出減低的岩藻糖基化一蛋白質的能力,以及有關於包含有遺傳修飾的細胞,該遺傳修飾會導致降低的岩藻糖基化一蛋白質的能力。本發明包括與野生型細胞株相較之下表現帶有降低的岩藻糖基化的蛋白質(包括抗體)的哺乳動物細胞株(例如,CHO細胞株)。本發明亦有關於蛋白質岩藻糖基化的條件控制。
無法岩藻糖基化蛋白質的細胞株在本技藝中為已知的。一些無法岩藻糖基化蛋白質之喪失功能的突變株為已知的,最特別的大概是挑選出對某些凝集素(lectins)有抗性(resistance)的中國倉鼠卵巢(Chinese hamster ovary,CHO)細胞突變株(mutants)。這樣的細胞株是藉由在突變劑(mutagen)的存在下針對無法結合特定凝集素(例如凝集素小扁豆凝集素(Lens culinaris lectin))來重複篩選而被分離出。其他被報導無法岩藻糖基化蛋白質(例如抗體)的細胞為已知的,參見例如美國專利第7,425,466號以及美國專利第7,214,755號(α1,6-岩藻糖基轉移酶(α1,6-fucosyltransferase),亦即FUT8突變株)。在本技藝中,對於帶有減低的岩藻糖基化蛋白質之能力的細胞株,特別是對於在沒有剔除(knockout)存在的情況下帶有減低的岩藻糖基化能力之細胞,以及有條件地岩藻糖基化蛋白質的細胞仍有需求。
在一個方面,提供一種經分離、經修飾的GDP-4-酮-6-去氧-甘露糖-3,5-表異構酶-4-還原酶(GDP-4-keto-6-deoxy-mannose-3,5-epimerase-4-reductase,FX)蛋白質,其包含有選自於由下列所構成之群組的修飾:79S、90K、136L、211R、289S及其組合。在一個具體例中,該FX蛋白質包含有289S修飾。在一個具體例中,該FX蛋白質包含有289S修飾以及至少一個選自於下列所構成之群組中的修飾:79S、90K、136L、211R及其組合。
在一個方面,提供一種編碼一經修飾FX蛋白質序列的核酸。在一個特定具體例中,該核酸是cDNA。在一個具體例中,提供一種包含有該核酸的表現載體(expression vector)或標的載體(targeting vector)。在一個具體例中,該標的載體的核酸包含有一內含子(intron)。在一個具體例中,該標的載體包含有一編碼經修飾FX蛋白質的cDNA。在一個特定具體例中,該標的載體包含有一將該載體標定至人類、非人類靈長動物、倉鼠、小鼠或大鼠基因體之基因座中的標靶序列(targeting sequence)。
在一個方面,提供一種包含有對編碼FX蛋白質的核酸修飾或表現帶有修飾之FX蛋白質的細胞,其中該細胞不表現或實質上不表現野生型FX蛋白質。在一個特定具體例中,與缺乏該修飾的細胞相較之下,該細胞展現出不超過10%、不超過5%、不超過2%或不超過1%的野生型FX蛋白質。
在一個具體例中,包含有經修飾FX蛋白質或核酸的細胞表現含Fc醣蛋白(Fc-containing glycoprotein),其中與缺乏該修飾的細胞相較之下,該細胞岩藻糖基化不超過90%、不超過95%、不超過96%、不超過97%、不超過98%或不超過99%的醣蛋白。
在一個方面,提供一種包含有對編碼FX蛋白質的核酸修飾或表現帶有修飾之FX蛋白質的細胞,其中該細胞缺乏或實質上缺乏在第一溫度下岩藻糖基化醣蛋白的能力,但並未缺乏或實質上並未缺乏在第二溫度下岩藻糖基化醣蛋白的能力。
在一個具體例中,該第一溫度約為37℃。在一個具體例中,該第二溫度約為34℃。
在一個具體例中,在第一溫度下岩藻糖基化醣蛋白的能力是由缺乏該修飾的細胞所展現出之岩藻糖基化醣蛋白能力的約1%至約10%。在一個具體例中,在第二溫度下岩藻糖基化醣蛋白的能力與缺乏該修飾的細胞之岩藻糖基化醣蛋白能力相較之下為約70%、80%、90%或更多。
在一個特定具體例中,該FX蛋白質修飾包含有一個選自於由下列胺基酸置換所構成之群組的置換:90K、289S、211R、136L、79S及其組合。在一個特定具體例中,該置換為289S。
在一個具體例中,該FX蛋白質是來自於非人類靈長動物(例如恆河獼猴)、人類、小鼠(例如家鼷鼠)、大鼠(例如挪威大鼠)或倉鼠(例如中國倉鼠或灰倉鼠)。在一個特定具體例中,該FX蛋白質包含有序列辨識編號:1、序列辨識編號:3、序列辨識編號:4、序列辨識編號:5或序列辨識編號:6的胺基酸序列,並且帶有一或多個如此處所述的修飾(例如胺基酸置換)。
在一個具體例中,該核酸編碼與序列辨識編號:1的序列至少90%或至少95%相同的FX蛋白質,並且更包含有下列一或多個在一或多個下列位置處的胺基酸:79S、90K、136L、211R以及289S。
在一個具體例中,該核酸編碼與序列辨識編號:2的FX至少95%相同的FX。在一個特定具體例中,該FX具有序列辨識編號:2的胺基酸序列。
在一個方面,提供一種細胞,其中該細胞包含有一會造成該細胞岩藻糖基化醣蛋白的能力降低的修飾,且該修飾包含有一在FX基因的序列中會造成岩藻糖基化醣蛋白的能力降低的突變或改變。
在一個具體例中,該細胞表現一選自於由下列所構成之群組的野生型岩藻糖基化途徑酵素:GDP-甘露糖4,6-脫水酶(GMD)、野生型GDP-β-L-岩藻糖焦磷酸化酶(GFPP)、野生型α-1,6-岩藻糖基轉移酶(FUT8)及其組合。
在一個方面,提供一種能夠岩藻糖基化一蛋白質的哺乳動物細胞,其中該細胞包含有一在FX基因中的修飾,其中與缺乏突變或改變的細胞相較之下,該修飾會在細胞岩藻糖基化蛋白質的能力上造成降低至少90%。
在一個具體例中,與不含有該修飾的哺乳動物細胞相較之下,降低約90%、91%、92%、93%、94%、95%、96%、97%、98%或99%。
在一個具體例中,在相同或在基本上相同的條件(例如培養基、溫度、細胞密度等等)下進行依據本發明之經修飾細胞與不含有該修飾的細胞的比較。
在一個具體例中,該細胞是選自於COS、CHO、293、BHK、HeLa、Vero、以腺病毒基因(例如AD5 E1)轉染的哺乳動物(包括但不限於以腺病毒基因轉染的永生人類視網細胞,例如PER C6TM 細胞)以及NSO細胞。在一個具體例中,該細胞是中國倉鼠卵巢(CHO)細胞。在一個特定具體例中,該CHO細胞是CHO K1細胞。
在一個具體例中,該修飾是選自於由下列胺基酸所構成的群組:79S、90K、136L、211R、289S及其組合。在一個特定具體例中,該置換包含有289S。在另一個特定具體例中,該置換包含有289S以及79S、90K、136L與211R的一或多者。
在一個具體例中,該細胞包含有編碼含有序列辨識編號:1之序列的蛋白質的FX基因,該蛋白質帶有一或多個選自於由下列所構成之群組的胺基酸置換:N79S、N90K、P136L、G211R、L289S及其組合。在一個特定具體例中,該胺基酸置換包含有L289S以及N79S、N90K、P136L與G211R的一或多者。
在一個具體例中,該細胞進一步包含有至少一編碼免疫球蛋白的核酸。在一個特定具體例中,該免疫球蛋白是人類蛋白質或小鼠蛋白質。在一個特定具體例中,該免疫球蛋白包含有一免疫球蛋白輕鏈。在一個特定具體例中,該免疫球蛋白包含有一免疫球蛋白重鏈。在一個具體例中,該免疫球蛋白重鏈是IgG1、IgG 2、IgG3或IgG4同型(isotype)。在一個具體例中,該重和/或輕鏈的可變區包含有人類CDR,在另一個具體例中為小鼠CDR,在另一個具體例中為小鼠或非人類靈長動物的人類化CDR。
在一個具體例中,該細胞包含有一編碼免疫球蛋白重鏈之CH2以及CH3領域的核酸。在一個具體例中,該免疫球蛋白重鏈是同型IgG1、IgG 2、IgG3或IgG4。
在一個具體例中,該蛋白質是一種抗原-結合蛋白質。在一個特定具體例中,該抗原-結合蛋白質是一種抗體。在特定具體例中,該抗體包含有IgA、IgD、IgE、IgG或IgM同型的重鏈。在一個具體例中,該抗原結合蛋白質是IgG1同型的抗體。
在一個具體例中,該蛋白質是抗體且該細胞所製造出的抗體蛋白質僅有約5%、4%、3%、2%、1%或0.5%被岩藻糖基化。在一個具體例中,所製造出的抗體蛋白質的岩藻糖基化數量是藉由抗體蛋白質與PNG酶F的過夜去糖基化(overnight glycosylation),接而為經由HPLC分析寡糖來測量,其中含岩藻糖基的寡醣是以多醣波峰面積的積分來定量,且例如蛋白質岩藻糖基化是以多醣波峰面積來計算。在一個特定具體例中,岩藻糖基化的多醣是藉由質譜儀來鑑定。
在一個方面,提供一種用以製造一抗原結合蛋白質的方法,該方法包含有:(a)提供能夠岩藻糖基化蛋白質的細胞,其中該細胞包含有在FX基因中會致使對細胞岩藻糖基化蛋白質的能力方面降低90%的修飾;(b)將一編碼一抗原結合蛋白質的核酸序列引入至該細胞內;(c)將該細胞維持在足以表現該核酸序列的條件下以製造出該抗原結合蛋白質;以及(d)回收由該細胞所表現的該抗原結合蛋白質。
在一個具體例中,該抗原結合蛋白質為抗體。在一個特定具體例中,該抗體是選自於人類抗體、小鼠抗體、嵌合人類/小鼠抗體,以及非人類靈長動物抗體。
在一個具體例中,該細胞是中國倉鼠卵巢(CHO)細胞。
在一個具體例中,與缺乏FX基因之修飾的細胞相較之下,在細胞岩藻糖基化蛋白質的能力方面的降低為91%、92%、93%、94%、95%、96%、97%、98%、99%或99.5%。
在一個具體例中,該修飾是選自於由在下列位置處的下列胺基酸所構成之群組:79S、90K、136L、211R以及289S。在一個具體例中,該修飾包含有289S以及79S、90K、136L與211R的至少一者。
在一個具體例中,岩藻糖基轉移酶基因編碼包含有序列辨識編號:1之序列的蛋白質,帶有選自於由下列所構成之群組的胺基酸置換:N79S、N90K、P136L、G211R以及L289S。在一個具體例中,該修飾包含有L289S以及N79S、N90K、P136L與G211R的至少一者。
在一個具體例中,該抗體或其片段是人類抗體或其片段。在一個特定具體例中,該抗體是IgG1同型,例如人類IgG1。
在一個具體例中,與在缺乏該修飾之野生型細胞中所製造出的相同抗體相較之下,回收的抗體具有不超過約5%的岩藻糖基化,在另一個具體例中,與在缺乏該修飾之野生型細胞中所製造出的相同抗體相較之下,不超過4%、3%、2%、1%或0.5%的岩藻糖基化。
在一個方面,提供一種細胞,其表現一選自於由下列所構成之群組的野生型岩藻糖基化途徑酵素:GDP-甘露糖4,6-脫水酶(GMD)、野生型GDP-β-L-岩藻糖焦磷酸化酶(GFPP)、野生型α-1,6-岩藻糖基轉移酶(FUT8)及其組合;其中該細胞包含有經修飾FX基因,其中該細胞與缺乏對FX基因修飾的細胞相較之下,具有降低的岩藻糖基化蛋白質的能力。
在一個特定具體例中,該醣蛋白包含有Fc。在一個具體例中,該蛋白質是抗體。在一個具體例中,該蛋白質包含有IgG的序列。在一個特定具體例中,IgG的序列是IgG1、IgG2、IgG3、IgG4序列或其組合。在一個特定具體例中,該蛋白質是抗體且該抗體包含有Fc(帶有IgG1、IgG2、IgG3和/或IgG4序列)。
在一個具體例中,該細胞是選自於CHO、COS、人類視網膜(例如PER C6TM )、Vero或HeLa細胞。
在一個方面,提供一種用以製造醣蛋白的方法,其包含有在一哺乳動物細胞中表現醣蛋白,其中該哺乳動物細胞包含有經修飾FX基因。
在一個具體例中,提供一種用以製造醣蛋白的方法,其包含有在足以讓CHO細胞表現醣蛋白的條件下將一表現醣蛋白的CHO細胞培養在培養基中,並且從該CHO細胞或者培養基中回收表現的醣蛋白。在一個具體例中,表現的醣蛋白不超過約5%被岩藻糖基化。在一個具體例中,不超過約4%、3%、2%、1%或0.5%岩藻糖基化。在一個特定具體例中,百分比岩藻糖基化是岩藻糖相對於多醣的莫耳百分比。在一個特定具體例中,百分比岩藻糖基化是岩藻糖相對於醣蛋白的百分比岩藻糖基化。在一個特定具體例中,非岩藻糖基化相對於岩藻糖基化蛋白質的莫耳比例為約0.90對0.10、約0.91對0.09、約0.92對0.08、約0.93對0.07、約0.94對0.06、約0.95對0.05、約0.96對0.04、約0.97對0.03、約0.98對0.02或約0.99對0.01。
在一個具體例中,該醣蛋白包含有在位置297處(EU編號)的下列多醣部分的免疫球蛋白CH2以及CH3區域:透過N-鍵結(N-linkage)結合至醣蛋白的GlcNAc(1);GlcNAc(1)-GlcNAc(2)-甘露糖(1),其中甘露糖(1)帶有一個第一與一個第二部分,其中該第一部分實質上是由甘露糖(2)-ManGlcNAc(3)所構成;以及其中該第二部分實質上是由甘露糖(3)-GlcNAc(4)所構成。在一個具體例中,該醣部分實質上進一步是由結合至GlcNAc(4)的Gal(1)所構成。在另一個具體例中,該醣部分實質上進一步是由結合至GlcNAc(4)的Gal(1)以及結合至GlcNAc(3)的Gal(2)所構成。
在一個具體例中,岩藻糖基化的醣蛋白包含有與非岩藻糖基化的多醣部分(如同就在本段之前的段落所述者)相同的多醣部分,且亦在GlcNAc(1)處帶有岩藻糖部分。
在一個方面,提供一種經遺傳修飾的細胞,其中該修飾是針對FX基因,且其中該修飾致使細胞生產編碼具有下列胺基酸至少一者之FX蛋白質的FX mRNA:79S、90K、136L、211R、289S;且其中與缺乏FX基因修飾的細胞相較之下,該細胞展現出降低的岩藻糖基化醣蛋白的能力。在一個具體例中,該mRNA編碼在位置289處包含有絲胺酸的FX蛋白質。在另一個具體例中,該mRNA編碼進一步包含有79S、90K、136L、211R的至少一者的FX蛋白質。
在一個方面,提供一種經遺傳修飾的細胞,該修飾是針對FX基因,其中該修飾改變FX基因的一個密碼子而使得經修飾的FX基因編碼具有下列至少一者的FX蛋白質:在位置79處的絲胺酸、在位置90處的離胺酸、在位置136處的白胺酸、在位置211處的精胺酸,以及在位置289處的絲胺酸。在一個具體例中,FX蛋白質包含有在位置289處的絲胺酸以及在位置90處的離胺酸、在位置136處的白胺酸和/或在位置211處的絲胺酸的至少一者。
在一個具體例中,該細胞進一步表現含Fc-蛋白質。在一個具體例中,該含Fc-蛋白質是抗體。
在一個具體例中,該細胞岩藻糖基化該含Fc蛋白質,但實質上不會岩藻榶基化經醣化的含Fc蛋白質。在一個特定具體例中,與缺乏FX基因修飾的細胞相較之下,經岩藻糖基化之含Fc蛋白質的岩藻榶基化為約不超過5%、4%、3%、2%、1%或0.5%的岩藻糖基化。
在一個具體例中,該岩藻榶基化包含有雙觸角三甘露糖基基團(biantennary trimannosyl group)。在一個具體例中,岩藻榶相對於雙觸角三甘露糖基基團的莫耳比例為不超過約1:20、1:25、1:33、1:50、1:100或1:200。在一個具體例中,在經岩藻糖基化之含Fc蛋白質中岩藻糖相對於雙觸角三甘露糖基基團的莫耳比例為不超過約1:20、1:25、1:33、1:50、1:100或1:200。
在一個具體例中,該含Fc蛋白質為抗體,且該醣基化包含有在Fc的位置297處的多醣部分。在一個具體例中,岩藻榶相對於多醣部分的莫耳比例不超過1:20、1:25、1:33、1:50、1:100或1:200。在一個具體例中,該多醣部分包含有2個串聯的GlcNAc殘基,接而為1個雙觸角三甘露糖基部分,其中三甘露糖基部分的2個末端甘露糖基部分的每一者帶有1個GlcNAc殘基。在一個具體例中,在多醣中岩藻榶相對於GlcNac的莫耳比例為不超過1:80、1:100、1:133、1:150、1:200、1:400或1:800。
在一個方面,提供一種異位表現醣蛋白的經修飾哺乳動物細胞,其中該修飾包含有經修飾的FX核酸序列,且該細胞包含有岩藻榶回收途徑(fucose salvage pathway)以及重新合成岩藻榶合成途徑(de novo fucose synthesis pathway),並且表現一有功能的FUT8蛋白質與有功能的GMD蛋白質,其中重新合成岩藻榶合成途徑因為FX核酸序列的修飾而實質上無法在約37℃下岩藻糖基化一醣蛋白,但可以在34℃下岩藻糖基化該醣蛋白。
此處所述的各個方面以及具體例將意欲單獨採用或組合任何其他的方面或具體例,除非另有特別說明或除非此等組合就上下文來說是不允許的。
說明
本發明不限定於特定方法以及實驗條件,因為這樣的方法以及條件可能改變。此處所使用的術語僅只為了說明特定具體例,並且未意欲為限制性的,因為本發明是由核准的申請專利範圍所涵括。
除非另有定義,所使用的全部術語以及慣用語包括術語以及慣用語在該技藝中所具有的意思,除非清楚地指出反義或者從該術語或慣用語所使用的下文來說是明顯清楚的。雖然可以使用任何相同於那些所述者的方法以及材料來實施或測試本發明,現將說明特定方法以及材料。所有提及的供開資料併入此處作為參考文獻。
有關單數形(singular)(例如”一(a)”或”該(the)”)意欲涵括有關複數形,除非內文清楚地指明排除複數形。
術語”抗體”包括免疫球蛋白分子,其包含有4個多肽鏈,藉由雙硫鍵交互連結的2個重(H)鏈以及2個輕(L)鏈。各個重鏈含有1個重鏈可變(VH)區域以及1個重鏈恆定區域(CH)。重鏈恆定區含有3個領域,CH1、CH2以及CH2。各個輕鏈含有1個輕鏈可變(VL)區域以及1個輕鏈恆定區域(CL)。VH與VL區域可進一步分為具有超變異性的區域(命名為互補決定區(complementarity determining regions,CDRs)),散佈有較為守恆的區域(命名為框架區域(FRs))。各個VH與VL含有3個CDRs以及4個FRs,以下列順序從胺基端往羧基端排列:FR1、CDR1、FR2、CDR2、FR3、CDR3、FR4(重鏈CDRs可縮寫成HCDR1、HCDR2以及HCDR3;輕鏈CDRs可縮寫成LCDR1、LCDR2以及LCDR3)。術語”高親和力”抗體意指一種對其標定抗原決定位具有約10-9 M或更低(例如,約1x10-9 M、1x 10-10 M、1x 10-11 M或約1x 10-12 M) KD的抗體。在一個具體例中,KD是以表面電漿共振(例如BIACORETM )測量,在另一個具體例中,KD是以ELISA測量。
慣用語”結合蛋白質”包括任一種能夠專一地辨識一結合夥伴(binding partner)的蛋白質。專一性辨識通常需要結合蛋白質以不高於數微莫耳的解離常數(KD)結合它的結合夥伴,而在最佳的情況下結合蛋白質欲以奈莫耳範圍結合它們的結合伴侶,例如在各種不同的具體例中以不超過100奈莫耳的級數(order)。此處所述的大部分結合蛋白質亦為含Fc蛋白質,亦即,它們含有與Fc(其含有免疫球蛋白CH2與CH3區域的至少1個功能性部分)融合的結合部分。典型的結合蛋白質是抗體、多重專一性抗體(例如,雙專一性/特異性抗體)、免疫黏附素(immunoadhesins)、捕獲(traps)(例如,諸如IL-1捕獲、VEGF捕獲等等的細胞激素捕獲)。非為抗體的典型結合蛋白質帶有一個結合部分(例如,受體或其片段、配位子或其片段、在典型免疫球蛋白可變領域的變異等等)以及一個經常含有1個CH2與1個CH3免疫球蛋白領域(或其保有Fc效應子功能的片段)的免疫球蛋白部分。因此,本發明的組成物以及方法可用以製造帶有會結合Fc受體和/或活化補體之免疫球蛋白區域(例如,有功能的CH2與CH3區域)的結合蛋白質(例如,包括免疫黏附素以及捕獲)並藉此能夠媒介ADCC和/或CDC。
多重專一性抗體可以是對一個標的多肽的不同抗原決定位具有專一性或可能含有對超過一個標的多肽具有專一性的抗原-結合領域。雙專一性的多重專一性結合蛋白質可以被製造出,其包含有2個免疫球蛋白臂,例如,其中一免疫球蛋白的第一個臂對第一抗原決定位有專一性,而該免疫球蛋白的第二個臂對第二抗原決定位有專一性。其他的多重專一性結合蛋白質包括那些在其中第二臂帶有會專一地結合一標的(它是一個蛋白質或非蛋白質結合夥伴)之結合部分(一個配位子或受體或其結合片段)。
慣用語”雙專一性抗體”包括能夠選擇性地結合2個或多個抗原決定位的抗體。雙專一性抗體通常含有2個不相同的重鏈,而各個重鏈專一地結合不同的抗原決定位-不論是在2個不同的分子上(例如,在2個不同抗原上的不同抗原決定位)或者在相同的分子上(例如,在相同抗原上的不同抗原決定位)。設若雙專一性抗體能夠選擇性地結合2個不同的抗原決定位(第一抗原決定位以及第二抗原決定位),第一重鏈對第一抗原決定位的親和力通常將會比第一重鏈對第二抗原決定位的親和力低上至少1至2或3或4或更多數量級,而反之亦然。雙專一性抗體所專一結合的抗原決定位可以在相同或不同標的上(例如在相同或不同蛋白質上)。雙專一性抗體可以藉由,例如,結合辨識相同抗原之不同抗原決定位的重鏈而製造出。舉例而言,編碼會辨識相同抗原之不同抗原決定位的重鏈可變序列的核酸序列可以融合至編碼相同或不同重鏈恆定區域的核酸序列,且此等序列可以在表現免疫球蛋白輕鏈的細胞中表現。典型的雙專一性抗體具有2個各自具有3個重鏈CDRs的重鏈,接而為(N端至C端) CH1領域、樞紐、CH2領域與CH3領域,以及未賦予抗原決定位-結合專一性但是可以與各個重鏈締合,或可結合重鏈所結合之一或多個抗原決定位,或可與各個重鏈締合並且讓重鏈之一或兩者結合至一或兩個抗原決定位的免疫球蛋白輕鏈。
雙專一性結合蛋白質形式的實例採用1個第一免疫球蛋白(Ig) CH3領域以及1個第二Ig CH3領域,其中該第一以及第二Ig CH3領域因為至少一個胺基酸而彼此不同,且其中與缺乏該胺基酸差異的雙專一性抗體相較之下,該至少一個胺基酸差異會降低雙專一性抗體結合至蛋白質A。在一個具體例中,該第一Ig CH3領域結合蛋白質A而該第二Ig CH3領域含有會降低或破壞蛋白質A結合的突變,諸如435R修飾(按照EU編號;按照IMGT外顯子編號是95R)。第2個CH3可進一步含有436F修飾(按照EU編號,按照IMGT編號是96F)。可在第2個CH3中發現到的更多修飾包括356E、358M、384S、392N、397M以及4221(按照EU編號;按照IMGT編號是16E、18M、44S、52N、57M以及82I)。在這個形式中,該第1個Ig CH3領域融合至一個第一結合部分(例如,專一地結合一個第一抗原決定位的第一Ig可變領域),而該第2個Ig CH3領域融合至一個第二結合部分(例如,專一地結合一個第二抗原決定位的第二Ig可變領域,其中該第一與第二抗原決定位不同)。
術語”細胞”包括任一種適於表現重組型核酸序列的細胞。細胞包括真核細胞(單細胞或多細胞)、酵母菌細胞(例如啤酒酵母菌、裂殖酵母菌、畢赤酵母菌、甲醇畢赤酵母菌等等)、植物細胞、昆蟲細胞(例如SF-9、SF-21、桿狀病毒-感染的昆蟲細胞、粉斑夜蛾等等)、非人類動物細胞、人類細胞或細胞融合物,諸如,例如融合瘤或四源雜交瘤(quadromas)。天然不含有用以岩藻糖基化之途徑的細胞可以被遺傳修飾而含有一者(參見,例如美國專利申請案公開第2010/0028951A1號),且該細胞可以被修飾成採用如此處所述般經修飾的FX基因。
在某些具體例中,該細胞是人類、猴、猿類、倉鼠、大鼠或小鼠細胞。在某些具體例中,該細胞是真核的並且是選自於下列細胞:CHO(例如CHO K1、DXB-11 CHO、Veggie-CHO)、COS(例如COS-7)、敘利亞倉鼠、大鼠骨髓瘤、小鼠骨髓瘤(例如SP2/0、NS0)、視網膜細胞、Vero、CV1、腎臟(例如HEK293、293 EBNA、MRS 293、MDCK、Hak、BHK、BHK21)、HeLa、HepG2、WI38、MRC 5、Colo205、HB 8065、HL-60、Jurkat、Daudi、A431(上皮)、CV-1、U937、3T3、L細胞、C127細胞、MMT 060562、賽特利細胞、BRL 3A細胞、HT1080細胞、人類骨髓瘤細胞、癌細胞、人類淋巴瘤細胞(例如Namalwa細胞),以及衍生自前述細胞的細胞株。在某些具體例中,該細胞包含有一或多個病毒基因,例如該細胞是會表現病毒基因的視網膜細胞(例如,PER C6TM 細胞)。
慣用語”含Fc蛋白質”包括抗體、雙專一性抗體、免疫黏附素以及其他包含有免疫球蛋白CH2與CH3區域的至少一個功能性部分的結合蛋白質。”功能性部分”意指會結合Fc受體(例如,FcγR或FcRN)和/或可以參與補體活化的CH2以及CH3區域。設若CH2與CH3區域含有刪除、置換和/或***或其他會使其無法結合任何Fc受體且無法活化補體的修飾,CH2與CH3是不具功能性的。
含Fc蛋白質可在免疫球蛋白領域中含有修飾,包括會影響結合蛋白質的一或多種效應子功能的修飾(例如影響FcγR結合、FcRN結合以及因而半衰期,和/或CDC活性)。這樣的修飾包括,但不限於下列修飾及其組合,參照免疫球蛋白恆定區域的EU編號:238、239、248、249、250、252、254、255、256、258、265、267、268、269、270、272、276、278、280、283、285、286、289、290、292、293、294、295、296、297、298、301、303、305、307、308、309、311、312、315、318、320、322、324、326、327、328、329、330、331、332、333、334、335、337、338、339、340、342、344、356、358、359、360、361、362、373、375、376、378、380、382、383、384、386、388、389、398、414、416、419、428、430、433、434、435、437、438以及439。舉例而言,且非為限定,該結合蛋白質可展現出增強的血清半衰期並且在位置252、254與256處有修飾;或在428和/或433和/或434處有修飾;或在250和/或428處有修飾;或在307或308,以及434處有修飾。
術語”FX”意指展現出GDP-4-酮-6-去氧甘露糖-3,5-表異構酶-4-還原酶活性的蛋白質或意指編碼具有GDP-4-酮-6-去氧甘露糖-3,5-表異構酶-4-還原酶活性之蛋白質的核酸序列。此處所述的多數實例意指野生型灰倉鼠FX或依據本發明而修飾的灰倉鼠FX。然而,”FX”不限定關於CHO細胞。如第1圖中所示,恆河獼猴、人類、家鼷鼠、挪威大鼠FX序列的排列揭示非常高度的守恆性,亦即,來自於各種不同生物的FX序列是非常非常相似的。依據這個高度同一性,預期存在於這些物種之間的些微序列差異本質上並不會影響FX活性。CHO FX序列(序列辨識編號:1)以及猴子的序列(序列辨識編號:3)、人類的序列(序列辨識編號:4)、小鼠的序列(序列辨識編號:5)以及大鼠的序列(序列辨識編號:6)包括下列:5H、8M、21K、37D、51T、55R、59E、62R、93M、106A、107C、138N、161Y、167S、177Y、201S、202S、202D、212N、225Q、235S、266H、266N、266S、273T、274S、280F、287S、291T、291S、297C、310D、314E。關於321-胺基酸野生型CHO FX(序列辨識編號:1),猴子、人類、小鼠以及大鼠FX序列的任一者可以藉由從31個不同置換中選定,或野生型CHO FX序列的31/321 x 100=9.6%而予以概括。因此,本發明之經修飾的FX包括野生型CHO FX(例如序列辨識編號:1)或與野生型CHO FX具有至少90.4%同一性並且亦帶有選自於由下列所構成之群組的置換:N79S、N90K、G211R以及L289S。為了與序列辨識編號:1有較少偏差,本發明之經修飾的FX與序列辨識編號:1有至少91%、92%、93%、94%、95%、96%、97%、98%或99%相同,並且帶有至少一選自於由下列所構成之群組的修飾:N79S、N90K、P136L、G211R以及L289S,例如帶有L289S修飾。具有技術者將預期到,一或多個小***或一或多個小刪除(包括在位置79、90、136、211以及289處的至少一者)亦最有可能地提供與本發明之具體例有關的好處(例如帶有經修飾之基因的細胞展現出降低醣蛋白的岩藻糖基化)。
在一個特定具體例中,FX包含有一個為289S的第一置換以及一或多個第二置換。
慣用語”低岩藻糖基化”或”降低的岩藻糖基化”意指與正常或野生型細胞相較之下,經修飾的細胞減低或降低岩藻糖基化醣蛋白的能力。醣蛋白可以是內生性醣蛋白。更典型地,核酸修飾是在用來表現異源性醣蛋白的細胞中做出,例如,異位表現結合蛋白質(例如抗體或雙專一性抗體或免疫黏附素或其他含Fc醣蛋白)的細胞。舉例而言,依據本發明而修飾的CHO或PERC.6TM 細胞株,其亦表現人類抗體,例如人類IgG1抗體。
一般而言,有關醣蛋白的”低岩藻糖基化”或”降低的岩藻糖基化”並非意指具有較少的岩藻糖殘基附接的單一醣蛋白分子。而是有關由細胞所製備出的醣蛋白製備物,且該醣蛋白製備物包含有一群獨立的醣蛋白分子,有包含不同糖基化特徵的群成員。為了說明而非限定,在依據本發明之經修飾CHO細胞中所表現的IgG1抗體,”低岩藻糖基化”或”降低的岩藻糖基化”意指較少數目的具有岩藻糖殘基在N-鍵結的GlcNAc殘基上於Fc的位置297處的獨立醣蛋白。這樣的”低岩藻糖基化”或”降低的岩藻糖基化”的特徵可以是在於各種不同方式(參見本文的他處),但是在各例中與在缺乏依據本發明之修飾的細胞株中所製造出的相同醣蛋白族群相較之下,有相對低(或降低)數目的醣蛋白族群(在它們上面有岩藻糖殘基)。
藉由例示說明,設若依據本發明所製造出的醣蛋白與使用野生型細胞所製造出的相同醣蛋白相較之下有1%被岩藻糖基化,與在對應野生型細胞中所觀察到的岩藻糖基化數量(任意地設定為100%,不論於相同的條件下是否所有含Fc蛋白質分子在野生型細胞中被岩藻糖基化)相較之下,在本發明的細胞中含Fc蛋白質分子僅有1%被岩藻糖基化。
在依據本發明之”低岩藻糖基化”或”降低的岩藻糖基化”中,與不含有該修飾的細胞相較之下,醣蛋白的岩藻糖基化被降低約90%、91%、92%、93%、94%、95%、96%、97%、98%或99%。在特定具體例中,與不含有該修飾的細胞相較之下,降低約99.1%、99.2%、99.3%、99.4%、99.5%、99.6%、99.7%、99.8%或99.9%。在另一個特定具體例中,與不含有該修飾的細胞相較之下,降低約98.1%、98.2%、98.3%、98.4%、98.5%、98.6%、98.7%、98.8%或98.9%。在另一個特定具體例中,與不含有該修飾的細胞相較之下,降低約97.1%、97.2%、97.3%、97.4%、97.5%、97.6%、97.7%、97.8%或97.9%。在另一個特定具體例中,與不含有該修飾的細胞相較之下,降低約96.1%、96.2%、96.3%、96.4%、96.5%、96.6%、96.7%、96.8%或96.9%。在另一個特定具體例中,與不含有該修飾的細胞相較之下,降低約95.1%、95.2%、95.3%、95.4%、95.5%、95.6%、95.7%、95.8%或95.9%。在另一個特定具體例中,與不含有該修飾的細胞相較之下,降低約94.1%、94.2%、94.3%、94.4%、94.5%、94.6%、94.7%、94.8%或94.9%。
在依據本發明之細胞中所製造出的醣蛋白製備物僅被岩藻糖基化在不含有該修飾之細胞中所製造出的相同醣蛋白之岩藻糖基化數量的約5%、約4%、約3%、約2%、約1%、約0.5%、約0.4%、約0.3%、約0.2%和約0.1%。
另一個從”低岩藻糖基化”或”降低的岩藻糖基化”細胞中鑑別醣蛋白製備物的方式是按照在由細胞所製造出之醣蛋白製備物中岩藻糖基化相對於非岩藻糖基化醣蛋白的比例。舉例而言,由一經修飾細胞所製造出的醣蛋白製備物具有岩藻糖基化醣蛋白:非岩藻糖基化醣蛋白的比例為約1:10至1:15、1:15至1:20、1:20至1:40、1:40至1:60、1:60至1:80、1:80至1:100或1:100至1:150。
另一個從”低岩藻糖基化”或”降低的岩藻糖基化”細胞中鑑別醣蛋白製備物的方式是按照非岩藻糖基化醣蛋白的相對重量百分比(當與總量相較,亦即岩藻糖基化與非岩藻糖基化醣蛋白)。舉例而言,當與來自於缺乏該修飾的細胞的相同醣蛋白製備物相較之下,由一經修飾之細胞所製造出的醣蛋白製備物具有非岩藻糖基化醣蛋白的百分比為約90%、約95%、約96%、約97%、約98%、約99%或約99.5%。
另一個從”低岩藻糖基化”或”降低的岩藻糖基化”細胞中鑑別醣蛋白製備物的方式是按照岩藻糖相對於多醣的相對數量或醣蛋白製備物之岩藻糖相對於多醣成分的相對數量。舉例而言,在含Fc蛋白質(例如抗體)的情況下,糖基化在位置297處含有多醣,而該多醣含有雙觸角三甘露糖基部分。在一個具體例中,岩藻糖相對於多醣部分的莫耳比例為不超過約1:20、1:20、1:25、1:33、1:50、1:100或1:200。在一個具體例中,岩藻糖相對於雙觸角三甘露糖基部分的比例不超過約1:20、1:25、1:33、1:50、1:100或1:200。在一個具體例中,在岩藻糖基化含Fc蛋白質中岩藻糖相對於雙觸角三甘露糖基部分的比例不超過約1:20、1:25、1:33、1:50、1:100或1:200。在一個具體例中,該多醣部份包含有2個串聯的GlcNAc殘基,接而為1個雙觸角三甘露糖基部分,其中三甘露糖基部分的2個觸角末端甘露糖基部分各自帶有1個GlcNAc殘基。在一個具體例中,在多醣中岩藻糖相對於多醣的莫耳比例不超過1:80、1:100、1:133、1:150、1:200、1:400或1:800。
在一個具體例中,所製造出的抗體蛋白質數量(經岩藻糖基化)是藉由抗體蛋白質與PNG酶F的過夜去糖基化,接而為經由HPLC分析寡糖來測量,其中含岩藻糖基的寡醣是以多醣波峰面積的積分來定量,且例如蛋白質岩藻糖基化是以多醣波峰面積來計算。多醣的鑑定(以及組成)可以藉由任何適當的方法(例如質譜法)來決定(和/或定量)。
慣用語”野生型”包括有關未依據本發明修飾的細胞或活性,例如不含有經修飾FX核酸序列或經修飾FX蛋白質的細胞。”野生型”FX活性包括有關由天然或未經修飾的FX基因或蛋白質所展現出之活性(例如酵素活性)的任何參數。與FX蛋白質的”野生型”活性以及經修飾FX蛋白質的活性相較之下,”野生型”FX蛋白質與經修飾FX蛋白質以實質上相同的方式從實質上相同的來源(例如,相同的細胞類型,相同生物)所分離出,並且在實質上相同的條件下比較。比較野生型細胞以及經修飾細胞之間的”野生型”FX活性以及經修飾FX活性,較佳地在實質上相同或實質上相似的條件下測量FX活性,使用相同或實質上相同的醣蛋白。
概要
提供經修飾FX核酸以及蛋白質序列,其中修飾會造成細胞無法在沒有外部岩藻糖來源存在下以帶有缺乏該修飾之細胞所能支持的位準支持蛋白質岩藻糖基化。該等細胞在一溫度下展現出實質上降低岩藻糖基化醣蛋白的能力(在沒有岩藻糖來源存在的情況下),因為破壞有關用於合成醣蛋白岩藻糖基化的基質(GDP-L-岩藻糖)重新生成途徑的酵素活性。在另一個(較高)溫度下,細胞能力的降低為最低或非實質的。
酵素GDP-4-酮-去氧-甘露糖-3,5-表異構酶-4-還原酶(FX)參與GDP-L-岩藻糖合成的重新合成途徑,從GDP-4-酮-6-去氧甘露糖形成GDP-L-岩藻糖。所生成的GDP-L-岩藻糖可被細胞使用來製造岩藻糖基化蛋白質,包括岩藻糖基化抗體。因為GDP-L-岩藻糖合成酶參與重新合成途徑,在缺乏充分FX活性的細胞中就岩藻糖基化方面的降低可以透過回收途徑而被挽救。回收途徑需要岩藻糖,其透過回收途徑作用形成GDP-L-岩藻糖,用於蛋白質岩藻糖基化的基質。
某些在FX中的修飾會致使帶有該經修飾FX基因的細胞無法在沒有岩藻糖來源存在的情況下維持蛋白質岩藻糖基化,而使得帶有經修飾酵素並且例如,與帶有野生型FX基因的野生型細胞相較之下,表現重組型抗體的細胞展現出實質上在岩藻糖基化抗體方面的能力降低。
因為此處所述之FX基因修飾而無法維持足夠的蛋白質岩藻糖基化比率或位準的能力實質上是溫度依賴型。特別地,帶有經修飾FX基因的細胞展現出實質上無法在約37℃下維持醣蛋白岩藻糖基化(例如人類IgG1同型抗體的7%岩藻糖基化)的能力,其實質上在約34℃下被解除(例如相同抗體的70%岩藻糖基化;參見表3)。相對地,僅帶有野生型FX基因的細胞在37℃下於維持醣蛋白岩藻糖基化方面無法展現出如同相較於34℃的廣泛差異。
對GDP-岩藻糖的重新合成以及回收途徑
GDP-岩藻糖在醣蛋白岩藻糖基化途徑中是一個主要的代謝物;它在醣蛋白岩藻糖基化中是岩藻糖供體。所有感興趣之可以岩藻糖基化醣蛋白(包含有Fc)的已知岩藻糖基轉移酶使用GDP-岩藻糖。因此,為了有效率地醣蛋白岩藻糖基化,必須生成足夠的GDP岩藻糖池(sufficient pool of GDP fucose)並且維持在充分的位準以符合醣蛋白生產。
對於GDP-岩藻糖來說有2種主要途徑:重新合成途徑以及回收途徑。在一些哺乳動物細胞中,GDP-岩藻糖可以從外部供應的碳源(例如葡萄糖)藉由重新岩藻糖基化途徑而製造出。在用以岩藻糖基化的重新合成途徑中,葡萄糖經由轉運蛋白進入細胞,並且被轉換成D-甘露糖-1-磷酸。D-甘露糖-1-磷酸接而藉由D-甘露糖-1-磷酸鳥苷酸轉移酶被轉換成GDP-甘露糖。GDP-甘露糖藉由GDP甘露糖4,6-脫水酶(GMD)被轉換成GDP-4-酮-6-去氧-甘露糖。GDP-4-酮-6-去氧-甘露糖藉由GDP-4-酮-6-去氧-甘露糖-3,5-表異構酶-還原酶(FX)被轉換成GDP岩藻糖。GDP-岩藻糖是GMD的一個強效回饋抑制劑。GDP-岩藻糖透過GDP-岩藻糖轉運蛋白進入高基氏體。一旦進入高基氏體之後,GDP-岩藻糖是用於岩藻糖基化醣蛋白的α1,6-岩藻糖基轉移酶的基質。
在一些哺乳動物細胞中,亦存在用以從外部供應的岩藻糖生成GDP-岩藻糖的回收途徑。在回收途徑中,岩藻糖被運送至細胞中並且被磷酸化而形成岩藻糖-1-磷酸,其被轉換成GDP-岩藻糖。GDP-岩藻糖被運送至高基氏體中並且應用作為α1,6-岩藻糖基轉移酶的基質。將岩藻糖運送細胞中據推測是藉由促進擴散以及藉由溶小體運送,且回收途徑在哺乳動物細胞中似乎是通用的(參見,例如Becker and Lowe(2003) Fucose: biosynthesis and biological function in mammals,Glycobiology 13(7):41R-53R)。
因此,在沒有岩藻糖來源存在的情況下,細胞使用重新合成途徑所生成的岩藻糖來岩藻糖基化醣蛋白。在有岩藻糖存在的情況下,細胞使用運送至細胞內的岩藻糖來岩藻糖基化醣蛋白。因而,設若阻斷或破壞重新合成途徑,醣蛋白岩藻糖基化仍有可能發生,但是僅會在有岩藻糖來源存在的情況下。
所述組成物以及方法藉由提供經遺傳修飾的細胞(在FX核酸序列中帶有修飾)而讓細胞株能夠在用於岩藻糖基化醣蛋白的途徑中有條件地提供阻斷。在含有重新合成以及回收途徑的細胞中,細胞提供增強的多用途性。在這樣的細胞中,於沒有外部來源的岩藻糖存在下,醣蛋白岩藻糖基化實質上可以在一溫度下降低,但是在第二溫度下實質上未降低。另擇地,醣蛋白岩藻糖基化的野生型比率或位準基本上可以藉由提高外部來源的岩藻糖而被開啟,而無關乎維持細胞的溫度。
FX修飾
提供一種編碼經修飾FX蛋白質序列的分離核酸。分離的核酸編碼含有選自於由下列所構成之群組的胺基酸修飾的FX蛋白質:79S、90K、136L、211R、289S及其組合。在一個具體例中,分離的核酸編碼含有在位置289處之絲胺酸的經修飾FX蛋白質,在另一個具體例中含有79S、90K、136L和/或211R的至少一者。
編碼經修飾FX蛋白質的核酸以任何適當的形式使用。核酸形式的適當性端視其用途而定。舉例而言,適當形式包括可以在細胞中用以染色體外表現的表現載體,或其可以併入細胞的基因體(在特定位置或隨機地)中。適當形式也包括基因體序列,其被修飾成編碼此處所述的置換(等)。適當形式亦包括,例如,一標的序列(例如,一或多個標的臂)用於將核酸標定至基因體中的特定位置,例如,用來置換天然FX基因的一或兩個對偶基因。適當形式包括將核酸標定至細胞中的特定位置(例如至FX基因座)之標的載體,用以將內生性FX核酸序列置換為依據本發明的FX核酸序列。內生性FX序列的修飾可以在細胞的一或兩個對偶基因處作出。
具有低或降低的岩藻糖基化的細胞株
提供有關低岩藻糖基化細胞株的組成物以及方法。該等組成物包括核酸以及蛋白質,當存在於缺乏或實質上缺乏天然或野生型FX活性的細胞時,賦予細胞降低的岩藻糖基化醣蛋白(例如,含Fc醣蛋白,諸如例如抗體)的能力。在各種具體例中,此等細胞包括在第一溫度(例如約37℃)下展現出岩藻糖基化醣蛋白實質上降低的能力,但在第二溫度(例如約34℃)下維持岩藻糖基化醣蛋白的能力。因此,提供可以在抑制岩藻糖基化的第一溫度下生長的細胞,且生長條件可以被改變成允許岩藻糖基化的第二溫度。
低岩藻糖基化細胞株可以使用任何適當的細胞加上此處所述之組成物以及方法而作出。舉例而言,並非限制,可以使用任一種在製造生物藥劑時所經常採用的細胞株。某些用以讓此等細胞株應用做為低岩藻糖基化細胞株的方法以及組成物描述於此;其他對於那些習於技藝者來說依據本說明是明顯並毫無困難為明顯的。人類細胞(例如HeLa、PERC.6TM 等等)、CHO細胞、小鼠細胞等可以如此處所述般遺傳修飾以生成可供應用的細胞株。至於CHO細胞,例如,因為發現到CHO FX活性在功能上似乎是單套的,一種可供應用之低岩藻糖基化細胞株可以藉由修飾FX基因的一個單獨對偶基因被作出。另一方面,至於其他在FX基因座展現出功能性雙套的細胞,可以如此處所述般藉由將一個FX對偶基因置換為經修飾FX核酸序列並且剔除第二個(野生型)對偶基因,或如此處所述般將兩個FX對偶基因置換為經修飾FX核酸序列來操作。
所形成的細胞包括那些其FX活性完全或實質上被鑑定為低岩藻糖基化的細胞。那就是,細胞不需要完全沒有野生型FX蛋白質或野生型FX基因;然而,細胞-在適當條件或設定條件下(例如,選定溫度)-應無法或者實質上無法以任何接近於帶有正常FX活性岩藻糖基化相同醣蛋白的對應細胞的位準來岩藻糖基化醣蛋白(例如,含Fc醣蛋白)。
在相同或實質上相同的條件下(例如培養基、溫度、細胞密度等等)進行依據本發明的細胞以及不含有修飾的細胞的比較。舉例而言,在各種具體例中,細胞將展現出岩藻糖基化的能力不超過野生型細胞所展現出的10%至不超過1%。這個比較可以藉由,例如,製備具有此處所述的修飾(等)的細胞並且將細胞所表現之醣蛋白的岩藻糖基化位準(例如,源自於細胞的表現建構物的抗體表現)與野生型細胞所表現之相同醣蛋白的岩藻糖基化位準比較而作出。有關於比較,細胞生長在相同溫度以及相同條件下。醣蛋白的岩藻糖基化位準可以使用任何在該技藝中已知用來定量存在於醣蛋白製備物中之岩藻糖數量的適當分析方法來確認。
就確認有多少醣蛋白被岩藻糖基化方面,岩藻糖數量被拿來與總醣蛋白數量或與從該蛋白質中所得到之多醣數量比較。
岩藻糖基化-缺乏的細胞株
已分離出一些完全無法岩藻糖基化醣蛋白的哺乳動物細胞株。岩藻糖基化-缺乏細胞株的發展已因為需要製造出缺乏岩藻糖基化的抗體而被大大地激起。缺乏岩藻糖基化的抗體可以媒介要比岩藻糖基化抗體還更好的抗體-依賴型細胞媒介的細胞毒性(ADCC)。因此高度需要更適合媒介ADCC的抗體,特別是含有標定腫瘤細胞之可變區域的抗體。無法岩藻糖基化醣蛋白的細胞因而被廣泛使用在發展以及製造用於治療用途的抗體。
已發展出2種岩藻糖基化途徑剔除,它們會造成細胞無法岩藻糖基化醣蛋白。剔除α1,6-岩藻糖基轉移酶(FUT8)會致使無法將GDP-岩藻糖轉移至醣蛋白。剔除GDP甘露糖4,6-脫水酶(GMD)會致使無法在重新合成途徑中從GDP-甘露糖製造出GDP-4-酮-6-去氧-甘露糖。
GDP-岩藻糖形成下游的岩藻糖基化剔除,例如α1,6-岩藻糖基轉移酶剔除,無法憑藉回收途徑而在有外部岩藻糖來源存在的情況下岩藻糖基化醣蛋白。這是因為阻斷是形成GDP-岩藻糖的末端,重新合成與回收途徑的代謝物在那裡相遇。因此,將岩藻糖供應給具有這樣一種剔除的細胞將無法挽救醣蛋白岩藻糖基化。因此,α1,6-岩藻糖基轉移酶剔除並未能提供選擇性地操作細胞岩藻糖基化醣蛋白之能力的簡單路徑。
GDP-岩藻糖形成上游的岩藻糖基化剔除,例如GMD剔除,理論上可憑藉回收途徑來岩藻糖基化醣蛋白。這是因為阻斷發生在GDP-岩藻糖形成之前。將岩藻糖供應給這樣的細胞理論上會挽救醣蛋白岩藻糖基化。然而含有剔除的細胞株缺乏多用途性。
發明人已發現到,在GDP-岩藻糖形成之前選擇性中斷重新合成岩藻糖基化途徑將產生帶有會藉由提供岩藻糖來源而被挽救,或藉由將細胞維持在允許岩藻糖基化的條件下而被挽救之缺陷的細胞株。發明人將細胞修飾成在GDP-岩藻糖上游的重新合成途徑帶有缺陷並且可以在沒有岩藻糖基存在的情況下於第一條件下生長並展現出實質上降低岩藻糖基化醣蛋白之能力,而在第二條件下細胞有效地岩藻糖基化醣蛋白,即使在沒有外部岩藻糖來源存在的情況下。這樣一個特別的多用途細胞株在細胞株中藉由控制岩藻糖(或適當的岩藻糖前驅物)的外部來源的可利用性,和/或讓細胞生長在允許岩藻糖基化的環境或缺乏岩藻糖基化的環境下而提供開啟或關閉岩藻糖基化的選擇。
發明人藉由產生突變FX核酸序列選擇性地中斷用於GDP-岩藻糖合成的重新合成途徑。FX蛋白質是一種雙重功能表異構酶-還原酶,其將甘露糖的C3羥基以及C5甲基表異構化,形成GDP-4-酮-6-去氧半乳糖。雙重功能酵素的NADPH-依賴型還原酶活性接而還原酮部分以形成GDP-岩藻糖。FX基因是高度守恆的,其反應在FX蛋白質的高度同一性以及相似性。參見,例如Becker and Lowe(2003)Fucose: biosynthesis and biological function in mammals,Glycobiology,13(7):41R-53R。因此,所呈現出有關於CHO細胞中的FX突變的數據也適用於廣泛多樣細胞中的對應FX修飾。
選擇性FX中斷提供增強的多用途,其允許從事人員藉由將培養維持在第一溫度下不利於或抑制岩藻糖基化;但藉由將培養維持在第二溫度下而允許岩藻糖基化。在各種具體例中,這是以經修飾FX基因來例示說明,其中該修飾包含有選自於由下列所構成之群組的修飾(就CHO FX蛋白質來說):L289S、N79S、N90K、P136L、G211R及其組合。在各種具體例中,FX修飾實質上是選自於由下列所構成之群組:L289S、L289S/N90K、L289S/G211R、L289S/P136L、L289S/N79S及其組合。
如那些習於該技藝者所熟知的,某些雙倍體的細胞展現出會反應特定基因座之僅有一或兩個對偶基因活性的表現型(例如CHO細胞),且有關那些基因座從表現型的觀點來看在功能上似乎是單倍體(或亞二倍體)。在此等細胞中,即使是如此處所述之單一對偶基因修飾可能造成基本上反應經修飾對偶基因的活性的表現型,即使是在表現型並非顯性表現型的情況下。舉例而言,在CHO細胞中,如此處所述的單一對偶基因修飾將可能造成基本上如此處所述的FX表現型,據推測是因為野生型FX對偶基因不表現(或低表現)。
在各種具體例中,FX是一種並非來自於CHO細胞的FX,且該修飾包含有選自於由非CHO FX對應於上述CHO修飾之修飾。對應修飾可以藉由將CHO FX蛋白質序列與任何其他感興趣的FX序列排列(在排列中有或沒有間距)使用例如一般目的多重序列排列演算法(諸如ClustalW)以預定參數(例如用於人類為存取編號AAC50786以及灰倉鼠為存取編號AAM91926) FX,使用MacVectorTM v.10.0.2成對地:以排列慢速的Gonnet陣列,開放間距懲罰=10.0、延伸間距懲罰=0.1;多重:Gonnet系列,開放間距懲罰=10.0、延伸間距懲罰=0.2,延遲發散=30%,間距分離距離=4,無末端間距分離,殘基專一性懲罰,以及親水性懲罰(親水性殘基GPSNDQEKR)。
作為特定的主題,相對於序列辨識編號:1或序列辨識編號:1以及3-6在MacVectorTM 中使用成對排列預設參數來排列標的序列將鑑定出標的序列中會在位置相同於CHO N79、N90、P136、G211以及L289位置處產生修飾的對應位置。
醣蛋白
該等組成物以及方法可用來修飾細胞的岩藻糖基化能力以達到任一種感興趣之醣蛋白的低岩藻糖基化。雖然此揭示內容大部分意指在抗體中降低岩藻糖基化的好處,本發明的有利之處不限於抗體。任何帶有Fc的結合蛋白質以及有許多許多這樣的結合蛋白質-可以使用本發明的組成物以及方法被製造出。
可以使用本發明而製造出的典型醣蛋白為岩藻糖基化的抗體(例如人類、小鼠或人類化抗體),並且在正常條件下於野生型細胞中被岩藻糖基化的。實例包括,藉由例示說明而非限制,IgG1、IgG2以及IgG4亞型的人類抗體。此等抗體的糖結構模式(glycoforms)包括那些在位置297處帶有多醣部分者。在位置297處的典型糖結構模式包括N-鍵結的GlcNAc,接而為GlcNAc,接而為雙觸角三甘露糖基部分,接而為一或多個GlcNAc殘基(在雙觸角三甘露糖基部分的2個甘露糖基部分的每一者上),繼而選擇性地為在一或多個GlcNAc殘基(附接至雙觸角三甘露糖基部分的觸角)上的半乳糖殘基。多醣的岩藻糖基化通常發生在N-鍵結開始的GlcNAc殘基處,其中(通常)單一岩藻糖殘基經由岩藻糖基轉移酶被鍵結至297-糖基化抗體。在各種具體例中,抗體的岩藻糖基化莫耳比例或百分比或程度是有關於這個岩藻糖殘基與抗體的數量(或莫耳)和/或多醣或多醣組成的數量(或莫耳)(例如在從野生型細胞或含有依據本發明之經修飾FX核酸序列的細胞所獲得的抗體製備物中,297-鍵結之多醣的岩藻糖:抗體或岩藻糖:GlcNAc或岩藻糖:甘露糖或岩藻糖:三甘露糖部分或岩藻糖:半乳糖的相對莫耳)。
低岩藻糖基化CHO細胞株
低岩藻糖基化CHO細胞株是由CHO K1細胞株所建構而成,其被改造成生長於無血清生物反應器培養基的懸浮液中。CHO細胞株(命名為細胞株6066)在CHO FX基因含有一個L289S置換。如實施例中所述,在該細胞株以及缺乏FX修飾的對應CHO細胞株(命名為細胞株4044)中製造出人類IgG1的一個重組型抗體(專一地結合介白素受體(抗體1))以及人類IgG1的一個重組型抗體(專一地結合免疫細胞的細胞表面蛋白質(抗體2))。細胞生長在振盪器中歷時3天或在生物反應器中歷時12天(各自在37℃下)。
帶有FX基因修飾並且表現抗體1的細胞僅岩藻糖基化約6.14或6.86%(12天)或約7或8%(3天)的抗體1,而在沒有FX修飾存在的情況下,細胞岩藻糖基化約89.3%(3天)或約85.8%(12天)(表1)。
帶有FX基因修飾並且表現抗體2的細胞岩藻糖基化僅約3.6%的抗體2,而在沒有FX基因修飾存在的情況下,細胞岩藻糖基化約95%(3天)或約76.8%(12天)(表1)。
另一個低岩藻糖基化CHO細胞株是由CHO K1細胞所製造出,其含有L289S以及N90K修飾的CHO FX基因(命名為細胞株8088)。在這些細胞中所表現的抗體1展現出僅有約0.96%岩藻糖基化(3天)或0.71%岩藻糖基化(12天)(表2)。
另一個低岩藻糖基化CHO細胞株是由CHO K1細胞(從具有L289S FX基因修飾的6066-1細胞)所製造出,其含有P136L置換(命名為細胞株2121)。這些細胞在第3天表現僅有0.82%岩藻糖基化的抗體1(表2)。
又2個低岩藻糖基化CHO細胞株是由CHO K1細胞(從具有L289S FX基因修飾的6066-1細胞)所製造出,其含有N79S置換(命名為細胞株2022以及6069)。這些細胞表現在第3天僅0.94%(2020)或在第3天僅0.86%岩藻糖基化的抗體1(表2)。
關於岩藻糖基化抗體1的溫度依賴性是使用細胞株4044-1(無FX基因修飾)以及細胞株6066-1(L289S FX基因修飾)來測試。細胞株6066-1在37℃下展現出僅7%岩藻糖基化,而在34℃下約70%岩藻糖基化。細胞株4044-1在37℃以及34℃下均展現出大致相同的岩藻糖基化(95-96%)。
又2個低岩藻糖基化細胞株是由細胞株8088(L289S以及N90K)所製造出,其對相同的生長因子受體表現出2種不同的抗體,Ab 3.1以及Ab 3.2。於有(回收途徑)或沒有(重新生成途徑)岩藻糖存在的情況下在37℃下生長歷時3天之後,細胞株生產僅約1.87%或5.73%岩藻糖基化,而在有外部岩藻糖來源存在的情況下,岩藻糖基化被回復到至少95.22%或95.63%。
實施例1:CHO細胞株
如此處所述,各種CHO細胞株是直接或間接從CHO K1細胞所分離出。
RGC10細胞 。CHO細胞株3033是由CHO K1細胞生成,如同在美國專利第7,435,553號中針對RGC10細胞所述者,藉此併入作為參考文獻。簡言之,CHO K1細胞是以載體pTE158以及pcDNA6/TR(Invitrogen)予以穩定轉染。針對hFcγR1的多西環素誘導表現(doxycycline-inducible expression of hFcyR1)篩選經轉染的細胞,並且選出一個選殖株以產生3033細胞株。3033細胞株被改造成生長在無血清培養基3的懸浮培養物中。
5055細胞 。5055細胞是已被改造成生長在無血清生物反應器培養基培養基2的懸浮液中的CHO K1細胞。
4044細胞 。4044細胞是衍生自RGC16細胞,描述於2008年6月4日提申之國際專利申請案公開第WO 2008/151219 A1號以及2008年6月4日提申之美國專利申請案公開第2009/0124005A1中,各自併入作為參考文獻,且各自含有經lox處理的卡匣在一個增強表現與安定性(enhanced expression and stability,EESYR)的基因座。該在4044中的EESYR基因座,在編碼股上從5’至3’,具有一個loxP位址、一個SV40晚期啟動子、一個嘌呤黴素-抗性基因、一個CMV啟動子、一個IRES、一個eCFP基因、一個lox2272位址、一個CMV啟動子、一個DsRed基因以及一個lox511位址。4044細胞更含有一個穩定轉染的pcDNA6/TR載體。
其他細胞 。7077細胞株是衍生自3033細胞而未使用到外源性重組型核酸。6066、8088以及1010細胞株是衍生自4044細胞而未使用到外源性重組型核酸。
實施例2:在CHO細胞中生產重組型抗體
載體 。此處所述的載體具有指明的特點,其中特點的相對配置是相對於以5’至3’列出的編碼股來表示。
p R4000: 一個人類UbC啟動子、一個編碼Ab 2的重鏈的基因、一個SV40晚期啟動子以及一個潮黴素抗性基因。
pR4001: 一個人類UbC啟動子、一個編碼Ab 2的輕鏈的基因、一個SV40晚期啟動子以及一個嘌呤黴素抗性基因。
pR4002: 一個LoxP位址、一個人類CMV啟動子、一個編碼Ab 2的重鏈的基因、一個SV40晚期啟動子以及一個Lox2272位址。
pR4003: 一個Lox2272位址、一個潮黴素抗性基因、一個IRES、一個EGFP基因、一個人類CMV啟動子、一個編碼Ab 2的輕鏈的基因以及一個Lox511位址。
pR4004: 一個SV40晚期啟動子以及編碼Cre重組酶的基因(參見WO 2008/151219A1,併入作為參考文獻)。
pR4005: 一個LoxP位址、一個人類CMV啟動子、一個編碼抗體1(Ab 1)的輕鏈的基因、一個SV40晚期啟動子以及一個Lox2272位址。
pR4006: 一個Lox2272位址、一個潮黴素抗性基因、一個IRES、一個EGFP基因、一個人類CMV啟動子、一個編碼Ab 1的重鏈的基因以及一個Lox511位址。
pR4007: 一個LoxP位址、一個人類CMV啟動子、一個編碼Ab 1的輕鏈的基因、一個SV40晚期啟動子、一個編碼潮黴素抗性蛋白質的N端的基因以及一個Lox2272位址。
pR4008: 一個Lox2272位址、一個編碼潮黴素抗性蛋白質的C端的基因、一個IRES、一個EGFP基因、一個人類CMV啟動子、一個編碼Ab 1的重鏈的基因以及一個Lox511位址。
pR4009: 一個LoxP位址、一個SV40晚期啟動子、一個潮黴素抗性基因、一個內部核糖體進入位址(IRES)、一個EGFP基因、一個人類CMV啟動子以及一個Lox511位址。
pR4010: 一個LoxP位址、一個SV40晚期啟動子、一個潮黴素抗性基因、一個IRES、一個EGFP基因、一個人類CMV啟動子、野生型FX基因以及一個Lox511位址。
pR4010: 一個LoxP位址、一個SV40晚期啟動子、一個潮黴素抗性基因、一個IRES、一個EGFP基因、一個人類CMV啟動子以及具有突變L289S與N90K的突變FX基因。
CHO細胞中的岩藻糖基化熟練(fucosylation proficiency)是藉由細胞表面LCA染色以及藉由分析CHO細胞所生成的重組型抗體來研究。在一個研究中,7077細胞用作為表現抗體2(Ab 2)(一種對抗人類B細胞受體的人類IgG1抗體)的宿主細胞,遵循美國專利第7,435,553號中所述的一個方法(併入作為參考文獻)。簡言之,使用LipofectamineTM (Invitrogen,Carlsbad,CA)以質體pR4000(重鏈,潮黴素抗性)以及pR4001(輕鏈,嘌呤黴素抗性)轉染1 x 107 個7077細胞。經轉染的培養物各自在含有10%胎牛血清的F12培養基中以400微克/mL潮黴素以及10微克/mL嘌呤黴素篩選歷時2週。挺過篩選的細胞被集合在一起並且被改造成生長在無血清生物反應器培養基培養基2的懸浮液中。藉由將多西環素添加至培養基中歷時3天誘導hFcγRI表現。在以山羊多株FITC-綴合抗-人類Fc抗體的F(ab’)2 片段(Jackson ImmunoResearch,West Grove,PA)染色之前,經誘導的培養物以1毫克/mL兔IgG予以培育歷時18小時。細胞染色歷時1小時,接著在以流動式細胞測量術於MoFloTM 細胞選別器(Fort Collins,CO)上分析之前,使用PBS洗滌2次。帶有平均FITC螢光強度在前5%總細胞群中的細胞被選別成一群並且命名為7077-1細胞。7077-1細胞在培養基2中擴增歷時10天。為生產重組型Ab 2,以4 x 105 細胞/mL培養基2於37℃下將7077-1細胞種植在振盪器燒瓶中。3天後,收集條件培養基以及Ab 2蛋白質,其中Ab 2蛋白質是以蛋白質A親和力層析術來純化。
4044與6066 CHO細胞用作為表現Ab 2以及Ab 1(一種對抗人類細胞激素受體的人類IgG1抗體)的宿主細胞。簡言之,為表現Ab 2,2 x 106 個4044以及2 x 106 個6066細胞(各自在EESYR基因座處帶有經lox處理的卡匣)各自以pR4002(重鏈在經lox處理的卡匣中)、pR4003(輕鏈與潮黴素在經lox處理的卡匣中)以及pR4004(編碼Cre)予以轉染。為表現Ab 1,2 x 106 個4044以及2 x 106 個6066細胞各自以pR4005(輕鏈在經lox處理的卡匣中)、pR4006(重鏈與潮黴素在經lox處理的卡匣中)以及pR4004(編碼Cre)予以轉染。經轉染的4044與6066細胞各自在含有10% FCS的F12培養基中以400微克/mL潮黴素篩選歷時10天。挺過的細胞被改造成生長在無血清培養基1的懸浮液中歷時7天。在EESYR基因座處已經過Cre-媒介的卡匣交換的細胞表現EGFP而非DsRed或ECFP。EGFP陽性而DsRed與ECFP陰性的細胞藉由使用MoFloTM 細胞選別器的細胞選別被收集。以Ab 2以及Ab 1基因予以轉染的4044-衍生細胞分別命名為4044-2與4044-1細胞。以Ab 2以及Ab 1基因予以轉染的6066-衍生細胞分別命名為6066-2與6066-1細胞。4044-2、6066-2、4044-1以及6066-1細胞藉由培養在培養基2中歷時7天而被擴增。為生產重組型抗體,以4 x 105 細胞/mL培養基2於37℃下將4個細胞株種植在振盪器燒瓶中。3天後,收集條件培養基以及重組型蛋白質,其中重組型蛋白質是以蛋白質A親和力層析術來純化。
8088與1010 CHO細胞亦用作為表現Ab 1的宿主細胞。簡言之,為表現Ab 1,2 x 106 個8088以及2 x 106 個1010細胞各自以pR4007(輕鏈與潮黴素抗性基因的第1部分在經lox處理的卡匣中)、pR4008(重鏈與潮黴素抗性基因的第2部分在經lox處理的卡匣中)以及pR4004(編碼Cre)予以轉染。挺過以400微克/mL潮黴素篩選的轉染細胞被改造成生長在無血清培養基1的懸浮液中。表現EGFP而非DeRed或ECFP的細胞從轉染8088與1010細胞中藉由細胞選別而在MoFloTM 細胞選別器上分離出並且命名為8088-1與1010-1。為生產Ab 1蛋白質,以4 x 105 細胞/mL培養基2於37℃下將8088-1與1010-1細胞種植在振盪器燒瓶中。3天後,收集培養基,而其中Ab 1是以蛋白質A親和力層析術來純化。
實施例3:抗體岩藻糖基化分析
純化的人類IgG1抗體蛋白質最初是在變性的條件(0.5% SDS、2 mM TCEP並且以1% NP-40阻斷)下於50 mM Tris pH 8.0(具有1微克/0.1 mU的蛋白質/酵素比例),於37℃下以PNG酶F予以去糖基化過夜。釋放出的多醣接著在80℃下以鄰胺苯甲酸(anthranilic acid)予以衍生螢光歷時1小時。以Waters OasisTM HLB卡匣預先洗滌樣品來移除過量鄰胺苯甲酸試劑。接著使用配於ddH2 O的0.5% TFA作為移動相A,以及配於90%乙腈/10% ddH2 O的0.045% TFA作為移動相B,以逆相HPLC分析寡醣混合物。在Thermo HypercarbTM (Thermo Fisher,Waltham,MA)管柱(大小為100 x 2.1,粒徑為3微米)上透過施用從30至40% B超過40分鐘的梯度而分離出多醣。使用螢光偵測器以230 nm的激發波長以及425 nm的發射波長偵測訊號。透過質譜法進一步分析HPLC-分離的多醣波峰透露,它們分成2個主群:非-岩藻糖基化雙觸角多醣以及岩藻糖基化雙觸角多醣。在各群(岩藻糖基化vs.非岩藻糖基化)中,多醣進一步分成雙半乳糖苷基(G2)、單半乳糖苷基(G1)或無半乳糖苷基(G0)形式。對應於不同多醣型式的波峰面積積分容許定量各個獨立的多醣在單株抗體上的數目。
實施例4:定序FX、GMD、GDP-岩藻糖轉運蛋白以及FUT8基因的主要轉錄本
FX、GMD、GDP-岩藻糖轉運蛋白以及FUT8基因所編碼的蛋白質是重新合成岩藻糖基化途徑(de novo fucosylation pathway)的成分。決定FX基因在CHO細胞株5055、4044-1、7077-1、6066-1、2121、2020、6069、1010以及8088細胞中的主要轉錄本的序列以及GMD基因在4044-1、6066-1、1010以及8088細胞中的主要轉錄本的序列。亦決定由FUT8以及GDP-岩藻糖轉運蛋白基因在4044-1與6066-1細胞中表現的主要轉錄本的序列。
簡言之,從5 x 106 個CHO細胞中使用Micro-Fast Track 2.0 KitTM (Invitrogen,Carlsbad,CA)分離總RNA。從總RNA中使用寡-dT作為引子以及SuperScript III First-Strand Synthesis SystemTM (Invitrogen)針對4個岩藻糖基化基因合成出cDNAs。GMD cDNA是使用引子5’-ctacaatctt ggtgcccagagc-3’序列辨識編號:7以及5’-tccagttcag tttctgctgc g-3’序列辨識編號:8而被PCR擴增。FX cDNA是使用5’-ttccctgaca agaccaccta tcc-3’序列辨識編號:9以及5’-tagttgtcgg tgaaccaggc ac-3’序列辨識編號:10而被PCR擴增。GDP-岩藻糖轉運蛋白cDNA是使用引子5’-gatgaggaca gcaggaacaa gc-3’序列辨識編號:11以及5’-agcactcttc tcaccctctt tgg-3’序列辨識編號:12而被PCR擴增。FUT8 cDNA是使用引子5’-agccaagggt aagtaaggag gacg-3’序列辨識編號:13以及5’-ttgtagacag cctccatcct cg-3’序列辨識編號:14而被PCR擴增。PCR反應中所使用的DNA聚合酶是20比1混合的Platinum TaqTM (Invitrogen)以及選殖的Pfu(Stratagene,La Jolla,CA)。PCR產物在凝膠電泳之後純化並且遵循製造商的指示選殖到pCR2.1 TOPOTM 載體(Invitrogen)中。經選殖的DNA產物被轉形至電-勝任DH10B細胞中。從每次轉形中挑出最少3個細菌菌落來接種3個含有LB以及100微克/mL胺芐青黴素的液體培養物。使用QIAprep Spin Minipre KitTM (Qiagen)純化這些培養物中的質體DNAs。使用位在該載體上的M13引子以及個別的5’與3’PCR引子來決定經選殖的PCR產物的序列。將這些序列與Genbank序列有關灰倉鼠(C. griseus )的FX(存取編號AF525365)、GMD(存取編號AF525364)、GDP-岩藻糖轉運蛋白(存取編號AB222037)以及FUT8(存取編號BD359138) mRNA比對。
在共同FX轉錄本序列中造成密碼子從Genbank參考序列(AF525365)突變在7077-1、6066-1、2121、2020、6069、1010以及8088細胞中被鑑定出(表1與2)。來自於4044-1、6066-1、1010以及8088細胞的GMD轉錄本的序列與GenBank中所報導的GMD序列(存取編號AF525364)相適配。4044-1以及6066-1細胞中的GDP-岩藻糖轉運蛋白和FUT8轉錄本的序列也與它們在GenBank中所報導的個別序列(存取編號AB222037和BD359138)相適配。
實施例5:在FX基因中帶有單一L289S突變的CHO細胞株的岩藻糖基化
首先,在3033、4044、6066以及7077細胞中的相對岩藻糖基化熟悉度是藉由將細胞以凝集素小扁豆凝集素(lectinLens Culinaris agglutinin,LCA)予以染色來研究。簡言之,2 x 106 個4044以及6066細胞各自以5微克/mL生物素-LCA(Vector Laboratories,Burlingame,CA)予以培育歷時1小時。以PBS洗滌2次之後,細胞與藻紅素-綴合鏈抗生物素蛋白質(phycoerythrin-conjugated streptavidin)(Jackson ImmunoResearch)培育歷時30分鐘。細胞接著以PBS洗滌1次並且以流動式細胞測量術分析。3033細胞以及7077細胞以FITC-LCA染色歷時1小時,洗滌2次並且以流動式細胞測量術分析(第2圖)。3033、4044、6066以及7077細胞全部染上LCA。6066以及7077細胞上的LCA染色強度明顯要比3033以及4044細胞上的LCA染色強度還弱(第2圖),暗示在6066以及7077細胞中的蛋白質岩藻糖基化要比在3033以及4044細胞中還少。為檢驗6066與7077細胞是否可在低岩藻糖含量的情況下用作為表現hIgG1抗體的宿主細胞,4044以及6066細胞以Ab2與Ab1的表現載體予以穩定轉染,而7077細胞以Ab2的表現載體予以穩定轉染(參見實施例2)。重組型Ab2以及Ab1在3天振盪器燒瓶培養以及2天進料批次生物反應器培養中從轉染細胞生成。Ab2以及Ab1從條件培養基中被純化且它們的岩藻糖基化位準是以HPLC來決定(表1)。如表1中所示,7077-1、6066-1以及6066-2在振盪器與生物反應器中於37℃下生產帶有岩藻糖基化位準介於3.6%與8%的重組型抗體。
實施例6:在FX基因中帶有2個胺基酸改變的CHO細胞株的岩藻糖基化
8088以及1010是2個從6066細胞所分離出而未使用外源性、重組型核酸的細胞株。6069、2020以及2121是3個從6066-1細胞所分離出而未使用外源性、重組型核酸的細胞。有關FX基因的主要轉錄本的序列是以RT-PCR決定(表2)。這5個細胞株被發現到在6066以及7077細胞中帶有相同的L289S突變。除了L289S改變以外,這5個細胞株的FX轉錄本亦帶有改變1個胺基酸的突變。這些突變歸納在表2中。8088、1010、6069、2020以及2121細胞展現出減低結合到LCA(第4圖),暗示在這些細胞中有減低的蛋白質岩藻糖基化。
為檢驗8088以及1010細胞中的岩藻糖基化熟悉度,Ab1藉由穩定轉染而從這2個宿主細胞中生成。經轉染的培養物是以400微克/mL潮黴素予以篩選歷時2週。對潮黴素有抗性的細胞被改造成生長在懸浮液培養物的培養基1中。在3天振盪器培養以及12天進料批次生物反應器培養中生產重組型Ab1。從條件培養基中純化Ab1且Ab1岩藻糖基化的位準是由HPLC決定(表2)。如表2中所示,經轉染的8088以及1010細胞於34℃下在振盪器與生物反應器中生產帶有岩藻糖基化位準介於0.53%以及0.96%的重組型Ab1抗體。
亦在純化振盪器燒瓶培養物中所生產的Ab1蛋白質之後檢驗6069、2020、2121細胞中的岩藻糖基化熟悉度。表2顯示這3個細胞株所生產的Ab1帶有範圍從0.82%至0.94%的岩藻糖基化位準。
實施例7:6066-1中的岩藻糖基化熟悉度為溫度-依賴型(Temperature-Dependent)
培養溫度對於6066-1細胞中的蛋白質岩藻糖基化的影響是由LCA染色以及由分析這些細胞所生產的Ab1蛋白質的岩藻糖基化來檢驗。第5圖顯示生長在37℃與34℃下的4044-1以及6066-1細胞的LCA染色。生長在34℃與37℃下的4044-1細胞同樣以LCA予以染色。生長在34℃下的6066-1細胞以明顯要比生長在37℃下的6066-1細胞還高的位準結合LCA。表3顯示由4044-1以及6066-1細胞在振盪器燒瓶培養中於34℃與37℃下所生產的Ab1蛋白質的岩藻糖基化位準。當分別生長在34℃與37℃下時,4044-1細胞生產帶有96%與95%岩藻糖基化的AB1。相對之下,分別在34℃與37℃下時,6066-1細胞生產帶有約70%與7%岩藻糖基化的Ab1。這個結果表示,6066-1細胞中的岩藻糖基化位準為溫度依賴型。
實施例8:培養在補充有L-岩藻糖的培養基中的CHO細胞之岩藻糖基化
在哺乳動物細胞中,可以藉由重新合成途徑以及回收途徑生成GDP-岩藻糖(Becker and Lowe(2003) Fucose:biosynthesis and biological function in mammals,Glycobiology,13(7):41R-53R)。在生長於缺乏L-岩藻糖的培養基中的細胞內,GDP-岩藻糖是藉由GMD以及FX蛋白質從GDP-甘露糖所生成。在有L-岩藻糖的培養基中,GDP-岩藻糖可以從L-岩藻糖藉由L-岩藻糖激酶與GDP-L-岩藻糖焦磷酸化酶所生成。從任一個途徑所生成的GDP-岩藻糖經由GDP-岩藻糖轉運蛋白被運送到高基氏體。在高基氏體中,岩藻糖基轉移酶蛋白質FUT8以GDP-岩藻糖將醣蛋白轉換成岩藻糖基化蛋白質。檢驗生長在有或沒有5 mM L-岩藻糖的培養基中的6066-2、8088以及1010細胞的岩藻糖基化熟悉度。6066-2細胞表現Ab2抗體並且在FX基因轉錄本中帶有L289S突變(實施例2與表1)。藉由HPLC分析經純化的Ab2,在沒有添加L-岩藻糖的培養基2中,生長在振盪器燒瓶內的6066-2細胞生產帶有1.9%岩藻糖基化的AB2。相對之下,在補充有5 mM L-岩藻糖的培養基2中,生長在振盪器燒瓶內的6066-2細胞生產帶有93.5%岩藻糖基化的Ab2。這些結果表示,有關GDP-岩藻糖合成的回收途徑、GDP-岩藻糖轉運蛋白以及FUT8蛋白質在6066-2細胞中是有功能的。
在有或沒有5 mM L-岩藻糖的情況下,藉由以LCA染色來檢驗生長於培養基2的3033、5055、7077、8088以及8088細胞的相對岩藻糖基化熟悉度(第6圖)。3033以及5055細胞在有或沒有補充L-岩藻糖的情況下結合類似位準的LCA。當生長在有5 mM L-岩藻糖的培養基中,7077、8088以及8088細胞明顯要比在缺乏L-岩藻糖的培養基中結合更多的LCA。這個結果暗示,7077、8088以及8088細胞帶有有功能的GDP-岩藻糖轉運蛋白以及有功能的FUT8蛋白質。
實施例9:經FX基因轉染的8088中的岩藻糖基化
為確認在8088細胞中所看到的減低岩藻糖基化位準是因為突變的FX基因(帶有L289S與N90K突變),野生型FX基因以及突變FX基因藉由穩定轉染而在8088細胞中表現,並且藉由將細胞以LCA染色來檢驗經轉染的細胞的岩藻糖基化熟悉度。8088細胞分別以載體pR4009(經lox處理的卡匣,具有潮黴素抗性基因以及EGFP基因)轉染作為對照組。載體pR4010以及pR4011分別在pR4009的CMV啟動子與Lox511位址之間含有野生型FX基因以及L289S N90K FX基因。以pR4004與pR4009、pR4010或pR4011轉染的8088細胞以400微克/mL潮黴素篩選歷時14天。在EESYR處歷經Cre-調節的卡匣交換的細胞表現EGFP而不是EYFP。EGFP-陽性與EYFP-陰性的細胞藉由細胞選別而分類。在組織培養於37℃下擴增之後,經分類的細胞連續地以生物素-LCA以及PE-鏈黴素染色。以載體pR4009以及pR4011轉染的細胞展現出相同位準的LCA染色。相對之下,以載體pR4010轉染的8088細胞展現出可與5055細胞相比擬的LCA染色(第7圖)。總括來說,如同透過LCA染色分析般,野生型FX蛋白質能夠回復8088細胞中的岩藻糖基化位準,而不是L289S N90K突變FX蛋白質。這個結果顯示,在8088細胞中較低的岩藻糖基化位準是因為FX蛋白質在這些細胞中的L289S N90K突變。
實施例10:多醣的HPLC以及質譜法:Abs 3.1以及3.2
細胞株8088,具有FX基因修飾(編碼FX蛋白質置換L289S以及N90K)的CHO細胞株,分別以編碼2個帶有不同可變區域(專一地結合相同的生長因子受體)之人類抗體(抗體3.1與抗體3.2)的重(人類IgG1)與輕(人類κ)鏈的質體轉染。在有或沒有10 mM岩藻糖存在的情況下,表現各個抗體的細胞於37℃下生長在培養基2中歷時3天,且在各組條件下從抗體而來的多醣被分離出並且藉由質譜法予以鑑定。
在沒有岩藻糖存在的情況下表現A3.1的8088細胞於HPLC上產生3個主要的多醣波峰(第8圖),在質譜上代表3個不同的非岩藻糖基化多醣,它們在末端半乳糖基化(terminal galactosylation)方面是不同的,有約1.47%岩藻糖基化。在有10 mM岩藻糖存在的情況下表現A3.1的8088細胞於HPLC上產生3個主要的多醣波峰(第10圖),在質譜上代表3個不同的岩藻糖基化多醣以及1個非岩藻糖基化多醣(第11圖),有約95.22%岩藻糖基化。
在沒有岩藻糖存在的情況下表現A3.2的8088細胞於HPLC上產生3個主要的多醣波峰(第12圖),在質譜上代表3個不同的非岩藻糖基化多醣,它們在末端半乳糖基化(terminal galactosylation)方面是不同的(第13圖),有約5.73%岩藻糖基化。在有10 mM岩藻糖存在的情況下表現A3.2的8088細胞於HPLC上產生3個主要的多醣波峰(第14圖),在質譜上代表3個不同的岩藻糖基化多醣以及第4個微量非岩藻糖基化多醣,它們在末端半乳糖基化方面是不同的(第15圖),有約95.63%岩藻糖基化。
有關表現抗體3.1或抗體3.2之岩藻糖進料以及非岩藻糖進料8088細胞的多醣分析結果歸納在第16圖中,依據多醣種類予以分類。縱列表現在特定條件下抗體的百分比,總計為100。就Ab3.1而言,在沒有10 mM岩藻糖存在的情況下,總岩藻糖基化為1.87%;就Ab3.2而言,在沒有10 mM岩藻糖存在的情況下,總岩藻糖基化為5.73%(將第16圖的表格最後3列加總)。在有10 mM岩藻糖存在的情況下,Ab 3.1的總岩藻糖基化為95.22%;在有10 mM岩藻糖存在的情況下,Ab 3.2的總岩藻糖基化為95.63%(將第16圖的表格最後3列加總)。這些數據證實,在沒有岩藻糖存在的情況下,低岩藻糖基化細胞株岩藻糖基化不超過約1.87%或5.73%,但岩藻糖基化可以在有岩藻糖存在的情況下被恢復到至少約95.22%或95.63%岩藻糖基化。
有關多醣分析,100微克部分的2個抗體(抗體3.1以及抗體3.2)的各者樣品再懸浮於45微升的變性緩衝液(含有50 M Tris(pH 8.0)、2.0 mM三(2-羧乙基)膦(TCEP)、0.5%SDS)中。藉由加熱至80℃歷時7分鐘讓蛋白質變性。在與10 mU PNG酶F以及1% NP40在37℃下培育過夜之後,抗體上N-連結的多醣被釋出。釋出的多醣透過添加200毫升衍生溶液(30 mg/mL鄰胺苯甲酸(AA)以及20 mg/mL氰基硼氫化鈉,配於含有4%(w/v)乙酸鈉與2%(w/v)硼酸的甲醇中)並且在80℃下培育歷時1小時而被標記螢光。進一步從過量試劑中使用固相萃取卡匣(OasisTM HLB cartridge,Waters Corp.)並且洗提至200毫升的5%乙腈而分離出AA衍生多醣。有關於多醣的HPLC分離,以0.15 mL/min的流速使用Thermo HypercarbTM 管柱(3 μm,100 x 2.1 mm)。移動相A為0.05% TFA配於H2 O中,而移動相B為0.045% TFA配於90%乙腈與10%H2 O中。將一部分的10毫升螢光衍生寡醣與90毫升的0.1% TFA(配於水中)混合並注射到以25%移動相B預平衡的管柱上。在樣品注射之後,梯度在5分鐘內增加至30% B,繼而為在39分鐘內另一次增加至43%而讓寡醣分離。使用具有激發波長在230 nm而發射波長在450 nm的螢光偵測器來偵測AA-標記的多醣。AA-標記的多醣的質譜法分析是使用Shimadzu AximaTM MALDI-TOF系統來進行。在加速真空中乾燥100毫升的衍生多醣。並且再懸浮於10毫升的0.1% TFA。濃縮的多醣進一步使用Nutip HypercarbTM 予以去鹽,並且洗提至30毫升的0.1% TFA(配於65%乙腈中),以及加速真空乾燥。冷凍乾燥的多醣再溶解於2毫升的10 mg/mL DHB(2,5-二羥基苯甲酸)(配於70%乙腈中),並且打點在MALDI盤(plate)上。在線性負模式(linear negative mode)下,以1500 mu的後萃取以及雷射功率設定在介於最大功率(6 mW)的60-90%操作在337 nm的波長收集質譜。
列示出的序列 序列辨識編號:1-CHO FX
序列辨識編號:2-8088 FX
序列辨識編號:3-恆河獼猴FX
序列辨識編號:4-人類FX
序列辨識編號:5-小鼠FX
序列辨識編號:6-大鼠FX
序列辨識編號:7
序列辨識編號:8
序列辨識編號:9
序列辨識編號:10
序列辨識編號:11
序列辨識編號:12
序列辨識編號:13
序列辨識編號:14
<110> Gang CHENDarya BUKAROVJames P. FANDL
<120> 岩藻糖基化-缺乏之細胞
<130> 851A-Tw
<140> 待指定
<141> 隨申請檢附
<150> 61/183,400
<151> 2009-06-02
<150> 61/348,858
<151> 2010-05-27
<160> 14
<170> FastSEQ for Windows Version 4.0
<210> 1
<211> 321
<212> PRT
<213> 灰倉鼠
<400> 1
<210> 2
<211> 321
<212> PRT
<213> 人工的序列
<220>
<223> 合成的
<400> 2
<210> 3
<211> 321
<212> PRT
<213> 恆河獼猴
<400> 3
<210> 4
<211> 321
<212> PRT
<213> 智慧人
<400> 4
<210> 5
<211> 321
<212> PRT
<213> 家鼷鼠
<400> 5
<210> 6
<211> 321
<212> PRT
<213> 挪威大鼠
<400> 6
<210> 7
<211> 22
<212> DNA
<213> 人工的序列
<220>
<223> 合成的
<400> 7
<210> 8
<211> 21
<212> DNA
<213> 人工的序列
<220>
<223> 合成的
<400> 8
<210> 9
<211> 23
<212> DNA
<213> 人工的序列
<220>
<223> 合成的
<400> 9
<210> 10
<211> 22
<212> DNA
<213> 人工的序列
<220>
<223> 合成的
<400> 10
<210> 11
<211> 22
<212> DNA
<213> 人工的序列
<220>
<223> 合成的
<400> 11
<210> 12
<211> 23
<212> DNA
<213> 人工的序列
<220>
<223> 合成的
<400> 12
<210> 13
<211> 24
<212> DNA
<213> 人工的序列
<220>
<223> 合成的
<400> 13
<210> 14
<211> 22
<212> DNA
<213> 人工的序列
<220>
<223> 合成的
<400> 14
第1圖顯示有關猴子(恆河獼猴),序列辨識編號:3;人類,序列辨識編號:4;小鼠(家鼷鼠),序列辨識編號:5;大鼠(挪威大鼠),序列辨識編號:6;CHO(灰倉鼠),序列辨識編號:1;以及帶有L289S以及N90K修飾的CHO(命名為細胞株8088),序列辨識編號:2的FX蛋白質序列的MacVectorTM 排列(由上而下)。
第2圖顯示3033、6066、7077以及8088細胞在以LCA染色之前與之後的流動式細胞測量術柱狀圖。
第3圖顯示未染色之4044-1細胞的流動式細胞測量術柱狀圖,以及以LCA染色的4044-1、6069、2020與2121細胞的柱狀圖。
第4圖顯示未染色之5055細胞的流動式細胞測量術柱狀圖,以及以LCA染色的5055、8088與1010細胞的柱狀圖。
第5圖顯示以LCA染色之前與之後在37℃與34℃下培養的4044-1以及6066-1細胞的流動式細胞測量術柱狀圖。
第6圖顯示在有或沒有5 mM L-岩藻糖的培養基中培養3033、7077、8088以及1011細胞的流動式細胞測量術柱狀圖,以及在沒有L-岩藻糖的培養基中培養5055細胞的柱狀圖。所有細胞以LCA染色。
第7圖顯示以pR4009、pR4010以及pR4011穩定轉染的8088細胞以及5055細胞的流動式細胞測量術柱狀圖。
第8圖顯示在沒有外部岩藻糖來源存在的情況下,生長在37℃下的8088細胞之Ab 3.1藉由HPLC的多醣分離(1.47%岩藻糖基化)。
第9圖顯示有關第8圖的多醣的質譜法結果;多醣的結構呈現在各個波峰的右側。GlcNAc殘基以矩形表示;甘露糖殘基以圓形表示;半乳糖殘基以菱形表示。
第10圖顯示在有10 mM岩藻糖存在的情況下,生長在37℃下的8088細胞之Ab 3.1藉由HPLC的多醣分離(95.22%岩藻糖基化)。
第11圖顯示有關第10圖的多醣的質譜法結果;多醣的結構呈現在各個波峰的右側。GlcNAc殘基以矩形表示;甘露糖殘基以圓形表示;半乳糖殘基以菱形表示;岩藻糖殘基以三角形表示。
第12圖顯示在沒有外部岩藻糖來源存在的情況下,生長在37℃下的8088細胞之Ab 3.2藉由HPLC的多醣分離(5.73%岩藻糖基化)。
第13圖顯示有關第12圖的多醣的質譜法結果;多醣的結構呈現在各個波峰的右側。GlcNAc殘基以矩形表示;甘露糖殘基以圓形表示;半乳糖殘基以菱形表示。
第14圖顯示在有10 mM岩藻糖存在的情況下,生長在37℃下的8088細胞之Ab 3.2藉由HPLC的多醣分離(95.63%岩藻糖基化)。
第15圖顯示有關第14圖的多醣的質譜法結果;多醣的結構呈現在各個波峰的右側。GlcNAc殘基以矩形表示;甘露糖殘基以圓形表示;半乳糖殘基以菱形表示;岩藻糖殘基以三角形表示。
第16圖歸納對於野生型以及低岩藻糖基化細胞株的質譜法研究結果。GlcNAc殘基以矩形表示;甘露糖殘基以圓形表示;半乳糖殘基以菱形表示;岩藻糖殘基以三角形表示。

Claims (20)

  1. 一種表現能夠岩藻糖基化一醣蛋白的細胞,其中該細胞包含GDP-4-酮-6-去氧-甘露糖-3,5-表異構酶-4-還原酶(FX)基因,該基因編碼一與序列辨識編號:1至少90%相同的修飾的FX蛋白質且該蛋白質在位置289處包含絲胺酸(289S)之胺基酸修飾,以及其中當該細胞在沒有外部岩藻糖來源存在的情況下生長於37℃的溫度時,不超過10%的醣蛋白被岩藻糖基化。
  2. 如申請專利範圍第1項的細胞,其中該修飾的FX基因進一步包含在一選自於由下列所構成之群組中的特定位置處具有一胺基酸修飾:在位置79處的絲胺酸(79S)、在位置90處的離胺酸(90K)、在位置136處的白胺酸(136L)、及在位置211處的精胺酸(211R)。
  3. 如申請專利範圍第1項的細胞,其中該FX蛋白質與序列辨識編號:1至少95%相同並且在位置289處包含絲胺酸。
  4. 如申請專利範圍第1項的細胞,其中該細胞是一中國倉鼠卵巢(CHO)細胞。
  5. 如申請專利範圍第1項的細胞,其中該FX蛋白質是倉鼠、小鼠、大鼠、猴子或人類FX蛋白質。
  6. 如申請專利範圍第1項的細胞,其中該細胞表現一包含一免疫球蛋白CH2區域以及一免疫球蛋白CH3區域的醣蛋白。
  7. 如申請專利範圍第6項的細胞,其中該醣蛋白是一抗體。
  8. 如申請專利範圍第6項的細胞,其中當該細胞在沒有外部 岩藻糖來源存在的情況下生長於37℃的溫度時,不超過6%的醣蛋白被岩藻糖基化。
  9. 如申請專利範圍第8項的細胞,其中當該細胞在沒有外部岩藻糖來源存在的情況下生長於37℃的溫度時,不超過2%的醣蛋白被岩藻糖基化。
  10. 如申請專利範圍第1項的細胞,其中當該細胞在沒有外部岩藻糖來源存在的情況下生長於34℃的溫度時,該細胞岩藻糖基化至少70%的醣蛋白。
  11. 如申請專利範圍第1項的細胞,其中當該細胞在沒有外部岩藻糖來源存在的情況下生長於34℃的溫度時,該細胞岩藻糖基化至少90%的醣蛋白。
  12. 如申請專利範圍第1項的細胞,其中當該細胞在有外部岩藻糖來源存在的情況下生長於37℃的溫度時,該細胞岩藻糖基化至少70%的醣蛋白。
  13. 如申請專利範圍第1項的細胞,其中當該細胞在有外部岩藻糖來源存在的情況下生長於37℃的溫度時,該細胞岩藻糖基化至少90%的醣蛋白。
  14. 一種編碼一FX蛋白質的經分離核苷酸序列,其中該FX蛋白質係與序列辨識編號:1至少90%相同,且在位置289處包含有絲胺酸(289S)之胺基酸修飾。
  15. 如申請專利範圍第14項的經分離核苷酸序列,其中由該核苷酸序列所編碼的FX蛋白質進一步包含在位置79處的絲胺酸(79S)、或在位置90處的離胺酸(90K)、或在位置136處的白胺酸(136L)、或在位置211處的精胺酸(211R)。
  16. 如申請專利範圍第14項的經分離核苷酸序列,其編碼一與序列辨識編號:1至少95%相同的FX蛋白質。
  17. 如申請專利範圍第1項的細胞,其進一步包含一編碼一免疫球蛋白基因的核苷酸序列。
  18. 一種用以製造帶有減低的岩藻糖基化之醣蛋白的方法,其包含:在37℃的溫度以及沒有外部岩藻糖來源存在的情況下,培養一包含一編碼在位置289處帶有絲胺酸之FX蛋白質的FX基因的哺乳動物細胞,且其中該FX蛋白質係與序列辨識編號:1至少90%相同,其中該細胞表現包含有一免疫球蛋白CH2區域以及一免疫球蛋白CH3區域的醣蛋白;以及從培養物中分離出該醣蛋白。
  19. 如申請專利範圍第18項的方法,其中該FX基因編碼一在選自於由下列所構成之群組中的特定位置處具有一胺基酸的FX蛋白質:在位置79處的絲胺酸、在位置90處的離胺酸、在位置136處的白胺酸、在位置211處的精胺酸。
  20. 如申請專利範圍第18項的方法,其中該醣蛋白是一抗體。
TW099117652A 2009-06-02 2010-06-01 岩藻糖基化(fucosylation)-缺乏之細胞 TWI513818B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US18340009P 2009-06-02 2009-06-02
US34885810P 2010-05-27 2010-05-27

Publications (2)

Publication Number Publication Date
TW201107469A TW201107469A (en) 2011-03-01
TWI513818B true TWI513818B (zh) 2015-12-21

Family

ID=42338231

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099117652A TWI513818B (zh) 2009-06-02 2010-06-01 岩藻糖基化(fucosylation)-缺乏之細胞

Country Status (17)

Country Link
US (8) US8409838B2 (zh)
EP (3) EP2808393B1 (zh)
JP (4) JP5744856B2 (zh)
KR (2) KR101641526B1 (zh)
CN (1) CN102459603B (zh)
AU (1) AU2010256753B2 (zh)
BR (1) BRPI1010035A2 (zh)
CA (1) CA2764370C (zh)
DK (3) DK3279326T3 (zh)
ES (2) ES2527173T3 (zh)
HK (3) HK1163745A1 (zh)
HU (1) HUE038596T2 (zh)
IL (1) IL216624A (zh)
PL (3) PL2808393T3 (zh)
SG (1) SG176251A1 (zh)
TW (1) TWI513818B (zh)
WO (1) WO2010141478A1 (zh)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140161782A1 (en) 2008-06-09 2014-06-12 Targazyme, Inc. Augmentation of cell therapy efficacy including treatment with alpha 1-3 fucoslytransferase
KR101641526B1 (ko) * 2009-06-02 2016-07-21 리제너론 파마슈티칼스 인코포레이티드 푸코실화-결핍 세포
CA2829110C (en) 2011-03-06 2019-01-15 Merck Serono S.A. Low fucose cell lines and uses thereof
WO2013013013A2 (en) * 2011-07-21 2013-01-24 Alnylam Pharmaceuticals, Inc. Compositions and methods for producing modified glycoproteins
TW201823460A (zh) 2012-05-29 2018-07-01 美商再生元醫藥公司 生產細胞株增強子
EP2722673B1 (en) 2012-10-17 2017-07-12 Hexal AG Improved method of mapping glycans of glycoproteins
AR095196A1 (es) 2013-03-15 2015-09-30 Regeneron Pharma Medio de cultivo celular libre de suero
US20160251410A1 (en) 2013-09-03 2016-09-01 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Compositions and methods for expressing recombinant polypeptides
WO2015057393A1 (en) * 2013-10-01 2015-04-23 University Of Wyoming Compositions and methods for reducing fucosylation of glycoproteins in insect cells and methods of use thereof for production recombinant glycoproteins
CN106459199B (zh) 2014-03-11 2021-01-01 瑞泽恩制药公司 抗-egfrviii抗体及其用途
EP3149034B1 (en) * 2014-05-30 2022-07-13 New England Biolabs, Inc. Deglycosylation reagents and methods
AU2015288052B2 (en) * 2014-07-07 2021-12-16 Targazyme, Inc. Manufacture and cryopreservation of fucosylated cells for therapeutic use
CN105671109B (zh) * 2014-11-20 2019-08-23 中国人民解放军军事医学科学院生物工程研究所 用糖基工程酵母制备具有动物细胞糖基化修饰流感血凝素糖蛋白的方法
TWI710573B (zh) 2015-01-26 2020-11-21 美商再生元醫藥公司 抗伊波拉病毒醣蛋白之人類抗體
TWI797060B (zh) 2015-08-04 2023-04-01 美商再生元醫藥公司 補充牛磺酸之細胞培養基及用法
KR20180068967A (ko) * 2015-11-02 2018-06-22 제넨테크, 인크. 단백질의 푸코실화 및 탈푸코실화 형태를 제조하는 방법
JP6674028B2 (ja) 2016-01-06 2020-04-01 アウトルック セラピューティクス,インコーポレイティド モノクローナル抗体組成物中のアフコシル化種の調節
WO2017136433A1 (en) 2016-02-03 2017-08-10 Oncobiologics, Inc. Buffer formulations for enhanced antibody stability
CN116515757A (zh) 2016-04-20 2023-08-01 瑞泽恩制药公司 基于使用表达增强性基因座来制备抗体的组合物和方法
KR102474757B1 (ko) 2016-04-20 2022-12-07 리제너론 파마슈티칼스 인코포레이티드 발현 강화 유전자좌의 사용에 기초하여 항체를 만들기 위한 조성물 및 방법
EP3339444A1 (en) * 2016-12-20 2018-06-27 Mabxience Research, S.L. Method for obtaining a glycoprotein with an increased percentage of afucosylated glycans
US20210317499A1 (en) * 2018-08-29 2021-10-14 United Biopharma Inc. Afucosylated antibodies and manufacture thereof
CA3118073A1 (en) 2018-10-29 2020-05-07 Immuno-Biological Laboratories Co., Ltd. Anti-hiv antibody and method for producing same
US20240043504A1 (en) 2020-05-26 2024-02-08 Regeneron Pharmaceuticals, Inc. Anti-SARS-CoV-2-Spike Glycoprotein Antibodies and Antigen-Binding Fragments
EP4161960A1 (en) 2020-06-03 2023-04-12 Regeneron Pharmaceuticals, Inc. Methods for treating or preventing sars-cov-2 infections and covid-19 with anti-sars-cov-2 spike glycoprotein antibodies
CN112843234B (zh) * 2021-01-20 2022-09-06 四川大学华西第二医院 一种调控生物机体内gdp-甘露糖的浓度的装置
JP2024521219A (ja) 2021-06-07 2024-05-28 アムジエン・インコーポレーテツド グリコシル化タンパク質の非フコシル化レベルを制御するためのフコシダーゼの使用
KR20240024061A (ko) 2021-06-22 2024-02-23 리제너론 파마슈티칼스 인코포레이티드 항-EGFRvIII 항체 약물 접합체 및 이의 용도
WO2023287875A1 (en) 2021-07-14 2023-01-19 Regeneron Pharmaceuticals, Inc. Anti-sars-cov-2-spike glycoprotein antibodies and antigen-binding fragments
WO2023081434A2 (en) 2021-11-07 2023-05-11 Regeneron Pharmaceuticals, Inc. Methods for treating or preventing sars-cov-2 infections and covid-19 with anti-sars-cov-2 spike glycoprotein antibodies
US20240010737A1 (en) 2022-03-02 2024-01-11 Regeneron Pharmaceuticals, Inc. Manufacturing process for high titer antibody

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1331266A1 (en) * 2000-10-06 2003-07-30 Kyowa Hakko Kogyo Co., Ltd Cells producing antibody compositions

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2264166B1 (en) 1999-04-09 2016-03-23 Kyowa Hakko Kirin Co., Ltd. Method for controlling the activity of immunologically functional molecule
JP2001145488A (ja) 1999-11-19 2001-05-29 Natl Inst Of Advanced Industrial Science & Technology Meti シロイヌナズナ由来のgdp−4−ケト−6−デオキシ−d−マンノース−3,5−エピメラーゼ−4−レダクターゼ遺伝子
FR2807767B1 (fr) 2000-04-12 2005-01-14 Lab Francais Du Fractionnement Anticorps monoclonaux anti-d
US6946292B2 (en) 2000-10-06 2005-09-20 Kyowa Hakko Kogyo Co., Ltd. Cells producing antibody compositions with increased antibody dependent cytotoxic activity
US20020150968A1 (en) 2001-01-10 2002-10-17 Wang Peng G. Glycoconjugate and sugar nucleotide synthesis using solid supports
EP1392859B1 (en) 2001-01-16 2006-05-10 Regeneron Pharmaceuticals, Inc. Isolating cells expressing secreted proteins
ATE430580T1 (de) 2001-10-25 2009-05-15 Genentech Inc Glycoprotein-zusammensetzungen
KR100585140B1 (ko) 2004-04-26 2006-05-30 삼성전자주식회사 와이어 본딩 장치 및 이를 이용한 반도체 패키지의 와이어본딩 방법
US20060223147A1 (en) 2004-08-05 2006-10-05 Kyowa Hakko Kogyo Co., Ltd., Process for producing glycoprotein composition
JP2008541770A (ja) 2005-06-03 2008-11-27 ジェネンテック・インコーポレーテッド 改変したフコシル化レベルを有する抗体の産生方法
SI2059536T1 (sl) 2006-08-14 2014-06-30 Xencor, Inc. Optimirana protitelesa, ki ciljajo CD19
RU2479629C2 (ru) 2007-03-07 2013-04-20 Гликофи, Инк. Продукция гликопротеинов с модифицированным фукозилированием
PL2150617T3 (pl) 2007-06-04 2015-04-30 Regeneron Pharma Wzmocniona ekspresja i regiony stabilności
WO2010018847A1 (ja) 2008-08-13 2010-02-18 協和発酵キリン株式会社 遺伝子組換えプロテインs組成物
KR101641526B1 (ko) 2009-06-02 2016-07-21 리제너론 파마슈티칼스 인코포레이티드 푸코실화-결핍 세포
CA2829110C (en) 2011-03-06 2019-01-15 Merck Serono S.A. Low fucose cell lines and uses thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1331266A1 (en) * 2000-10-06 2003-07-30 Kyowa Hakko Kogyo Co., Ltd Cells producing antibody compositions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Becker DJ. et al. "Fucose: biosynthesis and biological function in mammals." Glycobiology. 2003, 13(7):41R-53R. *

Also Published As

Publication number Publication date
ES2661074T3 (es) 2018-03-27
EP2438171B1 (en) 2014-12-17
HK1198180A1 (zh) 2015-03-13
DK2438171T3 (en) 2015-01-26
WO2010141478A1 (en) 2010-12-09
US10006070B2 (en) 2018-06-26
US9550823B2 (en) 2017-01-24
US11560550B2 (en) 2023-01-24
IL216624A (en) 2015-02-26
HUE038596T2 (hu) 2018-10-29
US20170211115A1 (en) 2017-07-27
DK3279326T3 (da) 2020-12-21
SG176251A1 (en) 2011-12-29
KR20140039340A (ko) 2014-04-01
PL2808393T3 (pl) 2018-04-30
ES2527173T3 (es) 2015-01-21
HK1163745A1 (zh) 2012-09-14
CA2764370A1 (en) 2010-12-09
HK1249547A1 (zh) 2018-11-02
JP2012528594A (ja) 2012-11-15
US20190024129A1 (en) 2019-01-24
PL3279326T3 (pl) 2021-03-08
EP2438171A1 (en) 2012-04-11
AU2010256753B2 (en) 2013-11-28
JP5744856B2 (ja) 2015-07-08
EP3279326B1 (en) 2020-10-14
JP2016104045A (ja) 2016-06-09
EP2808393A3 (en) 2015-03-11
JP2017006147A (ja) 2017-01-12
PL2438171T3 (pl) 2015-04-30
KR101641526B1 (ko) 2016-07-21
US20160090410A1 (en) 2016-03-31
EP2808393A2 (en) 2014-12-03
US20100304436A1 (en) 2010-12-02
US20230295583A1 (en) 2023-09-21
KR101441437B1 (ko) 2014-09-25
EP3279326A1 (en) 2018-02-07
US20130164786A1 (en) 2013-06-27
CA2764370C (en) 2018-08-21
US9206455B2 (en) 2015-12-08
EP2808393B1 (en) 2018-01-10
BRPI1010035A2 (pt) 2015-08-25
US8409838B2 (en) 2013-04-02
US20200080124A1 (en) 2020-03-12
CN102459603A (zh) 2012-05-16
US20210254022A1 (en) 2021-08-19
IL216624A0 (en) 2012-02-29
CN102459603B (zh) 2013-11-06
JP2015051021A (ja) 2015-03-19
DK2808393T3 (en) 2018-03-12
AU2010256753A1 (en) 2012-01-12
TW201107469A (en) 2011-03-01
JP6211642B2 (ja) 2017-10-11
KR20120029443A (ko) 2012-03-26

Similar Documents

Publication Publication Date Title
US11560550B2 (en) Fucosylation-deficient cells
WO2011108502A1 (ja) 改変抗体組成物
AU2015282354B2 (en) Fucosylation-deficient cells
AU2014200152B2 (en) Fucosylation-deficient cells
AU2012100020A6 (en) Fucosylation-deficient cells
ES2834048T3 (es) Células deficientes en fucosilación