TWI511084B - 可自組聚合物及用於微影之方法 - Google Patents

可自組聚合物及用於微影之方法 Download PDF

Info

Publication number
TWI511084B
TWI511084B TW102100959A TW102100959A TWI511084B TW I511084 B TWI511084 B TW I511084B TW 102100959 A TW102100959 A TW 102100959A TW 102100959 A TW102100959 A TW 102100959A TW I511084 B TWI511084 B TW I511084B
Authority
TW
Taiwan
Prior art keywords
features
processor
feature
self
computer
Prior art date
Application number
TW102100959A
Other languages
English (en)
Other versions
TW201333886A (zh
Inventor
Heesch Christianus Martinus Van
Hieronymus Johannus Christiaan Meessen
Original Assignee
Asml Netherlands Bv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asml Netherlands Bv filed Critical Asml Netherlands Bv
Publication of TW201333886A publication Critical patent/TW201333886A/zh
Application granted granted Critical
Publication of TWI511084B publication Critical patent/TWI511084B/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/0008Industrial image inspection checking presence/absence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/03Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring coordinates of points
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70625Dimensions, e.g. line width, critical dimension [CD], profile, sidewall angle or edge roughness
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/0006Industrial image inspection using a design-rule based approach
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/001Industrial image inspection using an image reference approach
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • G06T2207/10061Microscopic image from scanning electron microscope
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20024Filtering details
    • G06T2207/20032Median filtering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20048Transform domain processing
    • G06T2207/20061Hough transform
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Quality & Reliability (AREA)
  • Geometry (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Description

可自組聚合物及用於微影之方法
本發明係關於一種藉由微影來製造器件之方法。本發明係關於一種用以檢查(例如)用於抗蝕劑層之(例如)可自組嵌段共聚物之域置放準確度的方法及裝置。
在用於器件製造之微影中,一直需要縮減微影圖案中之特徵大小,以便增加給定基板區域上之特徵密度。具有處於奈米尺度之臨界尺寸(CD)之較小特徵的圖案允許器件或電路結構之較大集中,從而得到電子器件及其他器件之大小縮減及製造成本的潛在改良。在光微影中,針對較小特徵之推進已引起諸如浸潤微影及極紫外線(EUV)微影之技術之開發。
所謂壓印微影通常涉及使用「印模」(常常被稱作壓印模板)以將圖案轉印至基板上。壓印微影之優點為:特徵之解析度不受到(例如)輻射源之發射波長或投影系統之數值孔徑限制。取而代之,解析度主要限於壓印模板上之圖案密度。
對於光微影及壓印微影兩者,需要提供(例如)壓印模板或其他基板之表面之高解析度圖案化,且可使用化學抗蝕劑以達成此情形。
使用嵌段共聚物(BCP)之自組已被認為是用於將解析度改良至比可藉由先前技術微影方法獲得之值更好之值的潛在方法,或被認為是 用於製備壓印模板之電子束微影之替代例。
可自組嵌段共聚物為有用於奈米製作之化合物,此係因為其可在低於某一溫度(有序-無序轉變溫度TOD )的情況下冷卻時經歷有序-無序轉變,從而引起具有不同化學性質之共聚物嵌段之相分離以形成尺寸為數十奈米或甚至小於10奈米之有序化學相異域。可藉由操控共聚物之不同嵌段類型之分子量及組合物來控制該等域之大小及形狀。該等域之間的界面可具有大約1奈米至5奈米之寬度,且可藉由改質共聚物之嵌段之化學組合物來操控該等界面。
使用嵌段共聚物薄膜作為自組模板之可行性已由Chaikin及Register等人論證(Science 276,第1401頁(1997年))。將尺寸為20奈米之圓點及孔緻密陣列自聚(苯乙烯-嵌段-異戊二烯)薄膜轉印至氮化矽基板。
嵌段共聚物包含不同嵌段,每一嵌段包含一或多個等同單體且沿著聚合物鏈並排地配置。每一嵌段可含有其各別類型之許多單體。因此,舉例而言,A-B嵌段共聚物可具有在該(或每一)A嵌段中之複數個類型A單體及在該(或每一)B嵌段中之複數個類型B單體。舉例而言,合適嵌段共聚物之實例為具有聚苯乙烯(PS)單體(疏水性嵌段)及聚甲基丙烯酸甲酯(PMMA)單體(親水性嵌段)之共價鍵聯式嵌段之聚合物。具有疏水性/親水性不同之嵌段之其他嵌段共聚物可有用。舉例而言,諸如(A-B-C)或(A-B-A)嵌段共聚物之三嵌段共聚物可有用,如可為交替或週期性嵌段共聚物(例如,[-A-B-A-B-A-B-]n 或[-A-B-C-A-B-C]m ,其中n及m為整數)。該等嵌段可藉由共價鍵以直鏈或分支鏈方式或(例如)星形組態而相互連接。
嵌段共聚物可在自組後即形成許多不同相,此取決於嵌段之體積分率、在每一嵌段類型內之聚合度(亦即,在每一各別嵌段內每一各別類型之單體之數目)、溶劑之選用使用,及表面相互作用。當在 薄膜中應用幾何制約時,幾何制約可引起可限制相之數目之額外邊界條件。一般而言,實務上在自組式嵌段共聚物薄膜中觀測到球體(例如,立方體)相、圓柱形(例如,四邊形或六邊形)相及層狀相(亦即,具有立方體、六邊形或層狀空間填充對稱性之自組式相),且所觀測到之相類型可取決於不同聚合物嵌段之相對體積分率。
用作可自組聚合物之合適嵌段共聚物包括但不限於聚(苯乙烯-b-甲基丙烯酸甲酯)、聚(苯乙烯-b-2-乙烯吡啶酮)、聚(苯乙烯-b-丁二烯)、聚(苯乙烯-b-二茂鐵基二甲基甲矽烷)、聚(苯乙烯-b-環氧乙烷)、聚(環氧乙烷-b-異戊二烯)。符號「b」表示「嵌段」。儘管此等嵌段共聚物為二嵌段共聚物實例,但將顯而易見,自組亦可使用三嵌段、四嵌段或其他多嵌段共聚物。
自組式聚合物相可定向成使得對稱軸線平行於或垂直於基板且層狀相及圓柱形相最為微影應用所關注,此係因為層狀相及圓柱形相可分別形成線圖案及間隔圖案以及孔陣列,且可在域類型中之一者隨後被蝕刻時提供良好對比度。
用以將諸如嵌段共聚物之聚合物之自組導引或引導至表面上的兩種方法為表面起伏磊晶(graphoepitaxy)及化學預圖案化(亦被稱為化學磊晶)。在表面起伏磊晶方法中,藉由基板之拓撲預圖案化來導引嵌段共聚物之自組織。自對準式嵌段共聚物可形成平行線性圖案,其中渠溝中之不同聚合物嵌段域之鄰近線係由經圖案化基板界定。舉例而言,若嵌段共聚物為在聚合物鏈內具有A嵌段及B嵌段之二嵌段共聚物(其中A具親水性性質且B具疏水性性質),則A嵌段可在渠溝之側壁亦具親水性性質時組裝成鄰近於該側壁而形成之域。解析度相比於經圖案化基板之解析度可由於嵌段共聚物圖案再分該基板上之預圖案之間隔而得以改良。
在化學預圖案化方法(在本文中被稱作化學磊晶)中,藉由基板上 之化學圖案(亦即,化學模板)來導引嵌段共聚物域之自組。化學圖案與聚合物鏈內之共聚物嵌段類型中至少一者之間的化學親和性可引起域類型中之一者至基板上之化學圖案之對應區上的精確置放(在本文中亦被稱作「牽制(pinning)」)。舉例而言,若嵌段共聚物為具有A嵌段及B嵌段之二嵌段共聚物(其中A具親水性性質且B具疏水性性質),且化學圖案包含在親水性表面上之疏水性區,則B域可優先地組裝至該疏水性區上。如同對準表面起伏磊晶方法一樣,解析度相比於經圖案化基板之解析度可由於嵌段共聚物圖案再分該基板上之經預圖案化特徵之間隔(所謂密度倍增)而得以改良。化學預圖案化不限於線性預圖案;舉例而言,該預圖案可呈2-D圓點陣列之形式,其適合作為供圓柱形相形成嵌段共聚物使用之圖案。舉例而言,可使用表面起伏磊晶及化學預圖案化以導引層狀相或圓柱形相之自組織,其中不同域類型並排地配置於基板之表面上。
在用以實施嵌段共聚物自組在奈米製作中之使用的程序中,作為化學預圖案或表面起伏磊晶模板之部分,可用中性定向控制層來改質基板,以誘發自組圖案相對於基板之較佳定向。對於用於可自組聚合物層中之一些嵌段共聚物,在嵌段中之一者與基板表面之間可存在可引起定向之優先相互作用。舉例而言,對於聚苯乙烯(PS)-b-PMMA嵌段共聚物,PMMA嵌段將優先地濕潤氧化物表面(亦即,具有與氧化物表面之高化學親和性),且此情形可用以誘發自組式圖案定向成平行於該表面之平面。舉例而言,可藉由如下操作來誘發垂直定向:將中性定向層沈積至表面上,從而致使基板表面對嵌段兩者呈中性,換言之,中性定向層針對每一嵌段具有相似化學親和性,使得嵌段兩者以相似方式濕潤該表面處之中性定向層。「垂直定向」意謂每一嵌段之域將並排地定位於基板表面處,其中不同嵌段之域之間的界面區實質上垂直於該表面之平面。
用於化學磊晶及表面起伏磊晶之中性表面特別有用。其可用於磊晶模板之特定定向區之間的表面上。舉例而言,在用以使二嵌段共聚物與A嵌段及B嵌段(其中A具親水性性質且B具疏水性性質)對準之化學磊晶模板中,化學圖案可包含疏水性牽制區,其中中性定向區係在該等疏水性區之間。B域可優先地組裝至疏水性牽制區上,其中A嵌段及B嵌段之若干交替域係遍及化學預圖案之特定(牽制)定向區之間的中性區而對準。
舉例而言,在用以使此二嵌段共聚物對準之表面起伏磊晶模板中,圖案可包含疏水性抗蝕劑特徵,其中中性定向區係在該等疏水性抗蝕劑特徵之間。B域可優先地橫靠疏水性抗蝕劑特徵而組裝,其中A嵌段及B嵌段之若干交替域係遍及表面起伏磊晶模板之特定(牽制)定向抗蝕劑特徵之間的中性定向區而對準。
舉例而言,可藉由使用藉由羥基末端基或某其他反應性端基之反應而共價地鍵聯至基板以在基板表面處氧化的無規共聚物刷來創製中性定向層。在用於中性定向層形成之其他配置中,可使用可交聯無規共聚物或適當矽烷(亦即,具有諸如(三)氯矽烷或(三)甲氧基矽烷之經取代反應性矽烷(亦被稱為矽烷基)端基之分子)以藉由充當基板表面與可自組聚合物層之間的中間層而致使表面呈中性。此以矽烷為基礎之中性定向層通常將作為單層而存在,而可交聯聚合物通常不作為單層而存在且可具有通常小於或等於40奈米之層厚度。舉例而言,中性定向層可在其中具備一或多個間隙以准許可自組層之嵌段類型中之一者直接接觸在中性定向層下方之基板。此情形可有用於將可自組聚合物層之特定嵌段類型之域錨定、牽制或對準至基板,其中基板表面充當特定定向特徵。
可自組聚合物薄層可沈積至基板上、沈積至如上文所闡明之表面起伏磊晶或化學磊晶模板上。用於沈積可自組聚合物之合適方法為 旋塗,此係因為此程序能夠提供經良好界定之均一可自組聚合物薄層。經沈積之可自組聚合物膜之合適層厚度為大約10奈米至100奈米。在沈積嵌段共聚物膜之後,該膜仍可無序或僅部分地有序,且可需要一或多個額外步驟以增進及/或完成自組。舉例而言,可自組聚合物可在自組之前在溶劑中沈積為溶液,其中溶劑移除係(例如)藉由蒸發而進行。
嵌段共聚物之自組為許多小組份(嵌段共聚物)之組裝會引起較大之更複雜結構(自組式圖案中具奈米大小之特徵,在本說明書中被稱作域)之形成的程序。缺陷自然地起因於控制聚合物之自組之物理學。自組受到A-B嵌段共聚物之A/A、B/B及A/B(或B/A)嵌段對之間的相互作用差異(亦即,相互化學親和性差異)驅動,其中用於相分離之驅動力係由針對在考慮中之系統之佛-赫(Flory-Huggins)理論描述。化學磊晶或表面起伏磊晶之使用可極大地縮減缺陷形成。
對於經歷自組之聚合物,可自組聚合物將展現有序-無序溫度TOD 。TOD 可藉由用於評估聚合物之有序/無序狀態之任何合適技術(諸如,差示掃描熱量測定(DSC))量測。若在低於此溫度的情況下發生層形成,則分子將經驅動以進行自組。在高於溫度TOD 的情況下,將形成無序層,其中來自無序A/B域之熵貢獻勝過起因於該層中之相鄰A-A嵌段對與B-B嵌段對之間的有利相互作用之焓貢獻。可自組聚合物亦可展現玻璃轉變溫度Tg ,在低於Tg 的情況下聚合物有效地不動,且在高於Tg 的情況下共聚物分子仍可在層內相對於相鄰共聚物分子而重新定向。玻璃轉變溫度係合適地藉由差示掃描熱量測定(DSC)量測。
如上文所闡明的在有序化期間所形成之缺陷可藉由退火部分地移除。諸如向錯(其為違反旋轉對稱性之線缺陷,例如,其中在指向矢(director)之定向上存在缺陷)之缺陷可藉由與具有相反正負號之另 一其他缺陷或向錯配對予以消減。可自組聚合物之鏈行動性可為用於判定缺陷遷移及消減之因素,且因此,可在鏈行動性高但自組式有序圖案不會丟失的溫度下進行退火。此溫度暗示比聚合物之有序/無序溫度TOD 高或低高達數十℃的溫度,比如,高達約50℃。
可將有序化及缺陷消減組合成單一退火程序或可使用複數個程序,以便提供具有不同化學類型之域(不同嵌段類型之域)之有序圖案的自組式聚合物(諸如,嵌段共聚物)層以用作供微影用之抗蝕劑層。
為了將諸如器件架構或拓撲之圖案自自組式聚合物層轉印至經沈積有自組式聚合物之基板中,通常將藉由所謂突破性蝕刻(breakthrough etching)來移除第一域類型以將第二域類型之圖案提供於基板之表面上,其中基板裸露於第二域類型之圖案特徵之間。
在突破性蝕刻之後,可藉由使用一蝕刻方式之所謂轉印蝕刻來轉印圖案,該蝕刻方式受到第二域類型抵抗且因此在基板表面中形成已使該表面裸露之凹座。在此項技術中為吾人所知的轉印圖案之其他方法可適用於藉由嵌段共聚物之自組而形成之圖案。
儘管上文所闡明的用以將嵌段共聚物自組式層施加至表面之技術提供嵌段共聚物結構在表面上之部分對準,但所得自組式層可展現高位準之不正確對準式聚合物分子,從而導致域置放之缺陷及/或不良均一性,其又可引起臨界尺寸之不理想變化。
舉例而言,在自組式結構中,很可能存在缺陷,此係因為:在大多數狀況下,用於自組之熱力學驅動力係藉由弱分子間相互作用提供且通常具有與熵項相同的數量級。此特性可為用於微影之自組式特徵之開拓中之主要限制中的一者。當前先進技術之自組式層可展現1/103 至1/104 之缺陷率,其被表達為來源於該自組式層之多組件器件之非功能特徵的數目(參見(例如)Yang等人之ACS Nano,2009年3月,第1844至1858頁)。此缺陷率比適於商業有效性之缺陷位準高若干數 量級。此等缺陷可表現為晶界(圖案中之不連續性)或表現為位錯。
嵌段共聚物之自組為許多小組份(嵌段共聚物)之組裝會引起較大之更複雜結構(自組式圖案中具奈米大小之特徵,在本說明書中被稱作域)之形成的程序,且缺陷可自然地起因於控制聚合物之自組之物理學。自組受到(例如)A-B嵌段共聚物之A/A、B/B及A/B(或B/A)嵌段對之間的相互作用差異(亦即,相互化學親和性差異)驅動,其中用於相分離之驅動力係由針對在考慮中之系統之佛-赫(Flory-Huggins)理論描述。
對於經歷自組之嵌段共聚物,該嵌段共聚物將展現有序-無序溫度TOD 。TOD 可藉由用於評估聚合物之有序/無序狀態之任何合適技術(諸如,差示掃描熱量測定(DSC))量測。若在低於此溫度的情況下發生層形成,則分子將經驅動以進行自組。在高於溫度TOD 的情況下,將形成無序層,其中來自無序A/B域之熵貢獻勝過起因於該層中之相鄰A-A嵌段對與B-B嵌段對之間的有利相互作用之焓貢獻。嵌段共聚物亦可展現玻璃轉變溫度Tg,在低於Tg的情況下聚合物有效地不動,且在高於Tg 的情況下共聚物分子仍可在層內相對於相鄰共聚物分子而重新定向。玻璃轉變溫度可合適地藉由差示掃描熱量測定(DSC)量測。
若對於嵌段共聚物而言TOD 小於Tg,則由於在低於TOD 且低於Tg時分子不能夠正確地對準而將不可能形成自組式層或將使自組式層具有高缺陷。用於自組之所要嵌段共聚物之TOD 高於Tg。然而,一旦分子已組裝成類固體層(即使在高於Tg但低於TOD 之溫度下退火時),聚合物分子之行動性就可不足以提供盤繞聚合物鏈之纏結以允許該等分子鬆弛成其最低總自由能狀態。此情形可引起自組式聚合物之域置放誤差,其中不同聚合物嵌段之相分離式域未精確地位於在達到最低總自由能狀態時其將佔據之理想理論晶格位置上。
因此,需要提供一種用以分析及檢查(例如)自組式嵌段共聚物結構且尤其用以檢查該結構之間距及週期性的方法及裝置。可藉由拍攝自動化掃描電子顯微鏡(SEM)影像且使用影像分析軟體來分析該影像而進行此操作。通常,橫越基板而產生圖案之數百個影像,以便獲得有意義的統計且判定橫越基板之展度。歸因於大資料量,藉由影像辨識演算法自動地執行分析。
對於嵌段共聚物,取決於該聚合物之每一嵌段之分子量、化學磊晶圖案化之間距、表面起伏磊晶中之渠溝寬度及處理條件,獲得某一週期性及孔大小(通常小於30奈米)。通常,所欲應用將具有某一最大置放誤差(PLE)之規格及針對臨界尺寸均一性(CDU)之規格。為了分析自組式嵌段共聚物結構是否滿足此等規格,使用自動化影像分析。
然而,歸因於自組程序之性質,存在自組式特徵之週期性之統計展度,其為針對光學微影通常不會發生之置放誤差之額外原因。舉例而言,在表面起伏磊晶之狀況下,渠溝可引起具有兩個不同展度之兩個不同週期性;即,一週期性平行於渠溝且一週期性垂直於渠溝。對於化學磊晶,通常使用二維表面圖案以使六邊形經圖案化嵌段共聚物對準,且在此狀況下,由於相對於對準圖案之小旋轉而將存在週期性變化。概括而言,自組式嵌段共聚物可顯示週期性之高斯分佈,且結果,置放誤差係由自組圖案之任意起始點與週期性之分佈的組合造成。用於SEM影像分析之現有方法及軟體在連續改變之週期性的情況下不能準確地分析此等結構。
根據本發明之一實施例,提供一種用以進行一結構之尺寸參數之一分析的電腦實施方法,該方法實施於包含與一記憶體通信之一處理器之一電腦中,且該方法包含:向該處理器輸入該結構之影像資料; 在該處理器中使用一濾波器以創製一經濾波影像;藉由該處理器偵測該經濾波影像中對應於該結構中之域之特徵;藉由該處理器判定每一特徵之座標;藉由該處理器判定每一特徵之一臨界尺寸;藉由該處理器判定為共線特徵之該等特徵之至少一集合;藉由該處理器使一週期性曲線擬合於該等共線特徵以判定該等特徵之週期性;及藉由該處理器藉由比較經偵測特徵位置與預期位置來獲得該等特徵之置放誤差。
在一實施例中,該結構為用於微影之一嵌段共聚物結構或一自組式嵌段共聚物結構。
在一實施例中,該濾波器包含一中值濾波器。
在一實施例中,該等共線特徵係藉由該處理器使用一變換函數而判定。在一實施例中,該變換函數為一霍夫(Hough)變換。
在一實施例中,該等座標係藉由計算一界限框之中項而判定。
在一實施例中,該臨界尺寸為該特徵之一直徑或為該特徵之一面積。在一實施例中,該方法可進一步包含藉由該處理器計算一臨界尺寸均一性。該臨界尺寸均一性可被計算為所有經偵測特徵之該等臨界尺寸之標準偏差的三倍。
在一實施例中,該方法可進一步包含藉由該處理器排除被認為有缺陷之特徵。舉例而言,一特徵可在具有小於某一(例如,預定義)大小之一直徑時及/或在經定位成較遠離於柵格之一交叉點而大於該柵格之週期性之某一分率時被認為有缺陷。
視情況,該方法可進一步包含將在缺陷特徵之數目方面之一缺陷度定義為預期特徵之總數目之一比例。
在一實施例中,該等置放誤差包含個別特徵之局域置放誤差。
在一實施例中,該等置放誤差包含藉由該處理器比較一經偵測特徵之座標與根據使該週期性曲線擬合於該等共線特徵而獲得之一柵格而獲得的絕對置放誤差。
在一實施例中,該等置放誤差包含藉由該處理器比較一經偵測特徵之座標與具有某一週期性之一柵格而獲得的相對置放誤差。
在一實施例中,該方法可進一步包含藉由該處理器比較該等尺寸參數與某些參數要求。
根據另一態樣,提供一種用以進行一結構之尺寸參數之一分析的電腦實施方法,該方法實施於包含與一記憶體通信之一處理器之一電腦中,且該方法包含:向該處理器輸入該結構之影像資料;在該處理器中使用一濾波器以創製一經濾波影像;藉由該處理器偵測該經濾波影像中對應於該結構中之域之特徵;及藉由該處理器判定每一特徵之一臨界尺寸。
根據另一態樣,提供一種用以進行一結構之尺寸參數之一分析的電腦實施方法,該方法實施於包含與一記憶體通信之一處理器之一電腦中,且該方法包含:向該處理器輸入該結構之影像資料;在該處理器中使用一濾波器以創製一經濾波影像;藉由該處理器偵測該經濾波影像中對應於該結構中之域之特徵;藉由該處理器判定每一特徵之座標;及藉由該處理器判定為共線特徵之該等特徵之至少一集合及經定位有該等特徵之一對應線。
根據另一態樣,提供一種用以進行一結構之尺寸參數之一分析的系統,該系統包含一電腦,該電腦包含與一記憶體通信之一處理器,該處理器經組態以執行包含如下各者之一方法:接收該結構之影像資料作為一輸入;使用一濾波器來創製一經濾波影像;偵測該經濾波影像中對應於該結構中之域之特徵;判定每一特徵之座標;判定每一特徵之一臨界尺寸;判定為共線特徵之該等特徵之至少一集合;使一週期性曲線擬合於該等共線特徵以判定該等特徵之週期性;及藉由比較經偵測特徵位置與預期位置來獲得該等特徵之置放誤差。
在一實施例中,該結構為用於微影之一嵌段共聚物結構或一自組式嵌段共聚物結構。
在一實施例中,該處理器將一中值濾波器實施為該濾波器。
在一實施例中,該處理器使用一變換函數來判定共線特徵。在一實施例中,該變換函數為一霍夫變換。
在一實施例中,該處理器藉由計算一界限框之中項來判定該等座標。
在一實施例中,該臨界尺寸為該特徵之一直徑,及/或為該特徵之一面積。
在一實施例中,該處理器經進一步組態以計算一臨界尺寸均一性。在一實施例中,該臨界尺寸均一性被計算為所有經偵測特徵之該等臨界尺寸之標準偏差的三倍。
在一實施例中,該處理器經組態以排除被認為有缺陷之特徵。 舉例而言,一特徵可在具有小於某一(例如,預定義)大小之一直徑時被認為有缺陷,及/或一特徵可在經定位成較遠離於柵格之一交叉點而大於該柵格之週期性之某一分率時被認為有缺陷。在一實施例中,該處理器可經組態以將在缺陷特徵之數目方面之一缺陷度定義為預期特徵之總數目之一比例。
在一實施例中,該等置放誤差包含個別特徵之局域置放誤差。
在一實施例中,該等置放誤差包含絕對置放誤差,且該處理器經組態以藉由比較一經偵測特徵之座標與根據使該週期性曲線擬合於該等共線特徵而獲得之一柵格來獲得該等絕對置放誤差。
在一實施例中,該等置放誤差包含相對置放誤差,且該處理器經組態以藉由比較一經偵測特徵之座標與具有某一週期性之一柵格來獲得該等相對置放誤差。
在一實施例中,該處理器經組態以比較該等尺寸參數與某些參數要求。
根據另一態樣,提供一種用以進行一結構之尺寸參數之一分析的系統,該系統包含一電腦,該電腦包含與一記憶體通信之一處理器,該處理器經組態以執行包含如下各者之一方法:接收該結構之影像資料作為一輸入;使用一濾波器來創製一經濾波影像;偵測該經濾波影像中對應於該結構中之域之特徵;及判定每一特徵之一臨界尺寸。
根據另一態樣,提供一種用以進行一結構之尺寸參數之一分析的系統,該系統包含一電腦,該電腦包含與一記憶體通信之一處理器,該處理器經組態以執行包含如下各者之一方法:接收該結構之影像資料作為一輸入;使用一濾波器來創製一經濾波影像; 偵測該經濾波影像中對應於該結構中之域之特徵;判定每一特徵之座標;及判定為共線特徵之該等特徵之至少一集合及經定位有該等特徵之一對應線。
亦應理解,本發明之一實施例可包括一種電腦程式產品,該電腦程式產品在執行於一電腦上時使該電腦進行如本文所描述之一方法。
1‧‧‧基板
2‧‧‧渠溝
3‧‧‧側壁
4‧‧‧底部表面
5‧‧‧層/自組式聚合物結構
10‧‧‧基板
11‧‧‧牽制條紋
12‧‧‧層狀相層/自組式聚合物結構
13‧‧‧表面
30‧‧‧球體
31‧‧‧連續域
32‧‧‧圓柱
34‧‧‧片層
35‧‧‧片層
36‧‧‧連續域
37‧‧‧圓柱
38‧‧‧連續域
39‧‧‧球體
41‧‧‧域
42‧‧‧域
43‧‧‧域
45‧‧‧理想置放位置
46‧‧‧第一域
100‧‧‧掃描電子顯微鏡(SEM)
101‧‧‧記憶體
102‧‧‧處理器
102a‧‧‧2D中值濾波器
102b‧‧‧霍夫變換
103‧‧‧輸出端
A‧‧‧嵌段
B‧‧‧嵌段
現在將藉由實例且參看附圖來描述本發明之一些實施例,在該等圖中:圖1A至圖1C示意性地描繪藉由一個域之選擇性蝕刻對起伏圖案之表面起伏磊晶及形成而將A-B嵌段共聚物有向地自組至基板上;圖2A至圖2C示意性地描繪藉由一個域之選擇性蝕刻對起伏圖案之化學預圖案化及形成而將A-B嵌段共聚物有向地自組至基板上;圖3A至圖3E示意性地描繪在聚苯乙烯嵌段及PMMA嵌段之相對體積分率相比於彼此而變化時由聚(苯乙烯-b-甲基丙烯酸甲酯)聚合物形成之不同相;圖4(包含圖4A及圖4B)示意性地描繪自組成圖4A中具有2-D六邊形對稱性之圓柱形相及圖4B中之層狀相的嵌段共聚物,該等描繪分別論證域置放誤差及線邊緣粗糙度;圖5為根據本發明之一實施例的裝置之示意性方塊圖;圖6為展示根據本發明之一實施例的方法之流程圖;圖7為自組式嵌段共聚物結構之SEM影像的實例;圖8展示在經由中值濾波器之處理之後的圖7之結構;圖9展示來自圖8之一個域的詳細視圖;圖10為展示經偵測特徵之結構的影像; 圖11展示根據對圖10之影像執行霍夫變換而獲得的標繪圖;圖12a及圖12b展示週期性曲線對自霍夫變換獲得之結果的擬合;圖13展示組合經偵測特徵及經擬合特徵之影像;及圖14展示組合經偵測特徵及經判定特徵之影像。
圖1A展示基板1,其中形成於基板1中之渠溝2係由側壁3及底部表面4界限。在圖1B中,具有(例如)親水性A嵌段及(例如)疏水性B嵌段之可自組A-B嵌段共聚物已沈積至渠溝中以形成具有A域及B域之交替條紋之層5,A域及B域已沈積為在該嵌段共聚物之沈積期間分離成離散微分離式週期性域之層狀相。此情形被稱作表面起伏磊晶。類型A域已鄰近於側壁3而凝核,側壁3亦(例如)具親水性。在圖1C中,類型A域已藉由選擇性化學蝕刻而移除,從而留下類型B域以在渠溝中形成起伏圖案,其中類型B域可充當用於(例如)藉由進一步化學蝕刻對底部表面4進行後續圖案化之模板。選擇性移除可(例如)藉由在共聚物之嵌段之間的鍵聯劑之選擇性光降解或光裂解及該等嵌段中之一者之後續增溶而達成。自組式聚合物結構5之間距或波長及渠溝4之寬度經配置成使得域之數個交替條紋可配合至該渠溝中,其中類型A域抵靠每一側壁。
圖2A展示具有呈牽制條紋11之形式之化學圖案的基板10,牽制條紋11已化學地形成於表面13上以提供具有針對聚合物之類型A嵌段之較高親和性的區。在圖2B中,具有(例如)親水性A嵌段及(例如)疏水性B嵌段之可自組A-B嵌段共聚物已沈積至基板10之表面13上以形成具有A域及B域之交替條紋之層狀相層12,A域及B域已在該嵌段共聚物之沈積期間相分離成離散微分離式週期性域。此情形被稱作化學預圖案化。類型A域已在牽制條紋11之頂上凝核,牽制條紋11亦(例如)具親水性。在圖1C中,已藉由選擇性化學蝕刻而移除類型A域, 從而留下類型B域以在表面13上形成起伏圖案,其中類型B域可充當用於(例如)藉由進一步化學蝕刻對表面13進行後續圖案化之模板。自組式聚合物結構12之間距或波長及牽制條紋11之間隔經配置成使得域之數個交替條紋可配合於牽制條紋11之間,其中類型A域係在每一牽制條紋11之頂上。
在圖3中,圖3A至圖3B展示由表面上之薄膜中之自組式聚(苯乙烯-b-甲基丙烯酸甲酯)嵌段共聚物形成之不同相的進程。在圖3A中,展示立方體相,其中對於80:20之比率PS:PMMA,在PS之連續域31內,不連續域為PMMA之球體30。
隨著比率PS:PMMA縮減至70:30,形成圓柱形相,其中不連續域為PMMA之圓柱32且連續域31為PS。在50:50比率下,形成如圖3C所示之層狀相,其具有PMMA之一或多個片層34及PS之一或多個片層35。在30:70 PS:PMMA之比率下,形成圖3D所示之倒轉圓柱形相,其中不連續域為PS之圓柱37且連續域36為PS。在圖3E所示之20:80之比率下,形成倒轉立方體相,其中在PMMA之連續域38內,不連續域為PS之球體39。
圖4A示意性地描繪自組成具有2-D六邊形對稱性之圓柱形相的嵌段共聚物。該嵌段共聚物之一個嵌段之不連續域應在理想六邊形晶格上均一地間隔,其係由該嵌段共聚物之另一嵌段之連續域分離。虛線之配置展示理想理論六邊形陣列,嵌段共聚物應自組至該理想理論六邊形陣列上,其中域41被展示成正確地置放於理想晶格上。此等經理想置放域相互分離達在其中心之間所量測之間距L0 。域42被展示成自理想晶格誤位,使得其與中心域相隔距離L1 ,其中L1 小於L0 。域43被展示成自晶格位移,因此,其與中心域相隔距離L2 ,其中L2 大於L0
此等置放誤差在本文中被稱作域置放誤差。或者或另外,域之大小可存在差異。此情形可導致自組式聚合物陣列之不良臨界尺寸均 一性(不良CDU)。
在圖4B中,虛線45展示形成層狀相之嵌段共聚物之第一嵌段之第一域46的理想置放位置,第一域46係由該嵌段共聚物之第二嵌段之第二域彼此分離。自第一域46之理想置放且因此自第一域46之線性的偏差在本文中被稱作線邊緣粗糙度。
圖5示意性地展示根據本發明之一實施例的用以分析及檢查自組式嵌段共聚物結構中諸如臨界尺寸均一性及/或置放誤差之一或多個參數的裝置。該裝置包括:包括影像捕獲機構之掃描電子顯微鏡(SEM)100;用以儲存由掃描電子顯微鏡100獲得之SEM影像之記憶體101;處理器102;及輸出端103。圖5之裝置可用以進行下文將參看圖6之流程圖及參看圖7至圖14所描述之實例而描述的方法。
在一實施例中,使用掃描電子顯微鏡100以分析經形成有表面起伏磊晶渠溝之基板,每一表面起伏磊晶渠溝之寬度為約200奈米且經填充有呈六邊形圖案之自組式嵌段共聚物。檢驗基板上之十個位置,每一位置具有十個影像,從而使得總共有100個SEM影像,該100個SEM影像經捕獲及儲存於記憶體101中。圖7展示未經處理SEM影像之實例,其展示三列域之六邊形陣列。
參看圖6之流程圖,在步驟1中,處理器102自記憶體101內之目錄讀取SEM影像。在步驟2中,處理器將2D中值濾波器102a施加至影像以產生如圖8所示之黑色影像及白色影像。圖9更詳細地展示來自圖8之域中之一者。中值濾波器包含用作預處理步驟以在進一步影像處理之前移除雜訊的已知非線性數位濾波技術。濾波器102a之強度將由SEM影像之解析度判定,且通常經設定成使得自周圍雜訊移除嵌段共聚物結構。中值濾波器102a可由如在此項技術中為吾人所知的硬體元件及/或軟體元件之任何組合形成,且雖然出於說明方便起見而在圖5中將中值濾波器102a展示為處理器102之部分,但其亦可形成為分離 處理器之部分,其中處理器102將發送影像資料至該中值濾波器以供處理,且經處理影像資料將由中值濾波器102a傳回至處理器102以供進一步處理。可用於本發明之實施例中的其他濾波器包括標準2D線性濾波或維納(Weiner)濾波器。
在步驟3中,進一步分析在由2D中值濾波器進行處理之後的影像。詳言之,標註所有白色特徵,如由Haralick、Robert M等人之Computer and Robot Vision (第1卷,Addison-Wesley,1992年,第28至48頁)所定義。對於每一經標註特徵,在步驟4中,藉由(例如)藉由使用Matlab中之bwlabel 函數來計算界限框之中項以提供該特徵之座標來判定重心。在步驟5中,判定每一經偵測特徵之面積(在像素方面),且計算對應寬度,例如,在假定特徵為圓形的情況下之直徑。在此實例(針對六邊形充填圓柱形相)中,此經計算直徑被認為是臨界尺寸CD。在步驟6中,基於高斯分佈之假定而將CDU判定為所有特徵之直徑之標準偏差的三倍。圖10展示由此等步驟引起之經偵測特徵,其中經偵測特徵被標註有指示其位置之三角形。
CD及CDU為在判定自組式嵌段共聚物結構之品質及該結構是否滿足應用規格時的顯著參數。因此,在步驟7中,可將步驟5及6之結果自處理器102輸出至輸出端103。輸出端103可採取任何合適形式且可包含在視覺顯示單元上呈經列印形式之資料輸出,或可包含呈待儲存於記憶體101中或某其他記憶體中之形式之資料,或如可用於任何其他分析程序中之資料。輸出端103亦可包含可供進行進一步處理之電腦或電腦終端機。視情況,在步驟7中,可比較資料與應用要求,且資料輸出可包括經判定CD、CDU與此等規格之比較,連同自組式結構是否滿足規格之指示。
在步驟7處輸出之資料表示獲得關於自組式結構之分析結果的顯著階段。然而,在實施例中,可自步驟2之後所產生之經濾波影像開 始獲得額外資訊,此於現在將予以描述。
在步驟8中,使經濾波影像經受廣義霍夫變換。霍夫變換係由處理器102進行且在圖5中由元件符號102b展示。霍夫變換102b可由如在此項技術中為吾人所知的硬體元件及/或軟體元件之任何組合形成,且雖然出於說明方便起見而在圖5中將霍夫變換102b展示為處理器102之部分,但其亦可形成為分離處理器之部分,其中處理器102將發送影像資料至該霍夫變換以供處理,且經處理影像資料將傳回至處理器102以供進一步處理。霍夫變換為用於影像分析中以偵測簡單形狀之技術,尤其是在待偵測之形狀可不完美的情況下。在廣義霍夫變換中,當廣義霍夫變換用以偵測直線時,將影像點(x,y) 轉換成參數空間(r,θ) ,其中r 為該線與原點相隔之距離,而θ 為在使用方程式r =xcosθ +ysinθ 的情況下在垂直線rx 軸之間的角度。針對給定影像點i 之點(x i ,y i ) 為吾人所知,而rθ 係未知的且被判定。若rθ 之所有可能值被計算且標繪於霍夫空間中,則其給出彎曲線。當在霍夫空間中進行檢視時,在笛卡爾空間中共線之點i 係顯而易見的,此係因為其給出在共同點(r,θ) 處交叉之曲線,此可自圖11被明確地看出,圖11展示本發明之實例中之此霍夫變換的結果。
在步驟9中,處理器102自霍夫變換採取對應於垂直線及水平線之值,且使該等值與各別非線性週期性(例如,正弦)曲線擬合,此可自圖12a及圖12b被看出。在此實例中應理解,存在兩個線集合--且因此存在兩個潛在不同週期性--一個「垂直」線集合係在渠溝之方向上,另一「水平」線集合係在垂直於渠溝之方向上。圖12a中展示針對垂直線之擬合,圖12b中展示針對水平線之擬合。在週期性(例如,正弦)函數之水平方向及垂直方向上之擬合週期性表示自組式嵌段共聚物結構之週期性(取決於該結構之定向,需要將在該等方向上中之一者上之週期性除以因數0.53),且可由輸出端103輸出作為獨立結 果及/或以供進一步處理。
在步驟10中,可將擬合週期性資料與經偵測特徵(圖10)進行組合以判定局域置放誤差(LPE),如圖13所說明。詳言之,在使用擬合正弦函數(圖12a及圖12b)之最大值之位置的情況下,柵格經建構成使得柵格點對應於步驟4中所獲得之經偵測特徵(圖10)之座標。藉由採取經由垂直線及水平線之霍夫變換而擬合的週期性函數之最大值且使其配對以形成由圖10之正方形所示之柵格座標來進行此建構。接著,使用最近鄰搜尋演算法以使柵格座標與對應先前經偵測特徵(由圖13之三角形展示)之重心配對。對於完美規則自組式結構,柵格點與座標將確切地重疊,但在存在置放誤差的情況下,其將不確切地重疊。在步驟10中,判定每一特徵在xy 方向上與其對應柵格點相隔之距離以計算其局域置放誤差,局域置放誤差可由輸出端103輸出。
可判定置放誤差之其他量度。舉例而言,在步驟11中,可使用如由步驟9所定義之平均預定週期性來計算相對置放誤差(RPE)以創製柵格,柵格經置放成使得縮減或最小化特徵之座標與對應柵格點相隔之總距離。藉由判定每一特徵在xy 方向上與其關聯柵格點相隔之絕對距離,可計算統計置放誤差,但在此狀況下,其為相對置放誤差(RPE)。可在步驟12中輸出RPE值。另一選項為步驟13,其中使用具有某一(例如,預定義)週期性之柵格來判定絕對置放誤差(APE),且在步驟14中判定及輸出與每一特徵之柵格點相隔之位置及距離。距離對應於APE。圖14中說明APE及RPE之計算。
在步驟15中,可判定及排除有缺陷域。藉由自步驟4採取經偵測特徵來進行此判定及排除,且在一特徵小於某一(例如,預定)大小(例如,在直徑及/或面積方面)的情況下,該特徵被認為有缺陷且在置放誤差之計算時被忽略。此外,或者或另外,排除與最近柵格點相隔大於週期性之某一(例如,預定)分率之距離的特徵。所關注區域中之柵 格點之數目與特徵之數目之間的差被定義為缺陷之數目,且缺陷度可被定義為柵格之格胞之每單位面積上缺陷之數目對柵格點之總數目的比率。
下文亦在已編號條項中描述實施例:
1.一種用以進行一結構之尺寸參數之一分析的方法,該方法實施於包含與一記憶體通信之一處理器之一電腦中,且該方法包含:在該處理器中使用一濾波器以自該結構之影像資料創製一經濾波影像;藉由該處理器偵測該經濾波影像中對應於該結構中之域之特徵;藉由該處理器判定每一特徵之座標;藉由該處理器判定每一特徵之一臨界尺寸;藉由該處理器判定為共線特徵之該等特徵之至少一集合;藉由該處理器使一週期性曲線擬合於該等共線特徵以判定該等特徵之週期性;及藉由該處理器藉由比較經偵測特徵位置與預期位置來獲得該等特徵之置放誤差。
2.如實施例1之方法,其中該結構為用於微影之一嵌段共聚物結構或一自組式嵌段共聚物結構。
3.如實施例1或2之方法,其中該濾波器包含一中值濾波器。
4.如實施例1至3中任一項之方法,其中該等共線特徵係藉由該處理器使用一變換函數而判定。
5.如實施例4之方法,其中該變換函數為一霍夫變換。
6.如前述已編號實施例中任一項之方法,其中該等座標係藉由計算一界限框之中項而判定。
7.如前述已編號實施例中任一項之方法,其中該臨界尺寸為該特 徵之一直徑。
8.如實施例1至6中任一項之方法,其中該臨界尺寸為一面積。
9.如前述實施例中任一項之方法,其進一步包含藉由該處理器計算一臨界尺寸均一性。
10.如實施例9之方法,其中該臨界尺寸均一性被計算為所有經偵測特徵之該等臨界尺寸之標準偏差的三倍。
11.如前述實施例中任一項之方法,其進一步包含藉由該處理器排除被認為有缺陷之特徵。
12.如實施例11之方法,其中一特徵在具有小於某一大小之一直徑時被認為有缺陷。
13.如實施例11之方法,其中一特徵在經定位成較遠離於一柵格之一交叉點而大於該柵格之週期性之某一分率時被認為有缺陷。
14.如實施例10至13中任一項之方法,其進一步包含將在缺陷特徵之數目方面之一缺陷度定義為預期特徵之總數目之一比例。
15.如前述實施例中任一項之方法,其中該等置放誤差包含個別特徵之局域置放誤差。
16.如前述已編號實施例中任一項之方法,其中該等置放誤差包含藉由該處理器比較一經偵測特徵之座標與根據使該週期性曲線擬合於該等共線特徵而獲得之一柵格而獲得的絕對置放誤差。
17.如前述已編號實施例中任一項之方法,其中該等置放誤差包含藉由該處理器比較一經偵測特徵之座標與具有某一週期性之一柵格而獲得的相對置放誤差。
18.如前述已編號實施例中任一項之方法,其進一步包含藉由該處理器比較該等尺寸參數與某些參數要求。
19.一種用以進行一結構之尺寸參數之一分析的方法,該方法實施於包含與一記憶體通信之一處理器之一電腦中,且該方法包含: 在該處理器中使用一濾波器以自該結構之影像資料創製一經濾波影像;藉由該處理器偵測該經濾波影像中對應於該結構中之域之特徵;及藉由該處理器判定每一特徵之一臨界尺寸。
20.如實施例19之方法,其中該結構為用於微影之一嵌段共聚物結構或一自組式嵌段共聚物結構。
21.如實施例19或20之方法,其中該臨界尺寸為一直徑。
22.如實施例19或20之方法,其中該臨界尺寸為一面積。
23.如實施例19至22中任一項之方法,其進一步包含藉由該處理器計算一臨界尺寸均一性。
24.如實施例23之方法,其中該臨界尺寸均一性被計算為所有經偵測特徵之該等臨界尺寸之標準偏差的三倍。
25.如實施例19至24中任一項之方法,其中該濾波器為一中值濾波器。
26.一種用以進行一結構之尺寸參數之一分析的方法,該方法實施於包含與一記憶體通信之一處理器之一電腦中,且該方法包含:在該處理器中使用一濾波器以自該結構之影像資料創製一經濾波影像;藉由該處理器偵測該經濾波影像中對應於該結構中之域之特徵;藉由該處理器判定每一特徵之座標;及藉由該處理器判定為共線特徵之該等特徵之至少一集合及經定位有該等特徵之一對應線。
27.如實施例26之方法,其中該結構為用於微影之一嵌段共聚物結構或一自組式嵌段共聚物結構。
28.如實施例26或27之方法,其中該等共線特徵係藉由該處理器使用一變換函數而判定。
29.如實施例28之方法,其中該變換函數為一霍夫變換。
30.如實施例26至29中任一項之方法,其進一步包含藉由該處理器使一週期性曲線擬合於該等共線特徵以判定該等特徵之週期性。
31.如實施例26至30中任一項之方法,其進一步包含藉由該處理器比較經偵測特徵位置與預期位置來獲得該等特徵之置放誤差。
32.如實施例31之方法,其進一步包含藉由該處理器比較該等特徵之該等經偵測座標與該線以判定該等特徵之偏移值。
33.一種用以進行一結構之尺寸參數之一分析的系統,該系統包含一電腦,該電腦包含與一記憶體通信之一處理器,該處理器經組態以執行包含如下各者之一方法:接收該結構之影像資料作為一輸入;使用一濾波器來創製一經濾波影像;偵測該經濾波影像中對應於該結構中之域之特徵;判定每一特徵之座標;判定每一特徵之一臨界尺寸;判定為共線特徵之該等特徵之至少一集合;使一週期性曲線擬合於該等共線特徵以判定該等特徵之週期性;及藉由比較經偵測特徵位置與預期位置來獲得該等特徵之置放誤差。
34.如實施例33之系統,其中該結構為用於微影之一嵌段共聚物結構或一自組式嵌段共聚物結構。
35.如實施例33或34之系統,其中該濾波器為一中值濾波器。
36.如實施例33至35中任一項之系統,其中該處理器使用一變換 函數來判定共線特徵。
37.如實施例36之系統,其中該處理器實施一霍夫變換。
38.如實施例33至37中任一項之系統,其中該處理器藉由計算一界限框之中項來判定該等座標。
39.如實施例33至38中任一項之系統,其中該臨界尺寸為該特徵之一直徑。
40.如實施例33至38中任一項之系統,其中該臨界尺寸為一面積。
41.如實施例33至40中任一項之系統,其中該處理器經組態以計算一臨界尺寸均一性。
42.如實施例41之系統,其中該臨界尺寸均一性被計算為所有經偵測特徵之該等臨界尺寸之標準偏差的三倍。
43.如實施例33至42中任一項之系統,其中該處理器經組態以排除被認為有缺陷之特徵。
44.如實施例43之系統,其中一特徵在具有小於某一大小之一直徑時被認為有缺陷。
45.如實施例43之系統,其中一特徵在經定位成較遠離於一柵格之一交叉點而大於該柵格之週期性之某一分率時被認為有缺陷。
46.如實施例43至45中任一項之系統,其中該處理器經組態以將在缺陷特徵之數目方面之一缺陷度定義為預期特徵之總數目之一比例。
47.如實施例33至46中任一項之系統,其中該等置放誤差包含個別特徵之局域置放誤差。
48.如實施例33至47中任一項之系統,其中該等置放誤差包含絕對置放誤差,且該處理器經組態以藉由比較一經偵測特徵之座標與根據使該週期性曲線擬合於該等共線特徵而獲得之一柵格來獲得該等絕 對置放誤差。
49.如實施例33至47中任一項之系統,其中該等置放誤差包含相對置放誤差,且該處理器經組態以藉由比較一經偵測特徵之座標與具有某一週期性之一柵格來獲得該等相對置放誤差。
50.如實施例33至49中任一項之系統,其中該處理器經組態以比較該等尺寸參數與某些參數要求。
51.一種用以進行一結構之尺寸參數之一分析的系統,該系統包含一電腦,該電腦包含與一記憶體通信之一處理器,該處理器經組態以執行包含如下各者之一方法:接收該結構之影像資料作為一輸入;使用一濾波器來創製一經濾波影像;偵測該經濾波影像中對應於該結構中之域之特徵;及判定每一特徵之一臨界尺寸。
52.如實施例51之系統,其中該結構為用於微影之一嵌段共聚物結構或一自組式嵌段共聚物結構。
53.如實施例51或52之系統,其中該臨界尺寸為一直徑。
54.如實施例51或52之系統,其中該臨界尺寸為一面積。
55.如實施例51至54中任一項之系統,其中該處理器經組態以計算一臨界尺寸均一性。
56.如實施例55之系統,其中該臨界尺寸均一性被計算為所有經偵測特徵之該等臨界尺寸之標準偏差的三倍。
57.如實施例51至55中任一項之系統,其中該處理器經組態以實施一中值濾波器。
58.一種用以進行一結構之尺寸參數之一分析的系統,該系統包含一電腦,該電腦包含與一記憶體通信之一處理器,該處理器經組態以執行包含如下各者之一方法: 接收該結構之影像資料作為一輸入;使用一濾波器來創製一經濾波影像;偵測該經濾波影像中對應於該結構中之域之特徵;判定每一特徵之座標;及判定為共線特徵之該等特徵之至少一集合及經定位有該等特徵之一對應線。
59.如實施例58之系統,其中該結構為用於微影之一嵌段共聚物結構或一自組式嵌段共聚物結構。
60.如實施例58或59之系統,其中該處理器經組態以使用一變換函數來判定該等共線特徵。
如實施例60之系統,其中該變換函數為一霍夫變換。
61.如實施例58至61中任一項之系統,其中該處理器經進一步組態以使一週期性曲線擬合於該等共線特徵以判定該等特徵之週期性。
62.如實施例58至62中任一項之系統,其中該處理器經進一步組態以藉由比較經偵測特徵位置與預期位置來獲得該等特徵之置放誤差。
64.如實施例63之系統,其中該處理器經進一步組態以比較該等特徵之該等經偵測座標與該線以判定該等特徵之偏移值。
65.一種攜載一電腦程式之電腦可讀媒體,該電腦程式在執行於一電腦上時使該電腦進行如實施例1至32中任一項之方法。
66.一種電腦程式產品,其在執行於一電腦上時使該電腦進行如實施例1至32中任一項之方法。
在本發明之實施例中,可比較關於臨界尺寸、臨界尺寸均一性、週期性、置放誤差及缺陷度之資料與最小應用規格以判定結構是否適於使用。可自動地進行此比較,且可在結構未達到一或多個規格時給出警告信號。
因此將看出,在一實施例中,提供一種用以分析自組式嵌段共聚物結構之一或多個屬性且尤其用以獲得關於臨界尺寸、臨界尺寸均一性、週期性、置放誤差及/或缺陷度之資料的裝置及方法。此資料可用以確認出自組式嵌段共聚物結構滿足特定應用規格,及/或判定特定自組程序之可靠性。
雖然在上文所給出之實例中所分析之結構為藉由表面起伏磊晶形成之六邊形結構,但可分析其他結構,包括由化學磊晶形成之二維結構、大延伸型陣列、諸如單列域之一維結構,及甚至隔離式單域。舉例而言,在單列域之狀況下,根據本發明之一實施例的方法可用以判定在一個維度上沿著該列之域之週期性,且亦判定在另一方向上該等域自該列之偏移。對於隔離式單域,可計算其座標及臨界尺寸(諸如,直徑及/或面積)。
雖然在本發明之一些實施例中可全部判定臨界尺寸(及臨界尺寸均一性)、週期性、(各種類型之)置放誤差及缺陷度,但在其他實施例中可足夠的是判定(比如)僅臨界尺寸及臨界尺寸均一性或僅置放誤差,且因此,本發明之一些實施例可僅使用上述方法之選定步驟。另外,雖然本發明在用於微影之自組式嵌段共聚物結構之內容背景中特別有用,但本發明不限於此情形,且可用於嵌段共聚物結構被形成(不管為自組式抑或其他)且需要尺寸分析之其他內容背景中。此外,雖然本文中之揭示內容已集中於嵌段共聚物結構,但本發明之一實施例適用於其他結構,諸如,具有域或具有與嵌段共聚物結構相似之特性之結構。
在以上實例中,可在處理器102中藉由軟體、韌體或硬體之任何組合進行影像處理步驟。可藉由執行於另外習知硬體上之軟體或藉由經特定組態之硬體或藉由任何組合進行影像處理步驟。舉例而言,本發明之實施例可採取如下形式:電腦程式,其含有描述如上文所揭示 之方法的機器可讀指令之一或多個序列;或資料儲存媒體(例如,半導體記憶體、磁碟或光碟),其具有儲存於其中之此電腦程式。另外,可以兩個或兩個以上電腦程式來體現機器可讀指令。可將兩個或兩個以上電腦程式儲存於一或多個不同記憶體及/或資料儲存媒體上。
雖然上文已描述本發明之特定實施例,但應瞭解,可以與所描述之方式不同的其他方式來實踐本發明。

Claims (23)

  1. 一種用以進行一結構之尺寸參數之一分析的方法,該方法實施於包含與一記憶體通信之一處理器之一電腦中,且該方法包含:在該處理器中使用一濾波器以自該結構之影像資料創製一經濾波影像;藉由該處理器偵測該經濾波影像中對應於該結構中之域之特徵;藉由該處理器判定每一特徵之座標;藉由該處理器判定每一特徵之一臨界尺寸;藉由該處理器判定為共線特徵之該等特徵之至少一集合;藉由該處理器使一週期性曲線擬合於該等共線特徵以判定該等特徵之週期性;及藉由該處理器藉由比較經偵測特徵位置與預期位置來獲得該等特徵之置放誤差。
  2. 如請求項1之方法,其中該結構為用於微影之一嵌段共聚物結構或一自組式嵌段共聚物結構。
  3. 如請求項1或2之方法,其中該濾波器包含一中值濾波器。
  4. 如請求項1或2之方法,其中該等共線特徵係藉由該處理器使用一變換函數而判定。
  5. 如請求項4之方法,其中該變換函數為一霍夫變換。
  6. 如請求項1或2之方法,其中該等座標係藉由計算一界限框之中項而判定。
  7. 如請求項1或2之方法,其中該臨界尺寸為該特徵之一直徑。
  8. 如請求項1或2之方法,其中該臨界尺寸為一面積。
  9. 如請求項1或2之方法,其進一步包含藉由該處理器計算一臨界尺寸均一性。
  10. 如請求項9之方法,其中該臨界尺寸均一性被計算為所有經偵測特徵之該等臨界尺寸之標準偏差的三倍。
  11. 如請求項1或2之方法,其進一步包含藉由該處理器排除被認為有缺陷之特徵。
  12. 如請求項11之方法,其中一特徵在具有小於某一大小之一直徑時被認為有缺陷。
  13. 如請求項11之方法,其中一特徵在經定位成較遠離於一柵格之一交叉點而大於該柵格之週期性之某一分率時被認為有缺陷。
  14. 如請求項1或2之方法,其進一步包含將在缺陷特徵之數目方面之一缺陷度定義為預期特徵之總數目之一比例。
  15. 如請求項1或2之方法,其中該等置放誤差包含個別特徵之局域置放誤差。
  16. 如請求項1或2之方法,其中該等置放誤差包含藉由該處理器比較一經偵測特徵之座標與根據使該週期性曲線擬合於該等共線特徵而獲得之一柵格而獲得的絕對置放誤差。
  17. 如請求項1或2之方法,其中該等置放誤差包含藉由該處理器比較一經偵測特徵之座標與具有某一週期性之一柵格而獲得的相對置放誤差。
  18. 如請求項1或2之方法,其進一步包含藉由該處理器比較該等尺寸參數與某些參數要求。
  19. 一種用以進行一結構之尺寸參數之一分析的方法,該方法實施於包含與一記憶體通信之一處理器之一電腦中,且該方法包含:在該處理器中使用一濾波器以自該結構之影像資料創製一經 濾波影像;藉由該處理器偵測該經濾波影像中對應於該結構中之域之特徵;及藉由該處理器判定每一特徵之一臨界尺寸。
  20. 一種用以進行一結構之尺寸參數之一分析的方法,該方法實施於包含與一記憶體通信之一處理器之一電腦中,且該方法包含:在該處理器中使用一濾波器以自該結構之影像資料創製一經濾波影像;藉由該處理器偵測該經濾波影像中對應於該結構中之域之特徵;藉由該處理器判定每一特徵之座標;及藉由該處理器判定為共線特徵之該等特徵之至少一集合及經定位有該等特徵之一對應線。
  21. 一種用以進行一結構之尺寸參數之一分析的系統,該系統包含一電腦,該電腦包含與一記憶體通信之一處理器,該處理器經組態以執行包含如下各者之一方法:接收該結構之影像資料作為一輸入;使用一濾波器來創製一經濾波影像;偵測該經濾波影像中對應於該結構中之域之特徵;判定每一特徵之座標;判定每一特徵之一臨界尺寸;判定為共線特徵之該等特徵之至少一集合;使一週期性曲線擬合於該等共線特徵以判定該等特徵之週期性;及藉由比較經偵測特徵位置與預期位置來獲得該等特徵之置放 誤差。
  22. 一種用以進行一結構之尺寸參數之一分析的系統,該系統包含一電腦,該電腦包含與一記憶體通信之一處理器,該處理器經組態以執行包含如下各者之一方法:接收該結構之影像資料作為一輸入;使用一濾波器來創製一經濾波影像;偵測該經濾波影像中對應於該結構中之域之特徵;及判定每一特徵之一臨界尺寸。
  23. 一種用以進行一結構之尺寸參數之一分析的系統,該系統包含一電腦,該電腦包含與一記憶體通信之一處理器,該處理器經組態以執行包含如下各者之一方法:接收該結構之影像資料作為一輸入;使用一濾波器來創製一經濾波影像;偵測該經濾波影像中對應於該結構中之域之特徵;判定每一特徵之座標;及判定為共線特徵之該等特徵之至少一集合及經定位有該等特徵之一對應線。
TW102100959A 2012-01-20 2013-01-10 可自組聚合物及用於微影之方法 TWI511084B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201261588987P 2012-01-20 2012-01-20

Publications (2)

Publication Number Publication Date
TW201333886A TW201333886A (zh) 2013-08-16
TWI511084B true TWI511084B (zh) 2015-12-01

Family

ID=47594716

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102100959A TWI511084B (zh) 2012-01-20 2013-01-10 可自組聚合物及用於微影之方法

Country Status (4)

Country Link
US (1) US9367910B2 (zh)
NL (1) NL2010131A (zh)
TW (1) TWI511084B (zh)
WO (1) WO2013107740A2 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI526777B (zh) * 2012-08-06 2016-03-21 Asml荷蘭公司 用於藉由嵌段共聚物之自我組裝在一基板上提供微影特徵之方法
US9368366B2 (en) * 2013-02-14 2016-06-14 Asml Netherlands B.V. Methods for providing spaced lithography features on a substrate by self-assembly of block copolymers
FR3017475B1 (fr) * 2014-02-12 2016-03-04 Commissariat Energie Atomique Procede de determination d'un motif d'auto-assemblage d'un copolymere a blocs
EP2927747A3 (en) * 2014-03-31 2016-03-09 IMEC vzw Quality assessment of directed self-assembling method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200636818A (en) * 2005-04-02 2006-10-16 Taiwan Semiconductor Mfg Co Ltd Integrated optical metrology and lithographic process track for dynamic critical dimension control
US20090042146A1 (en) * 2007-08-09 2009-02-12 Kyoung Taek Kim Method of forming fine patterns using a block copolymer
US20090233236A1 (en) * 2008-03-17 2009-09-17 International Business Machines Corporation Method for fabricating self-aligned nanostructure using self-assembly block copolymers, and structures fabricated therefrom
TW201001056A (en) * 2008-02-28 2010-01-01 Nawotec Gmbh Method for processing an object with miniaturized structures

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4633504A (en) * 1984-06-28 1986-12-30 Kla Instruments Corporation Automatic photomask inspection system having image enhancement means
US5311600A (en) 1992-09-29 1994-05-10 The Board Of Trustees Of The Leland Stanford Junior University Method of edge detection in optical images using neural network classifier
JP2980789B2 (ja) * 1993-05-06 1999-11-22 株式会社東芝 パターン寸法測定装置及びその方法
EP1093562A1 (en) 1998-07-08 2001-04-25 PPT Vision, Inc. Machine vision and semiconductor handling
US6539106B1 (en) * 1999-01-08 2003-03-25 Applied Materials, Inc. Feature-based defect detection
US6432729B1 (en) * 1999-09-29 2002-08-13 Lam Research Corporation Method for characterization of microelectronic feature quality
JP3944439B2 (ja) * 2002-09-26 2007-07-11 株式会社日立ハイテクノロジーズ 電子線を用いた検査方法および検査装置
KR100598381B1 (ko) 2004-06-18 2006-07-07 삼성전자주식회사 인-라인 타입의 자동 웨이퍼결함 분류장치 및 그 제어방법
US8041103B2 (en) 2005-11-18 2011-10-18 Kla-Tencor Technologies Corp. Methods and systems for determining a position of inspection data in design data space
JP4691453B2 (ja) * 2006-02-22 2011-06-01 株式会社日立ハイテクノロジーズ 欠陥表示方法およびその装置
US8114306B2 (en) 2009-05-22 2012-02-14 International Business Machines Corporation Method of forming sub-lithographic features using directed self-assembly of polymers
US8750596B2 (en) * 2011-08-19 2014-06-10 Cognex Corporation System and method for identifying defects in a material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200636818A (en) * 2005-04-02 2006-10-16 Taiwan Semiconductor Mfg Co Ltd Integrated optical metrology and lithographic process track for dynamic critical dimension control
US20090042146A1 (en) * 2007-08-09 2009-02-12 Kyoung Taek Kim Method of forming fine patterns using a block copolymer
TW201001056A (en) * 2008-02-28 2010-01-01 Nawotec Gmbh Method for processing an object with miniaturized structures
US20090233236A1 (en) * 2008-03-17 2009-09-17 International Business Machines Corporation Method for fabricating self-aligned nanostructure using self-assembly block copolymers, and structures fabricated therefrom

Also Published As

Publication number Publication date
WO2013107740A3 (en) 2014-08-21
US20140363072A1 (en) 2014-12-11
WO2013107740A2 (en) 2013-07-25
NL2010131A (en) 2013-07-23
TW201333886A (zh) 2013-08-16
US9367910B2 (en) 2016-06-14

Similar Documents

Publication Publication Date Title
TWI529816B (zh) 藉嵌段共聚物之自組裝而在一基板上提供具間隔的微影特徵之方法
TWI467636B (zh) 提供用於可自我組合聚合物之圖案化定向模板之方法
Segal-Peretz et al. Quantitative three-dimensional characterization of block copolymer directed self-assembly on combined chemical and topographical prepatterned templates
TWI511084B (zh) 可自組聚合物及用於微影之方法
TWI526777B (zh) 用於藉由嵌段共聚物之自我組裝在一基板上提供微影特徵之方法
TWI568664B (zh) 藉由嵌段共聚物的自我組裝設計微影特徵之方法
Doerk et al. Pattern placement accuracy in block copolymer directed self-assembly based on chemical epitaxy
CN104053628B (zh) 可自组聚合物及其在光刻中的使用方法
JP2012507882A (ja) エッジ・フィールドでのナノインプリントのためのアライメント
TWI587074B (zh) 設計特徵引導模板之方法、判定特徵引導模板之特性之方法、設計特徵引導模板之幾何特性之方法、特徵引導模板、電腦可讀非暫時性媒體、電腦裝置及積體電路
Nagpal et al. Pattern dimensions and feature shapes of ternary blends of block copolymer and low molecular weight homopolymers directed to assemble on chemically nanopatterned surfaces
TWI509348B (zh) 提供用於裝置微影之可自我組合之嵌段共聚物之圖案化模板之方法
Gotrik et al. 3D TEM tomography of templated bilayer films of block copolymers
Perego et al. Collective behavior of block copolymer thin films within periodic topographical structures
Chang et al. Sequential Brush Grafting for Chemically and Dimensionally Tolerant Directed Self-Assembly of Block Copolymers
US10127336B2 (en) Method of simulating formation of lithography features by self-assembly of block copolymers
TWI546616B (zh) 藉由嵌段共聚物之自組裝而在基板上提供間隔的微影特徵之方法
US11145049B2 (en) Method for analyzing polymer membrane
Li Directed Assembly of Functional Nanomaterials Using Chemical Patterns
Zhou Self-Assembly of Block Copolymer Thin Films for Fabricating Tailored Nanostructures
KR20150015708A (ko) 담굼 어닐링을 이용한 블록공중합체 자기조립 제어 방법 및 이를 통하여 얻어진 나노구조물
KR20200058913A (ko) 라멜라 패턴을 갖는 블록-공중합체 박막 중의 결함에 대한 정량적 측정방법
Marencic Well-ordered block copolymer thin films using shear-alignment techniques
KR20200058914A (ko) 라멜라 패턴을 갖는 블록-공중합체 박막 중의 결함에 대한 정량적 측정방법