TWI504582B - LiCoO2燒結體的製造方法及濺鍍靶 - Google Patents

LiCoO2燒結體的製造方法及濺鍍靶 Download PDF

Info

Publication number
TWI504582B
TWI504582B TW099147276A TW99147276A TWI504582B TW I504582 B TWI504582 B TW I504582B TW 099147276 A TW099147276 A TW 099147276A TW 99147276 A TW99147276 A TW 99147276A TW I504582 B TWI504582 B TW I504582B
Authority
TW
Taiwan
Prior art keywords
licoo
sintered body
powder
sintering
temperature
Prior art date
Application number
TW099147276A
Other languages
English (en)
Other versions
TW201130780A (en
Inventor
Poong Kim
Koukou Suu
Shouichi Hashiguchi
Takanori Mikashima
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Publication of TW201130780A publication Critical patent/TW201130780A/zh
Application granted granted Critical
Publication of TWI504582B publication Critical patent/TWI504582B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • C04B37/006Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0423Physical vapour deposition
    • H01M4/0426Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6585Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/721Carbon content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/124Metallic interlayers based on copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Powder Metallurgy (AREA)
  • Secondary Cells (AREA)

Description

LiCoO 2 燒結體的製造方法及濺鍍靶
本發明係有關一種例如供薄膜鋰二次電池之正極的製作之LiCoO2 燒結體的製造方法及濺鍍靶。
近年來正進行著薄膜鋰二次電池之開發。薄膜鋰二次電池係具有在正極與負極之間夾有固體電解質的構造。例如:分別在固體電解質中使用LiPON(磷酸鋰之氮化物)膜,在正極使用LiCoO2 (鈷酸鋰)膜,且在負極使用金屬Li膜。
已知LiCoO2 膜之形成方法係有將含有LiCoO2 之靶進行濺鍍並在基板上形成LiCoO2 膜的方法。在下述專利文獻1中,雖記載將具有3~10k Ω‧cm之比電阻的LiCoO2 靶經直流脈衝式放電(DC Pulse Discharge)進行濺鍍而於基板上形成LiCoO2 膜的方法,惟對於LiCoO2 靶之詳細製造方法並無記載。
一般而言,濺鍍靶之製造方法中係有將材料熔融而進行鑄造之方法、與燒結原料粉末之成形體的方法。並且,做為濺鍍靶所要求的品質,可列舉如:第1是純度受到控制、第2是結晶組織微細且結晶粒徑之分布狹窄、第3是組成分布均一、以及第4是將粉末做為原料時,燒結體的相對密度為高。此處,相對密度係指多孔質體之密度,與和其為相同組成之材料在無氣孔之狀態中的密度之比。
[先前技術文獻]
[專利文獻]
專利文獻1 日本特開2008-45213號公報
以原料粉末之燒結體構成濺鍍靶時,上述第1至第3之材料組織上的要件可藉由原料粉末之調整而較為容易滿足。然而,現狀是在第4要件之高密度化中,由於材料固有的物性(物理性質、化學性質)影響極大而不易達成。特別是LiCoO2 結晶因具有層狀構造而容易在層間剝離,因此在燒結體的製作時以及製作後易於裂開,而有無法穩定地製造高密度之燒結體的問題。
有鑑於上述情事,本發明之目的係提供一種可穩定地製造高密度之燒結體的LiCoO2 燒結體之製造方法及濺鍍靶。
為達成上述目的,本發明之一型態的LiCoO2 燒結體之製造方法係包括將LiCoO2 粉末藉由冷均靜水壓成形法在1000kg/cm2 以上之壓力下進行預成形之步驟。上述LiCoO2 粉末之預成形體係在1050℃以上1120℃以下之溫度進行燒結。
本發明之一實施型態的濺鍍靶,其係由LiCoO2 燒結體所構成,且具有90%以上之相對密度、3kΩ‧cm以下之比電阻與20μm以上50μm以下之平均粒徑。
本發明之一型態的LiCoO2 燒結體之製造方法係包括將LiCoO2 粉末藉由冷均靜水壓成形法在1000kg/cm2 以上之壓力下預成形的步驟。上述LiCoO2 粉末之預成形體係在1050℃以上1120℃以下之溫度下進行燒結。
依上述製造方法,可穩定地製造相對密度達90%以上之高密度的LiCoO2 燒結體。
將上述預成形體燒結之步驟係將上述預成形體在上述溫度中維持2小時以上即可。如燒結時間低於2小時,即難以得到90%以上之相對密度。如燒結時間為2小時以上,則認為即使延長燒結時間對提升相對密度並無多大效果,因此,燒結時間之上限並無特別限定。
上述預成形體可在大氣中進行燒結,亦可在氧氣環境中進行燒結。在上述任一種燒結環境中均可穩定地製造90%以上之高密度的LiCoO2 燒結體。
將上述LiCoO2 粉末進行預成形之步驟亦可包括在上述LiCoO2 粉末中添加黏合劑之步驟。此時,經添加上述黏合劑之LiCoO2 粉末藉由冷均靜水壓成形法而成形。再使經添加上述黏合劑之LiCoO2 粉末的成形體粉碎。經粉碎之上述LiCoO2 粉末藉由冷均靜水壓成形法而成形。
藉此,即使在製造較大型之LiCoO2 燒結體時,亦可穩定地製造相對密度在90%以上之高密度的LiCoO2 燒結體。
上述LiCoO2 燒結體之製造方法在燒結上述成形體的步驟之前,亦可具有將含有上述黏合劑之上述LiCoO2 粉末的預成形體以低於燒結溫度之溫度進行脫脂之步驟。
藉此,即可防止源自黏合劑之碳的殘留而可製造高純度之LiCoO2 燒結體。
本發明之一型態的濺鍍靶,其係由LiCoO2 燒結體所構成,且具有90%以上之相對密度、3kΩ‧cm以下之比電阻與20μm以上50μm以下之平均粒徑。
藉此,可抑制顆粒的產生,並可由直流電與高頻電的疊加放電而成為穩定之濺鍍。
以下,參照圖式同時說明本發明之實施型態。
(第1實施型態)
在本實施型態中,為了製造均勻的結晶組織、高的相對密度以及具有低比電阻值之LiCoO2 (鈷酸鋰)燒結體,係採用預期因燒結所產生之殘留應力為低的冷均靜水壓成形(CIP:Cold Isostatic Press)與燒結(Sintering)法。在此,首先對於預成形壓力、燒結溫度以及燒結時間對於LiCoO2 燒結體之影響進行說明。
[預先探討1:結晶性之變化]
圖1係顯示大氣中以600℃、700℃、800℃、900℃以及1000℃之熱處理的LiCoO2 粉末的X光繞射測定結果(射線源:CuKα)之概略圖。測定裝置係使用理學電氣股份有限公司製造之粉末X光繞射裝置「RINT1000」。LiCoO2 粉末之試樣係使用市售之粉末(日本化學工業股份有限公司製造之「Cell seed(註冊商標)C-5」)。熱處理時間各設定為30分鐘。然後,由各溫度下之XRD結果,測定(003)面的波峰之半高寬值(FWHM:full width at half maximum)、(104)面與(003)面之波峰強度比(面積比)((104)/(003))。同時,對使用市售之粉末(日本化學工業股份有限公司製造之「Cell seed(註冊商標)C-5H」)時的半高寬值變化亦進行相同測定。將其結果示於圖2。
由圖1及圖2之結果,在「Cell seed(註冊商標)C-5」中雖看不出加熱至1000℃時有顯著的峰值移位(peak shift),但在900℃以上確認了半高寬值的增加與波峰強度比之變化。藉此而可認為在900℃以上的溫度下會產生LiCoO2 結晶粒的成長。另外,在「Cell seed(註冊商標)C-5H」中,加熱至1000℃看不到半高寬值的變化,結晶粒的成長雖不會在1000℃以下產生,然而從1100℃中半高寬值的變化,可認為結晶粒的成長係在1000℃至1100℃之間產生。
[預先探討2:加熱造成之狀態變化]
圖3係大略顯示將市售(日本化學工業股份有限公司製造之「Cell seed(註冊商標)C-5」)之LiCoO2 粉末在Ar環境中加熱時之狀態變化的實驗結果。測定裝置係使用ULVAC-RIKO公司製造之示差熱分析裝置「TGD-9600」。在調查Ar氣流中,以固定之昇溫速度(20℃/min)加熱時之試樣的熱重量(TG:thermogravimetry)變化時,如圖3所示,至1050℃左右僅減少些微重量,藉此而可確認,變成更高溫時,即產生重量急遽減少之情形。至1050℃止,重量緩慢減少可認為是由試樣釋出氣體造成,並且,由於在1100℃左右顯示吸熱反應,因而可確認在該溫度左右產生融解。
[預先探討之結果]
以設置在維持高溫的大氣中之試樣的結晶性變化與在Ar氣流中一邊昇溫一邊測定之試樣的狀態變化,條件雖為不同,然可得到如下述之見解。亦即,LiCoO2 粉末開始產生顯著之結晶粒的合體(成長)之溫度為1050℃以上,因此,可推測LiCoO2 粉末進行燒結的溫度條件以1050℃以上之溫度領域為適當。另外,LiCoO2 之熔點為1130℃。
根據上述之見解,在使燒結條件(成形壓力、燒結溫度、維持時間)對LiCoO2 燒結體產生明確影響之目的下,試作直徑60mm之小試樣。
首先,調查預成形壓力對燒結體相對密度之依存性。準備使預成形體形成時之壓力由500kg/cm2 (0.5ton/cm2 )變化至2000 kg/cm2 (2ton/cm2 )之複數的預成形體試樣,分別在大氣中以1050℃之溫度加熱1小時後測定各相對密度。預成形體之形成係使用CIP法。將其結果示於圖4之(A)、(B)。如圖4之(A)、(B)所示,確認了預成形體形成時之壓力會影響燒結體之相對密度,如為1000kg/cm2 以上,即可得到90%以上之相對密度。
接著,將預成形體之形成壓力設為2000kg/cm2 、燒結溫度設為1050℃以及1120℃,調查燒結時間對燒結體相對密度之依存性。燒結環境方面,對於以1050℃燒結之試樣與以1120℃燒結4小時以及8小時之試樣的燒結環境係為大氣環境,對於以1120℃燒結2小時之試樣係為常壓下之氧氣(O2 )環境。將其結果示於圖5之(A)、(B)。
如圖5之(A)、(B)所示,燒結溫度為1050℃時,當與圖4之(A)、(B)試樣相同之條件的燒結時間為1小時,雖與圖4之(A)、(B)試樣不同,無法得到90%以上之相對密度,但在維持4小時以上之等溫下,確認了可得到90%以上之相對密度。另一方面,當燒結溫度為1120℃時,確認了對於任一試樣均可得到90%以上之相對密度。並且,對於在氧氣環境下燒結之試樣亦可得到90%以上之相對密度,因而確認了燒結時之環境係氧氣或大氣兩者均可。另外,不管燒結溫度為何者,並無確認到顯示有藉由延長燒結時間會增加相對密度的現象。其理由認為是在燒結時不添加壓力所致。
更且,分別將預成形體之成形壓力固定為2000 kg/cm2 、燒結時間固定為2小時,調查燒結溫度對燒結體相對密度之依存性。將其結果示於圖6之(A)、(B)。確認了對於燒結溫度為1050℃、1080℃、1100℃以及1120℃之全部試樣,可得到90%以上之相對密度。一般而言,雖然認為燒結溫度對燒結體相對密度之依存性為大,但對於LiCoO2 ,其結果係顯示在該溫度範圍內,燒結溫度對相對密度之影響為小。
經由以上之探討結果,本發明之一實施型態的LiCoO2 燒結體之製造方法係包括將LiCoO2 粉末藉由冷均靜水壓成形法在1000kg/cm2 以上之壓力下預成形的步驟。上述LiCoO2 粉末之預成形體係於1050℃以上1120℃以下之溫度下進行燒結。
原料粉末係使用平均粒徑(D50 )為例如20μm以下之LiCoO2 粉末。LiCoO2 粉末可為市售之粉末,亦可經由濕式法或乾式法而製作。市售之原料粉末可列舉如:日本化學工業股份有限公司製作之「Cell seed(註冊商標)C-5」或「Cell seed(註冊商標)C-5H」。
上述LiCoO2 燒結體之製造方法係採用具有藉由冷均靜水壓成形法之成形步驟與燒結步驟的CIP & Sintering(冷均靜水壓成形及燒結)法。依上述之製造方法,可穩定地製造具有90%以上之相對密度的LiCoO2 燒結體。
CIP成形係將粉末填充在橡膠模具(rubber)內,再將橡膠模具放入疊層袋經密封後,以指定之成形壓力進行靜水壓加壓。成形壓力設為1000kg/cm2 以上。成形壓力低於1000kg/cm2 時,由於成形壓力過低而難以穩定地得到具有90%以上之相對密度的燒結體。成形壓力愈高,相對密度有增高之傾向。成形壓力之上限並無特別限定,例如為3000kg/cm2
另一方面,燒結溫度係設定為產生LiCoO2 之結晶粒成長的溫度以上的溫度。藉此,可促進原料粉末之燒結而得到高密度的燒結體。燒結溫度低於1050℃時,無法促進結晶粒的成長,而難以得到具有90%以上之相對密度的燒結體。反之,當燒結溫度超過1120℃時,由於燒結體的結晶組織由粗大之結晶粒所構成,因而使「硬即易脆」之特性變得顯著。
上述預成形體之燒結時間(燒結溫度下之維持時間)可設成2小時以上。以2小時以上之燒結時間即可得到具有90%以上之相對密度的LiCoO2 燒結體。亦即,如燒結時間低於2小時,難以得到具有90%以上之相對密度。當燒結時間在2小時以上時,即使延長燒結時間亦觀察不到對相對密度有大的提升效果,因此,燒結時間之上限並無特別限定。在考量生產性等時,燒結時間即使最長也只設為8小時。圖7係顯示上述預成形體在燒結步驟中之燒結爐的溫度模式之一例。昇溫速度以及降溫速度並無特別限定,例如設在100℃/Hr以下。
亦可因應所需而追加實施預成形體的脫氣步驟。藉由追加脫氣步驟,可確實地去除原料粉末中所含的氣體成分。因此,可排除所使用的原料粉末之吸濕度的影響。在脫氣步驟中,預成形體係在低於燒結溫度之溫度中維持指定時間。脫氣溫度係設為例如600℃~700℃。維持時間亦無特別限定,例如為1小時。圖8係顯示用以對預成形體進行包括脫氣及燒結處理之熱處理的溫度模式之一例。
依上述製造方法,可穩定地製造具有90%以上之相對密度的LiCoO2 燒結體。藉此而提高燒結體之強度、改善操作性,因而可穩定地機械加工為靶的形狀。並且,在施加高電力時亦可得到耐久性,因而可充分地符合對提高濺鍍之要求。
更且,燒結體具有90%以上之相對密度,因而可實現降低燒結體之比電阻。依上述製造方法,可得到具有3kΩ‧cm以下之比電阻的LiCoO2 燒結體。藉此,在濺鍍成膜時,不以RF放電,而能以RF+DC放電(RF與DC之疊加放電),且可預估放電安定性會提高而改善濺鍍。
燒結體之平均粒徑係與燒結體之相對密度以及機械強度有密切的相關性。為提高燒結體之相對密度,較佳為在使LiCoO2 結晶容易成長之溫度下燒結。隨著進行燒結而增大平均粒徑,使相對密度增大機械強度亦上升,然而,另一方面卻使「硬即易脆」之特性變得顯著,因而降低耐衝擊性。本發明之一實施型態的LiCoO2 燒結體之平均粒徑較佳為20μm以上50μm以下。
燒結體之機械加工中,係包括使用旋轉盤之周邊加工以及表面加工。在做為濺鍍靶使用之情形下,需要將燒結體與反磁板(Bucking Plate)接合。此之接合係可將熔融銦(In)塗布在燒結體的接合面上,亦可在燒結體的接合面上預先形成銅(Cu)薄膜,再於其上塗布熔融銦。接合後,靶以及反磁板係在乾燥環境中洗淨。
(第2實施型態)
另外,在製造較大型之LiCoO2 燒結體時,預成形體本身的重量變大,會產生在維持成形體形狀之下同時提高成形體強度的必要性。因此,藉由在原料粉末中添加黏合劑並反覆地進行成形與破碎,可抑制預成形體的大型化所伴隨而來的強度之降低。並且,預成形體在製作後,在以適當的溫度施行脫脂處理以及必要時施行脫氣處理的情形下,即可將雜質由預成形體中去除。
做為黏合劑,只要是可藉由加熱處理而脫脂之高分子材料,則無特別限定,例如可使用聚乙酸乙烯酯系、聚乙烯醇系的高分子材料。黏合劑之混合量可適當地設定,例如設為2wt%以下。將該黏合劑與LiCoO2 原料粉末混合並使之乾燥後,粉碎成適當的大小。粉碎之尺寸並無特別限定,例如為#500以下(25μm以下)。經粉碎之混合粉末經CIP處理後再加以粉碎。如上述之作法,將經造粒之粉末再加以CIP處理,而製成LiCoO2 粉末之預成形體。
在原料粉末與黏合劑之混合中,可將做為混合介質之Zr(氧化鋯)球以及做為溶劑之乙醇,放入樹脂製容器中使之旋轉同時混合分散。乾燥係可使用真空乾燥機。此外之方法亦可使用噴霧乾燥機。粉碎係可使用輥磨機或球磨機,在分級時係使用#500網篩除去凝集粉。CIP成形係將粉末填充在例如360mmΦ之橡膠模具(rubber)內,再將橡膠模具放入疊層袋經密封後,以指定之成形壓力進行靜水壓加壓。
上述CIP處理之壓力條件與上述第1實施型態相同,係設為1000 kg/cm2 以上。再粉碎尺寸亦同,係設為#500以下。如此藉由將CIP處理與粉碎處理反覆交替,即可謀求粉碎尺寸的均一化與黏合劑的分散。反覆次數並無特別限定。藉由反覆上述處理,可提高原料粉末之密接強度,使預成形體提高強度。
預成形體之脫脂處理可與燒結步驟同時進行,藉由在低於燒結溫度之溫度下進行脫脂,可防止黏合劑成分之突沸而得到高密度的燒結體。脫脂溫度並無特別限定,可設為例如300℃左右。在脫脂溫度下之維持時間並無特別限定,例如為1小時至6小時。
預成形體之脫氣處理可在高於脫脂溫度、且低於燒結溫度之溫度下實施。脫氣溫度並無特別限定,例如為600℃至700℃,本實施型態中係設為650℃左右。脫氣溫度下之維持時間並無特別限定,例如為1小時。
脫脂後之預成形體係在1050℃以上1120℃以下之溫度中維持2小時以上以使之燒結。藉此而製作LiCoO2 燒結體。在以預成形體之成形壓力為2000kg/cm2 、脫脂處理以300℃進行1小時、燒結處理以1120℃進行4小時而製成直徑約為330mm、厚度10mm之LiCoO2 燒結體時,相對密度為92%、平均粒徑為40μm、比電阻為2kΩ‧cm。此時,在將預成形體朝燒結爐運送時以及將燒結體從燒結爐取出時,並無發生預成形體以及燒結體的裂痕。並且,由ICP發光分光分析進行燒結體的組成分析,並使用LECO公司製造之氣體分析裝置藉由燃燒紅外線吸收法測量因黏合劑造成之碳量的增加,但是無論是否添加黏合劑,碳量的增加為60ppm。
圖9係顯示本實施型態之用以對LiCoO2 預燒結體的包括脫脂以及燒結處理之溫度模式之一例。預成形體朝加熱爐裝填後,以指定之昇溫速度將爐內加熱至300℃。昇溫後,在維持該溫度1至6小時之情形下,使預成形體脫脂。接著,預成形體經加熱至燒結溫度(1050℃~1120℃),藉由在該溫度維持2至8小時之下進行燒結。燒結後,以指定之降溫速度將爐內冷卻至室溫。昇溫速度以及降溫速度並無特別限定,例如設為100℃/Hr以下。
圖10係顯示包含脫脂、脫氣以及燒結處理之熱處理的溫度模式之一例。脫脂後,爐內溫度昇溫至成為650℃,藉由將其溫度維持1小時,以使預燒結體脫氣。然後,以將燒結溫度維持指定時間之方式實施燒結。
[實施例]
以下,對於本發明之實施例進行說明,惟本發明並不受限於此。
(實施例1)
(實施例1-1)
將平均粒徑(D50 ;以下亦同)5至6μm之LiCoO2 粉末(日本化學工業股份有限公司製作之「Cell seed(註冊商標)C-5」)在2000kg/cm2 使用Φ150mm尺寸的橡膠模具進行CIP成形。將所得之預成形體在大氣中、1050℃下燒結8小時。機械加工成靶的形狀時,觀察不到燒結體的裂痕。進行靶之放電測試後,確認了穩定之RF+DC的持續放電。在測定所得燒結體的相對密度、比電阻值、平均粒徑後,相對密度為90%、比電阻值為3kΩ‧cm、平均粒徑為20μm。
另外,相對密度係將燒結體之表觀密度與理論密度(5.16g/cm3 )之比經由計算而求得。表觀密度係將所得之燒結體進行機械加工並使用游標卡尺、測微器或三維測定器測定外周與厚度的尺寸而求得體積,接著,於電子天平測定重量,再由(重量/體積)之式求得。
比電阻值之測定係依四探針法而進行。測定裝置係使用NAPSON股份有限公司製作之「RT-6」。
平均粒徑之測定係使用燒結體之剖面SEM照片,根據「ASTM(American Society for Testing and Materials)E112」(JIS(Japanese Industrial Standards)G0551)之粒度表以肉眼判斷。
(實施例1-2)
將平均粒徑5至6μm之LiCoO2 粉末(日本化學工業股份有限公司製作之「Cell seed(註冊商標)C-5」)在2000kg/cm2 使用Φ150mm尺寸的橡膠模具進行CIP成形。將所得之預成形體在大氣中、1120℃下燒結4小時。機械加工成靶的形狀時,觀察不到燒結體的裂痕。在進行靶之放電測試時,確認了穩定之RF+DC的持續放電。所得燒結體的相對密度為92%、比電阻值為2kΩ‧cm、平均粒徑約為50μm。
(實施例1-3)
將平均粒徑5至6μm之LiCoO2 粉末(日本化學工業股份有限公司製作之「Cell seed(註冊商標)C-5」)在1500kg/cm2 使用Φ150mm尺寸的橡膠模具進行CIP成形。將所得之預成形體在大氣中、1120℃下燒結3小時。機械加工成靶的形狀時,觀察不到燒結體的裂痕。在進行靶之放電測試時,確認了穩定之RF+DC的持續放電。所得燒結體的相對密度為90.5%、比電阻值為3kΩ‧cm、平均粒徑約為40μm。
(實施例1-4)
將平均粒徑6至7μm之LiCoO2 粉末(日本化學工業股份有限公司製作之「Cell seed(註冊商標)C-5H」)在1500kg/cm2 使用Φ150mm尺寸的橡膠模具進行CIP成形。將所得之預成形體在大氣中、1120℃下燒結3小時。機械加工成靶的形狀時,觀察不到燒結體的裂痕。在進行靶之放電測試時,確認了穩定之RF+DC的持續放電。所得燒結體的相對密度為91%、比電阻值為3kΩ‧cm、平均粒徑約為40μm。
(比較例1-1)
將平均粒徑5至6μm之LiCoO2 粉末(日本化學工業股份有限公司製作之「Cell seed(註冊商標)C-5」)在2000kg/cm2 使用Φ150mm尺寸的橡膠模具進行CIP成形。將所得之預成形體在大氣中、950℃下燒結3小時。燒結後之成形體觀察不到裂痕。所得燒結體的相對密度為80%、比電阻值為12kΩ‧cm、平均粒徑約為7μm。
(比較例1-2)
將平均粒徑5至6μm之LiCoO2 粉末(日本化學工業股份有限公司製作之「Cell seed(註冊商標)C-5」)在950kg/cm2 使用Φ150mm尺寸的橡膠模具進行CIP成形。將所得之預成形體在大氣中、1050℃下燒結1小時。燒結後之成形體觀察不到裂痕。所得燒結體的相對密度為88%、比電阻值為7kΩ‧cm、平均粒徑約為20μm。
(比較例1-3)
將平均粒徑5至6μm之LiCoO2 粉末(日本化學工業股份有限公司製作之「Cell seed(註冊商標)C-5」)在2000kg/cm2 使用Φ150mm尺寸的橡膠模具進行CIP成形。將所得之預成形體在大氣中、1130℃下燒結3小時。燒結後之成形體雖觀察不到裂痕,然在機械加工成靶的形狀時,有發生多次剝落。所得燒結體的相對密度為93%、比電阻值為2kΩ‧cm、平均粒徑約為100μm。
(比較例1-4)
將平均粒徑6至7μm之LiCoO2 粉末(日本化學工業股份有限公司製作之「Cell seed(註冊商標)C-5H」)在950kg/cm2 使用Φ150mm尺寸的橡膠模具進行CIP成形。將所得之預成形體在大氣中、1050℃下燒結2小時。燒結後之成形體觀察不到裂痕。所得燒結體的相對密度為86%、比電阻值為8kΩ‧cm、平均粒徑約為15μm。
歸納實施例1之條件及結果示於表1。
由表1之結果,藉由將預成形體之成型壓力設為1000 kg/cm2 以上、燒結溫度設為1050℃以上1120℃以下、燒結時間設為2小時以上,可得到具有90%以上之相對密度、3kΩ‧cm以下之比電阻值以及20μm以上50μm以下之平均粒徑的LiCoO2 燒結體。
另外,比較例1-1中,由於燒結溫度係降低為950℃,因此平均粒徑縮小為約7μm。其結果,相對密度係降低為80%,比電阻值亦為極高之12kΩ‧cm。比較例1-2中,由於燒結時間縮短為1小時,因此,相對密度降低為88%,比電阻值亦為較高之7kΩ‧cm。另外,比較例1-3中,由於燒結溫度係提高為1130℃,因此,平均粒徑亦為較大之100μm。其結果,硬度變高,在燒結體之加工時容易產生裂痕。
(實施例2)
(實施例2-1)
在平均粒徑5至6μm之LiCoO2 粉末(日本化學工業股份有限公司製作之「Cell seed(註冊商標)C-5」)中添加2wt%聚乙酸乙烯酯系之黏合劑,加入乙醇混合後使其乾燥。然後,依序施行輥粉碎、分級、CIP、輥粉碎、分級,藉以將造粒成平均粒徑5至6μm之粉末在2000kg/cm2 使用Φ360mm尺寸的橡膠模具進行CIP成形。將所得預成形體在大氣中、300℃下維持3小時去除黏合劑成分後,在1050℃下燒結8小時。機械加工成靶的形狀時,觀察不到燒結體的裂痕。進行靶之放電測試後,確認了穩定之RF+DC的持續放電。所得燒結體的相對密度為90%、比電阻值為3kΩ‧cm、平均粒徑為20μm。確認殘留的碳量時,為60ppm以下。
另外,關於殘留碳量,係經由ICP發光分光分析進行燒結體的組成分析,並使用LECO公司製造之氣體分析裝置藉由燃燒紅外線吸收法測定因黏合劑造成之碳量的增加量。
(實施例2-2)
在平均粒徑5至6μm之LiCoO2 粉末(日本化學工業股份有限公司製作之「Cell seed(註冊商標)C-5」)中添加1wt%聚乙酸乙烯酯系之黏合劑,加入乙醇混合後使其乾燥。然後,藉由依序施行粉碎、分級、CIP、粉碎、分級,將造粒之粉末在2000kg/cm2 使用Φ360mm尺寸的橡膠模具進行CIP成形。將所得之預成形體在大氣中、300℃下維持1小時去除黏合劑成分後,在1120℃下燒結4小時。機械加工成靶的形狀時,觀察不到燒結體的裂痕。進行靶之放電測試後,確認了穩定之RF+DC的持續放電。所得燒結體的相對密度為92%、比電阻值為2kΩ‧cm、平均粒徑為40μm。確認殘留的碳量時,為60ppm以下。
(實施例2-3)
在平均粒徑5至6μm之LiCoO2 粉末(日本化學工業股份有限公司製作之「Cell seed(註冊商標)C-5」)中添加2wt%聚乙酸乙烯酯系之黏合劑,加入乙醇混合後使其乾燥。然後,經輥粉碎後,使用球磨機將粉末進行粉碎、混合、均一化處理。其結果使原料粉末之平均粒徑微細化至0.6μm左右。將該粉末在2000kg/cm2 使用Φ360mm尺寸的橡膠模具進行CIP成形。將所得預成形體在大氣中、300℃下維持3小時去除黏合劑成分後,在650℃下維持1小時,然後昇溫至1050℃後,在同溫度下燒結8小時。機械加工成靶的形狀時,觀察不到燒結體的裂痕。進行靶之放電測試後,確認了穩定之RF+DC的持續放電。所得燒結體的相對密度為95%、比電阻值為0.5kΩ‧cm、平均粒徑為30μm。確認殘留的碳量時,為60ppm以下。
(實施例2-4)
在平均粒徑6至7μm之LiCoO2 粉末(日本化學工業股份有限公司製作之「Cell seed(註冊商標)C-5H」)中添加2wt%聚乙酸乙烯酯系之黏合劑,加入乙醇混合後使其乾燥。然後,經輥粉碎後,使用球磨機將粉末進行粉碎、混合、均一化處理。其結果使原料粉末之平均粒徑微細化至0.6 μm左右。將該粉末在2000kg/cm2 使用Φ360mm尺寸的橡膠模具進行CIP成形。將所得預成形體在大氣中、300℃下維持3小時去除黏合劑成分後,在650℃下維持1小時,然後昇溫至1050℃後,在同溫度下燒結8小時。機械加工成靶的形狀時,觀察不到燒結體的裂痕。進行靶之放電測試後,確認了穩定之RF+DC的持續放電。所得燒結體的相對密度為94%、比電阻值為0.6kΩ‧cm、平均粒徑為30μm。確認殘留的碳量時,為60ppm以下。
(比較例2-1)
將平均粒徑5至6μm之LiCoO2 粉末(日本化學工業股份有限公司製作之「Cell seed(註冊商標)C-5」)在2000kg/cm2 使用Φ360mm尺寸的橡膠模具進行CIP成形。成形體強度為低,6片中有3片裂開。將未裂開之預成形體在大氣中、1120℃下燒結3小時。燒結後之成形體中有1片裂開,有1片在機械加工時觀察到裂痕。所得燒結體的相對密度為92%、比電阻值為3kΩ‧cm、平均粒徑為40μm。
(比較例2-2)
將平均粒徑5至6μm之LiCoO2 粉末(日本化學工業股份有限公司製作之「Cell seed(註冊商標)C-5」)在2000kg/cm2 使用Φ360mm尺寸的橡膠模具進行CIP成形。成形體強度為低,幾乎都裂開。將未裂開之預成形體在大氣中、1130℃下燒結3小時。所得燒結體的相對密度為93%、比電阻值為3kΩ‧cm、平均粒徑為80μm。
歸納實施例2之條件及結果示於表2。
將黏合劑混入原料粉末中使之成形並粉碎成造粒粉,藉由使用該造粒粉,可穩定地製作較為大型之燒結體。並且,將預成形體之成型壓力設為1000kg/cm2 以上、燒結溫度設為1050℃以上1120℃以下、燒結時間設為2小時以上之情形下,可得到具有90%以上之相對密度、3kΩ‧cm以下之比電阻值以及20μm以上50μm以下之平均粒徑的LiCoO2 燒結體。
另一方面,如比較例2-1以及2-2所示,原料粉末中未混合黏合劑而成形的燒結體,即使以與實施例2相同之成形條件以及燒結條件,由於燒結體之尺寸大於實施例1,因而觀察到燒結體的裂痕。
以上係對本發明之實施型態的說明,然本發明並不受此所限定,依據本發明之技術思想,可有各種變化。
例如在上述之實施型態中,雖將預成形體的成形壓力設為1000至2000kg/cm2 ,惟亦可在超過2000kg/cm2 之壓力下製作預成形體。並且,在以上之實施型態中,雖將預成形體之燒結環境設為大氣中,惟亦可設為氧氣環境中。
更且,以上之實施型態中,係將預成形體之大小設成Φ150mm與Φ360mm之2種,當然並不限於該等。原料粉末中混合黏合劑與否,可依據所製作之預成形體及燒結體的強度而判斷。
DTA‧‧‧示差熱分析
TG‧‧‧熱重量分析
DTG‧‧‧熱重量之變化率
圖1係顯示本發明之第1實施型態中所說明的熱處理後之LiCoO2 粉末的X光繞射測定結果之概略圖。
圖2係顯示將圖1之X光繞射測定結果中的各處理溫度之(003)面的波峰之半高寬值與使用不同材料粉末時的比較圖。
圖3係顯示本發明之第1實施型態中所說明的LiCoO2 粉末的示差熱分析結果之概略圖。
圖4係顯示本發明之第1實施型態的LiCoO2 燒結體之成形壓力與相對密度之關係的實驗結果。
圖5係顯示本發明之第1實施型態的LiCoO2 燒結體之燒結時間與相對密度之關係的實驗結果。
圖6係顯示本發明之第1實施型態的LiCoO2 燒結體之燒結溫度與相對密度之關係的實驗結果。
圖7係顯示本發明之第1實施型態中所說明的燒結爐之溫度模式之一例圖。
圖8係顯示本發明之第1實施型態中所說明的燒結爐之溫度模式之另一例圖。
圖9係顯示本發明之第2實施型態中所說明的燒結爐之溫度模式之一例圖。
圖10係顯示本發明之第2實施型態中所說明的燒結爐之溫度模式之另一例圖。

Claims (2)

  1. 一種LiCoO2 燒結體的製造方法,其係將黏合劑添加於LiCoO2 粉末,將添加有上述黏合劑之上述LiCoO2 粉末藉由冷均靜水壓成形法在1500kg/cm2 以上之壓力下成形,將添加有上述黏合劑之上述LiCoO2 粉末的成形體進行粉碎,將經粉碎後之上述LiCoO2 粉末藉由冷均靜水壓成形法在1500kg/cm2 以上之壓力下成形,藉此製作上述LiCoO2 粉末的預成形體,將含有上述黏合劑之上述LiCoO2 粉末的預成形體以低於燒結溫度之溫度進行脫脂,再將脫脂後之上述LiCoO2 粉末之預成形體於1050℃以上1120℃以下之溫度下進行燒結4小時以上。
  2. 如申請專利範圍第1項之LiCoO2 燒結體的製造方法,其中將上述預成形體燒結之步驟係將上述預成形體在大氣中或氧氣環境中進行燒結。
TW099147276A 2010-01-15 2010-12-31 LiCoO2燒結體的製造方法及濺鍍靶 TWI504582B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010006753 2010-01-15

Publications (2)

Publication Number Publication Date
TW201130780A TW201130780A (en) 2011-09-16
TWI504582B true TWI504582B (zh) 2015-10-21

Family

ID=44303956

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099147276A TWI504582B (zh) 2010-01-15 2010-12-31 LiCoO2燒結體的製造方法及濺鍍靶

Country Status (7)

Country Link
US (1) US20120305392A1 (zh)
EP (1) EP2532634A4 (zh)
JP (1) JP5704571B2 (zh)
KR (1) KR20120101505A (zh)
CN (1) CN102770392A (zh)
TW (1) TWI504582B (zh)
WO (1) WO2011086650A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011086649A1 (ja) * 2010-01-15 2011-07-21 株式会社アルバック LiCoO2焼結体の製造方法及びスパッタリングターゲット
CN102412389B (zh) * 2011-08-04 2014-04-30 横店集团东磁股份有限公司 一种锂离子电池用掺镁镍钴酸锂正极材料的制备方法
JP6011838B2 (ja) * 2011-08-31 2016-10-19 トヨタ自動車株式会社 リチウム二次電池
JP5969786B2 (ja) * 2012-03-21 2016-08-17 株式会社コベルコ科研 LiCoO2焼結体およびスパッタリングターゲット、並びにその製造方法
CN103066269B (zh) * 2012-12-25 2015-08-19 贵州安达科技能源股份有限公司 一种三元正极活性材料制备方法及电池
KR101726117B1 (ko) * 2013-03-13 2017-04-11 가부시키가이샤 코베루코 카겐 LiCoO2 함유 소결체 및 스퍼터링 타깃, 및 LiCoO2 함유 소결체의 제조 방법
EP2993250A4 (en) * 2013-04-30 2017-01-18 Kobelco Research Institute , Inc. Li-CONTAINING OXIDE TARGET ASSEMBLY
KR102142258B1 (ko) 2014-03-26 2020-08-07 제이엑스금속주식회사 LiCoO2 스퍼터링 타깃 및 그 제조 방법, 그리고 정극재 박막
EP3271495B1 (en) 2015-03-18 2019-04-17 Vital Thin Film Materials (Guangdong) Co., Ltd. Methods of forming rotary sputtering targets
JP2017075377A (ja) * 2015-10-15 2017-04-20 株式会社コベルコ科研 LiCoO2含有焼結体およびLiCoO2含有スパッタリングターゲット、並びにLiCoO2含有焼結体の製造方法
JP6326396B2 (ja) * 2015-11-10 2018-05-16 株式会社神戸製鋼所 LiCoO2含有スパッタリングターゲットおよびLiCoO2含有焼結体
JP6430427B2 (ja) * 2016-03-17 2018-11-28 Jx金属株式会社 コバルト酸リチウム焼結体及び該焼結体を用いて作製されるスパッタリングターゲット及びコバルト酸リチウム焼結体の製造方法並びにコバルト酸リチウムからなる薄膜
BE1025799B1 (nl) * 2017-12-18 2019-07-19 Soleras Advanced Coatings Bvba Gespoten lithiumcobaltoxide-targets
US11274363B2 (en) * 2019-04-22 2022-03-15 Nxp Usa, Inc. Method of forming a sputtering target
US11505501B1 (en) 2021-08-20 2022-11-22 Corning Incorporated Sintered lithium cobaltite electrodes
CN113652657B (zh) * 2021-08-25 2023-10-10 有研亿金新材料有限公司 铝钪合金靶材及采用大气高温扩散烧结成型制造方法
CN114057233B (zh) * 2021-11-17 2023-09-26 鄂尔多斯市紫荆创新研究院 用于制备薄膜锂电池的钴酸锂正极靶材及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200818569A (en) * 2006-07-27 2008-04-16 Nippon Mining & Amp Metals Co Ltd Lithium-containing transition metal oxide target, process for producing the same and lithium ion thin-film secondary battery
CN101246959A (zh) * 2007-02-13 2008-08-20 中信国安盟固利新能源科技有限公司 一种锂离子二次电池正极薄膜极片的制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02225603A (ja) * 1989-02-27 1990-09-07 Koujiyundo Kagaku Kenkyusho:Kk 粉末成形薄板の製造方法
JP3444713B2 (ja) * 1996-02-27 2003-09-08 三井金属鉱業株式会社 Itoスパッタリング用ターゲットの製造方法
JP2003238242A (ja) * 2002-02-19 2003-08-27 Kyocera Corp 誘電体磁器及びこれを用いた誘電体共振器
JP2004091249A (ja) * 2002-08-30 2004-03-25 Sumitomo Metal Mining Co Ltd Bzo焼結体およびその製造方法
JP2006335599A (ja) * 2005-06-01 2006-12-14 Nippon Tungsten Co Ltd マイクロ波誘電体磁器組成物の特性制御法とそれによって得られた組成物
JP4797712B2 (ja) * 2006-03-08 2011-10-19 東ソー株式会社 ZnO−Al2O3系焼結体、スパッタリングターゲット及び透明導電膜の製造方法
JP2008053217A (ja) * 2006-07-24 2008-03-06 Matsushita Electric Ind Co Ltd リチウム二次電池用電極の製造方法
JP5142700B2 (ja) * 2007-03-28 2013-02-13 京セラ株式会社 誘電体磁器組成物および誘電体共振器
JP5129530B2 (ja) 2007-08-24 2013-01-30 インフィニット パワー ソリューションズ, インコーポレイテッド LiCoO2の堆積
WO2011086649A1 (ja) * 2010-01-15 2011-07-21 株式会社アルバック LiCoO2焼結体の製造方法及びスパッタリングターゲット

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200818569A (en) * 2006-07-27 2008-04-16 Nippon Mining & Amp Metals Co Ltd Lithium-containing transition metal oxide target, process for producing the same and lithium ion thin-film secondary battery
CN101246959A (zh) * 2007-02-13 2008-08-20 中信国安盟固利新能源科技有限公司 一种锂离子二次电池正极薄膜极片的制备方法

Also Published As

Publication number Publication date
EP2532634A4 (en) 2014-07-02
US20120305392A1 (en) 2012-12-06
TW201130780A (en) 2011-09-16
KR20120101505A (ko) 2012-09-13
WO2011086650A1 (ja) 2011-07-21
CN102770392A (zh) 2012-11-07
EP2532634A1 (en) 2012-12-12
JP5704571B2 (ja) 2015-04-22
JPWO2011086650A1 (ja) 2013-05-16

Similar Documents

Publication Publication Date Title
TWI504582B (zh) LiCoO2燒結體的製造方法及濺鍍靶
TWI487176B (zh) LiCoO2燒結體的製造方法及濺鍍靶
KR101726117B1 (ko) LiCoO2 함유 소결체 및 스퍼터링 타깃, 및 LiCoO2 함유 소결체의 제조 방법
EP3219690B1 (en) Lithium cobalt sintered body and sputtering target produced by using the sintered body, production method of lithium cobalt oxide sintered body, and thin film formed from lithium cobalt oxide
Jiang et al. Ultrafast sintering of Na3Zr2Si2PO12 solid electrolyte for long lifespan solid-state sodium ion batteries
US20130017137A1 (en) Lanthanum hexaboride sintered body, target and lanthanum hexaboride film each comprising same, and process for production of the sintered body
Orliukas et al. SEM/EDX, XPS, and impedance spectroscopy of LiFePO4 and LiFePO4/C ceramics
US10153142B2 (en) LiCoO2 sputtering target, production method therefor, and positive electrode material thin film
JP6326396B2 (ja) LiCoO2含有スパッタリングターゲットおよびLiCoO2含有焼結体
Stockham et al. Evaluation of Ga 0.2 Li 6.4 Nd 3 Zr 2 O 12 garnets: exploiting dopant instability to create a mixed conductive interface to reduce interfacial resistance for all solid state batteries
JP6982712B2 (ja) リチウムイオン伝導性酸化物焼結体およびその用途
US20240175633A1 (en) Setter for ceramic firing
TW202136176A (zh) Cr-Si系燒結體、濺鍍靶材及薄膜的製造方法
WO2017064920A1 (ja) LiCoO2含有焼結体およびLiCoO2含有スパッタリングターゲット、並びにLiCoO2含有焼結体の製造方法
KR101975665B1 (ko) 고체산화물연료전지용 금속분리판 코팅소재 및 이의 제조방법
KR101789300B1 (ko) 방전 플라즈마 소결 공정을 이용한 은-다이아몬드 복합 재료의 제조방법 및 이에 의해 제조된 은-다이아몬드 복합 재료
WO2019124351A1 (ja) Cu-Ga合金スパッタリングターゲット、及び、Cu-Ga合金スパッタリングターゲットの製造方法
TW202402713A (zh) 氮化硼燒結體及其製造方法、承載板、以及容器
Stockham et al. Evaluation of Ga0. 2Li6. 4Nd3Zr2O12 garnets
Tempela et al. Insights into the reactive sintering and separated specific grain/grain boundary conductivities of Li1. 3Al0. 3Ti1. 7 (PO4) 3