TWI473764B - Molten salt composition - Google Patents

Molten salt composition Download PDF

Info

Publication number
TWI473764B
TWI473764B TW101144439A TW101144439A TWI473764B TW I473764 B TWI473764 B TW I473764B TW 101144439 A TW101144439 A TW 101144439A TW 101144439 A TW101144439 A TW 101144439A TW I473764 B TWI473764 B TW I473764B
Authority
TW
Taiwan
Prior art keywords
molten salt
nano
salt composition
kno
lino
Prior art date
Application number
TW101144439A
Other languages
Chinese (zh)
Other versions
TW201420504A (en
Inventor
Ching Cheng Lin
Li Hua Wang
Tien Heng Huang
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW101144439A priority Critical patent/TWI473764B/en
Priority to CN201210566647.1A priority patent/CN103849358B/en
Publication of TW201420504A publication Critical patent/TW201420504A/en
Application granted granted Critical
Publication of TWI473764B publication Critical patent/TWI473764B/en

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Seasonings (AREA)
  • Fireproofing Substances (AREA)

Description

熔鹽組合物Molten salt composition

本發明係關於熔鹽組合物,更特別關於熔鹽組合物於太陽能熱能發電的應用。This invention relates to molten salt compositions, and more particularly to the use of molten salt compositions for solar thermal power generation.

太陽熱能發電系統需大量熔鹽,以作為熱能介質。熔鹽成本占熱儲存系統的40~50%。換言之,若能提昇熔鹽性質如降低其熔點、增加其比熱、及增加其穩定性,則可降低發電成本。The solar thermal power generation system requires a large amount of molten salt to serve as a thermal energy medium. Molten salt costs 40 to 50% of the thermal storage system. In other words, if the molten salt properties can be improved, such as lowering the melting point, increasing its specific heat, and increasing its stability, the power generation cost can be reduced.

目前市售熔鹽包括硝酸鹽組合物Hitec® ,包含60wt%的NaNO3 與40wt%的KNO3 ,其熔點為220℃,25℃的比熱(熱容量)為1.3398 J/gK,而350℃的比熱為1.55J/gK。市售熔鹽如Dow所售之硝酸鹽組合物,包含53wt%的KNO3 、7wt%的NaNO3 、與40wt%的NaNO2 ,其熔點為142℃。市售熔鹽如Dow所售之硝酸鹽組合物,包含45wt%的KNO4 、7wt%的NaNO3 、與48wt%的Ca(NO3 )2 ,其熔點為120℃。Currently commercially available molten salts include the nitrate composition Hitec ® , which contains 60 wt% of NaNO 3 and 40 wt% of KNO 3 , having a melting point of 220 ° C, a specific heat (heat capacity) of 25 ° C of 1.3398 J/gK, and a specific heat of 350 ° C. It is 1.55J/gK. Commercially sold by Dow as molten salt of nitrate composition comprises 53wt% of KNO 3, 7wt% of NaNO 3, and 40wt% of NaNO 2, a melting point of 142 ℃. A commercially available molten salt such as the nitrate composition sold by Dow comprises 45 wt% KNO 4 , 7 wt% NaNO 3 , and 48 wt% Ca(NO 3 ) 2 having a melting point of 120 °C.

美國專利7,588,694揭露之硝酸鹽組合物包含13wt%至21wt%的LiNO3 、9wt%至18wt%的NaNO3 、40wt%至52wt%的KNO3 、及20wt%至27wt%的Ca(NO3 )2 ,其熔點<100℃,熱穩定性>500℃。美國專利7,922,931揭露之亞硝酸鹽和硝酸鹽組合物包含LiNO3 、NaNO3 、KNO3 、NaNO2 、及KNO2 ,其中Li占20mol%至33.5mol%,Na占18.6mol%至40mol%,K占40mol%至50.3mol%,NO3 占36mol%至50mol%,而NO2 占50mol%至62.5mol%,其熔點介於70℃ 至80℃之間。U.S. Patent No. 7,588,694 discloses a composition comprising a nitrate of 13wt% to 21wt% of LiNO 3, 9wt% to 18wt% of NaNO 3, 40wt% to 52wt% of KNO 3, and 20wt% to 27wt% of Ca (NO 3) 2 , its melting point <100 ° C, thermal stability >500 ° C. The nitrite and nitrate compositions disclosed in U.S. Patent No. 7,922,931 comprise LiNO 3 , NaNO 3 , KNO 3 , NaNO 2 , and KNO 2 , wherein Li accounts for 20 mol% to 33.5 mol%, and Na accounts for 18.6 mol% to 40 mol%, K. From 40 mol% to 50.3 mol%, NO 3 accounts for 36 mol% to 50 mol%, and NO 2 accounts for 50 mol% to 62.5 mol%, and its melting point is between 70 ° C and 80 ° C.

綜上所述,目前熔鹽的開發多以降低熔點與提高熱穩定性為重點。然而在太陽熱能發電的應用中,熔鹽的比熱(熱容量)比熔點更重要。舉例來說,若能使熔鹽比熱加倍,則相同用量的熔鹽所能儲存的熱能亦加倍,可大幅降低太陽熱能發電的成本。換言之,目前亟需高比熱的熔鹽組成。In summary, the development of molten salt is currently focused on lowering the melting point and improving thermal stability. However, in solar thermal power generation applications, the specific heat (heat capacity) of the molten salt is more important than the melting point. For example, if the molten salt is doubled than the heat, the same amount of molten salt can be stored to double the heat energy, which can greatly reduce the cost of solar thermal power generation. In other words, there is a need for a molten salt composition of high specific heat.

本發明一實施例提供一種熔鹽組合物,包括:15wt%至26wt%的LiNO3 ;12wt%至21wt%的NaNO3 ;43wt%至53wt%的KNO3 ;以及3wt%至29wt%的Ba(NO3 )2 或2wt%至10wt%的CsNO3An embodiment of the present invention provides a molten salt composition comprising: 15 wt% to 26 wt% of LiNO 3 ; 12 wt% to 21 wt% of NaNO 3 ; 43 wt% to 53 wt% of KNO 3 ; and 3 wt% to 29 wt% of Ba ( NO 3 ) 2 or 2 wt% to 10 wt% of CsNO 3 .

本發明一實施例提供之熔鹽組合物,包括:15wt%至26wt%的LiNO3 ;12wt%至21wt%的NaNO3 ;43wt%至53wt%的KNO3 ;以及3wt%至29wt%的Ba(NO3 )2 或2wt%至10wt%的CsNO3 ,也就是(1)LiNO3 、NaNO3 、KNO3 、與Ba(NO3 )2 的組合物;以及(2)LiNO3 、NaNO3 、KNO3 、與CsNO3 的組合物。上述熔鹽組成物具有高比熱(>1.5J/gK)與寬廣的流體範圍(熔點為約110℃至130℃,熱穩定溫度高達550℃至570℃),適於作為熱傳介質與熱儲存介質,以應用於太陽熱能發電,或搭配傳統發電如火力發電或核能發電等,請參考Hybrid Solar Thermal Power Plant(資料出處:the World Bank)。值得注意的是,若熔鹽組合物中某一鹽類的比例超 出上述範圍,即可能劣化熔鹽組合物的物性,比如降低比熱或縮減流體範圍。A molten salt composition according to an embodiment of the present invention comprises: 15 wt% to 26 wt% of LiNO 3 ; 12 wt% to 21 wt% of NaNO 3 ; 43 wt% to 53 wt% of KNO 3 ; and 3 wt% to 29 wt% of Ba ( NO 3 ) 2 or 2 wt% to 10 wt% of CsNO 3 , that is, (1) a combination of LiNO 3 , NaNO 3 , KNO 3 , and Ba(NO 3 ) 2 ; and (2) LiNO 3 , NaNO 3 , KNO 3. A composition with CsNO 3 . The above molten salt composition has high specific heat (>1.5 J/gK) and a wide fluid range (melting point of about 110 ° C to 130 ° C, heat stable temperature up to 550 ° C to 570 ° C), suitable for heat transfer medium and heat storage. Medium for solar thermal power generation, or with conventional power generation such as thermal power or nuclear power generation, please refer to the Hybrid Solar Thermal Power Plant (source: the World Bank). It is to be noted that if the proportion of a certain salt in the molten salt composition is outside the above range, the physical properties of the molten salt composition may be deteriorated, such as lowering the specific heat or reducing the range of the fluid.

為了讓本發明之上述和其他目的、特徵、和優點能更明顯易懂,下文特舉數實施例配合所附圖示,作詳細說明如下:The above and other objects, features, and advantages of the present invention will become more apparent and understood.

【實施例】[Examples]

下述LiNO3 、NaNO3 、KNO3 、Ba(NO3 )2 、與CsNO3 係購自J.T.Baker Chemicals。依化學計量比,秤取上述鹽類置於加熱爐中,以電熱器加熱至150℃後維持4小時以去除熔鹽組合物中的水份,再加熱至400℃後維持8小時使其均勻混合。至此即得熔鹽組合物,在室溫下的外觀為透明無色或不透明白色,在高溫下(>140℃)的外觀則為透明無色。以目視觀察加熱的熔鹽具良好流動性,所以黏度並未明顯增加。The following LiNO 3 , NaNO 3 , KNO 3 , Ba(NO 3 ) 2 , and CsNO 3 were purchased from JT Baker Chemicals. According to the stoichiometric ratio, the above salt is placed in a heating furnace, heated to 150 ° C by an electric heater and maintained for 4 hours to remove water in the molten salt composition, and then heated to 400 ° C for 8 hours to make it uniform. mixing. Thus, the molten salt composition has a transparent, colorless or opaque white appearance at room temperature, and is transparent and colorless at high temperatures (>140 ° C). The heated molten salt was visually observed to have good fluidity, so the viscosity did not increase significantly.

熱電偶可用以量測熔鹽組合物的熔點。加熱過程中的熔鹽由固態完全轉變為液態的溫度即所謂的熔點,而在冷卻過程中開始出現固態的溫度即所謂的凝固點。A thermocouple can be used to measure the melting point of the molten salt composition. The temperature at which the molten salt is completely converted from a solid state to a liquid state during heating is a so-called melting point, and a solid temperature, a so-called freezing point, begins to appear during the cooling process.

熱重分析儀(TGA,model Labsys of Setarm Instrumentation)可用以量測熔鹽組合物之熱穩定溫度。在控制氣氛下加熱熔鹽,連續量測熔鹽的重量。在超過熱穩定溫度時,熔鹽將分解成氣相物而減輕重量。A thermolabile analyzer (TGA, model Labsys of Setarm Instrumentation) can be used to measure the heat stable temperature of the molten salt composition. The molten salt is heated under a controlled atmosphere, and the weight of the molten salt is continuously measured. When the heat stable temperature is exceeded, the molten salt will decompose into a gas phase to reduce the weight.

示差掃描量熱儀(DSC,model Q20 of TA Instruments)可用以量測熔鹽組合物之比熱。依據ASTM-E1269規範(Standard Test Method for Determining Specific Heat Capacity by Differential Scanning Calorimetry)量測熔鹽組合物的比熱。A differential scanning calorimeter (DSC, model Q20 of TA Instruments) can be used to measure the specific heat of the molten salt composition. According to ASTM-E1269 (Standard Test Method for Determining Specific Heat Capacity by Differential Scanning Calorimetry) The specific heat of the molten salt composition was measured.

實施例1Example 1

取16wt%的LiNO3 、13wt%的NaNO3 、43mol%的KNO3 、與28wt% Ba(NO3 )2 混合後,加熱至150℃後維持4小時以去除熔鹽組合物中的水份,再加熱至400℃後維持8小時使其均勻混合。上述熔鹽混合物之熔點、凝固點、熱穩定溫度、比熱(在150℃)如第1表所示。16 wt% of LiNO 3 , 13 wt% of NaNO 3 , 43 mol% of KNO 3 , and 28 wt% of Ba(NO 3 ) 2 were mixed, and then heated to 150 ° C for 4 hours to remove water in the molten salt composition. After heating to 400 ° C, it was maintained for 8 hours to make it uniformly mixed. The melting point, freezing point, heat stable temperature, and specific heat (at 150 ° C) of the above molten salt mixture are shown in Table 1.

實施例2Example 2

取26wt%的LiNO3 、20wt%的NaNO3 、51wt%的KNO3 、與3wt% Ba(NO3 )2 混合後,加熱至150℃後維持4小時以去除熔鹽組合物中的水份,再加熱至400℃後維持8小時使其均勻混合。上述熔鹽混合物之熔點、凝固點、熱穩定溫度、比熱(在150℃)如第1表所示。26 wt% of LiNO 3 , 20 wt% of NaNO 3 , 51 wt% of KNO 3 , and 3 wt% of Ba(NO 3 ) 2 were mixed, and then heated to 150 ° C for 4 hours to remove water in the molten salt composition. After heating to 400 ° C, it was maintained for 8 hours to make it uniformly mixed. The melting point, freezing point, heat stable temperature, and specific heat (at 150 ° C) of the above molten salt mixture are shown in Table 1.

實施例3Example 3

取22wt%的LiNO3 、18wt%的NaNO3 、50wt%的KNO3 、與10wt% Ba(NO3 )2 混合後,加熱至150℃後維持4小時以去除熔鹽組合物中的水份,再加熱至400℃後維持8小時使其均勻混合。上述熔鹽混合物之熔點、凝固點、熱穩定溫度、比熱(在150℃)如第1表所示。22 wt% of LiNO 3 , 18 wt% of NaNO 3 , 50 wt% of KNO 3 , and 10 wt% of Ba(NO 3 ) 2 were mixed, and then heated to 150 ° C for 4 hours to remove water in the molten salt composition. After heating to 400 ° C, it was maintained for 8 hours to make it uniformly mixed. The melting point, freezing point, heat stable temperature, and specific heat (at 150 ° C) of the above molten salt mixture are shown in Table 1.

實施例4Example 4

取26wt%的LiNO3 、20wt%的NaNO3 、52wt%的KNO3 、與2wt% CsNO3 混合後,加熱至150℃後維持4小時以去除熔鹽組合物中的水份,再加熱至400℃後維持8小時使其均勻混合。上述熔鹽混合物之熔點、凝固點、熱穩定溫度、比熱(在150℃)如第1表所示。26 wt% of LiNO 3 , 20 wt% of NaNO 3 , 52 wt% of KNO 3 , and 2 wt% of CsNO 3 were mixed, and then heated to 150 ° C for 4 hours to remove water in the molten salt composition, and then heated to 400. After °C, it was maintained for 8 hours to make it evenly mixed. The melting point, freezing point, heat stable temperature, and specific heat (at 150 ° C) of the above molten salt mixture are shown in Table 1.

實施例5Example 5

取26wt%的LiNO3 、16wt%的NaNO3 、48wt%的KNO3 、與10wt% CsNO3 混合後,加熱至150℃後維持4小時以去除熔鹽組合物中的水份,再加熱至400℃後維持8小時使其均勻混合。上述熔鹽混合物之熔點、凝固點、熱穩定溫度、比熱(在150℃)如第1表所示。26 wt% of LiNO 3 , 16 wt% of NaNO 3 , 48 wt% of KNO 3 , and 10 wt% of CsNO 3 were mixed, and then heated to 150 ° C for 4 hours to remove water in the molten salt composition, and then heated to 400. After °C, it was maintained for 8 hours to make it evenly mixed. The melting point, freezing point, heat stable temperature, and specific heat (at 150 ° C) of the above molten salt mixture are shown in Table 1.

由第1表可知,本發明實施例中的熔鹽組成物具有高比熱(>1.5 J/gK)與寬廣的流體範圍(熔點為約110℃至130℃,熱穩定溫度高達550℃至570℃),適於作為熱傳介質與熱儲存介質。As is apparent from the first table, the molten salt composition in the examples of the present invention has a high specific heat (>1.5 J/gK) and a wide fluid range (melting point is about 110 ° C to 130 ° C, and heat stable temperature is as high as 550 ° C to 570 ° C). ), suitable as a heat transfer medium and a heat storage medium.

雖然本發明已以數個較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作任意之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。While the invention has been described above in terms of several preferred embodiments, it is not intended to limit the invention, and the invention may be modified and modified without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

Claims (7)

一種熔鹽組合物,包括:15wt%至26wt%的LiNO3 ;12wt%至21wt%的NaNO3 ;43wt%至53wt%的KNO3 ;以及3wt%至29wt%的Ba(NO3 )2 或2wt%至10wt%的CsNO3A molten salt composition comprising: 15 wt% to 26 wt% of LiNO 3 ; 12 wt% to 21 wt% of NaNO 3 ; 43 wt% to 53 wt% of KNO 3 ; and 3 wt% to 29 wt% of Ba(NO 3 ) 2 or 2 wt % to 10 wt% of CsNO 3 . 如申請專利範圍第1項所述之熔鹽組合物,包括16wt%的LiNO3 、13wt%的NaNO3 、43wt%的KNO3 、與28wt%Ba(NO3 )2The molten salt composition as described in claim 1, comprising 16 wt% of LiNO 3 , 13 wt% of NaNO 3 , 43 wt% of KNO 3 , and 28 wt% of Ba(NO 3 ) 2 . 如申請專利範圍第1項所述之熔鹽組合物,包括26wt%的LiNO3 、20wt%的NaNO3 、51wt%的KNO3 、與3wt%Ba(NO3 )2The molten salt composition as described in claim 1, comprising 26 wt% of LiNO 3 , 20 wt% of NaNO 3 , 51 wt% of KNO 3 , and 3 wt% of Ba(NO 3 ) 2 . 如申請專利範圍第1項所述之熔鹽組合物,包括22wt%的LiNO3 、18wt%的NaNO3 、50wt%的KNO3 、與10wt%Ba(NO3 )2The molten salt composition according to claim 1, comprising 22% by weight of LiNO 3 , 18% by weight of NaNO 3 , 50% by weight of KNO 3 , and 10% by weight of Ba(NO 3 ) 2 . 如申請專利範圍第1項所述之熔鹽組合物,包括26wt%的LiNO3 、20wt%的NaNO3 、52wt%的KNO3 、與2wt%CsNO3The molten salt composition as described in claim 1, comprising 26 wt% of LiNO 3 , 20 wt% of NaNO 3 , 52 wt% of KNO 3 , and 2 wt% of CsNO 3 . 如申請專利範圍第1項所述之熔鹽組合物,包括26wt%的LiNO3 、16wt%的NaNO3 、48wt%的KNO3 、與10wt%CsNO3The molten salt composition as described in claim 1, comprising 26 wt% of LiNO 3 , 16 wt% of NaNO 3 , 48 wt% of KNO 3 , and 10 wt% of CsNO 3 . 如申請專利範圍第1項所述之熔鹽組合物,係一太陽熱能發電裝置的熱傳介質或熱儲存介質。 The molten salt composition according to claim 1 is a heat transfer medium or a heat storage medium of a solar thermal power generation device.
TW101144439A 2012-11-28 2012-11-28 Molten salt composition TWI473764B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW101144439A TWI473764B (en) 2012-11-28 2012-11-28 Molten salt composition
CN201210566647.1A CN103849358B (en) 2012-11-28 2012-12-24 Molten salt composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101144439A TWI473764B (en) 2012-11-28 2012-11-28 Molten salt composition

Publications (2)

Publication Number Publication Date
TW201420504A TW201420504A (en) 2014-06-01
TWI473764B true TWI473764B (en) 2015-02-21

Family

ID=50857491

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101144439A TWI473764B (en) 2012-11-28 2012-11-28 Molten salt composition

Country Status (2)

Country Link
CN (1) CN103849358B (en)
TW (1) TWI473764B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108003845B (en) * 2017-12-08 2020-12-04 中国科学院青海盐湖研究所 Ternary molten nitrate salt and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7588694B1 (en) * 2008-02-14 2009-09-15 Sandia Corporation Low-melting point inorganic nitrate salt heat transfer fluid
US20100038581A1 (en) * 2006-12-13 2010-02-18 Solar Millennium Ag Multinary salt system for storing and transferring thermal energy
US20120056125A1 (en) * 2010-04-19 2012-03-08 Halotechnics, Inc Inorganic salt heat transfer fluid

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4652279A (en) * 1983-08-04 1987-03-24 Erickson Donald C Thermally stable noncorrosive water vapor absorbent
CN101050355B (en) * 2007-05-14 2010-05-19 中山大学 Fusion tray of thermal transmission and storage medium, and preparation method
IT1403931B1 (en) * 2011-02-11 2013-11-08 Eni Spa MIXTURE OF INORGANIC NITRATE SALTS.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100038581A1 (en) * 2006-12-13 2010-02-18 Solar Millennium Ag Multinary salt system for storing and transferring thermal energy
US7588694B1 (en) * 2008-02-14 2009-09-15 Sandia Corporation Low-melting point inorganic nitrate salt heat transfer fluid
US20120056125A1 (en) * 2010-04-19 2012-03-08 Halotechnics, Inc Inorganic salt heat transfer fluid

Also Published As

Publication number Publication date
CN103849358B (en) 2016-12-28
TW201420504A (en) 2014-06-01
CN103849358A (en) 2014-06-11

Similar Documents

Publication Publication Date Title
CN103881663B (en) Multielement nitric acid nano-molten salt heat transfer and heat storage medium, preparation method and application thereof
CN104559942B (en) Fused salt mixt heat accumulation heat-transfer matcrial and preparation method thereof
CN108467711B (en) Inorganic composite phase change material and preparation method thereof
US20150010875A1 (en) Thermal energy storage with molten salt
US20140166924A1 (en) Inorganic salt heat transfer fluid
CN103881662A (en) Ternary nitric acid nano-molten salt heat transfer and storage medium, preparation method and application thereof
WO2018006820A1 (en) Low melting point heat transfer and heat storage molten salt, preparation method and use thereof
CN103923618B (en) Quartz sand composite multi-component nitric acid Molten Salt Heat Transfer heat storage medium and preparation method
Pramod et al. Novel methodology to prepare homogenous ternary molten salts for concentrated solar power applications and their thermo-physical characterization
CN103911119A (en) Heat-transfer heat-accumulation medium prepared by combining quartz sand and ternary molten nitrate salt and preparation method thereof
Smiljanić et al. Effect of La2O3 on the structure and the properties of strontium borate glasses
TWI473764B (en) Molten salt composition
CN102219513B (en) Method for preparing near-zero thermal expansion composite material
Zhang et al. Thermal properties of ternary carbonate/T-ZnOw for thermal energy storage in high-temperature concentrating solar power systems
Na et al. Investigation on thermal performance of eutectic binary nitrate-carbonate molten salt under thermal shock condition
US10907079B2 (en) Process for preparation of homogeneous mixture for thermal storage and heat transfer applications
JP2015067670A (en) Molten salt, heat storage material, and heat medium
CN111100605A (en) Organic phase-change fluid material and preparation method and application thereof
WO2019105448A1 (en) Low melting point molten salt heat transfer and heat storage medium, preparation method therefor and use thereof
WO2019095444A1 (en) Heat transfer and storage molten salt for clean energy boiler, preparation method, and application thereof
US20180230351A1 (en) New formulations of nitrate salts for use as fluid for the storage and transfer of heat
CN105199539A (en) Thermal insulation material used in low-temperature environment
Pérez et al. Effect of NaOH addition on a ternary carbonate salt to be used as storage medium for CSP plants
Marquesi et al. Glass forming ability and thermal stability of oxyfluoride glasses
JP7180316B2 (en) Heat storage material and its manufacturing method