TWI473321B - Lithium battery and method for manufacturing the same - Google Patents

Lithium battery and method for manufacturing the same Download PDF

Info

Publication number
TWI473321B
TWI473321B TW101146804A TW101146804A TWI473321B TW I473321 B TWI473321 B TW I473321B TW 101146804 A TW101146804 A TW 101146804A TW 101146804 A TW101146804 A TW 101146804A TW I473321 B TWI473321 B TW I473321B
Authority
TW
Taiwan
Prior art keywords
transition metal
lithium battery
electrode plate
lithium
cyano complex
Prior art date
Application number
TW101146804A
Other languages
Chinese (zh)
Other versions
TW201424083A (en
Inventor
Chen Chung Chen
Chang Rung Yang
Kuo Feng Chiu
Cheng Lun Chen
Hoang Jyh Leu
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW101146804A priority Critical patent/TWI473321B/en
Priority to CN201210559856.3A priority patent/CN103872373B/en
Publication of TW201424083A publication Critical patent/TW201424083A/en
Application granted granted Critical
Publication of TWI473321B publication Critical patent/TWI473321B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

鋰電池與其形成方法Lithium battery and its forming method

本發明係關於二次鋰離子電池,且特別關於其正極極板組成。The present invention relates to secondary lithium ion batteries, and in particular to their positive electrode plate compositions.

由於一次電池不符環保需求,因此近年來可充電的二次電池系統逐漸受到重視。隨著可攜式電子產品之快速發展和普遍化,鋰離子二次電池因兼具重量輕、高電壓值與高能量密度等特點,使得其市場需求量與日俱增。鋰離子二次電池與鎳氫、鎳鋅、鎳鎘電池相比,具有工作電壓高、能量密度大、重量輕、壽命長及環保性佳等優點,也是未來應用在可撓式電池的最佳選擇。Since primary batteries do not meet environmental protection requirements, rechargeable secondary battery systems have received increasing attention in recent years. With the rapid development and universalization of portable electronic products, lithium-ion secondary batteries have become more and more demanding due to their light weight, high voltage value and high energy density. Compared with nickel-metal hydride, nickel-zinc and nickel-cadmium batteries, lithium-ion secondary batteries have the advantages of high operating voltage, high energy density, light weight, long life and good environmental protection, and are also the best for future applications in flexible batteries. select.

鋰離子二次電池在電腦(Computer,即資訊產品)、通訊(Communication)及消費性電子(Consumer electronics)等3C產品上的運用已漸為普及,對鋰電池性能的要求也越來越高,諸如輕質耐用、高電壓、高能量密度與高安全性等,尤其在輕型電動車、電動車、大型儲電產業上的應用及拓展潛力極高。不過,由於鋰電池系統使用的耐高電壓有機溶劑(此有機溶劑大都為酯類有機分子)具可燃性,且高電容量正/負極活性物質在溫度上升時,會分解放出大量熱量,使得鋰電池在不當使用時所產生的熱,可能會引燃有機溶劑,有較高的危險性,甚至起火***;此外,鋰離子電池在充放電過程中,由於正極材料結構的崩解或產生相變化,都會使正極材料結構中的氧脫出,而這些脫出的氧 會與電解液起反應作用,使電池內部溫度瞬間升高,造成鋰離子二次電池的安全問題。因此該類鋰電池應用產品對因意外穿刺或外力衝擊破壞因素,所造成內短路急速放熱的熱失控(thermal runaway)及電池***等現象之風險避免,將更為重視。高安全性儼然成為下世代高電壓、高能量密度和高電容量之鋰電池必須克服及解決的課題,尤其是在路上行走的輕型電動車、電動車越容易受撞擊或車禍所產生的對電池擠壓變形的危險。The use of lithium-ion secondary batteries in 3C products such as computers (computers, information products), communications (Communication) and consumer electronics (Consumer electronics) has become more and more popular, and the requirements for lithium battery performance are getting higher and higher. Such as lightweight and durable, high voltage, high energy density and high security, especially in light electric vehicles, electric vehicles, large storage industry and application and expansion potential. However, due to the high-voltage organic solvent used in the lithium battery system (the organic solvent is mostly an ester organic molecule), the high-capacity positive/negative active material liberates a large amount of heat when the temperature rises, so that the lithium battery The heat generated by the pool during improper use may ignite organic solvents, which may cause high risk and even cause fire and explosion. In addition, during the charging and discharging process, the lithium ion battery may undergo disintegration or phase change due to the structure of the positive electrode material. Will cause oxygen in the structure of the positive electrode material to escape, and these oxygen It will react with the electrolyte to raise the internal temperature of the battery instantaneously, which causes safety problems of the lithium ion secondary battery. Therefore, this type of lithium battery application product will pay more attention to the risk of thermal runaway and battery explosion caused by accidental puncture or external force damage. High safety has become a problem that must be overcome and solved by lithium batteries of high voltage, high energy density and high capacity in the next generation, especially the light electric vehicles and electric vehicles that are walking on the road are more susceptible to impact or accidents. The danger of extrusion deformation.

習知文獻和專利中,對於鋰電池正極材料作表面改質提升安全性作法為,利用金屬氧化物或金屬氟化物批覆在LiMO2 (M代表過渡金屬)表面,此方法可以提升材料結構穩定性,降低材料與電解液間的放熱量,達到安全提升目的。不過,引入金屬氧化物或金屬氟化物在電極材料表面所形成的保護膜,其本身不具有熱作動安全機制,且亦無法有效抑制脫氧現象,對於外加環境因素引發的內短路,例如意外穿刺或外力衝擊破壞,所引發瞬間高熱而造成電池***的風險仍未有效減降。請參見JP Patent No.1999-317230;JP Patent No.2005-209469;W.Lu,J.Liua,Y.K.Sun and K.Amine, Journal of Power Sources ,167(2007)212;B.-C.Park,H.-B.Kima,S.-T.Myung,K.Amine,I.Belharouak,S.-M.Lee,and Y.-K.Suna, Journal of Power Sources ,178(2008)826。In the conventional literature and patents, it is safe to improve the surface modification of the lithium battery positive electrode material by using metal oxide or metal fluoride on the surface of LiMO 2 (M represents transition metal), which can improve the structural stability of the material. Reduce the heat release between the material and the electrolyte for safety improvement. However, the protective film formed by introducing a metal oxide or a metal fluoride on the surface of the electrode material does not have a thermal actuation safety mechanism itself, and cannot effectively suppress the deoxidation phenomenon, and an internal short circuit caused by an external environmental factor, such as accidental puncture or The impact of external force shocks and the sudden high heat caused by battery explosion has not been effectively reduced. See JP Patent No. 1999-317230; JP Patent No. 2005-209469; W. Lu, J. Liua, YK Sun and K. Amine, Journal of Power Sources , 167 (2007) 212; B.-C. Park, H.-B. Kima, S.-T. Myung, K. Amine, I. Belharouak, S.-M. Lee, and Y.-K. Suna, Journal of Power Sources , 178 (2008) 826.

綜上所述,目前仍需針對二次鋰離子電池的正極極板材料進行改良。除了確保鋰電池系統的安全性外,可進一 步增加電池的載子傳輸能力,以達高速率放電下損失較少電容量的效果。In summary, it is still necessary to improve the positive electrode plate material of the secondary lithium ion battery. In addition to ensuring the safety of the lithium battery system, you can enter one Steps increase the carrier transport capacity of the battery to achieve the effect of losing less capacitance at high rate discharge.

本發明一實施例提供一種鋰電池,包括:正極極板與負極極板;隔離膜,位於正極極板與負極極板之間以定義容置區域;以及電解質溶液,位於容置區域;其中正極極板包括鋰過渡金屬氧化物、黏結劑、與導電粒子混合而成,其中鋰過渡金屬氧化物之表面以含氮高分子與含過渡金屬的氰基錯合物修飾。An embodiment of the present invention provides a lithium battery comprising: a positive electrode plate and a negative electrode plate; a separator disposed between the positive electrode plate and the negative electrode plate to define a receiving region; and an electrolyte solution located in the accommodating region; The pole plate comprises a lithium transition metal oxide, a binder, and a mixture of conductive particles, wherein the surface of the lithium transition metal oxide is modified with a nitrogen-containing polymer and a transition metal-containing cyano complex.

本發明一實施例提供一種鋰電池的形成方法,包括:將鋰過渡金屬氧化物、導電粒子、以及黏結劑製成正極極板,其中鋰過渡金屬氧化物之表面以含氮高分子與過渡金屬的氰基錯合物修飾;將隔離膜設置於正極極板與負極極板之間,以定義容置區域;以及將電解質溶液填入容置區域。An embodiment of the invention provides a method for forming a lithium battery, comprising: forming a lithium transition metal oxide, a conductive particle, and a binder into a positive electrode plate, wherein the surface of the lithium transition metal oxide is a nitrogen-containing polymer and a transition metal The cyano complex modification; the separator is disposed between the positive electrode plate and the negative electrode plate to define an accommodating region; and the electrolyte solution is filled into the accommodating region.

本發明一實施例提供鋰電池的形成方法。首先將鋰過渡金屬氧化物、導電粒子、以及黏結劑製成正極極板,其中鋰過渡金屬氧化物之表面以含氮高分子與含過渡金屬的氰基錯合物修飾。An embodiment of the invention provides a method of forming a lithium battery. First, a lithium transition metal oxide, a conductive particle, and a binder are formed into a positive electrode plate, wherein the surface of the lithium transition metal oxide is modified with a nitrogen-containing polymer and a transition metal-containing cyano complex.

在本發明一實施例中,鋰過渡金屬氧化物可為LiMnO2 、LiMn2 O4 、LiCoO2 、Li2 Cr2 O7 、Li2 CrO4 、LiNiO2 、LiFeO2 、LiNix Co1-x O2 (0<x<1)、LiMPO4 (M為過渡金屬)、 LiMn0.5 Ni0.5 O2 、LiNix Coy Mnz O2 (x+y+z=1)、LiNix Coy Alz O2 (x+y+z=1)、LiMc0.5 Mn1.5 O4 、或上述之組合,且Mc為二價金屬。舉例來說,鋰過渡金屬氧化物之粒徑約介於10 nm至40 μm之間。若鋰過渡金屬氧化物之粒徑過大,可能不利於大電流放電與所設計電池單位容量較低。若鋰過渡金屬氧化物之粒徑過小,雖有利於大電流放電及循環壽命,但可能會致使其相關安全性質變差。In an embodiment of the invention, the lithium transition metal oxide may be LiMnO 2 , LiMn 2 O 4 , LiCoO 2 , Li 2 Cr 2 O 7 , Li 2 CrO 4 , LiNiO 2 , LiFeO 2 , LiNi x Co 1-x O 2 (0<x<1), LiMPO 4 (M is a transition metal), LiMn 0.5 Ni 0.5 O 2 , LiNi x Co y Mn z O 2 (x+y+z=1), LiNi x Co y Al z O 2 (x+y+z=1), LiMc 0.5 Mn 1.5 O 4 , or a combination thereof, and Mc is a divalent metal. For example, the lithium transition metal oxide has a particle size between about 10 nm and 40 μm. If the particle size of the lithium transition metal oxide is too large, it may be disadvantageous for high current discharge and low unit capacity of the designed battery. If the particle size of the lithium transition metal oxide is too small, it is advantageous for large current discharge and cycle life, but may cause its related safety properties to deteriorate.

在本發明一實施例中,導電粒子可為KS series、Super P series、碳黑、石墨、乙炔黑、鎳粉、鋁粉、鈦粉、不銹鋼粉、或上述之組合。舉例來說,導電粒子之粒徑約介於20 nm至25 μm之間。若導電粒子之粒徑過大,可能造成比表面積小與電解質潤濕性差之缺點。若導電粒子之粒徑過小,雖有利於電子傳導,但因比表面積過大,將有可能使極板製作均一性變差。在本發明一實施例中,鋰過渡金屬氧化物與導電粒子之重量比約介於100:1.5至100:15之間。若導電粒子之用量過高,可能單位面積電容量低。若導電粒子之用量過低,可能不利於大電流充放電。In an embodiment of the invention, the conductive particles may be KS series, Super P series, carbon black, graphite, acetylene black, nickel powder, aluminum powder, titanium powder, stainless steel powder, or a combination thereof. For example, the conductive particles have a particle size between about 20 nm and 25 μm. If the particle diameter of the conductive particles is too large, there is a possibility that the specific surface area is small and the electrolyte wettability is poor. If the particle diameter of the conductive particles is too small, it is advantageous for electron conduction, but if the specific surface area is too large, the uniformity of the electrode plate formation may be deteriorated. In an embodiment of the invention, the weight ratio of the lithium transition metal oxide to the conductive particles is between about 100:1.5 and 100:15. If the amount of conductive particles is too high, the capacitance per unit area may be low. If the amount of conductive particles is too low, it may be disadvantageous for large current charge and discharge.

在本發明一實施例中,黏結劑可為聚二氟乙烯、苯乙烯丁二烯橡膠、聚醯胺、三聚氰胺樹脂、或上述之組合。舉例來說,黏結劑之重均分子量約介於28萬至50萬之間。若黏結劑之重均分子量過高,可能易脆裂且難以加工。若黏結劑之重均分子量過低,可能不易成型且使黏著性變差。在本發明一實施例中,鋰過渡金屬氧化物與黏結劑之重量比約介於100:4至100:10之間。若黏結劑之用量過高, 可能使電子阻抗上昇。若黏結劑之用量過低,可能使粉體與粉體間及粉體與基材間附著力皆降低。In an embodiment of the invention, the binder may be polyvinylidene fluoride, styrene butadiene rubber, polyamide, melamine resin, or a combination thereof. For example, the weight average molecular weight of the binder is between about 280,000 and 500,000. If the weight average molecular weight of the binder is too high, it may be brittle and difficult to process. If the weight average molecular weight of the binder is too low, it may be difficult to form and the adhesion may be deteriorated. In an embodiment of the invention, the weight ratio of the lithium transition metal oxide to the binder is between about 100:4 and 100:10. If the amount of binder is too high, It is possible to increase the electronic impedance. If the amount of the binder is too low, the adhesion between the powder and the powder and between the powder and the substrate may be lowered.

用以修飾鋰過渡金屬氧化物表面之含氮高分子係由胺(amines)、醯胺(amides)、醯亞胺(imides)、馬來醯亞胺(maleimides)、或亞胺(imines);與二酮化合物(diones)反應而成。上述二酮化合物可為巴比土酸(barbituric acid)、乙醯丙酮(acetylactone)、或上述之組合。關於含氮高分子之形成方法,請參考台灣專利申請號098129864。The nitrogen-containing polymer used to modify the surface of the lithium transition metal oxide is composed of amines, amides, imides, maleimides, or imines; It is formed by reacting with a diketone compound (diones). The above diketone compound may be barbituric acid, acetylactone, or a combination thereof. For the formation method of the nitrogen-containing polymer, please refer to Taiwan Patent Application No. 098129864.

用以修飾鋰過渡金屬氧化物表面之含過渡金屬的氰基錯合物,可為含鐵赤血鹽(普魯士藍)或其他過渡金屬赤血鹽,而過渡金屬可以是釩、鉻、錳、鐵、鈷、鎳、銅、鋅、釕、或銀。當過渡金屬為一價Ma ,含過渡金屬的氰基錯合物結構可為Ma3 (Fe(CN)6 ),當過渡金屬為二價Mb ,含過渡金屬的氰基錯合物結構可為Mb3 (Fe(CN)6 )2 ,當過渡金屬為三價Md ,含過渡金屬的氰基錯合物結構可為Md (Fe(CN)6 )。The transition metal-containing cyano complex for modifying the surface of the lithium transition metal oxide may be iron-containing red blood salt (Prussian blue) or other transition metal red blood salt, and the transition metal may be vanadium, chromium, manganese, Iron, cobalt, nickel, copper, zinc, antimony, or silver. When the transition metal is monovalent M a , the transition metal-containing cyano complex structure may be M a3 (Fe(CN) 6 ), and when the transition metal is divalent M b , the transition metal-containing cyano complex structure It may be M b3 (Fe(CN) 6 ) 2 , and when the transition metal is trivalent M d , the transition metal-containing cyano complex structure may be M d (Fe(CN) 6 ).

以含氮高分子與含過渡金屬的氰基錯合物修飾鋰過渡金屬氧化物表面的方法如下。在本發明一實施例中,先將鋰過渡金屬氧化物置於含氮高分子溶液中於室溫下攪拌數小時。接著將含氮高分子修飾表面後的鋰過渡金屬氧化物、導電粒子、與黏結劑混合後,壓製成型正極極板。值得注意的是,正極極板為孔洞狀的結構。接著將正極極板浸入含過渡金屬的氰基錯合物溶液中,使含過渡金屬的氰基錯合物經由孔洞修飾鋰過渡金屬氧化物粒子的表面。至此即完成正極極板,其鋰過渡金屬氧化物表面修飾有含氮 高分子與含過渡金屬的氰基錯合物。The method of modifying the surface of the lithium transition metal oxide with a nitrogen-containing polymer and a transition metal-containing cyano complex is as follows. In one embodiment of the invention, the lithium transition metal oxide is first placed in a nitrogen-containing polymer solution and stirred at room temperature for several hours. Next, the lithium transition metal oxide and the conductive particles after the surface of the nitrogen-containing polymer is modified are mixed with a binder, and then the positive electrode plate is press-formed. It is worth noting that the positive electrode plate has a hole-like structure. The positive electrode plate is then immersed in a transition metal-containing cyano complex solution to modify the surface of the lithium transition metal oxide particles via the pores of the transition metal-containing cyano complex. At this point, the positive electrode plate is completed, and the surface of the lithium transition metal oxide is modified with nitrogen. A polymer and a transition metal-containing cyano complex.

在本發明另一實施例中,先將鋰過渡金屬氧化物粒子置於含氮高分子溶液中於室溫下攪拌數小時。接著將含氮高分子修飾表面後的鋰過渡金屬氧化物,浸入含過渡金屬的氰基錯合物溶液中,使含過渡金屬的氰基錯合物可修飾鋰過渡金屬氧化物。接著將含氮高分子與含過渡金屬的氰基錯合物修飾表面後的鋰過渡金屬氧化物、導電粒子、與黏結劑混合後,壓製成型正極極板。不論採用何種作法,正極極板1中的鋰過渡金屬氧化物101的表面修飾有含氮高分子與含過渡金屬的氰基錯合物103,如第1A圖所示。In another embodiment of the present invention, the lithium transition metal oxide particles are first placed in a nitrogen-containing polymer solution and stirred at room temperature for several hours. Next, the lithium transition metal oxide after modifying the surface of the nitrogen-containing polymer is immersed in a transition metal-containing cyano complex solution to modify the transition metal-containing cyano complex to modify the lithium transition metal oxide. Next, the lithium transition metal oxide, the conductive particles, and the binder after the surface of the nitrogen-containing polymer and the transition metal-containing cyano complex are modified are mixed, and then the positive electrode plate is press-formed. Regardless of the method used, the surface of the lithium transition metal oxide 101 in the positive electrode plate 1 is modified with a nitrogen-containing polymer and a transition metal-containing cyano complex 103 as shown in Fig. 1A.

在本發明一實施例中,鋰電池用負極活性物可為Mesophase Graphite series、Green Mesophase series、Mesographite Composite anode series或上述之組合。且舉例來說,鋰電池用負極活性物之粒徑約介於5μm至30 μm之間。若負極活性物之粒徑過大,可能不利於大電流放電與所設計電池單位容量較低。若負極活性物之粒徑過小,雖有利於大電流放電及循環壽命,但可能會致使其相關安全性質變差。而實施例中負極極板製作,主要將負極活性物、導電粒子、與黏結劑混合後,壓製成型負極極板。In an embodiment of the invention, the negative electrode active material for a lithium battery may be Mesophase Graphite series, Green Mesophase series, Mesographite Composite anode series or a combination thereof. For example, the particle size of the negative electrode active material for a lithium battery is between about 5 μm and 30 μm. If the particle size of the negative electrode active material is too large, it may be disadvantageous for large current discharge and low unit capacity of the designed battery. If the particle size of the negative electrode active material is too small, it is advantageous for large current discharge and cycle life, but may cause deterioration of related safety properties. In the embodiment, the negative electrode plate is mainly prepared by mixing the negative electrode active material, the conductive particles, and the binder, and then pressing and forming the negative electrode plate.

接著將隔離膜5設置於正極極板1與負極極板3之間,以定義容置區域2。將電解質溶液填入容置區域2後,以封裝結構6包覆正極極板1、負極極板3、隔離膜5、以及電解質溶液。關於負極極板3、隔離膜5、及封裝結構6之組成請參考台灣專利申請號098129864。Next, the separator 5 is disposed between the positive electrode plate 1 and the negative electrode plate 3 to define the accommodating region 2. After the electrolyte solution is filled in the accommodating region 2, the positive electrode plate 1, the negative electrode plate 3, the separator 5, and the electrolyte solution are coated with the package structure 6. For the composition of the negative electrode plate 3, the separator 5, and the package structure 6, please refer to Taiwan Patent Application No. 098129864.

為了讓本發明之上述和其他目的、特徵、和優點能更明顯易懂,下文特舉數實施例配合所附圖示,作詳細說明如下:The above and other objects, features, and advantages of the present invention will become more apparent and understood.

【實施例】[Examples] 合成含氮高分子Synthetic nitrogen-containing polymer

將2.55克(0.071M)N,N’-4,4’-二苯基甲烷-雙馬來醯亞胺與0.45克(0.035M)巴比土酸置於500毫升四頸反應器中,後加97克之N-甲基吡咯酮(NMP)攪拌使其溶解;接著於130℃條件下反應48小時,獲得固含量3.0%之含氮高分子,其為具有超分歧結構之雙馬來醯亞胺寡聚物,其分歧度約75%;DSC分析(heating rate:10℃/min @ N2 ),其熱交聯溫度約為80℃~90℃。2.55 g (0.071 M) of N,N'-4,4'-diphenylmethane-bismaleimide and 0.45 g (0.035 M) of barbituric acid were placed in a 500 ml four-necked reactor, after Adding 97 g of N-methylpyrrolidone (NMP) to dissolve it; then reacting at 130 ° C for 48 hours to obtain a nitrogen-containing polymer having a solid content of 3.0%, which is a double-malay The amine oligomer has a degree of divergence of about 75%; DSC analysis (heating rate: 10 ° C / min @ N 2 ), and the thermal crosslinking temperature is about 80 ° C to 90 ° C.

比較例1Comparative example 1

將89g之LiNi4 Co2 Mn4 O2 粉末(L442,購自Amita Co.,Taiwan)、5g之導電添加劑(KS6,購自Timcal Co.Switzerland)、2g之導電添加劑(Super P,購自Timcal Co.Switzerland)、與4g之聚偏氟乙烯(Poly(vinylidenefluoride);PVDF)作為黏結劑分散於NMP中。將此漿體塗佈於鋁箔後於130℃乾燥,壓縮並剪裁以形成正極極板。89 g of LiNi 4 Co 2 Mn 4 O 2 powder (L442, available from Amita Co., Taiwan), 5 g of conductive additive (KS6, available from Timcal Co. Switzerland), 2 g of conductive additive (Super P, purchased from Timcal Co.Switzerland), with 4g of polyvinylidene fluoride (PVDF) as a binder dispersed in NMP. The slurry was applied to an aluminum foil, dried at 130 ° C, compressed and cut to form a positive electrode plate.

將上述所得之正極極板配合標準制式對應石墨負極極板或鋰箔,與PP/PE/PP三層隔離膜(購自Celgard之Celgard 2320),堆疊形成全/半電池,全電池部分配合鋁外殼形構成 0.1cm厚、3.7cm寬、與5.0cm長之電池,其間保持三邊封口(封口壓合條件:4.0 kgf/cm2 ,190℃/4s)與一邊未封口;最後將電解液(1.0M LiPF6 、EC+EMC(體積比EC:EMC=1:2)、與2wt% VC),由另一邊未封口灌入,抽氣後進行最後封口(封口壓合條件:4.0 kgf/cm2 ,190℃/4s),其中電池電解液灌液量為4.2g/顆,最後再以標準化成程序(formation),進行鋰電池活化即得鋰電池,其於4.3V至3.0V之充放電壓與0.1C/0.1C之充放電流密度的充放電曲線如第2A圖所示,於4.3V至3.0V之充放電壓與1C/1C之充放電流密度的充放電曲線如第2B圖所示,而於4.3V至3.0V之充放電壓與2C/2C之充放電流密度的充放電曲線如第2C圖所示。此外,鋰電池於0.1C/0.1C之充放電流密度之充放電性質如第1表所示。The positive electrode plate obtained above is matched with the standard negative electrode or lithium foil of the standard standard, and the three-layer separator of PP/PE/PP (Celgard 2320 from Celgard) is stacked to form a full/half battery, and the whole battery is partially matched with aluminum. The outer casing is formed into a battery having a thickness of 0.1 cm, a width of 3.7 cm, and a length of 5.0 cm, and a three-side sealing (sealing pressing condition: 4.0 kgf/cm 2 , 190 ° C / 4 s) is maintained therebetween, and one side is not sealed; 1.0M LiPF 6 , EC+EMC (volume ratio EC: EMC = 1:2), and 2wt% VC), filled from the other side without sealing, and finally sealed after pumping (sealing press condition: 4.0 kgf/cm 2 , 190 ° C / 4 s), in which the battery electrolyte filling amount is 4.2 g / granule, and finally, by standardization into a procedure, the lithium battery is activated to obtain a lithium battery, which is charged and discharged at 4.3V to 3.0V. The charge-discharge curve of the voltage and the charge-discharge current density of 0.1C/0.1C is shown in Fig. 2A. The charge-discharge curve of the charge-discharge voltage of 4.3V to 3.0V and the charge-discharge current density of 1C/1C is shown in Fig. 2B. As shown, the charge-discharge curve of the charge-discharge voltage of 4.3V to 3.0V and the charge-and-discharge current density of 2C/2C is as shown in Fig. 2C. In addition, the charge and discharge properties of the charge current density of the lithium battery at 0.1 C/0.1 C are shown in Table 1.

比較例2Comparative example 2

先將89g鋰過渡金屬氧化物置於含氮高分子溶液中於室溫下攪拌數小時。接著將含氮高分子修飾表面後的鋰過渡金屬氧化物、5g之導電添加劑(KS6,Timcal Co.Switzerland)、2g之導電添加劑(Super P,Timcal Co.Switzerland)、與4g之聚偏氟乙烯(Poly(vinylidenefluoride);PVDF)作為黏結劑分散於NMP中。將此漿體塗佈於鋁箔後於130℃乾燥,壓縮並剪裁以形成正極極板。89 g of the lithium transition metal oxide was first placed in a nitrogen-containing polymer solution and stirred at room temperature for several hours. Next, the lithium transition metal oxide after the surface modification of the nitrogen-containing polymer, 5 g of the conductive additive (KS6, Timcal Co. Switzerland), 2 g of the conductive additive (Super P, Timcal Co. Switzerland), and 4 g of polyvinylidene fluoride (Poly(vinylidenefluoride); PVDF) is dispersed as a binder in NMP. The slurry was applied to an aluminum foil, dried at 130 ° C, compressed and cut to form a positive electrode plate.

至於負極極板、隔離膜、電解液組成、與封裝形成的 電池尺寸均與比較例1相同。換言之,比較例2與比較例1之差異僅在於LiNi4 Co2 Mn4 O2 粉末之表面修飾有含氮高分子。比較例2之鋰電池於4.3V至3.0V之充放電壓與0.1C/0.1C之充放電流密度的充放電曲線如第2A圖所示,於4.3V至3.0V之充放電壓與1C/1C之充放電流密度的充放電曲線如第2B圖所示,而於4.3V至3.0V之充放電壓與2C/2C之充放電流密度的充放電曲線如第2C圖所示。此外,鋰電池於0.1C/0.1C之充放電流密度之充放電性質如第1表所示。The size of the battery of the negative electrode plate, the separator, the electrolyte composition, and the package was the same as in Comparative Example 1. In other words, Comparative Example 2 differs from Comparative Example 1 only in that the surface of the LiNi 4 Co 2 Mn 4 O 2 powder is modified with a nitrogen-containing polymer. The charge-discharge curve of the charge-discharge voltage of the lithium battery of Comparative Example 2 at a charge-discharge voltage of 4.3V to 3.0V and the charge-discharge current of 0.1C/0.1C is as shown in FIG. 2A, and the charge-discharge voltage of 4.3V to 3.0V is 1C. The charge-discharge curve of the charge/discharge current density of /1C is as shown in Fig. 2B, and the charge-discharge curve of the charge-discharge voltage of 4.3V to 3.0V and the charge-discharge current density of 2C/2C is as shown in Fig. 2C. In addition, the charge and discharge properties of the charge current density of the lithium battery at 0.1 C/0.1 C are shown in Table 1.

比較例3Comparative example 3

將比較例1之正極極板泡入10 mM之普魯士藍水溶液中,於室溫攪拌混合約3天使普魯士藍經由正極極板的孔洞修飾LiNi4 Co2 Mn4 O2 粉末之表面。The positive electrode plate of Comparative Example 1 was bubbled into a 10 mM aqueous solution of Prussian blue, and stirred at room temperature for about 3 angels Prussian blue to modify the surface of the LiNi 4 Co 2 Mn 4 O 2 powder through the pores of the positive electrode plate.

至於負極極板、隔離膜、電解液組成、與封裝形成的電池尺寸均與比較例1相同。換言之,比較例3與比較例1之差異僅在於LiNi4 Co2 Mn4 O2 粉末之表面修飾有普魯士藍。The size of the battery of the negative electrode plate, the separator, the electrolyte composition, and the package was the same as in Comparative Example 1. In other words, Comparative Example 3 differs from Comparative Example 1 only in that the surface of the LiNi 4 Co 2 Mn 4 O 2 powder is modified with Prussian Blue.

比較例3之鋰電池於4.3V至3.0V之充放電壓與0.1C/0.1C之充放電流密度的充放電曲線如第2A圖所示,於4.3V至3.0V之充放電壓與1C/1C之充放電流密度的充放電曲線如第2B圖所示,而於4.3V至3.0V之充放電壓與2C/2C之充放電流密度的充放電曲線如第2C圖所示。此外,鋰電池於0.1C/0.1C之充放電流密度之充放電性質如第 1表所示。The charge-discharge curve of the charge-discharge voltage of the lithium battery of Comparative Example 3 at a charge-discharge voltage of 4.3V to 3.0V and the charge-discharge current of 0.1C/0.1C is as shown in FIG. 2A, and the charge-discharge voltage of 4.3V to 3.0V is 1C. The charge-discharge curve of the charge/discharge current density of /1C is as shown in Fig. 2B, and the charge-discharge curve of the charge-discharge voltage of 4.3V to 3.0V and the charge-discharge current density of 2C/2C is as shown in Fig. 2C. In addition, the charge and discharge properties of the lithium battery at 0.1C/0.1C charge and discharge current density are as follows. Table 1 shows.

實施例1Example 1

將比較例2之正極極板泡入10 mM之普魯士藍水溶液中,於室溫攪拌混合約3天使普魯士藍經由正極極板的孔洞修飾LiNi4 Co2 Mn4 O2 粉末之表面。The positive electrode plate of Comparative Example 2 was bubbled into a 10 mM aqueous solution of Prussian blue, and stirred at room temperature for about 3 angels Prussian blue to modify the surface of the LiNi 4 Co 2 Mn 4 O 2 powder through the pores of the positive electrode plate.

至於負極極板、隔離膜、電解液組成、與封裝形成的電池尺寸均與比較例1相同。換言之,實施例1與比較例1之差異在於LiNi4 Co2 Mn4 O2 粉末之表面修飾有含氮高分子與普魯士藍。The size of the battery of the negative electrode plate, the separator, the electrolyte composition, and the package was the same as in Comparative Example 1. In other words, the difference between Example 1 and Comparative Example 1 was that the surface of the LiNi 4 Co 2 Mn 4 O 2 powder was modified with a nitrogen-containing polymer and Prussian blue.

實施例1之鋰電池於4.3V至3.0V之充放電壓與0.1C/0.1C之充放電流密度的充放電曲線如第2A圖所示,於4.3V至3.0V之充放電壓與1C/1C之充放電流密度的充放電曲線如第2B圖所示,而於4.3V至3.0V之充放電壓與2C/2C之充放電流密度的充放電曲線如第2C圖所示。此外,鋰電池於0.1C/0.1C之充放電流密度之充放電性質如第1表所示。The charge-discharge curve of the charge-discharge voltage of the lithium battery of Example 1 at a charge-discharge voltage of 4.3V to 3.0V and the charge-discharge current of 0.1C/0.1C is as shown in FIG. 2A, and the charge-discharge voltage of 4.3V to 3.0V is 1C. The charge-discharge curve of the charge/discharge current density of /1C is as shown in Fig. 2B, and the charge-discharge curve of the charge-discharge voltage of 4.3V to 3.0V and the charge-discharge current density of 2C/2C is as shown in Fig. 2C. In addition, the charge and discharge properties of the charge current density of the lithium battery at 0.1 C/0.1 C are shown in Table 1.

由第1表與第2A至2C圖之比較可知,以含氮高分子與普魯士藍修飾鋰過渡金屬氧化物的表面,比只以含氮高分子修飾鋰過渡金屬氧化物的表面、只以普魯士藍修飾鋰 過渡金屬氧化物的表面、或不修飾鋰過渡金屬氧化物的表面更能改善快速充放電之鋰電池的電容量。此外,在低充放電流密度(0.1C/0.1C)下,實施例1之鋰電池的放熱亦較少,可進一步改善鋰電池的安全性。From the comparison between Table 1 and Figures 2A to 2C, it is known that the surface of the lithium transition metal oxide modified with the nitrogen-containing polymer and Prussian blue is only modified by the surface of the lithium transition metal oxide with only the nitrogen-containing polymer. Blue modified lithium The surface of the transition metal oxide or the surface of the lithium transition metal oxide is not modified to improve the capacitance of the lithium battery for rapid charge and discharge. Further, at a low charge and discharge current density (0.1 C/0.1 C), the lithium battery of Example 1 has less heat release, and the safety of the lithium battery can be further improved.

雖然本發明已以數個較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作任意之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。While the invention has been described above in terms of several preferred embodiments, it is not intended to limit the invention, and the invention may be modified and modified without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

1‧‧‧正極極板1‧‧‧positive plate

2‧‧‧容置區域2‧‧‧ accommodating area

3‧‧‧負極極板3‧‧‧Negative plate

5‧‧‧隔離膜5‧‧‧Separator

6‧‧‧封裝結構6‧‧‧Package structure

101‧‧‧鋰過渡金屬氧化物101‧‧‧Lithium transition metal oxide

103‧‧‧含氮高分子與含過渡金屬的氰基錯合物103‧‧‧Nitrogen-containing polymer and transition metal-containing cyano complex

第1A圖係本發明一實施例中,正極極板的示意圖;第1B圖係本發明一實施例中,鋰電池的示意圖;第2A圖係本發明一實施例中,具有不同鋰過渡金屬氧化物之鋰電池於4.3V至3.0V之充放電壓與0.1C/0.1C之充放電流密度的充放電曲線;第2B圖係本發明一實施例中,具有不同鋰過渡金屬氧化物之鋰電池於4.3V至3.0V之充放電壓與1C/1C之充放電流密度的充放電曲線;以及第2C圖係本發明一實施例中,具有不同鋰過渡金屬氧化物之鋰電池於4.3V至3.0V之充放電壓與2C/2C之充放電流密度的充放電曲線。1A is a schematic view of a positive electrode plate according to an embodiment of the present invention; FIG. 1B is a schematic view of a lithium battery in an embodiment of the present invention; and FIG. 2A is an embodiment of the present invention having different lithium transition metal oxidation The charge and discharge curve of the charge and discharge voltage of the lithium battery of 4.3V to 3.0V and the charge current density of 0.1C/0.1C; FIG. 2B is a lithium battery with different lithium transition metal oxides in an embodiment of the invention a charging and discharging curve of a charge-discharge voltage of a tank of 4.3V to 3.0V and a charge and discharge current density of 1C/1C; and a second embodiment of the present invention, a lithium battery having a different lithium transition metal oxide at 4.3V Charge-discharge curve of charge and discharge voltage to 3.0V and charge and discharge current density of 2C/2C.

1‧‧‧正極極板1‧‧‧positive plate

101‧‧‧鋰過渡金屬氧化物101‧‧‧Lithium transition metal oxide

103‧‧‧含氮高分子與含過渡金屬的氰基錯合物103‧‧‧Nitrogen-containing polymer and transition metal-containing cyano complex

Claims (13)

一種鋰電池,包括:一正極極板與一負極極板;一隔離膜,位於該正極極板與該負極極板之間以定義一容置區域;以及一電解質溶液,位於該容置區域;其中該正極極板包括一鋰過渡金屬氧化物、黏結劑、與導電粒子混合而成,其中該鋰過渡金屬氧化物之表面以含氮高分子與含過渡金屬的氰基錯合物修飾。A lithium battery includes: a positive electrode plate and a negative electrode plate; a separator between the positive electrode plate and the negative electrode plate to define an accommodating region; and an electrolyte solution located in the accommodating region; The positive electrode plate comprises a lithium transition metal oxide, a binder, and a mixture of conductive particles, wherein the surface of the lithium transition metal oxide is modified with a nitrogen-containing polymer and a transition metal-containing cyano complex. 如申請專利範圍第1項所述之鋰電池,其中該鋰過渡金屬氧化物包括LiMnO2 、LiMn2 O4 、LiCoO2 、Li2 Cr2 O7 、Li2 CrO4 、LiNiO2 、LiFeO2 、LiNix Co1-x O2 (0<x<1)、LiMPO4 (M為過渡金屬)、LiMn0.5 Ni0.5 O2 、LiNix Coy Mnz O2 (x+y+z=1)、LiNix Coy Alz O2 (x+y+z=1)、LiMc0.5 Mn1.5 O4 、或上述之組合,且Mc為二價金屬。The lithium battery according to claim 1, wherein the lithium transition metal oxide comprises LiMnO 2 , LiMn 2 O 4 , LiCoO 2 , Li 2 Cr 2 O 7 , Li 2 CrO 4 , LiNiO 2 , LiFeO 2 , LiNi x Co 1-x O 2 (0<x<1), LiMPO 4 (M is a transition metal), LiMn 0.5 Ni 0.5 O 2 , LiNi x Co y Mn z O 2 (x+y+z=1), LiNi x Co y Al z O 2 (x+y+z=1), LiMc 0.5 Mn 1.5 O 4 , or a combination thereof, and Mc is a divalent metal. 如申請專利範圍第1項所述之鋰電池,其中該黏結劑包括聚二氟乙烯、苯乙烯丁二烯橡膠、聚醯胺、三聚氰胺樹脂、或上述之組合。The lithium battery of claim 1, wherein the binder comprises polydifluoroethylene, styrene butadiene rubber, polyamide, melamine resin, or a combination thereof. 如申請專利範圍第1項所述之鋰電池,其中該導電粒子包括碳黑、石墨、乙炔黑、鎳粉、鋁粉、鈦粉、不銹鋼粉、或上述之組合。The lithium battery of claim 1, wherein the conductive particles comprise carbon black, graphite, acetylene black, nickel powder, aluminum powder, titanium powder, stainless steel powder, or a combination thereof. 如申請專利範圍第1項所述之鋰電池,其中該含氮高分子係由胺(amines)、醯胺(amides)、醯亞胺(imides)、馬來醯亞胺(maleimides)、或亞胺(imines);與二酮化合物 (diones)反應而成。The lithium battery according to claim 1, wherein the nitrogen-containing polymer is composed of amines, amides, imides, maleimides, or sub- Amine (imines); with diketone compounds (diones) reaction. 如申請專利範圍第5項所述之鋰電池,其中該二酮化合物包括巴比土酸(barbituric acid)、乙醯丙酮(acetylactone)、或上述之組合。The lithium battery of claim 5, wherein the diketone compound comprises barbituric acid, acetylactone, or a combination thereof. 如申請專利範圍第1項所述之鋰電池,其中該含過渡金屬的氰基錯合物包括含鐵赤血鹽(普魯士藍)或其他過渡金屬赤血鹽,而該過渡金屬包括釩、鉻、錳、鐵、鈷、鎳、銅、鋅、釕、或銀。The lithium battery according to claim 1, wherein the transition metal-containing cyano complex comprises iron-containing red blood salt (Prussian blue) or other transition metal red blood salt, and the transition metal includes vanadium and chromium. , manganese, iron, cobalt, nickel, copper, zinc, antimony, or silver. 如申請專利範圍第7項所述之鋰電池,其中當該過渡金屬為一價Ma ,含過渡金屬的氰基錯合物結構為Ma3 (Fe(CN)6 );當過渡金屬為二價Mb ,含過渡金屬的氰基錯合物結構為Mb3 (Fe(CN)6 )2 ;當過渡金屬為三價Md ,含過渡金屬的氰基錯合物結構為Md (Fe(CN)6 )。The application of the lithium battery patentable scope of item 7, wherein when the transition metal is a monovalent M a, a cyano complex compound structure containing a transition metal is M a3 (Fe (CN) 6 ); when the transition metal is two The structure M b , the transition metal-containing cyano complex structure is M b3 (Fe(CN) 6 ) 2 ; when the transition metal is trivalent M d , the transition metal-containing cyano complex structure is M d (Fe (CN) 6 ). 一種鋰電池的形成方法,包括:將一鋰過渡金屬氧化物、一導電粒子、以及一黏結劑製成一正極極板,其中該鋰過渡金屬氧化物之表面以含氮高分子與含過渡金屬的氰基錯合物修飾;將一隔離膜設置於該正極極板與一負極極板之間,以定義一容置區域;以及將一電解質溶液填入該容置區域。A method for forming a lithium battery, comprising: forming a lithium transition metal oxide, a conductive particle, and a binder into a positive electrode plate, wherein the surface of the lithium transition metal oxide is a nitrogen-containing polymer and a transition metal a cyano complex modification; a separator is disposed between the positive electrode plate and a negative electrode plate to define an accommodating region; and an electrolyte solution is filled into the accommodating region. 如申請專利範圍第9項所述之鋰電池的形成方法,其中該含氮高分子係由胺(amines)、醯胺(amides)、醯亞胺(imides)、馬來醯亞胺(maleimides)、或亞胺(imines);與二酮化合物(diones)反應而成。The method for forming a lithium battery according to claim 9, wherein the nitrogen-containing polymer is composed of amines, amides, imides, maleimides. Or an imine (imines); reacted with a diketone compound (diones). 如申請專利範圍第10項所述之鋰電池的形成方法,其中該二酮化合物包括巴比土酸(barbituric acid)、乙醯丙酮(acetylactone)、或上述之組合。The method for forming a lithium battery according to claim 10, wherein the diketone compound comprises barbituric acid, acetylactone, or a combination thereof. 如申請專利範圍第9項所述之鋰電池的形成方法,其中該含過渡金屬的氰基錯合物包括含鐵赤血鹽(普魯士藍)或其他過渡金屬赤血鹽,而該過渡金屬包括釩、鉻、錳、鐵、鈷、鎳、銅、鋅、釕、或銀。The method for forming a lithium battery according to claim 9, wherein the transition metal-containing cyano complex comprises iron-containing red blood salt (Prussian blue) or other transition metal red blood salt, and the transition metal includes Vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, antimony, or silver. 如申請專利範圍第12項所述之鋰電池的形成方法,其中當該過渡金屬為一價Ma ,含過渡金屬的氰基錯合物結構為Ma3 (Fe(CN)6 );當過渡金屬為二價Mb ,含過渡金屬的氰基錯合物結構為Mb3 (Fe(CN)6 )2 ;當過渡金屬為三價Md ,含過渡金屬的氰基錯合物結構為Md (Fe(CN)6 )。The patentable scope of the application method for forming the lithium battery in item 12, wherein when the transition metal is a monovalent M a, a cyano complex compound structure containing a transition metal is M a3 (Fe (CN) 6 ); when the transition The metal is divalent M b , the transition metal-containing cyano complex structure is M b3 (Fe(CN) 6 ) 2 ; when the transition metal is trivalent M d , the transition metal-containing cyano complex structure is M d (Fe(CN) 6 ).
TW101146804A 2012-12-12 2012-12-12 Lithium battery and method for manufacturing the same TWI473321B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW101146804A TWI473321B (en) 2012-12-12 2012-12-12 Lithium battery and method for manufacturing the same
CN201210559856.3A CN103872373B (en) 2012-12-12 2012-12-21 Lithium battery and method of forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101146804A TWI473321B (en) 2012-12-12 2012-12-12 Lithium battery and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TW201424083A TW201424083A (en) 2014-06-16
TWI473321B true TWI473321B (en) 2015-02-11

Family

ID=50910666

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101146804A TWI473321B (en) 2012-12-12 2012-12-12 Lithium battery and method for manufacturing the same

Country Status (2)

Country Link
CN (1) CN103872373B (en)
TW (1) TWI473321B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170026397A (en) * 2014-07-04 2017-03-08 제이에스알 가부시끼가이샤 Binder composition for power storage devices
CN105336954B (en) * 2014-07-09 2018-10-26 江苏华东锂电技术研究院有限公司 Anode composite material and preparation method thereof and lithium ion battery
KR102233771B1 (en) * 2014-07-24 2021-03-30 삼성에스디아이 주식회사 Composite positive electrode active electrode material for lithium secondary battery and lithium secondary battery comprising positive electrode including the positive electrode active material
CN105449217B (en) * 2014-08-11 2019-06-18 江苏华东锂电技术研究院有限公司 Anode composite material and lithium ion battery
CN105514440B (en) * 2014-10-17 2019-06-18 江苏华东锂电技术研究院有限公司 The lithium ion battery of negative electrode material and the application negative electrode material
CN105576245B (en) * 2014-10-17 2018-10-26 江苏华东锂电技术研究院有限公司 Lithium ion battery
CN105762336B (en) * 2014-12-19 2019-06-25 江苏华东锂电技术研究院有限公司 Anode material and preparation method thereof and lithium ion battery
CN107240676B (en) * 2016-03-28 2019-11-12 北京大学深圳研究生院 A kind of positive electrode of surface modification and its preparation method and application
CN113054158B (en) * 2019-12-27 2023-06-06 财团法人工业技术研究院 Ion conducting material, core-shell structure comprising ion conducting material, formed electrode and metal ion battery
TWI724715B (en) 2019-12-27 2021-04-11 財團法人工業技術研究院 Ion-conducting material, core-shell structure containing the same, electrode prepared by the core-shell structure and metal-ion battery empolying the electrode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201025697A (en) * 2008-12-31 2010-07-01 Ind Tech Res Inst Lithium battery and fabrication method thereof
CN101814625A (en) * 2004-08-23 2010-08-25 气体产品与化学公司 A kind of method of handling lithium salts

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8968938B2 (en) * 2006-01-12 2015-03-03 Lg Chem, Ltd. Non-aqueous electrolyte and electrochemical device with an improved safety
TWI341603B (en) * 2006-02-15 2011-05-01 Lg Chemical Ltd Non-aqueous electrolyte and electrochemical device with an improved safety
CN101807724B (en) * 2009-02-16 2013-03-27 财团法人工业技术研究院 Lithium battery and manufacturing method thereof
CN102394311A (en) * 2011-11-28 2012-03-28 东莞新能源科技有限公司 Lithium ion secondary battery with high energy density

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101814625A (en) * 2004-08-23 2010-08-25 气体产品与化学公司 A kind of method of handling lithium salts
TW201025697A (en) * 2008-12-31 2010-07-01 Ind Tech Res Inst Lithium battery and fabrication method thereof

Also Published As

Publication number Publication date
CN103872373B (en) 2017-03-15
TW201424083A (en) 2014-06-16
CN103872373A (en) 2014-06-18

Similar Documents

Publication Publication Date Title
TWI473321B (en) Lithium battery and method for manufacturing the same
JP5055390B2 (en) Lithium battery and manufacturing method thereof
US6884546B1 (en) Secondary battery
JP5379832B2 (en) Positive electrode material structure and manufacturing method thereof
TWI458154B (en) Lithium secondary battery
JP5279018B2 (en) Lithium ion secondary battery and manufacturing method thereof
CN102903914B (en) Active substance, its manufacture method, electrode, secondary cell and set of cells
JP6052179B2 (en) Lithium ion secondary battery
CN106410170A (en) Composite lithium ion battery positive material, and preparation method and lithium ion battery thereof
JP3160920B2 (en) Non-aqueous electrolyte secondary battery
JP3642487B2 (en) Secondary battery and electrolyte used therefor
JP5203632B2 (en) Non-aqueous electrolyte battery
WO2012147930A1 (en) Negative electrode active material for lithium secondary cell, lithium secondary cell employing same, and method for producing same
US20170352914A1 (en) Lithium-cobalt-based composite oxide and method for manufacturing the same, electrochemical device and lithium ion secondary battery
KR20220138006A (en) Electrochemical and electronic devices
JP2016219188A (en) Lithium phosphorous-based vanadium composite oxide/carbon composite body and method for producing the same, lithium ion secondary battery, and electrochemical device
JPH1131513A (en) Nonaqueous electrolyte secondary battery
US20170331116A1 (en) Lithium-phosphorus-based composite oxide/carbon composite and method for manufacturing the same, electrochemical device and lithium ion secondary battery
JPH0973885A (en) Nonaqueous electrolyte secondary battery
CN106410169A (en) Compound anode material used for lithium ion battery, preparation method of compound anode material, and lithium ion battery
WO2014007183A1 (en) Lithium ion secondary battery
JP6554725B2 (en) Non-aqueous electrolyte battery
WO2016152505A1 (en) Lithium ion secondary battery
JPH08180878A (en) Lithium secondary battery
US10044034B2 (en) Negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and battery pack