TWI466321B - Method for making an epitaxial structure - Google Patents

Method for making an epitaxial structure Download PDF

Info

Publication number
TWI466321B
TWI466321B TW100112852A TW100112852A TWI466321B TW I466321 B TWI466321 B TW I466321B TW 100112852 A TW100112852 A TW 100112852A TW 100112852 A TW100112852 A TW 100112852A TW I466321 B TWI466321 B TW I466321B
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
epitaxial
layer
substrate
carbon
Prior art date
Application number
TW100112852A
Other languages
Chinese (zh)
Other versions
TW201240137A (en
Inventor
Yang Wei
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Publication of TW201240137A publication Critical patent/TW201240137A/en
Application granted granted Critical
Publication of TWI466321B publication Critical patent/TWI466321B/en

Links

Description

外延結構體之製備方法 Method for preparing epitaxial structure

本發明涉及一種外延結構體之製備方法。 The invention relates to a method for preparing an epitaxial structure.

外延結構體,尤其異質外延結構體為製作半導體器件的主要材料之一。例如,近年來,製備發光二極體(LED)之氮化鎵外延片成為研究的熱點。 Epitaxial structures, especially heteroepitaxial structures, are one of the main materials for fabricating semiconductor devices. For example, in recent years, GaN epitaxial wafers for preparing light-emitting diodes (LEDs) have become a research hotspot.

所述氮化鎵外延結構體係指在一定條件下,將氮化鎵材料分子,有規則排列,定向生長在藍寶石基底上。當氮化鎵外延結構體應用於發光二極體中時,為了提高發光二極體之出光率,通常在氮化鎵外延結構體中設置微結構以提高氮化鎵外延結構體對光之出光率。 The gallium nitride epitaxial structure system refers to that the gallium nitride material molecules are regularly arranged and oriented on a sapphire substrate under certain conditions. When the gallium nitride epitaxial structure is applied to the light emitting diode, in order to improve the light extraction rate of the light emitting diode, a microstructure is usually disposed in the gallium nitride epitaxial structure to improve the light emission of the gallium nitride epitaxial structure. rate.

然而,先前技術通常採用光刻等微電子方法在藍寶石基底表面形成溝槽從而構成非平整外延生長面從而形成微結構。該方法不但複雜,成本較高,而且會對藍寶石基底外延生長面造成污染,從而影響外延結構體的質量。 However, the prior art generally forms a trench on the surface of the sapphire substrate by a microelectronic method such as photolithography to form a non-planar epitaxial growth surface to form a microstructure. The method is not only complicated, but also costly, and pollutes the epitaxial growth surface of the sapphire substrate, thereby affecting the quality of the epitaxial structure.

綜上所述,提供一種方法簡單,成本低廉,且不會對基底表面造成污染之外延結構體的製備方法實為必要。 In summary, it is necessary to provide a method for preparing a structure which is simple in method, low in cost, and does not cause contamination on the surface of the substrate.

一種外延結構體之製備方法,其具體包括以下步驟:提供一基底 ,該基底具有一支持外延層生長之外延生長面;在所述基底的外延生長面設置一奈米碳管層,所述奈米碳管層為由複數奈米碳管相互連接形成的一連續的整體的自支撐結構體;在基底的外延生長面生長外延層形成一初級外延結構體;去除該初級外延結構體中之奈米碳管層。 A method for preparing an epitaxial structure, which comprises the following steps: providing a substrate The substrate has a support growth layer for supporting epitaxial growth; a carbon nanotube layer is disposed on the epitaxial growth surface of the substrate, and the carbon nanotube layer is a continuous formed by interconnecting a plurality of carbon nanotubes The overall self-supporting structure; growing an epitaxial layer on the epitaxial growth surface of the substrate to form a primary epitaxial structure; and removing the carbon nanotube layer in the primary epitaxial structure.

與先前技術相比,本發明提供之外延結構體之製備方法簡單、成本低廉,大大降低了外延結構體之製備成本,同時降低了對環境之污染。進一步,通過去除奈米碳管層使外延結構體中具有微結構,提高了該外延結構體的出光率,從而使該外延結構體具有廣泛用途。 Compared with the prior art, the invention provides a simple preparation method and a low cost, and greatly reduces the preparation cost of the epitaxial structure and reduces environmental pollution. Further, by removing the carbon nanotube layer to have a microstructure in the epitaxial structure, the light extraction rate of the epitaxial structure is improved, so that the epitaxial structure has a wide range of uses.

10、20‧‧‧外延結構體 10, 20‧‧‧ Epitaxial structure

100‧‧‧基底 100‧‧‧Base

101‧‧‧外延生長面 101‧‧‧ Epitaxial growth surface

102‧‧‧奈米碳管層 102‧‧‧Nano carbon tube layer

103、112‧‧‧孔洞 103, 112‧‧‧ holes

104‧‧‧外延層 104‧‧‧ Epilayer

105‧‧‧開口 105‧‧‧ openings

106‧‧‧第一奈米碳管層 106‧‧‧First carbon nanotube layer

107‧‧‧第一外延層 107‧‧‧First epitaxial layer

108、208‧‧‧初級外延結構體 108, 208‧‧‧ primary epitaxial structure

109‧‧‧第二奈米碳管層 109‧‧‧Second carbon nanotube layer

110‧‧‧第二外延層 110‧‧‧Second epilayer

1042‧‧‧外延晶粒 1042‧‧‧ Epitaxial grains

1044‧‧‧外延薄膜 1044‧‧‧ Epitaxial film

143‧‧‧奈米碳管片段 143‧‧‧Nano carbon nanotube fragments

145‧‧‧奈米碳管 145‧‧・Nano carbon tube

圖1為本發明實施例提供的外延結構體的製備方法的方法流程圖。 1 is a flow chart of a method for fabricating an epitaxial structure according to an embodiment of the present invention.

圖2為本發明實施例中採用的奈米碳管膜的掃描電鏡照片。 2 is a scanning electron micrograph of a carbon nanotube film used in an embodiment of the present invention.

圖3為圖2中的奈米碳管膜中的奈米碳管片段的結構示意圖。 3 is a schematic view showing the structure of a carbon nanotube segment in the carbon nanotube film of FIG. 2.

圖4為本發明實施例中採用的複數交叉設置的奈米碳管膜的掃描電鏡照片。 4 is a scanning electron micrograph of a carbon nanotube film of a plurality of cross-overs disposed in an embodiment of the present invention.

圖5為本發明實施例中採用的非扭轉的奈米碳管線的掃描電鏡照片。 Figure 5 is a scanning electron micrograph of a non-twisted nanocarbon pipeline used in an embodiment of the present invention.

圖6為本發明實施例中採用的扭轉的奈米碳管線的掃描電鏡照片。 Figure 6 is a scanning electron micrograph of a twisted nanocarbon line employed in an embodiment of the present invention.

圖7為本發明實施例中外延層生長過程示意圖。 FIG. 7 is a schematic view showing a growth process of an epitaxial layer in an embodiment of the present invention.

圖8為本發明第一實施例製備的異質外延結構截面的掃描電鏡照片。 Figure 8 is a scanning electron micrograph of a cross section of a heteroepitaxial structure prepared in accordance with a first embodiment of the present invention.

圖9為本發明第一實施例製備的異質外延結構介面處的透射電鏡照片。 Figure 9 is a transmission electron micrograph at the interface of the heteroepitaxial structure prepared in the first embodiment of the present invention.

圖10為本發明第三實施例提供的外延結構體的立體結構示意圖。 FIG. 10 is a schematic perspective structural view of an epitaxial structure according to a third embodiment of the present invention.

圖11為本發明第五實施例提供的外延結構體的製備方法的方法流程圖。 FIG. 11 is a flow chart of a method for fabricating an epitaxial structure according to a fifth embodiment of the present invention.

請參閱圖1,本發明實施例提供一種外延結構體10的製備方法,其具體包括以下步驟:S10:提供一基底100,該基底100具有一支持外延層104生長之外延生長面101;S20:在所述基底100之外延生長面101設置一奈米碳管層102;S30:在基底100之外延生長面101生長外延層104形成一初級外延結構體108;S40:去除該初級外延結構體108中的奈米碳管層102。 Referring to FIG. 1, an embodiment of the present invention provides a method for fabricating an epitaxial structure 10, which specifically includes the following steps: S10: providing a substrate 100 having a support epitaxial layer 104 grown by a growth extension surface 101; S20: Forming a carbon nanotube layer 102 on the outer growth surface 101 of the substrate 100; S30: growing the epitaxial layer 104 on the growth surface 101 of the substrate 100 to form a primary epitaxial structure 108; S40: removing the primary epitaxial structure 108 The carbon nanotube layer 102 in the middle.

步驟S10中,所述基底100提供了外延層104的外延生長面101。所述基底100之外延生長面101係分子平滑之表面,且去除了氧或碳等雜質。所述基底100可為單層或複數結構。當所述基底100為單層結構時,該基底100可為一單晶結構體,且具有一晶面作為外延層104之外延生長面101。所述單層結構的基底100之材料可為GaAs、GaN、Si、SOI(silicon on insulator)、AlN、SiC、MgO 、ZnO、LiGaO2、LiAlO2或Al2O3等。當所述基底100為複數結構時,其需要包括至少一層上述單晶結構體,且該單晶結構體具有一晶面作為外延層104的外延生長面101。所述基底100的材料可根據所要生長的外延層104來選擇,優選地,使所述基底100與外延層104具有相近的晶格常數及熱膨脹係數。所述基底100的厚度、大小及形狀不限,可根據實際需要選擇。所述基底100不限於上述列舉的材料,只要具有支持外延層104生長的外延生長面101的基底100均屬於本發明的保護範圍。 In step S10, the substrate 100 provides an epitaxial growth surface 101 of the epitaxial layer 104. The substrate 100 is extended to form a smooth surface of the growth surface 101, and impurities such as oxygen or carbon are removed. The substrate 100 can be a single layer or a plurality of structures. When the substrate 100 has a single layer structure, the substrate 100 may be a single crystal structure and have a crystal plane as the epitaxial layer 104. The material of the single-layer structure substrate 100 may be GaAs, GaN, Si, silicon on insulator, AlN, SiC, MgO, ZnO, LiGaO 2 , LiAlO 2 or Al 2 O 3 or the like. When the substrate 100 has a complex structure, it needs to include at least one layer of the above single crystal structure, and the single crystal structure has a crystal plane as the epitaxial growth surface 101 of the epitaxial layer 104. The material of the substrate 100 may be selected according to the epitaxial layer 104 to be grown. Preferably, the substrate 100 and the epitaxial layer 104 have similar lattice constants and thermal expansion coefficients. The thickness, size and shape of the substrate 100 are not limited and can be selected according to actual needs. The substrate 100 is not limited to the materials listed above, as long as the substrate 100 having the epitaxial growth surface 101 supporting the growth of the epitaxial layer 104 is within the scope of the present invention.

步驟S20中,所述奈米碳管層102為包括複數奈米碳管的連續的整體結構。所述奈米碳管層102為一自支撐結構,所述奈米碳管層102直接鋪設在所述基底100的外延生長面101並與所述基底100接觸設置。 In step S20, the carbon nanotube layer 102 is a continuous unitary structure including a plurality of carbon nanotubes. The carbon nanotube layer 102 is a self-supporting structure, and the carbon nanotube layer 102 is directly laid on the epitaxial growth surface 101 of the substrate 100 and disposed in contact with the substrate 100.

所述奈米碳管層為一連續的整體結構。所述奈米碳管層102中複數奈米碳管沿着基本平行於奈米碳管層102表面的方向延伸。當所述奈米碳管層102設置於所述基底100的外延生長面101時,所述奈米碳管層102中複數奈米碳管的延伸方向基本平行於所述基底100的外延生長面101。所述奈米碳管層102的厚度為1奈米~100微米,或1奈米~1微米,或1奈米~200奈米,優選地厚度為10奈米~100奈米。所述奈米碳管層102為一圖形化的奈米碳管層102。所述“圖形化”係指所述奈米碳管層102具有複數開口105,該複數開口105從所述奈米碳管層102的厚度方向貫穿所述奈米碳管層102。當所述奈米碳管層102覆蓋所述基底100的外延生長面101設置時,從而使所述基底100的外延生長面101對應該開口105的部份暴露以利於生長外延層104。所述開口105可為微孔或間隙。所 述開口105的尺寸為10奈米~500微米,所述尺寸係指所述微孔的孔徑或所述間隙的寬度方向的間距。所述開口105的尺寸為10奈米~300微米、或10奈米~120微米、或10奈米~80微米、或10奈米~10微米。開口105的尺寸越小,有利於在生長外延層104的過程中減少錯位缺陷(dislocation defect)的產生,以獲得高質量的外延層104。優選地,所述開口105的尺寸為10奈米~10微米。進一步地,所述奈米碳管層102的佔空比為1:100~100:1,或1:10~10:1,或1:2~2:1,或1:4~4:1。優選地,所述佔空比為1:4~4:1。所謂“佔空比”指該奈米碳管層102設置於基底100的外延生長面101後,該外延生長面101被奈米碳管層102佔據的部份與通過開口105暴露的部份的面積比。 The carbon nanotube layer is a continuous unitary structure. The plurality of carbon nanotubes in the carbon nanotube layer 102 extend in a direction substantially parallel to the surface of the carbon nanotube layer 102. When the carbon nanotube layer 102 is disposed on the epitaxial growth surface 101 of the substrate 100, the extension direction of the plurality of carbon nanotubes in the carbon nanotube layer 102 is substantially parallel to the epitaxial growth surface of the substrate 100. 101. The carbon nanotube layer 102 has a thickness of from 1 nm to 100 μm, or from 1 nm to 1 μm, or from 1 nm to 200 nm, preferably from 10 nm to 100 nm. The carbon nanotube layer 102 is a patterned carbon nanotube layer 102. The "patterning" means that the carbon nanotube layer 102 has a plurality of openings 105 penetrating the carbon nanotube layer 102 from the thickness direction of the carbon nanotube layer 102. When the carbon nanotube layer 102 covers the epitaxial growth surface 101 of the substrate 100, the portion of the epitaxial growth surface 101 of the substrate 100 corresponding to the opening 105 is exposed to facilitate the growth of the epitaxial layer 104. The opening 105 can be a microhole or a gap. Place The size of the opening 105 is 10 nm to 500 μm, and the size refers to the aperture of the micro hole or the pitch of the gap in the width direction. The opening 105 has a size of 10 nm to 300 μm, or 10 nm to 120 μm, or 10 nm to 80 μm, or 10 nm to 10 μm. The smaller the size of the opening 105, the less the generation of dislocation defects during the growth of the epitaxial layer 104, to obtain a high quality epitaxial layer 104. Preferably, the opening 105 has a size of 10 nm to 10 μm. Further, the carbon nanotube layer 102 has a duty ratio of 1:100 to 100:1, or 1:10 to 10:1, or 1:2 to 2:1, or 1:4 to 4:1. . Preferably, the duty ratio is 1:4~4:1. The term "duty cycle" means that the carbon nanotube layer 102 is disposed on the epitaxial growth surface 101 of the substrate 100, and the portion of the epitaxial growth surface 101 occupied by the carbon nanotube layer 102 and the portion exposed through the opening 105 Area ratio.

進一步地,所述“圖形化”係指所述奈米碳管層102中複數奈米碳管的排列方式係有序的、有規則的。例如,所述奈米碳管層102中複數奈米碳管的軸向均基本平行於所述基底100的外延生長面101且基本沿同一方向延伸。或者,所述奈米碳管層102中複數奈米碳管的軸向可有規律性地基本沿二以上方向延伸。或者,所述奈米碳管層102中複數奈米碳管的軸向沿着基底100的一晶向延伸或與基底100的一晶向成一定角度延伸。上述奈米碳管層102中沿同一方向延伸的相鄰的奈米碳管通過凡得瓦力(van der Waals force)首尾相連。 Further, the term "patterning" means that the arrangement of the plurality of carbon nanotubes in the carbon nanotube layer 102 is ordered and regular. For example, the plurality of carbon nanotubes in the carbon nanotube layer 102 have axial directions substantially parallel to the epitaxial growth surface 101 of the substrate 100 and extend substantially in the same direction. Alternatively, the axial directions of the plurality of carbon nanotubes in the carbon nanotube layer 102 may regularly extend substantially in two or more directions. Alternatively, the plurality of carbon nanotubes in the carbon nanotube layer 102 extend axially along a crystal orientation of the substrate 100 or at an angle to a crystal orientation of the substrate 100. Adjacent carbon nanotubes extending in the same direction in the above-mentioned carbon nanotube layer 102 are connected end to end by a van der Waals force.

在所述奈米碳管層102具有如前所述的開口105的前提下,所述奈米碳管層102中複數奈米碳管也可無序排列、無規則排列。 Under the premise that the carbon nanotube layer 102 has the opening 105 as described above, the plurality of carbon nanotubes in the carbon nanotube layer 102 may also be randomly arranged and randomly arranged.

優選地,所述奈米碳管層102設置於所述基底100的整個外延生長面101。所述奈米碳管層102中的奈米碳管可為單壁奈米碳管、雙 壁奈米碳管或多壁奈米碳管中的一種或複數種,其長度及直徑可根據需要選擇。 Preferably, the carbon nanotube layer 102 is disposed on the entire epitaxial growth surface 101 of the substrate 100. The carbon nanotubes in the carbon nanotube layer 102 can be single-walled carbon nanotubes, double One or more of the wall carbon nanotubes or the multi-walled carbon nanotubes, the length and diameter of which can be selected as needed.

所述奈米碳管層102用作生長外延層104的掩模。所謂“掩模”係指該奈米碳管層102用於遮擋所述基底100的部份外延生長面101,且暴露部份外延生長面101,從而使得外延層104僅從所述外延生長面101暴露的部份生長。由於奈米碳管層102具有複數開口105,所以該奈米碳管層102形成一圖形化的掩模。當奈米碳管層102設置於基底100的外延生長面101後,複數奈米碳管沿着平行於外延生長面101的方向延伸。由於所述奈米碳管層102在所述基底100的外延生長面101形成複數開口105,從而使得所述基底100的外延生長面101上具有一圖形化的掩模。可以理解,相對於光刻等微電子方法,通過設置奈米碳管層102作為掩模進行外延生長的方法簡單、成本低廉,不易在基底100的延生長面101引入污染,而且綠色環保,可大大降低了外延結構體10的製備成本。 The carbon nanotube layer 102 serves as a mask for growing the epitaxial layer 104. By "mask" is meant that the carbon nanotube layer 102 is used to shield a portion of the epitaxial growth surface 101 of the substrate 100 and expose a portion of the epitaxial growth surface 101 such that the epitaxial layer 104 only extends from the epitaxial growth surface. 101 exposed parts of growth. Since the carbon nanotube layer 102 has a plurality of openings 105, the carbon nanotube layer 102 forms a patterned mask. After the carbon nanotube layer 102 is disposed on the epitaxial growth surface 101 of the substrate 100, the plurality of carbon nanotubes extend in a direction parallel to the epitaxial growth surface 101. Since the carbon nanotube layer 102 forms a plurality of openings 105 on the epitaxial growth surface 101 of the substrate 100, a patterned mask is formed on the epitaxial growth surface 101 of the substrate 100. It can be understood that, compared with a microelectronic method such as photolithography, the method of performing epitaxial growth by using the carbon nanotube layer 102 as a mask is simple, low in cost, and it is difficult to introduce pollution on the growth surface 101 of the substrate 100, and is environmentally friendly. The preparation cost of the epitaxial structure 10 is greatly reduced.

可以理解,所述基底100及奈米碳管層102共同構成了用於生長外延結構的襯底。該襯底可用於生長不同材料的外延層104,如半導體外延層、金屬外延層或合金外延層。該襯底也可用於生長同質或異質外延層,從而得到一同質外延結構體或異質外延結構體。 It will be understood that the substrate 100 and the carbon nanotube layer 102 together constitute a substrate for growing an epitaxial structure. The substrate can be used to grow epitaxial layers 104 of different materials, such as semiconductor epitaxial layers, metal epitaxial layers, or alloy epitaxial layers. The substrate can also be used to grow a homogenous or heteroepitaxial layer to provide a homoepitaxial structure or a heteroepitaxial structure.

所述奈米碳管層102可預先形成後直接鋪設在所述基底100的外延生長面101。所述奈米碳管層102為一宏觀結構,且所述奈米碳管層102為一自支撐的結構。所謂“自支撐”指該奈米碳管層102不需要大面積的載體支撐,而只要相對兩邊提供支撐力即能整體上懸空而保持自身狀態,即將該奈米碳管層102置於(或固定於) 間隔特定距離設置的二支撐體上時,位於二支撐體之間的奈米碳管層102能夠懸空保持自身狀態。由於奈米碳管層102為自支撐結構,所述奈米碳管層102不必要通過複雜的化學方法形成在基底100的外延生長面101。進一步優選地,所述奈米碳管層102為複數奈米碳管組成的純奈米碳管結構。所謂“純奈米碳管結構”係指所述奈米碳管層102在整個製備過程中無需任何化學修飾或酸化處理,不含有任何羧基等官能團修飾。 The carbon nanotube layer 102 may be directly formed on the epitaxial growth surface 101 of the substrate 100 after being formed. The carbon nanotube layer 102 is a macrostructure, and the carbon nanotube layer 102 is a self-supporting structure. By "self-supporting", the carbon nanotube layer 102 does not require a large area of carrier support, but can maintain its own state by simply providing a supporting force on both sides, that is, placing the carbon nanotube layer 102 (or Fixed at) When the two supports are disposed at a certain distance apart, the carbon nanotube layer 102 located between the two supports can be suspended to maintain its own state. Since the carbon nanotube layer 102 is a self-supporting structure, the carbon nanotube layer 102 does not have to be formed on the epitaxial growth surface 101 of the substrate 100 by complicated chemical methods. Further preferably, the carbon nanotube layer 102 is a pure carbon nanotube structure composed of a plurality of carbon nanotubes. By "pure carbon nanotube structure" is meant that the carbon nanotube layer 102 does not require any chemical modification or acidification during the entire preparation process and does not contain any functional groups such as carboxyl groups.

所述奈米碳管層102還可為一包括複數奈米碳管及添加材料的複合結構。所述添加材料包括石墨、石墨烯、碳化矽、氮化硼、氮化矽、二氧化矽、無定形碳等中的一種或複數種。所述添加材料還可包括金屬碳化物、金屬氧化物及金屬氮化物等中的一種或複數種。所述添加材料包覆於奈米碳管層102中奈米碳管的至少部份表面或設置於奈米碳管層102的開口105內。優選地,所述添加材料包覆於奈米碳管的表面。由於,所述添加材料包覆於奈米碳管的表面,使得奈米碳管的直徑變大,從而使奈米碳管之間的開口105減小。所述添加材料可通過化學氣相沈積(CVD)、物理氣相沈積(PVD)、磁控濺射等方法形成於奈米碳管的表面。 The carbon nanotube layer 102 can also be a composite structure comprising a plurality of carbon nanotubes and an additive material. The additive material includes one or a plurality of graphite, graphene, tantalum carbide, boron nitride, tantalum nitride, hafnium oxide, amorphous carbon, and the like. The additive material may further include one or a plurality of metal carbides, metal oxides, metal nitrides, and the like. The additive material is coated on at least a portion of the surface of the carbon nanotube layer 102 in the carbon nanotube layer 102 or in the opening 105 of the carbon nanotube layer 102. Preferably, the additive material is coated on the surface of the carbon nanotube. Since the additive material is coated on the surface of the carbon nanotube, the diameter of the carbon nanotubes becomes large, so that the opening 105 between the carbon nanotubes is reduced. The additive material may be formed on the surface of the carbon nanotube by chemical vapor deposition (CVD), physical vapor deposition (PVD), magnetron sputtering, or the like.

將所述奈米碳管層102鋪設在所述基底100的外延生長面101後還可包括一有機溶劑處理的步驟,以使奈米碳管層102與外延生長面101更加緊密結合。該有機溶劑可選用乙醇、甲醇、丙酮、二氯乙烷及氯仿中一種或者幾種的混合。本實施例中的有機溶劑採用乙醇。該使用有機溶劑處理的步驟可通過試管將有機溶劑滴落在奈米碳管層102表面浸潤整個奈米碳管層102或將基底100及整個奈米碳管層102一起浸入盛有有機溶劑的容器中浸潤。 Laying the carbon nanotube layer 102 on the epitaxial growth surface 101 of the substrate 100 may further include an organic solvent treatment step to more closely bond the carbon nanotube layer 102 to the epitaxial growth surface 101. The organic solvent may be selected from a mixture of one or more of ethanol, methanol, acetone, dichloroethane and chloroform. The organic solvent in this embodiment employs ethanol. The step of treating with an organic solvent may immerse the organic solvent on the surface of the carbon nanotube layer 102 through a test tube to infiltrate the entire carbon nanotube layer 102 or immerse the substrate 100 and the entire carbon nanotube layer 102 together with an organic solvent. Infiltrated in the container.

所述奈米碳管層102也可通過化學氣相沈積(CVD)等方法直接生長在所述基底100的外延生長面101或先生長在矽基底表面,然後轉印到所述基底100的外延生長面101。 The carbon nanotube layer 102 may also be directly grown on the epitaxial growth surface 101 of the substrate 100 or on the surface of the ruthenium substrate by chemical vapor deposition (CVD) or the like, and then transferred to the epitaxial surface of the substrate 100. Growth face 101.

具體地,所述奈米碳管層102可包括奈米碳管膜或奈米碳管線。所述奈米碳管層102可為一單層奈米碳管膜或複數疊設置的奈米碳管膜。所述奈米碳管層102可包括複數相互平行且間隔設置的奈米碳管線。所述奈米碳管層102還可包括複數交叉設置組成網狀結構的奈米碳管線。當所述奈米碳管層102為複數疊設置的奈米碳管膜時,奈米碳管膜的層數不宜太多,優選地,為2層~100層。當所述奈米碳管層102為複數平行設置的奈米碳管線時,相鄰二奈米碳管線之間的距離為0.1微米~200微米,優選地,為10微米~100微米。所述相鄰二奈米碳管線之間的空間構成所述奈米碳管層102的開口105。相鄰二奈米碳管線之間的間隙長度可等於奈米碳管線的長度。所述奈米碳管膜或奈米碳管線可直接鋪設在基底100的外延生長面101構成所述奈米碳管層102。通過控制奈米碳管膜的層數或奈米碳管線之間的距離,可控制奈米碳管層102中開口105的尺寸。 Specifically, the carbon nanotube layer 102 may include a carbon nanotube film or a nano carbon line. The carbon nanotube layer 102 can be a single layer of carbon nanotube film or a plurality of stacked carbon nanotube films. The carbon nanotube layer 102 can include a plurality of nanocarbon lines that are parallel to each other and spaced apart from each other. The carbon nanotube layer 102 can also include a plurality of carbon nanotube lines that are interdigitated to form a network structure. When the carbon nanotube layer 102 is a plurality of carbon nanotube films, the number of layers of the carbon nanotube film is not too high, and preferably, it is 2 to 100 layers. When the carbon nanotube layer 102 is a plurality of parallel carbon nanotubes disposed in parallel, the distance between adjacent two nanocarbon lines is from 0.1 micrometers to 200 micrometers, preferably from 10 micrometers to 100 micrometers. The space between the adjacent two nanocarbon lines constitutes the opening 105 of the carbon nanotube layer 102. The length of the gap between adjacent two nanocarbon lines may be equal to the length of the nanocarbon line. The carbon nanotube film or nanocarbon line may be directly laid on the epitaxial growth surface 101 of the substrate 100 to constitute the carbon nanotube layer 102. The size of the opening 105 in the carbon nanotube layer 102 can be controlled by controlling the number of layers of the carbon nanotube film or the distance between the carbon nanotubes.

所述奈米碳管膜係由若干奈米碳管組成的自支撐結構。所述若干奈米碳管為沿同一方向擇優取向延伸。所述擇優取向係指在奈米碳管膜中大多數奈米碳管的整體延伸方向基本朝同一方向。而且,所述大多數奈米碳管的整體延伸方向基本平行於奈米碳管膜的表面。進一步地,所述奈米碳管膜中多數奈米碳管係通過凡得瓦力首尾相連。具體地,所述奈米碳管膜中基本朝同一方向延伸的大多數奈米碳管中每一奈米碳管與在延伸方向上相鄰的奈米碳管 通過凡得瓦力首尾相連。當然,所述奈米碳管膜中存在少數隨機排列的奈米碳管,這些奈米碳管不會對奈米碳管膜中大多數奈米碳管的整體取向排列構成明顯影響。所述自支撐為奈米碳管膜不需要大面積的載體支撐,而只要相對兩邊提供支撐力即能整體上懸空而保持自身膜狀狀態,即將該奈米碳管膜置於(或固定於)間隔特定距離設置的二支撐體上時,位於二支撐體之間的奈米碳管膜能夠懸空保持自身膜狀狀態。所述自支撐主要通過奈米碳管膜中存在連續的通過凡得瓦力首尾相連延伸排列的奈米碳管而實現。 The carbon nanotube membrane is a self-supporting structure composed of a plurality of carbon nanotubes. The plurality of carbon nanotubes extend in a preferred orientation along the same direction. The preferred orientation means that the majority of the carbon nanotubes in the carbon nanotube film extend substantially in the same direction. Moreover, the overall direction of extension of the majority of the carbon nanotubes is substantially parallel to the surface of the carbon nanotube film. Further, most of the carbon nanotubes in the carbon nanotube membrane are connected end to end by van der Waals force. Specifically, each of the majority of the carbon nanotubes extending substantially in the same direction in the carbon nanotube film and the carbon nanotubes adjacent in the extending direction Connected by van der Waals. Of course, there are a few randomly arranged carbon nanotubes in the carbon nanotube film, and these carbon nanotubes do not significantly affect the overall orientation of most of the carbon nanotubes in the carbon nanotube film. The self-supporting carbon nanotube film does not require a large-area carrier support, but can maintain a self-membrane state as long as the supporting force is provided on both sides, that is, the carbon nanotube film is placed (or fixed on) When the two supports are disposed at a certain distance apart, the carbon nanotube film located between the two supports can be suspended to maintain the self-membrane state. The self-supporting is mainly achieved by the presence of continuous carbon nanotubes extending through the end-to-end extension of the van der Waals force in the carbon nanotube film.

具體地,所述奈米碳管膜中基本朝同一方向延伸的多數奈米碳管,並非絕對的直線狀,可適當的彎曲;或者並非完全按照延伸方向上排列,可適當的偏離延伸方向。因此,不能排除奈米碳管膜的基本朝同一方向延伸的多數奈米碳管中並列的奈米碳管之間可能存在部份接觸。 Specifically, most of the carbon nanotube membranes extending substantially in the same direction in the same direction are not absolutely linear, and may be appropriately bent; or may not be completely aligned in the extending direction, and may be appropriately deviated from the extending direction. Therefore, partial contact between the carbon nanotubes juxtaposed in the majority of the carbon nanotubes extending substantially in the same direction of the carbon nanotube film cannot be excluded.

請參閱圖2及圖3,具體地,所述奈米碳管膜包括複數連續且定向延伸的奈米碳管片段143。該複數奈米碳管片段143通過凡得瓦力首尾相連。每一奈米碳管片段143包括複數相互平行的奈米碳管145,該複數相互平行的奈米碳管145通過凡得瓦力緊密結合。該奈米碳管片段143具有任意的長度、厚度、均勻性及形狀。所述奈米碳管膜可通過從一奈米碳管陣列中選定部份奈米碳管後直接拉取獲得。所述奈米碳管膜的厚度為1奈米~100微米,寬度與拉取出該奈米碳管膜的奈米碳管陣列的尺寸有關,長度不限。所述奈米碳管膜中相鄰的奈米碳管之間存在微孔或間隙從而構成開口105,且該微孔的孔徑或間隙的尺寸小於10微米。優選地,所述 奈米碳管膜的厚度為100奈米~10微米。該奈米碳管膜中的奈米碳管145沿同一方向擇優取向延伸。所述奈米碳管膜的結構及其製備方法請參見范守善等人於2007年2月12日申請的,於2010年7月11公告的第I327177號台灣公告專利申請“奈米碳管薄膜結構及其製備方法”,申請人:鴻海精密工業股份有限公司。為節省篇幅,僅引用此,但上述申請所有技術揭露也應視為本發明申請技術揭露的一部分。 Referring to Figures 2 and 3, in particular, the carbon nanotube film comprises a plurality of continuous and oriented extended carbon nanotube segments 143. The plurality of carbon nanotube segments 143 are connected end to end by van der Waals force. Each of the carbon nanotube segments 143 includes a plurality of carbon nanotubes 145 that are parallel to each other, and the plurality of parallel carbon nanotubes 145 are tightly coupled by van der Waals force. The carbon nanotube segments 143 have any length, thickness, uniformity, and shape. The carbon nanotube film can be obtained by directly pulling a part of a carbon nanotube from an array of carbon nanotubes. The carbon nanotube film has a thickness of 1 nm to 100 μm, and the width is related to the size of the carbon nanotube array for taking out the carbon nanotube film, and the length is not limited. There are micropores or gaps between adjacent carbon nanotubes in the carbon nanotube film to form an opening 105, and the pore size or gap size of the micropores is less than 10 micrometers. Preferably, said The thickness of the carbon nanotube film is from 100 nm to 10 μm. The carbon nanotubes 145 in the carbon nanotube film extend in a preferred orientation in the same direction. For the structure of the carbon nanotube film and the preparation method thereof, please refer to the patent application "Nano Carbon Tube Film Structure" of the No. I327177, which was filed on July 12, 2010 by Fan Shoushan et al. And its preparation method", applicant: Hon Hai Precision Industry Co., Ltd. In order to save space, only this is cited, but all the technical disclosures of the above application should also be considered as part of the technical disclosure of the present application.

請參閱圖4,當所述奈米碳管層包括層疊設置的複數奈米碳管膜時,相鄰兩層奈米碳管膜中的奈米碳管的延伸方向形成一交叉角度α,且α大於等於0度小於等於90度(0°≦α≦90°)。 Referring to FIG. 4, when the carbon nanotube layer comprises a plurality of stacked carbon nanotube films, the extending directions of the carbon nanotubes in the adjacent two carbon nanotube films form an intersection angle α, and α is greater than or equal to 0 degrees and less than or equal to 90 degrees (0° ≦ α ≦ 90 °).

為減小奈米碳管膜的厚度,還可進一步對該奈米碳管膜進行加熱處理。為避免奈米碳管膜加熱時被破壞,所述加熱奈米碳管膜的方法採用局部加熱法。其具體包括以下步驟:局部加熱奈米碳管膜,使奈米碳管膜在局部位置的部份奈米碳管被氧化;移動奈米碳管被局部加熱的位置,從局部到整體實現整個奈米碳管膜的加熱。具體地,可將該奈米碳管膜分成複數小的區域,採用由局部到整體的方式,逐區域地加熱該奈米碳管膜。所述局部加熱奈米碳管膜的方法可有幾種,如鐳射加熱法、微波加熱法等等。本實施例中,通過功率密度大於0.1×104瓦特/平方米的鐳射掃描照射該奈米碳管膜,由局部到整體的加熱該奈米碳管膜。該奈米碳管膜通過鐳射照射,在厚度方向上部份奈米碳管被氧化,同時,奈米碳管膜中直徑較大的奈米碳管束被去除,使得該奈米碳管膜變薄。 In order to reduce the thickness of the carbon nanotube film, the carbon nanotube film may be further heat treated. In order to prevent the carbon nanotube film from being destroyed upon heating, the method of heating the carbon nanotube film adopts a local heating method. Specifically, the method comprises the steps of: locally heating the carbon nanotube film, so that a part of the carbon nanotube film is oxidized at a local position; and moving the carbon nanotube to be locally heated, from the local to the whole Heating of the carbon nanotube film. Specifically, the carbon nanotube film can be divided into a plurality of small regions, and the carbon nanotube film is heated region by region in a partial to overall manner. There are several methods for locally heating the carbon nanotube film, such as laser heating, microwave heating, and the like. In this embodiment, the carbon nanotube film is irradiated by a laser scan having a power density of more than 0.1 × 10 4 watts/m 2 , and the carbon nanotube film is heated from a partial to a whole. The carbon nanotube film is irradiated by laser, and some of the carbon nanotubes are oxidized in the thickness direction, and at the same time, the larger diameter carbon nanotube bundle in the carbon nanotube film is removed, so that the carbon nanotube film becomes thin.

可以理解,上述鐳射掃描奈米碳管膜的方法不限,只要能夠均勻 照射該奈米碳管膜即可。鐳射掃描可沿平行奈米碳管膜中奈米碳管的排列方向逐行進行,也可沿垂直於奈米碳管膜中奈米碳管的排列方向逐列進行。具有固定功率、固定波長的鐳射掃描奈米碳管膜的速度越小,奈米碳管膜中的奈米碳管束吸收的熱量越多,對應被破壞的奈米碳管束越多,鐳射處理後的奈米碳管膜的厚度變小。然,如果鐳射掃描速度太小,奈米碳管膜將吸收過多熱量而被燒毀。本實施例中,鐳射的功率密度為0.053×1012瓦特/平方米,鐳射光斑的直徑在1毫米~5毫米範圍內,鐳射掃描照射時間小於1.8秒。優選地,雷射器為二氧化碳雷射器,該雷射器的功率為30瓦特,波長為10.6微米,光斑直徑為3毫米,鐳射裝置140與奈米碳管膜的相對運動速度小於10毫米/秒。 It is to be understood that the above method of scanning the carbon nanotube film is not limited as long as the carbon nanotube film can be uniformly irradiated. The laser scanning can be carried out row by row along the arrangement direction of the carbon nanotubes in the parallel carbon nanotube film, or can be carried out column by column in the direction perpendicular to the arrangement of the carbon nanotubes in the carbon nanotube film. The smaller the speed of the laser-scanned carbon nanotube film with fixed power and fixed wavelength, the more heat absorbed by the carbon nanotube bundle in the carbon nanotube film, the more the corresponding carbon nanotube bundle is destroyed, after laser treatment The thickness of the carbon nanotube film becomes small. However, if the laser scanning speed is too small, the carbon nanotube film will absorb too much heat and be burned. In this embodiment, the power density of the laser is 0.053×10 12 watts/square meter, the diameter of the laser spot is in the range of 1 mm to 5 mm, and the laser scanning irradiation time is less than 1.8 seconds. Preferably, the laser is a carbon dioxide laser having a power of 30 watts, a wavelength of 10.6 microns, a spot diameter of 3 mm, and a relative movement speed of the laser device 140 and the carbon nanotube film of less than 10 mm/ second.

所述奈米碳管線可為非扭轉的奈米碳管線或扭轉的奈米碳管線。所述非扭轉的奈米碳管線與扭轉的奈米碳管線均為自支撐結構。具體地,請參閱圖5,該非扭轉的奈米碳管線包括複數沿平行於該非扭轉的奈米碳管線長度方向延伸的奈米碳管。具體地,該非扭轉的奈米碳管線包括複數奈米碳管片段,該複數奈米碳管片段通過凡得瓦力首尾相連,每一奈米碳管片段包括複數相互平行並通過凡得瓦力緊密結合的奈米碳管。該奈米碳管片段具有任意的長度、厚度、均勻性及形狀。該非扭轉的奈米碳管線長度不限,直徑為0.5奈米~100微米。非扭轉的奈米碳管線為將奈米碳管膜通過有機溶劑處理得到。具體地,將有機溶劑浸潤所述奈米碳管膜的整個表面,在揮發性有機溶劑揮發時產生的表面張力的作用下,奈米碳管膜中的相互平行的複數奈米碳管通過凡得瓦力緊密結合,從而使奈米碳管膜收縮為一非扭轉的奈米碳管線。該有機溶劑為揮發性有機溶劑,如乙醇、甲醇、丙酮、二氯乙烷或氯仿 ,本實施例中採用乙醇。通過有機溶劑處理的非扭轉的奈米碳管線與未經有機溶劑處理的奈米碳管膜相比,比表面積減小,黏性降低。 The nanocarbon line can be a non-twisted nanocarbon line or a twisted nanocarbon line. The non-twisted nano carbon pipeline and the twisted nanocarbon pipeline are both self-supporting structures. Specifically, referring to FIG. 5, the non-twisted nanocarbon pipeline includes a plurality of carbon nanotubes extending in a direction parallel to the length of the non-twisted nanocarbon pipeline. Specifically, the non-twisted nanocarbon pipeline includes a plurality of carbon nanotube segments, and the plurality of carbon nanotube segments are connected end to end by a van der Waals force, and each of the carbon nanotube segments includes a plurality of parallel and pass through a van der Waals force. Tightly bonded carbon nanotubes. The carbon nanotube segments have any length, thickness, uniformity, and shape. The non-twisted nano carbon line is not limited in length and has a diameter of 0.5 nm to 100 μm. The non-twisted nano carbon pipeline is obtained by treating the carbon nanotube membrane with an organic solvent. Specifically, the organic solvent is used to impregnate the entire surface of the carbon nanotube film, and the mutually parallel complex carbon nanotubes in the carbon nanotube film pass through the surface tension generated by the volatilization of the volatile organic solvent. The wattage is tightly combined to shrink the carbon nanotube membrane into a non-twisted nanocarbon pipeline. The organic solvent is a volatile organic solvent such as ethanol, methanol, acetone, dichloroethane or chloroform. In this embodiment, ethanol is used. The non-twisted nanocarbon line treated by the organic solvent has a smaller specific surface area and a lower viscosity than the carbon nanotube film which is not treated with the organic solvent.

所述扭轉的奈米碳管線為採用一機械力將所述奈米碳管膜兩端沿相反方向扭轉獲得。請參閱圖6,該扭轉的奈米碳管線包括複數繞該扭轉的奈米碳管線軸向螺旋延伸的奈米碳管。具體地,該扭轉的奈米碳管線包括複數奈米碳管片段,該複數奈米碳管片段通過凡得瓦力首尾相連,每一奈米碳管片段包括複數相互平行並通過凡得瓦力緊密結合的奈米碳管。該奈米碳管片段具有任意的長度、厚度、均勻性及形狀。該扭轉的奈米碳管線長度不限,直徑為0.5奈米~100微米。進一步地,可採用一揮發性有機溶劑處理該扭轉的奈米碳管線。在揮發性有機溶劑揮發時產生的表面張力的作用下,處理後的扭轉的奈米碳管線中相鄰的奈米碳管通過凡得瓦力緊密結合,使扭轉的奈米碳管線的比表面積減小,密度及強度增大。 The twisted nanocarbon line is obtained by twisting both ends of the carbon nanotube film in opposite directions by a mechanical force. Referring to FIG. 6, the twisted nanocarbon pipeline includes a plurality of carbon nanotubes extending axially around the twisted nanocarbon pipeline. Specifically, the twisted nanocarbon pipeline includes a plurality of carbon nanotube segments, and the plurality of carbon nanotube segments are connected end to end by van der Waals, and each of the carbon nanotube segments includes a plurality of parallel and through van der Waals Tightly bonded carbon nanotubes. The carbon nanotube segments have any length, thickness, uniformity, and shape. The twisted nanocarbon line is not limited in length and has a diameter of 0.5 nm to 100 μm. Further, the twisted nanocarbon line can be treated with a volatile organic solvent. Under the action of the surface tension generated by the volatilization of the volatile organic solvent, the adjacent carbon nanotubes in the treated twisted nanocarbon pipeline are tightly bonded by van der Waals to make the specific surface area of the twisted nanocarbon pipeline Decrease, increase in density and strength.

所述奈米碳管線及其製備方法請參見范守善等人於2002年11月5日申請的,2008年11月27日公告的第I303239號台灣公告專利“一種奈米碳管繩及其製造方法”,申請人:鴻海精密工業股份有限公司,以及2005年12月16日申請的,2009年7月21日公告的第I312337號台灣公告專利“奈米碳管絲之製作方法”,申請人:鴻海精密工業股份有限公司。為節省篇幅,僅引用此,但上述申請所有技術揭露也應視為本發明申請技術揭露的一部分。 The nano carbon pipeline and the preparation method thereof are described in the patent application No. I303239 issued on November 27, 2008 by Fan Shoushan et al., "Nano Carbon Pipe Rope and Manufacturing Method thereof". "Applicant: Hon Hai Precision Industry Co., Ltd., and the application of the Taiwan Announcement Patent No. I312337, published on December 16, 2005, on July 21, 2009, "Method for Producing Nano Carbon Tube Wire", Applicant: Hon Hai Precision Industry Co., Ltd. In order to save space, only this is cited, but all the technical disclosures of the above application should also be considered as part of the technical disclosure of the present application.

步驟S30中,所述外延層104的生長方法可通過分子束外延法(MBE)、化學束外延法(CBE)、減壓外延法、低溫外延法、選擇 外延法、液相沈積外延法(LPE)、金屬有機氣相外延法(MOVPE)、超真空化學氣相沈積法(UHVCVD)、氫化物氣相外延法(HVPE)、及金屬有機化學氣相沈積法(MOCVD)等中的一種或複數種實現。 In step S30, the growth method of the epitaxial layer 104 can be performed by molecular beam epitaxy (MBE), chemical beam epitaxy (CBE), vacuum deuteration, low temperature epitaxy, and selection. Epitaxial method, liquid phase deposition epitaxy (LPE), metal organic vapor phase epitaxy (MOVPE), ultra-vacuum chemical vapor deposition (UHVCVD), hydride vapor phase epitaxy (HVPE), and metal organic chemical vapor deposition One or a plurality of implementations of the method (MOCVD) and the like.

所述外延層104指通過外延法生長在基底100的外延生長面101的單晶結構體。所述外延層104的生長的厚度可根據需要製備。具體地,所述外延層104的生長的厚度可為0.5奈米~1毫米。例如,所述外延層104的生長的厚度可為100奈米~500微米,或200奈米~200微米,或500奈米~100微米。所述外延層104可為一半導體外延層,且該半導體外延層的材料為GaMnAs、GaAlAs、GaInAs、GaAs、SiGe、InP、Si、AlN、GaN、GaInN、AlInN、GaAlN或AlGaInN。所述外延層104可為一金屬外延層,且該金屬外延層的材料為鋁、鉑、銅或銀。所述外延層104可為一合金外延層,且該合金外延層的材料為MnGa、CoMnGa或Co2MnGa。所述外延層104的材料與基底100的材料可相同也可不同。若所述外延層104的材料與基底100的材料相同則外延層104為一同質外延層。若所述外延層104的材料與基底100的材料不同則外延層104為一異質外延層。 The epitaxial layer 104 refers to a single crystal structure grown on the epitaxial growth surface 101 of the substrate 100 by an epitaxial method. The thickness of the growth of the epitaxial layer 104 can be prepared as needed. Specifically, the epitaxial layer 104 may have a thickness of 0.5 nm to 1 mm. For example, the epitaxial layer 104 may have a thickness of from 100 nanometers to 500 micrometers, or from 200 nanometers to 200 micrometers, or from 500 nanometers to 100 micrometers. The epitaxial layer 104 can be a semiconductor epitaxial layer, and the material of the semiconductor epitaxial layer is GaMnAs, GaAlAs, GaInAs, GaAs, SiGe, InP, Si, AlN, GaN, GaInN, AlInN, GaAlN or AlGaInN. The epitaxial layer 104 can be a metal epitaxial layer, and the metal epitaxial layer is made of aluminum, platinum, copper or silver. The epitaxial layer 104 can be an alloy epitaxial layer, and the material of the epitaxial layer of the alloy is MnGa, CoMnGa or Co 2 MnGa. The material of the epitaxial layer 104 may be the same as or different from the material of the substrate 100. If the material of the epitaxial layer 104 is the same as the material of the substrate 100, the epitaxial layer 104 is a homoepitaxial layer. If the material of the epitaxial layer 104 is different from the material of the substrate 100, the epitaxial layer 104 is a heteroepitaxial layer.

請參閱圖7,具體地,所述外延層104的生長過程具體包括以下步驟:S31:沿基本垂直於所述基底100的外延生長面101方向成核並外延生長形成複數外延晶粒1042;S32:所述複數外延晶粒1042沿基本平行於所述基底100的外延生長面101方向外延生長形成一連續的外延薄膜1044; S33:所述外延薄膜1044沿着基本垂直於所述基底100的外延生長面101方向外延生長形成一外延層104。 Referring to FIG. 7 , specifically, the growth process of the epitaxial layer 104 specifically includes the following steps: S31: nucleating and epitaxially growing in a direction substantially perpendicular to the epitaxial growth surface 101 of the substrate 100 to form a plurality of epitaxial grains 1042; S32 The plurality of epitaxial grains 1042 are epitaxially grown in a direction substantially parallel to the epitaxial growth surface 101 of the substrate 100 to form a continuous epitaxial film 1044; S33: The epitaxial film 1044 is epitaxially grown along an epitaxial growth surface 101 substantially perpendicular to the substrate 100 to form an epitaxial layer 104.

步驟S31中,所述複數外延晶粒1042在所述基底100的外延生長面101通過該奈米碳管層102的開口105暴露的部份開始生長,且其生長方向基本垂直於所述基底100的外延生長面101,即該步驟中複數外延晶粒1042進行縱向外延生長。 In step S31, the plurality of epitaxial grains 1042 are grown at a portion of the epitaxial growth surface 101 of the substrate 100 exposed through the opening 105 of the carbon nanotube layer 102, and the growth direction thereof is substantially perpendicular to the substrate 100. The epitaxial growth surface 101, that is, the plurality of epitaxial grains 1042 in this step is subjected to longitudinal epitaxial growth.

步驟S32中,通過控制生長條件使所述複數外延晶粒1042沿基本平行於所述基底100的外延生長面101的方向同質外延生長並連成一體將所述奈米碳管層102覆蓋。即,該步驟中所述複數外延晶粒1042進行側向外延生長直接合攏,並最終在奈米碳管周圍形成複數孔洞103將奈米碳管包圍。該複數孔洞103可為奈米級微孔結構。優選地,奈米碳管與包圍該奈米碳管的外延層104間隔設置。所述孔洞的形狀與奈米碳管層102中的奈米碳管的排列方向有關。當奈米碳管層102為單層奈米碳管膜時,所述複數孔洞103相互連通並分佈在同一平面內。當奈米碳管層102為複數平行設置的奈米碳管線時,所述複數孔洞103為基本平行設置的溝槽。當奈米碳管層102為複數交叉設置的奈米碳管膜或複數交叉設置的奈米碳管線時,所述複數孔洞103為交叉設置的溝槽網路。 In step S32, the carbon nanotube layer 102 is covered by controlling the growth conditions such that the plurality of epitaxial grains 1042 are homogenously epitaxially grown in a direction substantially parallel to the epitaxial growth surface 101 of the substrate 100 and integrated. That is, the plurality of epitaxial grains 1042 are directly closed in the lateral epitaxial growth in this step, and finally a plurality of holes 103 are formed around the carbon nanotubes to surround the carbon nanotubes. The plurality of holes 103 may be nano-scale microporous structures. Preferably, the carbon nanotubes are spaced apart from the epitaxial layer 104 surrounding the carbon nanotubes. The shape of the holes is related to the arrangement direction of the carbon nanotubes in the carbon nanotube layer 102. When the carbon nanotube layer 102 is a single-layer carbon nanotube film, the plurality of pores 103 communicate with each other and are distributed in the same plane. When the carbon nanotube layer 102 is a plurality of carbon nanotubes disposed in parallel, the plurality of pores 103 are substantially parallel grooves. When the carbon nanotube layer 102 is a plurality of interdigitated carbon nanotube membranes or a plurality of interdigitated nanocarbon pipelines, the plurality of pores 103 are intersecting groove networks.

步驟S33中,由於所述奈米碳管層102的存在,使得外延晶粒1042與基底100之間的晶格錯位在形成連續的外延薄膜1044的過程中停止生長。因此,該步驟的外延層104相當於在沒有缺陷的外延薄膜1044表面進行同質外延生長。所述外延層104具有較少的缺陷。所述外延層104覆蓋所述奈米碳管層102設置並滲透奈米碳管層102的開口105與所述基底100的外延生長面101接觸。將該基底 100、奈米碳管層102及外延層104組成的結構體定義為初級外延結構體108。 In step S33, due to the presence of the carbon nanotube layer 102, the lattice misalignment between the epitaxial grains 1042 and the substrate 100 stops growing during the formation of the continuous epitaxial film 1044. Therefore, the epitaxial layer 104 of this step is equivalent to homoepitaxial growth on the surface of the epitaxial film 1044 having no defects. The epitaxial layer 104 has fewer defects. The epitaxial layer 104 covers the opening of the carbon nanotube layer 102 and penetrates the opening 105 of the carbon nanotube layer 102 to contact the epitaxial growth surface 101 of the substrate 100. The substrate 100. The structure composed of the carbon nanotube layer 102 and the epitaxial layer 104 is defined as a primary epitaxial structure 108.

本發明第一實施例中,所述基底100為一藍寶石(Al2O3)基片,所述奈米碳管層102為一單層奈米碳管膜。所述單層奈米碳管膜係由若干奈米碳管組成的自支撐結構。在該單層奈米碳管膜中大多數奈米碳管的整體延伸方向基本朝同一方向。所述單層奈米碳管膜中基本朝同一方向延伸的大多數奈米碳管中每一奈米碳管與在延伸方向上相鄰的奈米碳管通過凡得瓦力首尾相連。本實施例採用MOCVD方法進行外延生長。其中,採用高純氨氣(NH3)作為氮的源氣,採用氫氣(H2)作載氣,採用三甲基鎵(TMGa)或三乙基鎵(TEGa)、三甲基銦(TMIn)、三甲基鋁(TMAl)作為Ga源、In源及Al源。具體包括以下步驟。首先,將藍寶石基底100置入反應室,加熱到1100℃~1200℃,並通入H2、N2或其混合氣體作為載氣,高溫烘烤200秒~1000秒。其次,繼續同入載氣,並降溫到500℃~650℃,通入三甲基鎵或三乙基鎵及氨氣,生長GaN低溫緩衝層,其厚度10奈米~50奈米。然後,停止通入三甲基鎵或三乙基鎵,繼續通入氨氣及載氣,同時將溫度升高到1100℃~1200℃,並恒溫保持30秒~300秒,進行退火。再次,將基底100的溫度保持在1000℃~1100℃,繼續通入氨氣及載氣,同時重新通入三甲基鎵或三乙基鎵,在高溫下完成GaN的側向外延生長過程,並生長出高質量的GaN外延層。初級外延結構體108生長完畢後,分別用掃描電子顯微鏡(SEM)及透射電子顯微鏡(TEM)對初級外延結構體108進行觀察及測試。本發明第一實施例中,基底100的材料為藍寶石,外延層104的材料為GaN,因此外延層104為異質外延層。請參閱圖8及圖9,本實施例製備的初級外延結構體108中,異質 外延層僅從基底的外延生長面沒有奈米碳管層的位置開始生長,然後連成一體。所述異質外延層與基底接觸的表面形成複數孔洞,所述奈米碳管層設置於該孔洞內,且與異質外延層間隔設置。具體地,從所述圖8中可清楚其看到GaN異質外延層及藍寶石基底之間的界面,其中,深色部份為GaN異質外延層,淺色部份為藍寶石基底。所述GaN異質外延層與藍寶石基底接觸的表面具有一排孔洞103。從所述圖9中可看到,每一孔洞103內設置有奈米碳管。所述孔洞103內的奈米碳管設置於藍寶石基底表面,且與形成孔洞103的GaN異質外延層間隔設置。 In the first embodiment of the present invention, the substrate 100 is a sapphire (Al 2 O 3 ) substrate, and the carbon nanotube layer 102 is a single-layer carbon nanotube film. The single-layered carbon nanotube membrane is a self-supporting structure composed of a plurality of carbon nanotubes. Most of the carbon nanotubes in the single-layer carbon nanotube film extend substantially in the same direction. Each of the plurality of carbon nanotubes extending substantially in the same direction in the single-layered carbon nanotube film is connected end to end with a vanadium tube adjacent to the extending direction. This embodiment uses the MOCVD method for epitaxial growth. Among them, high-purity ammonia (NH 3 ) is used as the source gas of nitrogen, hydrogen (H 2 ) is used as the carrier gas, and trimethylgallium (TMGa) or triethylgallium (TEGa) or trimethylindium (TMIn) is used. ), trimethyl aluminum (TMAl) as a Ga source, an In source, and an Al source. Specifically, the following steps are included. First, the sapphire substrate 100 is placed in a reaction chamber, heated to 1100 ° C to 1200 ° C, and H 2 , N 2 or a mixed gas thereof is introduced as a carrier gas, and baked at a high temperature for 200 seconds to 1000 seconds. Secondly, continue to carry the same carrier gas, and cool down to 500 ° C ~ 650 ° C, through the introduction of trimethyl gallium or triethyl gallium and ammonia, grow GaN low temperature buffer layer, the thickness of 10 nm ~ 50 nm. Then, the passage of trimethylgallium or triethylgallium is stopped, and the ammonia gas and the carrier gas are continuously supplied, and the temperature is raised to 1100 ° C to 1200 ° C, and the temperature is maintained for 30 seconds to 300 seconds for annealing. Again, the temperature of the substrate 100 is maintained at 1000 ° C ~ 1100 ° C, and the ammonia gas and the carrier gas are continuously introduced, and trimethylgallium or triethylgallium is re-introduced, and the lateral epitaxial growth process of GaN is completed at a high temperature. And a high quality GaN epitaxial layer is grown. After the primary epitaxial structure 108 was grown, the primary epitaxial structure 108 was observed and tested by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. In the first embodiment of the present invention, the material of the substrate 100 is sapphire, and the material of the epitaxial layer 104 is GaN, so the epitaxial layer 104 is a heteroepitaxial layer. Referring to FIG. 8 and FIG. 9, in the primary epitaxial structure 108 prepared in this embodiment, the heteroepitaxial layer is grown only from the position where the epitaxial growth surface of the substrate has no carbon nanotube layer, and then integrated. The surface of the heteroepitaxial layer in contact with the substrate forms a plurality of holes, and the carbon nanotube layer is disposed in the hole and spaced apart from the heteroepitaxial layer. Specifically, it can be clearly seen from FIG. 8 that the interface between the GaN heteroepitaxial layer and the sapphire substrate is as follows, wherein the dark portion is a GaN heteroepitaxial layer and the light portion is a sapphire substrate. The surface of the GaN heteroepitaxial layer in contact with the sapphire substrate has a row of holes 103. As can be seen from Fig. 9, a carbon nanotube is disposed in each of the holes 103. The carbon nanotubes in the holes 103 are disposed on the surface of the sapphire substrate and spaced apart from the GaN heteroepitaxial layer forming the holes 103.

步驟S40中,可通過電漿體蝕刻法、鐳射加熱法或者加熱爐加熱法去除奈米碳管層102,使奈米碳管層102中的奈米碳管被物理蝕刻去除或使奈米碳管發生氧化反應生成氣體被去除。 In step S40, the carbon nanotube layer 102 can be removed by a plasma etching method, a laser heating method or a heating furnace heating method, so that the carbon nanotubes in the carbon nanotube layer 102 are physically etched or the carbon is removed. The oxidation reaction of the tube generates gas which is removed.

所述通過電漿蝕刻法去除奈米碳管層102的方法包括以下步驟:步驟S412;將所述初級外延結構體108放入一真空腔體;步驟S414;在真空腔體中通入反應氣體,形成該反應氣體的電漿,使該電漿與奈米碳管層102反應。 The method for removing the carbon nanotube layer 102 by plasma etching includes the following steps: step S412; placing the primary epitaxial structure 108 into a vacuum chamber; step S414; introducing a reactive gas into the vacuum chamber A plasma of the reaction gas is formed to react the plasma with the carbon nanotube layer 102.

在步驟S412中,所述真空腔體可為一反應離子蝕刻機的真空腔體。 In step S412, the vacuum chamber may be a vacuum chamber of a reactive ion etching machine.

步驟S414可具體包括以下步驟:步驟S4142,將該反應離子蝕刻機的真空腔體中抽成真空;步驟S4144,在反應離子蝕刻機的真空腔體中通入反應氣體,該反應氣體可選擇為氧氣、氫氣或四氟化碳等; 步驟S4146,在上述真空腔體中通過輝光放電反應產生反應氣體的電漿,並與奈米碳管層102進行反應。 Step S414 may specifically include the following steps: Step S4142, vacuuming the vacuum chamber of the reactive ion etching machine; and in step S4144, introducing a reaction gas into the vacuum chamber of the reactive ion etching machine, the reaction gas may be selected as Oxygen, hydrogen or carbon tetrafluoride; In step S4146, a plasma of the reaction gas is generated by a glow discharge reaction in the vacuum chamber, and reacted with the carbon nanotube layer 102.

在步驟S4146中,反應氣體通過輝光放電形成電漿,該電漿包括帶電荷的離子及電子。依據反應氣體的不同,該電漿包括氧電漿、氫電漿或四氟化碳電漿等常用的電漿。優選地,該反應氣體為氧氣,該電漿為氧電漿。由於該電漿具有較好的流動性,通過適當控制真空腔內氣體壓強及反應時間,電漿可滲透至初級外延結構體108的孔洞103中。在初級外延結構體108的孔洞103中,奈米碳管與外延層104間隔設置。因此,電漿較易進入上述外延層104的孔洞103中撞擊奈米碳管表面對奈米碳管進行物理蝕刻,或者通過與奈米碳管層102中的碳原子發生氧化反應生成二氧化碳等易揮發的反應產物對奈米碳管層102進行化學蝕刻。上述反應時間不易太短時,否則奈米碳管層102與電漿反應不充分,無法達到去除奈米碳管層102的目的。上述輝光放電反應的功率可為20~300瓦,優選為150瓦。反應氣體流量為10~100標準狀態毫升/分鐘(sccm),優選為50sccm。真空腔體內氣體壓強為1~100帕,優選為10帕。電漿與奈米碳管反應時間為10秒~1小時,優選為15秒~15分鐘。 In step S4146, the reaction gas forms a plasma by glow discharge, and the plasma includes charged ions and electrons. Depending on the reaction gas, the plasma includes conventional plasma such as oxygen plasma, hydrogen plasma or carbon tetrafluoride plasma. Preferably, the reaction gas is oxygen, and the plasma is an oxygen plasma. Since the plasma has good fluidity, the plasma can penetrate into the pores 103 of the primary epitaxial structure 108 by appropriately controlling the gas pressure and reaction time in the vacuum chamber. In the hole 103 of the primary epitaxial structure 108, the carbon nanotubes are spaced apart from the epitaxial layer 104. Therefore, the plasma is more likely to enter the hole 103 of the epitaxial layer 104 to physically etch the carbon nanotube on the surface of the carbon nanotube, or to generate carbon dioxide by oxidation with carbon atoms in the carbon nanotube layer 102. The volatilized reaction product chemically etches the carbon nanotube layer 102. When the above reaction time is not too short, otherwise the reaction between the carbon nanotube layer 102 and the plasma is insufficient, and the purpose of removing the carbon nanotube layer 102 cannot be achieved. The power of the above glow discharge reaction may be 20 to 300 watts, preferably 150 watts. The reaction gas flow rate is 10 to 100 standard conditions in milliliters per minute (sccm), preferably 50 seem. The gas pressure in the vacuum chamber is 1 to 100 Pa, preferably 10 Pa. The reaction time of the plasma and the carbon nanotubes is from 10 seconds to 1 hour, preferably from 15 seconds to 15 minutes.

所述通過鐳射加熱去除奈米碳管層102的方法具體包括以下步驟:步驟S422;提供一鐳射裝置,從該鐳射裝置發射雷射光束照射至該初級外延結構體108中的基底100的表面。 The method for removing the carbon nanotube layer 102 by laser heating specifically includes the following steps: Step S422; providing a laser device from which a laser beam is emitted to the surface of the substrate 100 in the primary epitaxial structure 108.

步驟S424;在含有氧氣的環境中,使雷射光束與所述初級外延結構體108中的基底100的表面進行相對運動從而使雷射光束掃描該 初級外延結構體108中的基底100的表面。 Step S424; in the environment containing oxygen, the laser beam is caused to move relative to the surface of the substrate 100 in the primary epitaxial structure 108 to scan the laser beam. The surface of the substrate 100 in the primary epitaxial structure 108.

在步驟S422中,鐳射裝置包括固體雷射器、液體雷射器、氣體雷射器及半導體雷射器。鐳射的功率密度大於0.053×1012瓦特/平方米,光斑的直徑在1毫米~5毫米範圍內,鐳射的照射時間小於1.8秒。本實施例中,鐳射裝置為二氧化碳雷射器,該雷射器的功率為30瓦特,波長為10.6微米,光斑的直徑為3毫米。優選地,所述雷射光束垂直入射照射至初級外延結構體108中的基底100的表面,即雷射光束基本垂直於所述基底100的表面。 In step S422, the laser device includes a solid laser, a liquid laser, a gas laser, and a semiconductor laser. Laser power density greater than 0.053 × 10 12 W / m, the spot diameter in the range 1 mm to 5 mm, the laser irradiation time less than 1.8 seconds. In this embodiment, the laser device is a carbon dioxide laser having a power of 30 watts, a wavelength of 10.6 micrometers, and a spot diameter of 3 millimeters. Preferably, the laser beam is incident perpendicularly to the surface of the substrate 100 in the primary epitaxial structure 108, i.e., the laser beam is substantially perpendicular to the surface of the substrate 100.

所述鐳射裝置的參數的選擇應考慮外延層104的材料在鐳射照射下的穩定性。當所述外延層104的材料為GaN時,在生長GaN的過程中可先生長一低溫GaN緩衝層,後生長一高溫GaN層,或者直接生長高溫GaN層。本實施例中,外延層104包括一低溫GaN緩衝層及一高溫GaN層。由於,低溫GaN緩衝層對波長為248nm的鐳射有很強的吸收性,因此,低溫GaN在波長為248nm的鐳射照射下會分解為Ga及N2。因此,若外延層104中包括低溫GaN緩衝層,則採用鐳射去除奈米碳管層102時,應避免選擇波長為248nm的鐳射。當所述外延層104為其他材料時,也應避免選擇會使外延層104發生不穩定的鐳射。 The selection of the parameters of the laser device should take into account the stability of the material of the epitaxial layer 104 under laser illumination. When the material of the epitaxial layer 104 is GaN, a low-temperature GaN buffer layer may be grown in the process of growing GaN, a high-temperature GaN layer may be grown later, or a high-temperature GaN layer may be directly grown. In this embodiment, the epitaxial layer 104 includes a low temperature GaN buffer layer and a high temperature GaN layer. Since the low-temperature GaN buffer layer is highly absorptive to laser light having a wavelength of 248 nm, low-temperature GaN is decomposed into Ga and N2 under laser irradiation at a wavelength of 248 nm. Therefore, if the epitaxial layer 104 includes a low temperature GaN buffer layer, the laser having a wavelength of 248 nm should be avoided when laser removing the carbon nanotube layer 102. When the epitaxial layer 104 is of other materials, the selection of lasers that would destabilize the epitaxial layer 104 should also be avoided.

所述鐳射裝置包括至少一雷射器,當該鐳射裝置包括一雷射器時,該鐳射裝置照射形成一光斑,該光斑的直徑為1毫米~5毫米。當該鐳射裝置包括複數雷射器時,該鐳射裝置照射形成一連續的鐳射掃描區,該鐳射掃描區為由複數連續的鐳射光斑組成的條帶狀光斑,該條帶狀光斑的寬度為1毫米~5毫米,長度大於等於基底100的表面的寬度。 The laser device includes at least one laser. When the laser device includes a laser, the laser device is illuminated to form a spot having a diameter of 1 mm to 5 mm. When the laser device comprises a plurality of lasers, the laser device is illuminated to form a continuous laser scanning region, which is a strip-shaped spot composed of a plurality of consecutive laser spots, the strip-shaped spot having a width of 1 The mm to 5 mm has a length greater than or equal to the width of the surface of the substrate 100.

步驟S424可通過以下兩種方法實現: Step S424 can be implemented by the following two methods:

方法一:固定初級外延結構體108,然後移動鐳射裝置照射該碳初級外延結構體108的方法,其具體包括以下步驟:固定初級外延結構體108;提供一可移動的鐳射裝置;及移動該鐳射裝置掃描該初級外延結構體108中的基底100的表面。 Method 1 : a method of fixing a primary epitaxial structure 108 and then moving the laser device to illuminate the carbon primary epitaxial structure 108, specifically comprising the steps of: fixing a primary epitaxial structure 108; providing a movable laser device; and moving the laser The device scans the surface of the substrate 100 in the primary epitaxial structure 108.

方法二:固定鐳射裝置,移動初級外延結構體108使鐳射照射該初級外延結構體108中的基底100的表面的方法,其具體包括以下步驟:提供一固定的鐳射裝置,該鐳射裝置在一固定區域形成一鐳射掃描區;提供所述初級外延結構體108,使該初級外延結構體108中的基底100的表面以一定的速度經過該鐳射掃描區。 Method 2: A method of immobilizing a laser device, moving the primary epitaxial structure 108 to irradiate the surface of the substrate 100 in the primary epitaxial structure 108 by laser, specifically comprising the steps of: providing a fixed laser device, the laser device being fixed at a fixed position The region forms a laser scanning region; the primary epitaxial structure 108 is provided such that the surface of the substrate 100 in the primary epitaxial structure 108 passes through the laser scanning region at a certain speed.

若基底100為不透光材料,當所述雷射光束照射在基底100的表面時,所述基底100被雷射光束加熱並將熱量傳導至奈米碳管層102。由於外延層104的孔洞103中奈米碳管與外延層104間隔設置,因此氧氣較容易進入外延層104的孔洞103中。奈米碳管層102中的奈米碳管吸收熱量並在氧氣的作用下被氧化成二氧化碳氣體進而被去除。 If the substrate 100 is an opaque material, the substrate 100 is heated by a laser beam and conducts heat to the carbon nanotube layer 102 when the laser beam is incident on the surface of the substrate 100. Since the carbon nanotubes in the holes 103 of the epitaxial layer 104 are spaced apart from the epitaxial layer 104, oxygen is more likely to enter the holes 103 of the epitaxial layer 104. The carbon nanotubes in the carbon nanotube layer 102 absorb heat and are oxidized to carbon dioxide gas by oxygen to be removed.

若基底100為透光材料,則雷射光束可穿透基底100直接照射在奈米碳管層102上。由於奈米碳管對鐳射具有良好的吸收特性,且奈米碳管層102中的奈米碳管將會吸收鐳射能量與氧氣發生反應而被燒蝕去除,可通過控制該初級外延結構體108的移動速度或該鐳射掃描區的移動速度,來控制鐳射照射奈米碳管層102的時間,從而控制奈米碳管層102中奈米碳管所吸收的能量,使得該奈米碳管層102中的奈米碳管被燒蝕去除。可以理解,對於具有固定功率密度、固定波長的鐳射裝置,奈米碳管層102通過鐳射 掃描區的速度越小,奈米碳管層102被照射的時間越長,奈米碳管層102中的奈米碳管束吸收的能量越多,奈米碳管層102就越容易被燒蝕去除。本實施例中,雷射器與奈米碳管層102的相對運動速度小於10毫米/秒。可以理解,上述鐳射掃描奈米碳管層102的方法不限,只要能夠均勻照射該奈米碳管層102即可。鐳射掃描可沿平行奈米碳管層102中奈米碳管的排列方向逐行進行,也可沿垂直於奈米碳管層102中奈米碳管的排列方向逐列進行。 If the substrate 100 is a light transmissive material, the laser beam can be directly incident on the carbon nanotube layer 102 through the substrate 100. Since the carbon nanotubes have good absorption characteristics for the laser, and the carbon nanotubes in the carbon nanotube layer 102 absorb the laser energy and react with the oxygen to be ablated, the primary epitaxial structure 108 can be controlled. The moving speed or the moving speed of the laser scanning area to control the time of laser irradiation of the carbon nanotube layer 102, thereby controlling the energy absorbed by the carbon nanotubes in the carbon nanotube layer 102, so that the carbon nanotube layer The carbon nanotubes in 102 were ablated and removed. It can be understood that for a laser device having a fixed power density and a fixed wavelength, the carbon nanotube layer 102 passes through the laser. The smaller the speed of the scanning zone, the longer the carbon nanotube layer 102 is irradiated, and the more energy the nanotube carbon nanotubes in the carbon nanotube layer 102 absorb, the more easily the carbon nanotube layer 102 is ablated. Remove. In this embodiment, the relative movement speed of the laser and the carbon nanotube layer 102 is less than 10 mm/sec. It is to be understood that the above method of laser-scanning the carbon nanotube layer 102 is not limited as long as the carbon nanotube layer 102 can be uniformly irradiated. The laser scanning may be performed row by row along the arrangement direction of the carbon nanotubes in the parallel carbon nanotube layer 102, or may be performed column by column in the direction perpendicular to the arrangement of the carbon nanotubes in the carbon nanotube layer 102.

所述在氧氣環境下通過加熱爐加熱所述奈米碳管層102的方法具體包括以下步驟:步驟S432,提供一加熱爐。該加熱爐的結構不限,只要可提供均勻穩定地的加熱溫度即可。優選地所述加熱爐為一電阻爐。所述電阻爐可為先前技術中的電阻爐。 The method for heating the carbon nanotube layer 102 by a heating furnace under an oxygen atmosphere specifically includes the following steps: Step S432, providing a heating furnace. The structure of the heating furnace is not limited as long as a uniform and stable heating temperature can be provided. Preferably the furnace is a resistance furnace. The electric resistance furnace may be a resistance furnace of the prior art.

步驟S432,將所述初級外延結構體108放置於所述加熱爐的內部,在氧氣環境下加熱所述初級外延結構體108。 Step S432, placing the primary epitaxial structure 108 inside the heating furnace to heat the primary epitaxial structure 108 in an oxygen atmosphere.

所述初級外延結構體108中的奈米碳管層102吸收加熱爐的熱量與氧氣發生反應而被燒蝕。電阻爐的加熱溫度在600ºC以上,可確保奈米碳管獲得足夠的熱量與氧氣反應。優選地,通過電阻爐將初級外延結構體108加熱到650ºC以上從而使奈米碳管層102去除。 The carbon nanotube layer 102 in the primary epitaxial structure 108 absorbs the heat of the heating furnace and reacts with oxygen to be ablated. The heating temperature of the resistance furnace is above 600oC, which ensures that the carbon nanotubes get enough heat to react with oxygen. Preferably, the primary epitaxial structure 108 is heated to above 650 °C by an electric resistance furnace to remove the carbon nanotube layer 102.

去除奈米碳管層102之後得到外延結構體10。該外延結構體10中外延層104具有複數孔洞103,外延層104的非孔洞103的區域與基體100接觸。 The epitaxial structure 10 is obtained after the carbon nanotube layer 102 is removed. The epitaxial layer 104 of the epitaxial structure 10 has a plurality of holes 103, and a region of the non-pores 103 of the epitaxial layer 104 is in contact with the substrate 100.

本發明提供的去除奈米碳管層102的鐳射加熱或者加熱爐加熱或 者通過電漿蝕刻的方法均具有方法簡單,無污染的優點。 The laser heating or heating furnace heating of the carbon nanotube layer 102 is removed by the present invention or The methods of plasma etching have the advantages of simple method and no pollution.

本發明第一實施例中,在含氧環境下,通過二氧化碳雷射器照射藍寶石基底100,鐳射透過藍寶石基底100照射在奈米碳管層的表面使奈米碳管層被燒蝕掉進而被去除。該二氧化碳雷射器的功率為30瓦特,波長為10.6微米,光斑直徑為3毫米,二氧化碳鐳射裝置與藍寶石基底100的相對運動速度小於10毫米/秒。 In the first embodiment of the present invention, the sapphire substrate 100 is irradiated by a carbon dioxide laser in an oxygen-containing environment, and the laser is irradiated onto the surface of the carbon nanotube layer through the sapphire substrate 100 so that the carbon nanotube layer is ablated and further Remove. The carbon dioxide laser has a power of 30 watts, a wavelength of 10.6 micrometers, a spot diameter of 3 millimeters, and a relative movement speed of the carbon dioxide laser device to the sapphire substrate 100 of less than 10 mm/sec.

本發明第一實施例製備的外延結構體10包括一基底100及外延層104,該基底100具有一外延生長面101,所述外延層104設置於所述基底100的外延生長面101。所述外延層104具有複數孔洞103,該複數孔洞103分佈在外延層104及基底100的交界面處。所述複數孔洞103的形成對應於奈米碳管層102的形狀。 The epitaxial structure 10 prepared in the first embodiment of the present invention includes a substrate 100 and an epitaxial layer 104. The substrate 100 has an epitaxial growth surface 101, and the epitaxial layer 104 is disposed on the epitaxial growth surface 101 of the substrate 100. The epitaxial layer 104 has a plurality of holes 103 distributed at the interface of the epitaxial layer 104 and the substrate 100. The formation of the plurality of holes 103 corresponds to the shape of the carbon nanotube layer 102.

本發明第二實施例提供一種外延結構體的製備方法。本發明第二實施例提供的外延結構體的製備方法與本發明第一實施例提供的外延結構體的製備方法基本相同,其區別在於:所述基底為一絕緣體上的矽基片(SOI:silicon on insulator),所述奈米碳管層為複數平行且間隔設置的奈米碳管線。 A second embodiment of the present invention provides a method of fabricating an epitaxial structure. The method for preparing the epitaxial structure provided by the second embodiment of the present invention is basically the same as the method for preparing the epitaxial structure provided by the first embodiment of the present invention, and the difference is that the substrate is an on-silicon substrate (SOI: Silicon on insulator), wherein the carbon nanotube layer is a plurality of parallel and spaced carbon nanotubes.

具體地,首先,在SOI基底的外延生長面鋪設複數平行且間隔設置的奈米碳管線。然後在基底的外延生長面外延生長GaN外延層,生長溫度1070℃,生長時間450秒,主要係進行GaN的縱向生長;接著保持反應室壓力不變,升高溫度到1110℃,同時降低Ga源流量,而保持氨氣流量不變,以促進側向外延生長,生長時間為4900秒;再次,降低溫度至1070℃,同時增加Ga源流量繼續縱向生長10000秒;最後,在含氧環境下,通過一電阻爐將基底100及GaN外延層加熱至600℃從而使奈米碳管層去除。本實施採用 MOCVD方法進行外延生長。其中,分別採用三甲基鎵(TMGa)、三甲基鋁(TMAl)作為Ga及Al的源物質,氨氣(NH3)作為氮的源物質,氫氣(H2)作載氣,使用臥式水準反應爐加熱。本發明第二實施例製備得到的外延結構體與本發明第一實施例製備得到的外延結構體相似,其區別在於,所述孔洞為複數相互平行的溝槽,該溝槽可為奈米級溝槽。 Specifically, first, a plurality of parallel and spaced nanocarbon lines are laid on the epitaxial growth surface of the SOI substrate. Then epitaxially growing the GaN epitaxial layer on the epitaxial growth surface of the substrate, the growth temperature is 1070 ° C, the growth time is 450 seconds, mainly for the longitudinal growth of GaN; then the pressure of the reaction chamber is kept constant, the temperature is raised to 1110 ° C, and the Ga source is lowered. The flow rate, while maintaining the ammonia flow rate unchanged, to promote lateral epitaxial growth, the growth time is 4900 seconds; again, reduce the temperature to 1070 ° C, while increasing the Ga source flow and continue to grow longitudinally for 10,000 seconds; finally, in an oxygen-containing environment, The carbon nanotube layer was removed by heating the substrate 100 and the GaN epitaxial layer to 600 ° C through a resistance furnace. This embodiment uses the MOCVD method for epitaxial growth. Among them, trimethylgallium (TMGa) and trimethylaluminum (TMAl) are used as the source materials of Ga and Al, ammonia (NH 3 ) is used as the source of nitrogen, and hydrogen (H 2 ) is used as carrier gas. The level reactor is heated. The epitaxial structure prepared by the second embodiment of the present invention is similar to the epitaxial structure prepared by the first embodiment of the present invention, and the difference is that the hole is a plurality of mutually parallel grooves, and the groove can be a nanometer. Groove.

本發明第三實施例提供一種外延結構體的製備方法。本發明第三實施例提供的外延結構體的製備方法與本發明第二實施例提供的外延結構體的製備方法基本相同,其區別在於,交叉且間隔地設置複數奈米碳管線於基底的外延生長面,以形成奈米碳管層,生長外延層之後通過氧電漿蝕刻法去除奈米碳管層從而在外延層中形成交叉且連通的孔洞。 A third embodiment of the present invention provides a method of fabricating an epitaxial structure. The method for preparing the epitaxial structure provided by the third embodiment of the present invention is basically the same as the method for preparing the epitaxial structure provided by the second embodiment of the present invention, and the difference is that the epitaxial extension of the plurality of carbon carbon lines is arranged at intervals and intervals. The face is grown to form a carbon nanotube layer, and after the epitaxial layer is grown, the carbon nanotube layer is removed by oxygen plasma etching to form intersecting and communicating pores in the epitaxial layer.

具體地,所述奈米碳管層中複數奈米碳管線分別沿第一方向與第二方向平行設置,所述第一方向與第二方向交叉設置。交叉且間相鄰的四奈米碳管線之間形成一開口。本實施例中,相鄰的二奈米碳管線平行設置,相交叉的二奈米碳管線相互垂直。可以理解,所述奈米碳管線也可採用任意交叉方式設置,只需使奈米碳管層形成複數開口,從而使基底的外延生長面部份暴露即可。 Specifically, the plurality of carbon nanotubes in the carbon nanotube layer are respectively disposed in parallel with the second direction in the first direction, and the first direction is disposed to intersect the second direction. An opening is formed between the intersecting and adjacent four carbon carbon lines. In this embodiment, adjacent two nano carbon pipes are arranged in parallel, and the intersecting two nano carbon pipes are perpendicular to each other. It can be understood that the nano carbon pipeline can also be disposed in any crossover manner, and only the carbon nanotube layer is formed into a plurality of openings, so that the epitaxial growth surface portion of the substrate is exposed.

請參閱圖10,為通過本發明第三實施例的方法製備的一種外延結構體10,其包括:一基底100、一外延層104及形成於外延層104中的複數交叉且連通的孔洞112。 Referring to FIG. 10, an epitaxial structure 10 prepared by the method of the third embodiment of the present invention includes a substrate 100, an epitaxial layer 104, and a plurality of intersecting and interconnected holes 112 formed in the epitaxial layer 104.

本發明第四實施例進一步提供一種外延結構體的製備方法,其具體包括以下步驟: S102:提供一基底,且該基底具有一支持外延層生長的外延生長面;S202:在所述基底的外延生長面設置一奈米碳管層,該基底與奈米碳管層共同構成一襯底;及S302:在基底的外延生長面生長同質外延層;S402:去除奈米碳管層獲得一外延結構體。 A fourth embodiment of the present invention further provides a method for preparing an epitaxial structure, which specifically includes the following steps: S102: providing a substrate, the substrate has an epitaxial growth surface supporting epitaxial layer growth; S202: providing a carbon nanotube layer on the epitaxial growth surface of the substrate, the substrate and the carbon nanotube layer forming a lining a bottom; and S302: growing a homoepitaxial layer on the epitaxial growth surface of the substrate; S402: removing the carbon nanotube layer to obtain an epitaxial structure.

本發明第四實施例的外延層的生長方法與第一實施例的外延層的生長方法基本相同,其區別在於,所述基底與外延層的材料相同,從而構成一同質外延結構體。本發明第四實施例中,基底與外延層的材料均為GaN。當基底100及外延層104為同質結構,即所述外延層104為同質生長時,所述基底100與外延層104的界面幾乎不可分辨。所述外延結構體10實際上的結構為一層同質結構體,該同質結構體中具有複數孔洞103相互連通分佈在同一平面內。 The method for growing an epitaxial layer according to the fourth embodiment of the present invention is basically the same as the method for growing an epitaxial layer of the first embodiment, except that the substrate is made of the same material as that of the epitaxial layer, thereby constituting a homoepitaxial structure. In the fourth embodiment of the present invention, the material of the substrate and the epitaxial layer is GaN. When the substrate 100 and the epitaxial layer 104 are homogenous, that is, the epitaxial layer 104 is homogenously grown, the interface between the substrate 100 and the epitaxial layer 104 is almost indistinguishable. The actual structure of the epitaxial structure 10 is a layer of homogenous structure in which a plurality of holes 103 are connected to each other and distributed in the same plane.

請參閱圖11,本發明第五實施例提供一種外延結構體20的生長方法,其具體包括以下步驟:S104:提供一基底100,且該基底100具有一支持外延層生長的外延生長面101;S204:在所述基底100的外延生長面101設置一第一奈米碳管層106;S304:在基底100的外延生長面101生長一第一外延層107;S404:在該第一外延層107的遠離基底100的表面設置一第二奈米 碳管層109;S504:在該第一外延層107的遠離基底100的表面生長一第二外延層110得到一初級外延結構體208;S604:去除該初級外延結構體208中的第一奈米碳管層106及第二奈米碳管層109。 Referring to FIG. 11, a fifth embodiment of the present invention provides a method for growing an epitaxial structure 20, which specifically includes the following steps: S104: providing a substrate 100, and the substrate 100 has an epitaxial growth surface 101 supporting epitaxial layer growth; S204: a first carbon nanotube layer 106 is disposed on the epitaxial growth surface 101 of the substrate 100; S304: a first epitaxial layer 107 is grown on the epitaxial growth surface 101 of the substrate 100; S404: in the first epitaxial layer 107 Setting a second nanometer away from the surface of the substrate 100 a carbon tube layer 109; S504: a second epitaxial layer 110 is grown on the surface of the first epitaxial layer 107 away from the substrate 100 to obtain a primary epitaxial structure 208; S604: removing the first nanometer in the primary epitaxial structure 208 The carbon tube layer 106 and the second carbon nanotube layer 109.

本發明第五實施例提供的外延結構體20的生長方法與第一實施例提供的外延結構體10的生長方法相似,其區別在於:本發明第五實施例的基底100上生長有兩層外延層,即第一外延層107及第二外延層110,且第一外延層107及第二外延層110之間形成有孔洞狀的微結構,第一外延層107及所述基底100的外延生長面101之間也形成有孔洞狀的微結構。所述基底100、第一外延層107及第二外延層110相互可為同質的也可為異質的。 The method for growing the epitaxial structure 20 according to the fifth embodiment of the present invention is similar to the method for growing the epitaxial structure 10 provided by the first embodiment, and the difference is that the substrate 100 of the fifth embodiment of the present invention has two layers of epitaxial growth thereon. a first epitaxial layer 107 and a second epitaxial layer 110, and a hole-shaped microstructure is formed between the first epitaxial layer 107 and the second epitaxial layer 110, and the epitaxial growth of the first epitaxial layer 107 and the substrate 100 A hole-like microstructure is also formed between the faces 101. The substrate 100, the first epitaxial layer 107, and the second epitaxial layer 110 may be homogenous or heterogeneous.

在步驟S604中,通過鐳射照射的方法去除第一奈米碳管層106及第二奈米碳管層109。所述鐳射可從基底100的表面入射,也可從第二外延層110的表面入射。優選地,所述鐳射分別從基底100的表面及第二外延層110的表面入射,如此可降低所需鐳射的強度及時間。 In step S604, the first carbon nanotube layer 106 and the second carbon nanotube layer 109 are removed by laser irradiation. The laser may be incident from the surface of the substrate 100 or may be incident from the surface of the second epitaxial layer 110. Preferably, the laser is incident from the surface of the substrate 100 and the surface of the second epitaxial layer 110, respectively, so that the intensity and time of the desired laser can be reduced.

可以理解,可重複步驟S404及步驟S504,在基底100的外延生長面101上重複生長外延層,即可在基底100的外延生長面101生長至少兩層外延層,如在基底的外延生長面101依次層疊生長第n層外延層,其中n為大於等於2的整數。該至少兩層外延層中相鄰的外延層之間設置有一奈米碳管層。該外延結構體包括複數疊設置的外延層,至少二相鄰的外延層的交界面設置有複數微孔結構, 該微孔結構可為奈米級微孔結構。 It can be understood that step S404 and step S504 can be repeated to repeatedly grow the epitaxial layer on the epitaxial growth surface 101 of the substrate 100, so that at least two epitaxial layers can be grown on the epitaxial growth surface 101 of the substrate 100, such as the epitaxial growth surface 101 of the substrate. The nth epitaxial layer is sequentially stacked, wherein n is an integer greater than or equal to 2. A carbon nanotube layer is disposed between adjacent epitaxial layers of the at least two epitaxial layers. The epitaxial structure includes a plurality of epitaxial layers disposed at a plurality of layers, and at least two adjacent epitaxial layers are provided with a plurality of microporous structures at an interface. The microporous structure can be a nano-scale microporous structure.

本發明提供的外延結構體的製備方法具有以下有益效果: The preparation method of the epitaxial structure provided by the invention has the following beneficial effects:

第一,本發明提供了一種在外延層與基底之間形成孔洞狀奈米級微結構的方法,該方法通過設置一奈米碳管層作為掩模的方法無需剝離基底即可在外延層的表面形成孔洞狀微結構,方法簡單、成本低,克服了先前技術基本無法在不剝離基底的情況下在外延層與基底之間形成孔洞狀奈米級微結構的技術問題。 First, the present invention provides a method for forming a hole-shaped nano-scale microstructure between an epitaxial layer and a substrate by providing a carbon nanotube layer as a mask in the epitaxial layer without stripping the substrate. The surface is formed with a hole-like microstructure, which is simple in method and low in cost, and overcomes the technical problem that the prior art can hardly form a hole-shaped nano-scale microstructure between the epitaxial layer and the substrate without peeling off the substrate.

第二,本發明方法製備的外延結構體在應用於製造發光二極體時,形成在外延層表面的奈米級微結構可有效提高發光二極體出光效率,同時無需剝離基底有利於簡化方法。 Secondly, when the epitaxial structure prepared by the method of the invention is applied to manufacture a light-emitting diode, the nano-scale microstructure formed on the surface of the epitaxial layer can effectively improve the light-emitting efficiency of the light-emitting diode, and the method is not needed to simplify the method. .

第三,奈米碳管層為自支撐結構,可直接鋪設在基底表面,方法簡單,有利於大規模產業化製造。 Thirdly, the carbon nanotube layer is a self-supporting structure, which can be directly laid on the surface of the substrate, and the method is simple, and is advantageous for large-scale industrial manufacturing.

第四,本發明的方法可實現製備一同質結構體,該同質結構體內具有複數奈米級微孔結構分佈在一平面內或相互平行且間隔的複數平面內,在半導體技術領域等複數領域具有廣泛的應用前景。 Fourth, the method of the present invention can realize the preparation of a homogeneous structure having a plurality of nano-scale microporous structures distributed in a plane or parallel and spaced in a plurality of planes, and has a plurality of fields in the field of semiconductor technology and the like. Wide application prospects.

綜上所述,本發明確已符合發明專利之要件,遂依法提出專利申請。惟,以上所述者僅為本發明之較佳實施例,自不能以此限制本案之申請專利範圍。舉凡習知本案技藝之人士援依本發明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍內。 In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims.

10‧‧‧外延結構體 10‧‧‧Extended structure

100‧‧‧基底 100‧‧‧Base

101‧‧‧外延生長面 101‧‧‧ Epitaxial growth surface

102‧‧‧奈米碳管層 102‧‧‧Nano carbon tube layer

103‧‧‧孔洞 103‧‧‧ hole

104‧‧‧外延層 104‧‧‧ Epilayer

105‧‧‧開口 105‧‧‧ openings

108‧‧‧初級外延結構體 108‧‧‧Primary extension structure

Claims (17)

一種外延結構體之製備方法,其具體包括以下步驟:提供一基底,該基底具有一支持外延層生長的外延生長面;在所述基底的外延生長面設置一奈米碳管層,所述奈米碳管層為由複數奈米碳管相互連接形成的一連續的整體的自支撐結構體;在基底的外延生長面生長一外延層並覆蓋所述奈米碳管層,形成一初級外延結構體;去除該初級外延結構體中的奈米碳管層。 A method for preparing an epitaxial structure, comprising the steps of: providing a substrate having an epitaxial growth surface supporting epitaxial layer growth; and providing a carbon nanotube layer on the epitaxial growth surface of the substrate The carbon nanotube layer is a continuous integral self-supporting structure formed by interconnecting a plurality of carbon nanotubes; an epitaxial layer is grown on the epitaxial growth surface of the substrate and covers the carbon nanotube layer to form a primary epitaxial structure Body; removing the carbon nanotube layer in the primary epitaxial structure. 如請求項1所述之外延結構體之製備方法,其中,所述去除該初級外延結構體中的奈米碳管層的方法為對奈米碳管層中奈米碳管進行物理蝕刻。 The method for preparing an outer structure according to claim 1, wherein the method of removing the carbon nanotube layer in the primary epitaxial structure is to physically etch a carbon nanotube in the carbon nanotube layer. 如請求項1所述之外延結構體之製備方法,其中,所述去除該初級外延結構體中的奈米碳管層的方法為通過使奈米碳管層中的碳原子發生氧化反應生成二氧化碳對奈米碳管層進行化學蝕刻。 The method for preparing an outer structure according to claim 1, wherein the method of removing the carbon nanotube layer in the primary epitaxial structure is to generate carbon dioxide by oxidizing carbon atoms in the carbon nanotube layer. The carbon nanotube layer is chemically etched. 如請求項1所述之外延結構體之製備方法,其中,所述奈米碳管層直接鋪設在所述基底的外延生長面並與所述基底接觸設置。 The method for preparing an outer structure according to claim 1, wherein the carbon nanotube layer is directly laid on an epitaxial growth surface of the substrate and disposed in contact with the substrate. 如請求項4所述之外延結構體之製備方法,其中,所述奈米碳管層為至少一層奈米碳管膜,該奈米碳管膜包括複數奈米碳管沿同一方向擇優取向延伸,該奈米碳管膜中沿同一方向延伸的相鄰的奈米碳管通過凡得瓦力首尾相連。 The method for preparing an outer structure according to claim 4, wherein the carbon nanotube layer is at least one layer of carbon nanotube film, and the carbon nanotube film comprises a plurality of carbon nanotubes extending in a preferred orientation in the same direction. The adjacent carbon nanotubes extending in the same direction in the carbon nanotube film are connected end to end by van der Waals force. 如請求項4所述之外延結構體之製備方法,其中,所述奈米碳管層為複數相互平行且間隔設置的奈米碳管線。 The method for preparing an outer structure according to claim 4, wherein the carbon nanotube layer is a plurality of nano carbon lines which are parallel to each other and spaced apart from each other. 如請求項4所述之外延結構體之製備方法,其中,所述奈米碳管層為複數奈米碳管線組成的網狀結構。 The method for preparing a structure according to claim 4, wherein the carbon nanotube layer is a network structure composed of a plurality of carbon nanotubes. 如請求項4所述之外延結構體之製備方法,其中,所述奈米碳管層具有複數開口,所述外延層覆蓋所述奈米碳管層設置並滲透奈米碳管層的開口與所述基底的外延生長面接觸。 The method for preparing an outer structure according to claim 4, wherein the carbon nanotube layer has a plurality of openings, and the epitaxial layer covers the opening of the carbon nanotube layer and penetrates the opening of the carbon nanotube layer The epitaxial growth surface of the substrate is in contact. 如請求項1所述之外延結構體之製備方法,其中,所述外延層的生長方法具體包括以下步驟:沿垂直於所述基底的外延生長面方向成核並外延生長形成複數外延晶粒;所述複數外延晶粒沿着平行於所述基底的外延生長面方向側向外延生長形成一連續的外延薄膜;所述外延薄膜沿垂直於所述基底的外延生長面方向外延生長形成一外延層。 The method for preparing an epitaxial layer according to claim 1, wherein the method for growing the epitaxial layer comprises the steps of: nucleating and epitaxially growing in a direction perpendicular to an epitaxial growth surface of the substrate to form a plurality of epitaxial grains; The plurality of epitaxial grains are laterally epitaxially grown along a direction parallel to an epitaxial growth surface of the substrate to form a continuous epitaxial film; the epitaxial film is epitaxially grown along an epitaxial growth surface perpendicular to the substrate to form an epitaxial layer . 如請求項9所述之外延結構體之製備方法,其中,所述側向外延生長時,外延層在所述奈米碳管層周圍形成複數孔洞將所述奈米碳管層中的奈米碳管包圍。 The method for preparing an outer structure according to claim 9, wherein, in the lateral epitaxial growth, the epitaxial layer forms a plurality of pores around the carbon nanotube layer to treat the nanometer in the carbon nanotube layer. Surrounded by carbon tubes. 如請求項1所述之外延結構體之製備方法,其中,所述去除該初級外延結構體中的奈米碳管層的方法為電漿蝕刻法,所述電漿蝕刻法去除奈米碳管層的方法具體包括以下步驟:首先,將初級外延結構體放入一反應離子蝕刻機的真空腔體中;其次,將該真空腔體抽成真空,在反應離子蝕刻機的真空腔體中通入反應氣體;最後,在上述真空腔體中通過輝光放電反應產生反應氣體的電漿,該電漿對奈米碳管層進行物理蝕刻或與奈米碳管層進行反應進行化學蝕刻,去除奈米碳管層。 The method for preparing a structure of the outer structure according to claim 1, wherein the method for removing the carbon nanotube layer in the primary epitaxial structure is a plasma etching method, and the plasma etching method removes the carbon nanotube tube. The method of the layer specifically includes the following steps: First, the primary epitaxial structure is placed in a vacuum chamber of a reactive ion etching machine; secondly, the vacuum chamber is evacuated and passed through a vacuum chamber of the reactive ion etching machine. Into the reaction gas; finally, a plasma of the reaction gas is generated by a glow discharge reaction in the vacuum chamber, and the plasma physically etches the carbon nanotube layer or reacts with the carbon nanotube layer to perform chemical etching to remove the naphthalene Carbon tube layer. 如請求項11所述之外延結構體之製備方法,其中,所述反應氣體的電漿包括氧電漿、氫電漿或四氟化碳電漿。 The method for preparing an outer structure according to claim 11, wherein the plasma of the reaction gas comprises an oxygen plasma, a hydrogen plasma or a carbon tetrafluoride plasma. 如請求項1所述之外延結構體之製備方法,其中,所述去除該初級外延結構體中的奈米碳管層的方法為鐳射加熱法,所述鐳射加熱法去除奈米碳 管層的方法具體包括以下步驟:提供一鐳射裝置,從該鐳射裝置發射雷射光束至該初級外延結構體中的基底的表面;在含有氧氣的環境中,使雷射光束與初級外延結構體中的基底的表面進行相對運動從而使雷射光束掃描該初級外延結構體中的基底的表面,奈米碳管層中的奈米碳管吸收鐳射能量與氧氣發生反應而被去除。 The method for preparing an outer structure according to claim 1, wherein the method for removing the carbon nanotube layer in the primary epitaxial structure is a laser heating method, and the laser heating method removes the nano carbon. The method of the tube layer specifically comprises the steps of: providing a laser device, emitting a laser beam from the laser device to a surface of the substrate in the primary epitaxial structure; and in the environment containing oxygen, the laser beam and the primary epitaxial structure The surface of the substrate in the relative movement is such that the laser beam scans the surface of the substrate in the primary epitaxial structure, and the carbon nanotubes in the carbon nanotube layer absorb the laser energy and react with oxygen to be removed. 如請求項1所述之外延結構體之製備方法,其中,所述去除該初級外延結構體中的奈米碳管層的方法為加熱爐加熱法:提供一加熱爐;將所述初級外延結構體放置於所述加熱爐的內部,在含有氧氣的環境下加熱所述初級外延結構體,其中所述加熱溫度大於600ºC,初級外延結構體中的奈米碳管層吸收熱量與氧氣發生反應而被燒蝕去除。 The method for preparing an outer structure according to claim 1, wherein the method for removing the carbon nanotube layer in the primary epitaxial structure is a furnace heating method: providing a heating furnace; and the primary epitaxial structure The body is placed inside the heating furnace, and the primary epitaxial structure is heated in an environment containing oxygen, wherein the heating temperature is greater than 600 ° C, and the carbon nanotube layer in the primary epitaxial structure absorbs heat and reacts with oxygen. Absorbed to remove. 如請求項1所述之外延結構體之製備方法,其中,所述外延層為異質外延層。 The method for preparing a structure according to claim 1, wherein the epitaxial layer is a heteroepitaxial layer. 如請求項1所述之外延結構體之製備方法,其中,所述外延層為同質外延層。 The method for preparing an outer structure according to claim 1, wherein the epitaxial layer is a homoepitaxial layer. 一種外延結構體的製備方法,其具體包括以下步驟:提供一基底,且該基底具有一外延生長面;在所述基底的外延生長面設置一奈米碳管層;在基底的外延生長面依次層疊生長第n層外延層,形成一初級外延結構體,其中,相鄰外延層之間均設置一奈米碳管層,n為大於等於2的整數;去除該初級外延結構體中的奈米碳管層,所述奈米碳管層均為由複數奈米碳管相互連接形成的一連續的整體的自支撐結構體。 A method for preparing an epitaxial structure, comprising the steps of: providing a substrate, wherein the substrate has an epitaxial growth surface; and providing a carbon nanotube layer on the epitaxial growth surface of the substrate; Stacking an nth epitaxial layer to form a primary epitaxial structure, wherein a carbon nanotube layer is disposed between adjacent epitaxial layers, n is an integer greater than or equal to 2; and the nano in the primary epitaxial structure is removed The carbon tube layer is a continuous integral self-supporting structure formed by interconnecting a plurality of carbon nanotubes.
TW100112852A 2011-03-29 2011-04-13 Method for making an epitaxial structure TWI466321B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110076867.1A CN102723414B (en) 2011-03-29 2011-03-29 Preparation method for epitaxial structure body

Publications (2)

Publication Number Publication Date
TW201240137A TW201240137A (en) 2012-10-01
TWI466321B true TWI466321B (en) 2014-12-21

Family

ID=46949126

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100112852A TWI466321B (en) 2011-03-29 2011-04-13 Method for making an epitaxial structure

Country Status (3)

Country Link
JP (1) JP5718209B2 (en)
CN (1) CN102723414B (en)
TW (1) TWI466321B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266064A (en) * 2007-04-19 2008-11-06 Nichia Corp Substrate for semiconductor element and its manufacturing method
CN101820036A (en) * 2009-02-27 2010-09-01 清华大学 Method for preparing light-emitting diode
JP2010232464A (en) * 2009-03-27 2010-10-14 Showa Denko Kk Group iii nitride semiconductor light emitting element, method of manufacturing the same, and laser diode

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3788104B2 (en) * 1998-05-28 2006-06-21 住友電気工業株式会社 Gallium nitride single crystal substrate and manufacturing method thereof
JP3589200B2 (en) * 2000-06-19 2004-11-17 日亜化学工業株式会社 Nitride semiconductor substrate, method of manufacturing the same, and nitride semiconductor device using the nitride semiconductor substrate
JP3823781B2 (en) * 2001-08-31 2006-09-20 日亜化学工業株式会社 Nitride semiconductor substrate and method for manufacturing the same
JP2003243316A (en) * 2002-02-20 2003-08-29 Fuji Photo Film Co Ltd Substrate for semiconductor element and its manufacturing method
KR100533910B1 (en) * 2004-01-15 2005-12-07 엘지전자 주식회사 Method of growing high quality nitride semiconductor thin film
JP4885507B2 (en) * 2005-10-05 2012-02-29 古河機械金属株式会社 Group III nitride semiconductor layer forming method and group III nitride semiconductor substrate manufacturing method
JP2009043841A (en) * 2007-08-07 2009-02-26 Toyota Motor Corp Inspecting method and inspecting device for trench
JP5276852B2 (en) * 2008-02-08 2013-08-28 昭和電工株式会社 Method for manufacturing group III nitride semiconductor epitaxial substrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266064A (en) * 2007-04-19 2008-11-06 Nichia Corp Substrate for semiconductor element and its manufacturing method
CN101820036A (en) * 2009-02-27 2010-09-01 清华大学 Method for preparing light-emitting diode
JP2010232464A (en) * 2009-03-27 2010-10-14 Showa Denko Kk Group iii nitride semiconductor light emitting element, method of manufacturing the same, and laser diode

Also Published As

Publication number Publication date
CN102723414A (en) 2012-10-10
JP2012206926A (en) 2012-10-25
JP5718209B2 (en) 2015-05-13
CN102723414B (en) 2015-04-01
TW201240137A (en) 2012-10-01

Similar Documents

Publication Publication Date Title
US10177275B2 (en) Epitaxial structure and method for making the same
TWI445206B (en) Method for making light emitting diode
TWI473758B (en) Method for making epitaxial structure
TWI444326B (en) Method for making light-emitting diode
TWI431667B (en) A epitaxialstructure and method for making the same
TWI446587B (en) Light emitting diode
TWI457271B (en) Method for making semiconductor epitaxial structure
TWI474966B (en) A method for making epitaxial structure
TWI449659B (en) Method for making epitaxial structure
TWI466321B (en) Method for making an epitaxial structure
TWI442451B (en) A substrate with micro-structure and method for making the same
TWI505984B (en) A method for making an epitaxial structure
TWI479681B (en) Semiconductor epitaxial structure
TWI476948B (en) Epitaxial structure and method for making the same
TWI426159B (en) Mask for growing epitaxial structure and method for using the same
TWI443863B (en) Base for growing epitaxial structure and method for using the same