TWI463773B - Isolated power conversion device and its automatic charge and discharge circuit and power conversion method - Google Patents

Isolated power conversion device and its automatic charge and discharge circuit and power conversion method Download PDF

Info

Publication number
TWI463773B
TWI463773B TW101145613A TW101145613A TWI463773B TW I463773 B TWI463773 B TW I463773B TW 101145613 A TW101145613 A TW 101145613A TW 101145613 A TW101145613 A TW 101145613A TW I463773 B TWI463773 B TW I463773B
Authority
TW
Taiwan
Prior art keywords
capacitor
diode
power conversion
isolated
inductor
Prior art date
Application number
TW101145613A
Other languages
English (en)
Other versions
TW201424225A (zh
Inventor
Ching Tsai Pan
Po Yen Chen
Ta Sheng Hung
Original Assignee
Hep Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hep Tech Co Ltd filed Critical Hep Tech Co Ltd
Priority to TW101145613A priority Critical patent/TWI463773B/zh
Priority to US14/096,836 priority patent/US9419525B2/en
Publication of TW201424225A publication Critical patent/TW201424225A/zh
Application granted granted Critical
Publication of TWI463773B publication Critical patent/TWI463773B/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • H02M1/346Passive non-dissipative snubbers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Description

隔離式電源轉換裝置及其自動電荷抽放電路與電源轉換方法
本發明係與電源轉換有關,更詳而言之是指一種隔離式電源轉換裝置及其自動電荷抽放電路與電源轉換方法。
按,隔離型電能傳輸系統與一般接觸型電能傳輸系統最大的不同,在於隔離型電能傳輸系統不須經由電力線直接傳輸能量,而是利用一隔離型變壓器電磁耦合而將能量由一次側傳遞至二次側電路,然而隔離型變壓器因其先天耦合不良因素,使得電力轉換效率較低。因此,傳統隔離型電能傳輸系統常利用共振式阻抗匹配方式,來提升電源轉換效率,但是利用阻抗匹配電路方式實現之電路,甚易受變壓器耦合系數參數影響,而達不到預期效果,造成電源轉換效率低落。此外,由於電能傳輸系統之輸出電壓需大於負載電壓,才能夠克服輸出端之電位而將能量傳送至負載,因此隔離型電能傳輸電路中,往往需要較大匝數比之變壓器才能夠將電壓提升至所需電壓,如此一來,而變壓器之銅損隨著線圈匝數增加而增加,以致電源轉換效率降低。
有鑑於此,本發明之主要目的在於提供一種隔離式電源轉 換裝置及其自動電荷抽放電路與電源轉換方法,可以提供負電位以補償負載電壓之阻障,進而可降低變壓器之線圈匝數比,以降低銅損提升電源轉換效率,使得變壓器一次側能量能夠更平順更有效率的傳送至負載,進一步增進電源轉換效率。
緣以達成上述目的,本發明所提供隔離式電源轉換裝置,用以將一脈衝電源之電能轉換後,輸出供予一負載;該隔離式電源轉換裝置包含有一隔離式變壓器以及一自動電荷抽放(auto charge pump)電路;其中,該隔離式變壓器具有一一次側以及一二次側,且該第一次側與該脈衝電源電性連接,而該二次側具有一第一端以及一第二端;該自動電荷抽放電路一側電性連接該隔離式變壓器,另一側電性連接該負載;該自動電荷抽放電路包含有:一第一二極體,其正極連接該二次側之第二端,其負極電性連接該二次側之第一端;一第一電容,其一端電性連接該二次側之第一端與該第一二極體之負極;一電感,其一端連接該第一電容之另一端,而另外一端則電性連接該第一二極體之負極;一第二電容,並聯連接該負載,且其一端連接該第一電容與該電感,而另一端連接該第一二極體之正極與該二次側之第二端。
依據上述構思,該隔離式電源轉換裝置的電源轉換方法,包含有下列步驟:A.當該脈衝電源輸出電能時,對該隔離式變壓器之一次側充電,而該電感、該第一電容與該第二電容對該負載釋能; B.當該脈衝電源停止輸出電能時,該隔離式變壓器之二次側對該電感、該第一電容與該第二電容充電,使該第二電容持續對該負載釋能;C.導通該第一二極體,使該第一電容與該電感產生反向之電壓,並對該第二電容充電,使該第二電容持續對該負載釋能。
依據上述構思,本發明更提供有一自動電荷抽放電路,用以接收一脈衝電源之電能,並供電予一負載,且該脈衝電源具有第一輸出端以及一第二輸出端;該自動電荷抽放電路包含有一第一二極體、一第一電容、一電感以及一第二電容;其中,該第一二極體之正極連接該脈衝電源之第二輸出端,其負極電性連接該脈衝電源之第一輸出端;該第一電容之一端電性連接該脈衝電源之第一輸出端與該第一二極體之負極;該電感之一端連接該第一電容之另一端,而另外一端則電性連接該第一二極體之負極;該第二電容並聯連接該負載,且其一端連接該第一電容與該電感,而另一端連接該第一二極體之正極與該二次側之第二端。
藉此,透過上述之設計,便可以在電源轉換時,提供負電位以補償負載電壓之阻障,進而可降低該隔離式變壓器之線圈匝數比,以降低銅損提升電源轉換效率,使得該隔離式變壓器一次側能量能夠更平順更有效率的傳送至負載,進一步增進電源轉換效率。
為能更清楚地說明本發明,茲舉較佳實施例並配合圖示詳細說明如後。
請參閱圖1,本發明較佳實施之隔離式電源轉換裝置用以將一脈衝電源100之電能轉換後,輸出供予一負載200,且該脈衝電源100包含有一電力源Vin以及一電子開關SW。該隔離式電源轉換裝置包含有一隔離式變壓器10以及一自動電荷抽放(auto charge pump)電路20。其中:
該隔離式變壓器10於本實施例中為一非接觸式變壓器(noncontact transformer),且具有可分離設置之一一次側11以及一二次側12,該第一次側11與該脈衝電源100電性連接,而該二次側12具有一第一端121以及一第二端122。當然,在實際實施上,亦可以一次側與二次側不可分離之變壓器代替。
該自動電荷抽放電路20其一側電性連接該隔離式變壓器10,另一側電性連接該負載200;該自動電荷抽放電路20包含有兩個二極體(第一二極體D1與第二二極體D2)、兩個電容(第一電容C1與一第二電容C2)以及一個電感L。該等元件之連接關係如下所述:該第一二極體D1之正極連接該二次側12之第二端122,其負極電性連接該二次側12之第一端121。該第一電容C1為無極性電容,其一端電性連接該二次 側12之第一端121與該第一二極體D1之負極。該第二二極體D2之正極連接至該第一電容C1。該電感L之一端連接該第一電容C1之另一端,而另外一端則連接該第二二極體D2之負極。該第二電容C2為非電解電容,用以並聯連接該負載200,且其一端連接該第一電容C1與該電感L,而另一端連接該第一二極體D1之正極與該二次側12之第二端122。
另外,為避免電路產生回流影響該隔離式變壓器10之作動,該隔離式變壓器10於其二次側12該第一端的線路上,更設置有一第三二極體D3。該第三二極體D3之正極連接該二次側12的該第一端121,而其負極則連接該第一二極體D1之負極、該第二二極體D2之正極與該第一電容C1。
於本實施例中,該等電容C1~C2、該電感L、輸入電壓、輸出電壓、該隔離式變壓器10之匝數比、以及該負載200之電阻如下表所示:
藉此,透過上述結構設計與規格,在利用下述之電源轉換方法,便可達到增進電源轉換效率之目的,而該方法包含有下列步驟:
A.請參閱圖2,導通該電子開關SW,使該脈衝電源100之電力源Vin輸出電能,以對該隔離式變壓器10之一次側11充電,而該電感L、該第一電容C1與該第二電容C2對該負載200釋能。
B.請參閱圖3,斷開該電子開關SW,使該脈衝電源100之電力源Vin停止輸出電能,該隔離式變壓器10之二次側12對該電感L、該第一電容C1充電,並透過該係透過該第一電容C1與該電感L形成之共振電路,將其儲能傳導至該第二電容C2,以使該第二電容C2持續對該負載200釋能。
C.請參閱圖4,當該第一電容C1與該電感L共振後,該第一電容C1跨壓的極性反轉,進而導通該第一二極體D1,使該第一電容C1與該電感L產生反向之電壓,並對該第二電容C2充電,使該第二電容C2持續對該負載200釋能。
每執行一次步驟A至步驟C,則完成一次週期之作動。是以,在該隔離式電源轉換裝置持續作動之情況下,於步驟C後,便重複執行步驟A至步驟C,直至該隔離式電源轉換裝置停止作動。
藉此,請參閱圖5,透過上述之該自動電荷抽放電路20之設計,於每次作動週期中,該第一電容C1的跨壓Vc1可自 動地提供負電位,而導通該第一二極體D1,以使該第一二極體D1導通前後之整體電路結構改變,並透過負壓補償負載200之電壓所產生之阻障。如此一來,便可降低該隔離式變壓器10之線圈匝數比,進而降低銅損,且亦可使得該隔離式變壓器10一次側的能量能夠更平順更有效率的傳送至負載200,進一步增進電源轉換效率。
另外,由圖6可看出,於本實施例中,該隔離式電源轉換裝置之輸出電壓為5V的情況下,其輸出電壓漣波僅為0.2V左右,約為輸出電壓之4%。換言之,本發明之隔離電源轉換裝置的電路設計同時具有較低輸出電壓漣波之效果,而可避免該第二電容C2使用壽命較短的電解電容,藉以提升該隔離電源轉換裝置之使用壽命。
再者,該第二二極體D2之設計更可有效地防止該負載200附近的電路產生電路回流,進而使得整體電路更加地穩定,藉以提升該隔離電源轉換裝置能源轉換與抑制漣波之效果。當然,在實際實施上,即使不使用該第二二極體D2仍可達到抑制漣波之目的。
又,本發明之自動電荷抽放電路20除使用於用以接收變壓器產生之電能的電路結構外,亦可適用於其它接收脈衝電源之電能的電路設計上,來達到降低輸出電壓漣波之目的。以上所述僅為本發明較佳可行實施例而已,並不以此為限,且舉凡應用本發明說明書及申請專利範圍所為等效結構與方法之變 化,理應包含在本發明之專利範圍內。
10‧‧‧隔離式變壓器
11‧‧‧一次側
12‧‧‧二次側
121‧‧‧第一端
122‧‧‧第二端
20‧‧‧自動電荷抽放電路
D1、D2、D3‧‧‧二極體
C1、C2‧‧‧電容
L‧‧‧電感
100‧‧‧脈衝電源
Vin‧‧‧電力源
SW‧‧‧電子開關
200‧‧‧負載
圖1為本發明較佳實施例之隔離式電源轉換裝置的電路圖;圖2至圖4為各步驟之等效電路圖;圖5為第一電容之電壓波型圖;圖6為輸出電壓與電流之波型圖。
10‧‧‧隔離式變壓器
11‧‧‧一次側
12‧‧‧二次側
121‧‧‧第一端
122‧‧‧第二端
20‧‧‧自動電荷抽放電路
D1、D2、D3‧‧‧二極體
C1、C2‧‧‧電容
L‧‧‧電感
100‧‧‧脈衝電源
Vin‧‧‧電力源
SW‧‧‧電子開關
200‧‧‧負載

Claims (12)

  1. 一種隔離式電源轉換裝置,用以將一脈衝電源之電能轉換後,輸出供予一負載;該隔離式電源轉換裝置包含有:一隔離式變壓器,具有一一次側以及一二次側,且該第一次側與該脈衝電源電性連接,而該二次側具有一第一端以及一第二端;以及一自動電荷抽放(auto charge pump)電路,其一側電性連接該隔離式變壓器,另一側電性連接該負載;該自動電荷抽放電路包含有:一第一二極體,其正極連接該二次側之第二端,其負極電性連接該二次側之第一端;一第一電容,其一端電性連接該二次側之第一端與該第一二極體之負極;一電感,其一端連接該第一電容之另一端,而另外一端則電性連接該第一二極體之負極;一第二電容,並聯連接該負載,且其一端連接該第一電容與該電感,而另一端連接該第一二極體之正極與該二次側之第二端。
  2. 如請求項1所述隔離式電源轉換裝置,其中,該電感係透過一第二二極體電性連接該第一二極體之負極;另外,該第二二極體之正極連接該第一二極體之負極,而其負極連接該電感。
  3. 如請求項1所述隔離式電源轉換裝置,其中,該隔離式變 壓器之二次側的第一端上設有一第三二極體,且該第三二極體之負極連接該第一二極體之負極與該第一電容,而其正極連接該二次側。
  4. 如請求項1所述隔離式電源轉換裝置,其中,該第一電容為無極性電容。
  5. 如請求項1所述隔離式電源轉換裝置,其中,該第二電容為非電解電容。
  6. 一種如請求項1所述之隔離式電源轉換裝置的電源轉換方法,包含有下列步驟:A.當該脈衝電源輸出電能時,對該隔離式變壓器之一次側充電,而該電感、該第一電容與該第二電容對該負載釋能;B.當該脈衝電源停止輸出電能時,該隔離式變壓器之二次側對該電感、該第一電容與該第二電容充電,使該第二電容持續對該負載釋能;C.導通該第一二極體,使該第一電容與該電感產生反向之電壓,並對該第二電容充電,使該第二電容持續對該負載釋能。
  7. 如請求項6所述之電源轉換方法,其中,於步驟C後,更包含有重複執行步驟A至步驟C之步驟。
  8. 如請求項6所述之電源轉換方法,其中,於步驟B中,該隔離式變壓器之二次側係透過該第一電容與該電感形成之共振電路,將其儲能傳導至該第二電容。
  9. 如請求項8所述之電源轉換方法,其中,於步驟B中,該第一電容與該電感形成之共振電路後,該第一電容之跨壓極性反轉,而使該第一二極體導通,而進入步驟C。
  10. 如請求項8所述之電源轉換方法,其中,所述之脈衝電源具有一電子開關,當該電子開關導通時,該脈衝電源輸出電能;當該電子開關斷開時,該脈衝電源停止輸出電能。
  11. 一種自動電荷抽放(auto charge pump)電路,用以接收一脈衝電源之電能,並供電予一負載,且該脈衝電源具有第一輸出端以及一第二輸出端;該自動電荷抽放電路包含有:一第一二極體,其正極連接該脈衝電源之第二輸出端,其負極電性連接該脈衝電源之第一輸出端;一第一電容,其一端電性連接該脈衝電源之第一輸出端與該第一二極體之負極;一電感,其一端連接該第一電容之另一端,而另外一端則電性連接該第一二極體之負極;一第二電容,並聯連接該負載,且其一端連接該第一電容與該電感,而另一端連接該第一二極體之正極與該二次側之第二端。
  12. 如請求項11所述之自動電荷抽放電路,其中,該電感係透過一第二二極體電性連接該第一二極體之負極;另外,該第二二極體之正極連接該第一二極體之負極,而其負極連接該電感。
TW101145613A 2012-12-05 2012-12-05 Isolated power conversion device and its automatic charge and discharge circuit and power conversion method TWI463773B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW101145613A TWI463773B (zh) 2012-12-05 2012-12-05 Isolated power conversion device and its automatic charge and discharge circuit and power conversion method
US14/096,836 US9419525B2 (en) 2012-12-05 2013-12-04 Isolated power conversion apparatus and method of converting power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101145613A TWI463773B (zh) 2012-12-05 2012-12-05 Isolated power conversion device and its automatic charge and discharge circuit and power conversion method

Publications (2)

Publication Number Publication Date
TW201424225A TW201424225A (zh) 2014-06-16
TWI463773B true TWI463773B (zh) 2014-12-01

Family

ID=50825304

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101145613A TWI463773B (zh) 2012-12-05 2012-12-05 Isolated power conversion device and its automatic charge and discharge circuit and power conversion method

Country Status (2)

Country Link
US (1) US9419525B2 (zh)
TW (1) TWI463773B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10326375B1 (en) * 2017-12-07 2019-06-18 Silicon Laboratories Inc. Isolated power transfer with integrated transformer and voltage control
US10511273B2 (en) 2017-12-07 2019-12-17 Silicon Laboratories Inc. Power transfer device using an oscillator
US10826334B2 (en) 2018-03-29 2020-11-03 Silicon Laboratories Inc. Electromagnetic radiation control for isolated power transfer product
US10833535B2 (en) 2018-09-25 2020-11-10 Silicon Laboratories Inc. Power resonator with wide input voltage range for isolated power transfer
CN110995003B (zh) * 2019-11-15 2021-03-05 广州金升阳科技有限公司 一种正反激式开关电源电路
US11689174B2 (en) 2021-06-01 2023-06-27 Skyworks Solutions, Inc. Isolation communications channel using direct demodulation and data-edge encoding

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6169444B1 (en) * 1999-07-15 2001-01-02 Maxim Integrated Products, Inc. Pulse frequency operation of regulated charge pumps
US20090059630A1 (en) * 2006-12-30 2009-03-05 Advanced Analogic Technologies, Inc. High-efficiency DC/DC voltage converter including capacitive switching pre-converter and down inductive switching post-regulator
US20100039085A1 (en) * 2008-08-13 2010-02-18 Intersil Americas, Inc. Buck boost function based on a capacitor bootstrap input buck converter
TW201218603A (en) * 2010-10-18 2012-05-01 Univ Nat Taipei Technology which utilizes a control mode similar to the existing boost converter and a simple design to save the element cost
TW201228204A (en) * 2010-12-24 2012-07-01 Hanergy Technologies Inc Charge pump apparatus and regulation method thereof
TWM438073U (en) * 2012-04-27 2012-09-21 Noveltek Semiconductor Corp Voltage conversion device and ionic wind radiator using the same
TW201249085A (en) * 2011-05-19 2012-12-01 Univ Nat Taipei Technology Boost converter circuit

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5278748A (en) * 1991-07-12 1994-01-11 Nec Corporation Voltage-resonant DC-DC converter
US5736842A (en) * 1996-07-11 1998-04-07 Delta Electronics, Inc. Technique for reducing rectifier reverse-recovery-related losses in high-voltage high power converters
US6052294A (en) * 1998-09-14 2000-04-18 Lucent Technologies Inc. Power supply snubber reset circuit
US6069472A (en) * 1999-02-05 2000-05-30 General Electronics Applications, Inc. Converter/inverter using a high efficiency switching circuit
EP1189333A4 (en) * 1999-06-22 2004-04-21 Tdk Corp SWITCHED POWER
US6434029B1 (en) * 2001-10-17 2002-08-13 Astec International Limited Boost topology having an auxiliary winding on the snubber inductor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6169444B1 (en) * 1999-07-15 2001-01-02 Maxim Integrated Products, Inc. Pulse frequency operation of regulated charge pumps
US20090059630A1 (en) * 2006-12-30 2009-03-05 Advanced Analogic Technologies, Inc. High-efficiency DC/DC voltage converter including capacitive switching pre-converter and down inductive switching post-regulator
US20100039085A1 (en) * 2008-08-13 2010-02-18 Intersil Americas, Inc. Buck boost function based on a capacitor bootstrap input buck converter
TW201218603A (en) * 2010-10-18 2012-05-01 Univ Nat Taipei Technology which utilizes a control mode similar to the existing boost converter and a simple design to save the element cost
TW201228204A (en) * 2010-12-24 2012-07-01 Hanergy Technologies Inc Charge pump apparatus and regulation method thereof
TW201249085A (en) * 2011-05-19 2012-12-01 Univ Nat Taipei Technology Boost converter circuit
TWM438073U (en) * 2012-04-27 2012-09-21 Noveltek Semiconductor Corp Voltage conversion device and ionic wind radiator using the same

Also Published As

Publication number Publication date
US20140153296A1 (en) 2014-06-05
US9419525B2 (en) 2016-08-16
TW201424225A (zh) 2014-06-16

Similar Documents

Publication Publication Date Title
TWI463773B (zh) Isolated power conversion device and its automatic charge and discharge circuit and power conversion method
CN108601146A (zh) 一种单级高功率因数和低输出纹波Flyback/Sepic LED驱动电路
WO2015078095A1 (zh) 返驰式交直流转换装置及其转换方法
CN106535402B (zh) 一种单级单开关降压式漏感能量利用的led驱动电路
JP6122137B2 (ja) 隔離式電源転換装置及びその電源転換方法
TWI462451B (zh) AC / DC conversion device and its function correction method
WO2015078093A1 (zh) 交交流电源转换装置及其转换方法
WO2015070514A1 (zh) 隔离式交直流转换装置及其转换方法
CN102064722A (zh) 单级交流/直流变换器
TWI516005B (zh) DC - DC power conversion device with high step - down ratio
TWI441430B (zh) 具漏感能量回收高升壓直流-直流轉換系統
TWI485961B (zh) 共鐵心式功率因數校正諧振轉換器
TWI506940B (zh) A fly - back AC / DC converter and its conversion method
TWI504127B (zh) Isolated AC / DC converter and its conversion method
TWM477732U (zh) 交交流電源轉換裝置
TW201424226A (zh) 被動式功因校正交直流轉換裝置及其功因校正電路之作動方法
TW201236344A (en) Current feed high step-up DC-DC converter and device thereof
TWI504124B (zh) AC - to - AC power conversion device and its conversion method
CN102223058B (zh) 交错式在线隔离双库克电路
JP6089115B2 (ja) 交直流転換装置及びその力率校正方法
CN103762852A (zh) 双耦合电感的高效率高增益dc-dc变换器
CN203608101U (zh) 返驰式交直流转换装置
TWI459705B (zh) Single - stage high - boost ratio DC - DC converter
TWI524641B (zh) Power conversion device and conversion method thereof
TWI504116B (zh) Power conversion device and conversion method thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees