TWI460339B - 含可再生成分之板及其製造方法 - Google Patents

含可再生成分之板及其製造方法 Download PDF

Info

Publication number
TWI460339B
TWI460339B TW098112160A TW98112160A TWI460339B TW I460339 B TWI460339 B TW I460339B TW 098112160 A TW098112160 A TW 098112160A TW 98112160 A TW98112160 A TW 98112160A TW I460339 B TWI460339 B TW I460339B
Authority
TW
Taiwan
Prior art keywords
weight
panel
mesh
slurry
value
Prior art date
Application number
TW098112160A
Other languages
English (en)
Other versions
TW201006992A (en
Inventor
Bangji Cao
Te Hua Lau
W David Song
Martin W Brown
Curt Malone
Original Assignee
United States Gypsum Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/106,077 external-priority patent/US7935223B2/en
Priority claimed from US12/414,313 external-priority patent/US8133357B2/en
Application filed by United States Gypsum Co filed Critical United States Gypsum Co
Publication of TW201006992A publication Critical patent/TW201006992A/zh
Application granted granted Critical
Publication of TWI460339B publication Critical patent/TWI460339B/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • E04B1/86Sound-absorbing elements slab-shaped
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • C04B28/26Silicates of the alkali metals
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B9/00Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation
    • E04B9/04Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation comprising slabs, panels, sheets or the like
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/26Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/52Sound-insulating materials
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B2001/742Use of special materials; Materials having special structures or shape
    • E04B2001/745Vegetal products, e.g. plant stems, barks
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B2001/742Use of special materials; Materials having special structures or shape
    • E04B2001/746Recycled materials, e.g. made of used tires, bumpers or newspapers
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B2001/8245Machines for manufacturing, shaping, piercing or filling sound insulating elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/244Structural elements or technologies for improving thermal insulation using natural or recycled building materials, e.g. straw, wool, clay or used tires
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Architecture (AREA)
  • Acoustics & Sound (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Building Environments (AREA)
  • Paper (AREA)
  • Laminated Bodies (AREA)
  • Panels For Use In Building Construction (AREA)
  • Dry Formation Of Fiberboard And The Like (AREA)

Description

含可再生成分之板及其製造方法
本發明係關於建築業用之板,其包含一可再生成分以改善板之吸音及物理特質。本發明亦提供製造此類板之方法。
用作磁磚或牆之板係屬於建築產品的種類,並可提供建築價值、吸音性、吸音衰減、及建築內部之實用功能。一般而言,例如吸音板之板係用於需要控制噪音之區域。此種區域例如是辦公建築、百貨公司、醫院、旅館、禮堂、機場、餐廳、圖書館、教室、戲院、及電影院,以及住宅建築。
為提供建築價值及實用功能,舉例言之,吸音板係實質上為平坦且可自我支撐的,以可懸掛於典型的天花板堅硬系統或類似結構中。因此,吸音板具有一定程度之硬度及剛性,此通常可藉由其之斷裂模數(Modulus of Rupture,MOR)來測得。為獲得所欲之吸音特性,吸音板亦具有聲音吸收以及降低聲音穿透之特質。
聲音吸收通常係藉由其噪音降低係數(Noise Reduction Coefficient,NRC)而測得,如ASTM C423中所述。NRC係由0至1.00間之數字來代表,其指出所吸收之聲音所達的級度。一具0.60之NRC值的吸音板,可吸收60%傳到該吸音板的聲音並反射40%之聲音。另一種測試方法為估計NRC(estimated NRC,eNRC),其係使用如ASTM C384中所述之抗阻管(impedance tube)。
降低聲音穿透的能力係藉由天花板衰減等級(Ceiling Attenuation Class,CAC)值來測得,如ASTM E1414中所述。CAC值係測量為分貝(dB),並代表當聲音穿透過材料時之聲音降低的量。舉例言之,一具40之CAC值的吸音板,可使穿透的聲音降低40分貝。同樣地,聲音穿透降低亦可藉由其聲音穿透等級(Sound Transmission Class,STC)來測得,如ASTM E413及E90中所述。舉例言之,一具40之STC值的板,可使穿透的聲音降低40分貝。
根據各種工業標準及建築規範所製得之吸音板具有等級A之防火等級。根據ASTM E84,需要低於25之火焰擴散指數及低於50之煙霧生成指數。氣流阻力,一種墊(mat)孔隙度之測量,係根據經改良之ASTM C423及C386標準而測試。此外,根據ASTM C367來測試吸音板之MOR、硬度及下垂度。基底墊(base mat)之增加的孔隙度可改善吸音性,但無法藉由任何具體的工業標準或建築規範來測得。
由於水製氈(water-felting)製程之速率及效率,目前該領域較佳係使用該製程來製造大部分吸音板或磁磚。於水製氈製程中,基底墊係利用一與製紙法類似之方法而形成。此類製程之其中一種版本係描述於頒給Baig之美國專利第5,911,818號中,該專利內容併於此以供參考。首先,將一包含礦棉之稀釋含水分散體及輕質聚集物的含水漿料傳送至長網造紙型(Fourdrinier-type)之墊形成機器之移動的具孔生產線上。藉由來自漿料之重力將水排出,接著視需要地進一步藉由真空吸引及/或擠壓來去除水。再來,將去除水之基底墊,其可能仍保有部分水,置於一經加熱之烘箱或窯中乾燥,以移除殘餘之水分。可藉由加工修整經乾燥之基底墊來獲得可接受的尺寸、外觀及吸音特質的板。加工修整包含表面研磨、裁切、穿孔/紋理化、滾筒/噴灑塗覆、邊緣裁切及/或將板層壓至一稀洋紗(scrim)或紗簾(screen)上。
典型吸音板基底墊之組成包含無機纖維、纖維素纖維、黏結劑及填料。如工業中所熟知,無機纖維可為礦棉(其可替換為礦渣棉(slag wool)、岩棉(rock wool)及石棉(stone wool))或玻璃纖維。礦棉係經由首先於1300℃(2372℉)至1650℃(3002℉)下熔融礦渣棉或岩棉而形成。經熔融之礦隨後於一纖維化紡紗機中,藉由一連續空氣流而紡製為毛線。無機纖維係黏稠的(stiff),可提供基底墊塊體及孔隙度。相反地,纖維素纖維係作為結構成分,可提供濕基底墊及乾基底墊的強度。該強度係源自於纖維素纖維與基底墊中各種組分所形成之無數的氫鍵,此為纖維素纖維之親水性本質所造成的結果。
所使用之典型基底墊黏結劑為澱粉。用於吸音板中之典型澱粉為未經改質、未經熬煮之澱粉細粒,其可分散於含水板漿料中且通常可均勻散佈於基底墊中。一旦加熱之後,澱粉細粒係經熬煮且溶解,可提供板組分黏結能力。澱粉不僅可促進吸音板之彎曲強度,亦可促進板之硬度及剛性。於某些具高濃度無機纖維之板組成中,係使用乳膠黏結劑作為主要黏結劑。
典型基底墊填料包含重質及輕質無機材料。填料之主要功能係賦予彎曲強度並提供板硬度。即便於本揭露中係使用術語「填料」,應理解各填料所具有的獨特特質及/或特性,會影響板內之剛性、硬度、下垂度、聲音吸收及降低聲音穿透。重質填料之例子包含碳酸鈣、黏土或石膏。輕質填料之例子包含經膨脹珍珠岩。作為一填料,經膨脹珍珠岩具有體積大的優點,因而可降低基底墊中所需填料的量。
經膨脹珍珠岩之一個缺點係在於珍珠岩顆粒有填充基底墊之孔隙並密封其表面之傾向,此會連累板之聲音吸收能力。此外,經膨脹珍珠岩在製造過程期間,係相對較易碎且脆弱的。一般而言,使用越大量之經膨脹珍珠岩,板之吸音特質越差。珍珠岩之膨脹會浪費顯著量之能量。當珍珠岩礦石通入一加熱至約950℃(1750℉)之膨脹塔中時,會形成經膨脹珍珠岩。珍珠岩結構內之水會轉變為蒸汽且所導致之膨脹會使珍珠岩如爆米花般的「砰開」,以使密度降低至未膨脹材料之約十分之一。經膨脹珍珠岩之較低塊體密度可使其於膨脹塔中向上流動並可被一過濾裝置所收集。此製程係使用相對較大量之能量以加熱所有珍珠岩至一足以蒸發珍珠岩內之水的溫度。
考慮到建築業目前的趨勢,需要不會汙染環境之產品,即利用可降低溫室效應、酸化、煙霧、水之優養化、固體廢棄物、主要能源消耗及/或水排放物之製程製備。天然生長、可再生材料可用以製造無環境汙染之建築產品。於建築業中,木材係較廣泛使用之可再生材料,但其僅能提供低吸音性。同樣地,有大量建築廢棄物及副產品,以及木材和傢俱工業廢棄物係可輕易取得的,但用於建築材料生產中的有限。
為使用天然生長可再生材料,其纖維必須經過抽取(extracted)。此可藉由將例如木頭、禾、竹及其他之木質纖維素材料漿化,以化學手段或機械手段破壞植物材料成為其個別纖維細胞而完成。一種常見的化學漿化方法係使用硫化鈉、氫氧化鈉或亞硫酸鈉,以在約150℃(302℉)至約180℃(356℉)下溶解木質素,從而可降低約40%至60%之纖維生物質。相反地,熱機械漿化方法係將木屑片置於高溫(約130℃(266℉))及高壓(約3至4大氣壓力(304至405kPa))下,使木質素軟化並以機械手段使纖維細胞破裂。木質素鍵結之斷裂會造成原料之松解(defiberization)及造成其約5%至10%的生物質之損失。化學及熱機械漿化製程皆需要顯著量之能量,以使木質纖維素材料變為其個別纖維。再者,如此大部分之生物質損失亦會增加原料成本。
許多美國專利教示於建築材料中使用可再生材料。美國專利第6,322,731號揭露一種形成具不定長度之建築板的方法,該板包含一有機微粒狀基底材料,其係由大量稻殼及黏結劑所構成。由於對結構完整的要求,該製程需要組合高溫及高壓,以形成具足夠強度之板。因為所得板之高密度及低孔隙度,故其具有相對低之聲音吸收。可透過封閉的腔體來達成隔熱特性及隔音特性。
美國專利第5,851,281號揭露一種製造水泥廢棄物材料複合物之製程,其中該廢棄物材料為稻糠。於缺少氧氣的條件下,將稻糠加熱至接近600℃(1112℉)以製造微細粒。
美國專利第6,443,258號揭露一種可吸音之多孔性板,其係形成自一經固化、含水、經發泡、有黏性之材料。該板提供良好的吸音表現且具增加的耐久性及耐濕性。可添加稻殼灰以增加該經發泡水泥板之整體硬度。
提供一種用作建築材料之板,其具經改良之吸音及物理特質。本發明之板包含一可再生成分,例如稻殼,且具經改良之吸音特質,包含可維持一相對恆定之CAC或STC。此外,可達一經改良之NRC且同時維持或改善板之其他物理特質,包含MOR、硬度、氣流阻力及下垂度。
於一實施態樣中,本發明之板包含約0.1重量%至約95重量%之一可再生成分。該板具有以下之至少一者:至少約25之CAC值、至少約0.25之NRC值、及至少約25之STC值。
本發明之板的部分其他實施態樣包含一板芯,其包含約0.1重量%至約95重量%之一經研磨之可再生成分、約0.1重量%至約95重量%之一或多種纖維、約1重量%至約30重量%之一或多種黏結劑、及約3重量%至約80重量%之一或多種填料,皆以乾板重量計。該經研磨之可再生成分具有一顆粒尺寸分佈,以使少於5%之顆粒保留於一具有約0.312吋之開口的網篩(mesh screen)且少於5%之顆粒通過一具有0.059吋之開口的網篩。
於另一實施態樣中,一種製造用作建築材料之板的方法包含以下步驟:形成一含有約0.1%至約95%之該可再生成分及水的含水漿料。接著使用一具孔(foraminous)之生產線,自該漿料形成一基底墊。將來自該基底墊之水移除並加工修整該基底墊,以形成一用作建築材料之板。藉由此方法所製得之板具有至少約25之CAC值及至少約0.25之NRC值中的至少一者。
至少一種其他實施態樣係一種製造用作建築材料之板的方法,其包含以下步驟:選用一經研磨之可再生成分;將水與約0.1重量%至約95重量%之該可再生成分、約1重量%至約50重量%之一纖維、約1重量%至約30重量%之一黏結劑、及約3重量%至約80重量%之一填料結合,以形成一含水漿料;於一具孔之生產線上,自該含水漿料形成一基底墊;將水自該基底墊移除並加工修整該基底墊。該可再生成分係經篩選以獲得前述之顆粒尺寸分佈。藉由此方法所製得之板具有至少約25之CAC值及至少約0.25之NRC值中的至少一者。
添加一經研磨或碾過之可再生成分因製備該可再生成分所需之能量係低於其他填料材料而是有利的。該可再生成分較佳係經研磨或直接併入吸音板中。於此製程中,僅有當研磨及/或篩該可再生成分時才會消耗能量,與膨脹珍珠岩相比係使用較少的能量。
使用一可再生材料之另一優點係在於,在製備該可再生成分時不會有顯著的生物質損失。經研磨或碾過(milled)之可再生成分可維持其之塊體結構且不會進行化學上的改質或使化學結構改變,例如松解。生物質的保留使所購得之原料能更有效的使用,從而降低其成本。
欲用於建築板之不同填料的選用通常會非所欲地改變板之特質。然而,使用本發明之可再生成分可降低能量及原料成本,且同時維持或改善板之其他物理特質。
本文中所述之產品、方法及組成物係意欲應用至作建築材料之板。特定而言,板亦可用作天花板產品、吸音板或磁磚。以下討論係關於一種作為本發明之一實施態樣的吸音板;然而,此並非意欲以任何方式來限制本發明。
纖維係以無機纖維、有機纖維或其組合之形式存在於吸音板中。無機纖維可為礦棉、礦渣棉、岩棉、石棉、纖維玻璃或其混合物。無機纖維係黏稠的,可提供基底墊塊體及孔隙度。無機纖維以約0.1重量%至約95重量%之量存在於吸音板中,以板之重量計。吸音板之至少一實施態樣係使用礦棉作為較佳的纖維。纖維素纖維,有機纖維之一例子,係作為結構成分以提供濕基底墊及乾基底墊的強度,該強度係源自於纖維素纖維與基底墊中之各種組分所形成之氫鍵,此為纖維素纖維之親水性本質所造成的結果。基底墊內之纖維素纖維為約1重量%至約50重量%,更佳為約5重量%至約40重量%,最佳為約10重量%至約30重量%,以板之重量計。較佳之纖維素纖維係衍生自回收之新聞紙。
板包含至少一組分係一可再生材料。可再生材料係定義為木頭或非木頭之植物、或部分為木頭或非木頭之植物。這些可再生成分較佳為木質纖維素,其包含纖維素及木質素。這些材料的可能來源為來自農業、農藝業、林業及/或建築業之廢棄物材料或副產品。
可再生成分之例子為稻殼或稻糠。其他可再生成分之例子包含(但不限於)麥糠、燕麥殼、黑麥鬚(rye whisk)、棉花籽殼、椰子殼、玉米糠、玉米芯、稻禾稈(rice straw stalk)、麥禾稈、大麥禾稈、燕麥禾稈、黑麥禾稈、蔗渣、茅草、艾斯巴特草(Espart)、莎芭伊草(Sabai)、亞麻(flax)、洋麻(kenaf)、黃麻(jute)、***(hemp)、苧麻(ramie)、蕉麻(abaca)、瓊麻(sisal)、鋸木屑(saw dust)、竹、木屑片(wood chips)、高梁稈(sorghum stalks)、葵花籽、蕎麥殼、包含花生殼及胡桃殼之堅果殼、其他類似之材料及其混合物。
可再生成分較佳係在與其他板組分混合之前先縮小其尺寸。可再生材料較佳具有一顆粒尺寸,使其通過一具有0.312吋之開口的網篩(2.5網眼,如ASTM篩網表所定義者)且保留於一具有0.0059吋之開口的網篩(100網眼,如ASTM篩網表所定義者)上。於部分實施態樣中,可再生成分係完整使用或以自供應器接收之形式使用。術語「可再生成分」之使用係意欲包含完整的顆粒或以習知技術已知的任何方法而縮小尺寸之顆粒,包含研磨成粉末、切成條狀、經研磨、碾過、篩過或其組合之顆粒。視需要地,藉由機械製程,例如研磨或碾過來達到尺寸縮小,以獲得所欲尺寸。至少一實施態樣係使用槌碾型裝置。
視需要地,可再生成分係以具有特定網眼尺寸之篩來篩過,以獲得所欲之顆粒尺寸分佈。視需要移除過大而無法通過所欲之最大篩的粗碎片,並重覆處理直至所得材料可通過該篩為止。於一實施態樣中,首先將經研磨之稻殼以#30網篩篩過以移除較大的顆粒,接著以#80網篩篩過以移除過細的顆粒。使用通過#30網篩且保留於#80網篩上之經處理的殼來製造吸音板。於此實施態樣中,通過#80網篩之材料係無法用於板中。#30網篩具有0.022吋或0.55毫米之開口。#80網篩具有0.007吋或180微米之開口。於另一實施態樣中,使用直接得自於碾稻工廠之經處理的殼來製造吸音板。視需要地,研磨成粉末之可再生材料的顆粒分佈具有至少約95%之顆粒通過#30網篩且不超過5%之顆粒通過#80網篩,該二篩網係來自於美國篩組(U.S. Sieve Set)。
如先前技術中所討論,經膨脹珍珠岩係一常用於建築板之材料。當用於天花板時,經膨脹珍珠岩傾向於形成一沒有互相連接之孔隙的結構。於吸音板中引入經研磨或碾過之可再生成分可協助阻礙該經膨脹珍珠岩之結構,從而增加互相連接之孔隙。除包含珍珠岩之外還包含經研磨之可再生成分的板具有較多的孔隙,並可獲得比僅具有珍珠岩而無任何經研磨或碾過之可再生成分的板要來的高的吸音性。
已發現可再生成分之顆粒尺寸越大,吸音值越高。任一實施態樣之最適宜的顆粒尺寸分佈係取決於所欲吸音值而定。
應理解,可再生成分之顆粒尺寸分佈適於其他組分乃為所欲者,其他組分例如纖維、經膨脹珍珠岩等,以形成一均質且均勻之漿料。形成均勻漿料可製造均質且均勻之基底墊。顆粒尺寸分佈較佳係經選擇以維持或改善板之物理完整性。
於部分實施態樣中,可再生成分包含少於約5重量%之顆粒保留於#6網篩上。於其他實施態樣中,所用之可再生成分包含少於5重量%之顆粒保留於#20網篩上。另於其他實施態樣中,所用之經研磨或碾過之可再生成分包含少於約5重量%之顆粒保留於#30網篩上。較佳地,可再生成分具有一約5至約50磅/立方呎(80至800公斤/立方公尺)之塊體密度,較佳為約10至約40磅/立方呎(160至640公斤/立方公尺)之塊體密度,最佳為約20至約35磅/立方呎(320至560公斤/立方公尺)之塊體密度。#6網篩具有0.132吋或3.35毫米之開口,#20網篩具有0.312吋或800微米之開口且#30網篩具有0.022吋或0.55毫米之開口。
視需要地,可將澱粉包含於基底墊中作為一黏結劑。典型澱粉為未經改質、未經熬煮之澱粉細粒,其可分散於含水漿料中且通常可均勻散佈於基底墊中。加熱基底墊,熬煮並溶解澱粉細粒以使板組分彼此黏結。澱粉不僅可促進吸音板之彎曲強度,亦可改善板之硬度及剛性。此外,視需要地,基底墊可包含約1重量%至約30重量%之澱粉,更佳為約3重量%至約15重量%,最佳為約5重量%至約10重量%,以板之重量計。
典型基底墊填料包含重質及輕質無機材料。重質填料之例子包含碳酸鈣、黏土或石膏。經考慮認為,其他填料亦可用於吸音板中。於一實施態樣中,係利用約0.5重量%至約10重量%之碳酸鈣,以板之重量計。亦可使用約3重量%至約8重量%之碳酸鈣,以板之重量計。
一輕質填料之例子為經膨脹珍珠岩。經膨脹珍珠岩之體積大,可降低用於基底墊之填料的量。填料之主要功能係在於改善板之彎曲強度及硬度。儘管在此討論全文中係使用術語「填料」,應理解各填料所具有的獨特特質及/或特性,會影響板內之剛性、硬度、下垂度、聲音吸收及降低聲音穿透。於此實施態樣中,經膨脹珍珠岩係以約5重量%至約80重量%之量存在於基底墊中,更佳為約10重量%至約60重量%且最佳為約20重量%至約40重量%,以板之重量計。
於一較佳實施態樣中,基底墊包含一可再生成分、礦棉、經膨脹珍珠岩、澱粉、碳酸鈣及/或黏土。一種較佳可再生成分為經研磨之稻殼。可再生成分之百分比為約0.1重量%至約95重量%,更佳為約5重量%至約60重量%且最佳為約7重量%至約40重量%,以板之重量計。
吸音板中之另一種視需要組分係黏土,其通常被包含在吸音板中以改善防火性。當暴露於火中時,黏土並不會燃燒;取而代之,黏土會燒結。視需要地,吸音板可包含約0重量%至約10重量%之黏土,較佳為約1重量%至約5重量%之黏土,以板之重量計。可使用多種類型之黏土,包含(但不限於)來自Gleason,TN.之Spinks Clay及Ball Clay與來自Hickory,KY.之Old Hickory Clay。
視需要地,亦可添加一凝聚劑至吸音板中。凝聚劑較佳係以約0.1重量%至約3重量%之量來使用,更佳為約0.1重量%至約2重量%,以板之重量計。可用之凝聚劑包含(但不限於)氫氯酸鋁、硫酸鋁、氧化鈣、氯化鐵、硫酸亞鐵、聚丙烯醯胺、鋁酸鈉及矽酸鈉。
於製造吸音板用之基底墊的一實施態樣中,一含水漿料較佳係藉由將水與可再生成分、礦棉、經膨脹珍珠岩、纖維素纖維、澱粉、碳酸鈣、黏土及凝聚劑混合而製得。混合操作較佳係於一貯漿池中完成,可以批次模式或連續模式處理。所添加之水的量係可使所得總固體含量或濃度為1濃度%至約8濃度%,較佳為約2濃度%至約6濃度%且更佳為約3濃度%至約5濃度%。
一旦含有上述組分之一均質漿料形成之後,將漿料運送至一前端箱(headbox),其可提供一穩定的漿料材料流。自前端箱流出之漿料散佈於移動之具孔之生產線上,以形成濕基底墊。首先藉由重力將水從生產線排出。經考慮認為,於某些實施態樣中,可結合使用或在藉由重力將水從漿料排出之後使用一低真空壓。隨後,可視需要地藉由擠壓及/或使用真空協助之水移除,將額外的水移除,如本領域具有通常知識者所瞭解者。剩餘之水典型上係於一烘箱或窯中蒸發,以形成已成形之基底墊。
一旦成形,基底墊較佳具有約7至約30磅/立方呎(112至480公斤/立方公尺)之塊體密度,更佳為約8至約25磅/立方呎(128至400公斤/立方公尺)之塊體密度,最佳為約9至約20磅/立方呎(144至320公斤/立方公尺)之塊體密度。
隨後裁切已成形之基底墊並透過本領域具有通常知識者所熟知的加工修整操作而轉變成吸音板。部分較佳加工修整操作(在其他之中)包含表面研磨、塗覆、穿孔、紋理化、邊緣細整及/或包裝。
穿孔及紋理化可顯著地改善上述基底墊之吸音值。穿孔操作可於一基底墊之表面上提供經控制之深度及密度(每單位面積所具有之孔的數量)的複數孔。可藉由將一配有預定數量之針的板壓入一基底墊中來完成穿孔。紋理化可以例如一配有圖案化金屬板的滾筒於一已成形之基底墊上提供獨特形狀之凹痕。穿孔及紋理化步驟皆可開通基底墊表面與其內部結構,從而使空氣進入及離開板。基底墊內之開口亦可使聲音進入並被基底墊芯吸收。
此外,吸音板可視需要地與一稀洋紗或紗幕層壓。經考慮認為,可以一美工刀(utility knife)來手工裁切本發明吸音板。
一旦成形,本發明吸音板較佳具有一約9至約32磅/立方呎(144至513公斤/立方公尺)之塊體密度,更佳為約10至約27磅/立方呎(160至433公斤/立方公尺)之塊體密度且,最佳為約11至約22磅/立方呎(176至352公斤/立方公尺)之塊體密度。此外,板較佳具有一約0.2吋至1.5吋(5至38毫米)之厚度,更佳為約0.3吋至1.0吋(8至25毫米)之厚度,更佳為約0.5吋至約0.75吋(13至19毫米)之厚度。
含有至少一可再生成分之吸音板較佳可達至少約0.25之NRC值及至少約25之CAC值。再者,吸音板可達至少約0.15之eNRC值。此外,吸音板可達至少約80磅/平方吋(pounds per square inch,psi)之MOR值且硬度為至少約100磅,同時可於一90%RH濕氣室中達1.5吋(38毫米)之最大下垂度值。更甚者,吸音板可達低於約25之火焰擴散指數及低於約50之煙霧生成指數。吸音板亦具有至少約25之STC。
實施例1
稻殼係得自Riceland Industries,Jonesborough,AR,於該處將粗米碾過以將稻米自稻殼分離出來。根據篩尺寸,#6網篩、#10網篩(具有0.066吋或1.7毫米之開口)、#16網篩(具有0.039吋或1毫米之開口)及#30網篩,將稻殼分類。稻殼之尺寸分佈包含約18.3%保留於#10網篩上、約58.0%保留於#16網篩上、約20.1%保留於#30網篩上,同時約3.6%通過#30網篩。稻殼之塊體密度約為8.51磅/立方呎(136公斤/立方公尺)。
藉由將水與板組分及如表1中所列之不同量的珍珠岩和稻殼混合,以形成一具有約4.5濃度%之漿料。在將水不斷地攪拌的情況下,以下列順序添加組分:新聞紙漿、澱粉、碳酸鈣、經研磨之稻殼、礦棉及經膨脹珍珠岩。攪動漿料約2分鐘。在攪動的最後,凝聚劑係以約0.1重量%之濃度添加至漿料中,以漿料之重量計。隨後將漿料倒入一尺寸為14吋×14吋×30吋(0.36公尺×0.36公尺×0.76公尺)之成形箱中。
於成形箱的底部,由一金屬網所支撐之纖維玻璃稀洋紗使漿料水自由地排出,同時可保留大部分的固體。可藉由對成形箱施加一低壓真空(1吋汞柱(25毫米汞柱))來移除額外的水。隨後將濕基底墊擠壓至一固定濕厚度,以移除額外的水並亦加強基底墊結構。最後,濕基底墊係藉由施加一較高壓真空(5至9吋汞柱(127至229毫米汞柱))來進一步去除水。隨後於一烘箱或窯內,使已成形之板於315℃(600℉)下乾燥30分鐘並於149℃(300℉)下乾燥3小時,以移除剩餘之水分。
在以下實施例中,係使用約10重量%之礦棉,以及約19重量%之新聞紙纖維、約8重量%之澱粉及約6重量%之碳酸鈣,以板之重量計。珍珠岩及稻殼之量係如下所示。亦列出所得經乾燥之基底墊之特質。
如表所示,具有一較高重量百分比之稻殼的基底墊亦具有一較低氣流阻力值,證明該基底墊係具較多孔。因此,含有較多稻殼之基底墊較具吸音性,其可反映於未經穿孔之eNRC值中。
實施例2
稻殼係得自Riceland Industries,Jonesborough,AR,於該處將粗米碾過以將稻米自其殼分離出來。以一配有0.109吋(0.028公尺)直徑之經穿孔的篩尺寸之Fritz磨粉機來進一步研磨稻殼。研磨稻殼直至所有材料皆通過篩為止。研磨及使用具有0.079吋(0.002公尺)及0.050吋(0.0013公尺)之篩來分離額外的稻殼。對應於0.109吋(0.028公尺)、0.079吋(0.002公尺)及0.050吋(0.0013公尺)之篩開口,上述試樣之塊體密度分別為約14.62磅/立方呎(234公斤/立方公尺)、16.31磅/立方呎(261公斤/立方公尺)及21.77磅/立方呎(349公斤/立方公尺)。
藉由將水與板組分及如表2中所列之不同量的珍珠岩和稻殼混合,以形成一具有約4.5濃度%之漿料。在將水不斷地攪拌的情況下,以下列順序添加組分:新聞紙漿、澱粉、碳酸鈣、經研磨之稻殼、礦棉及經膨脹珍珠岩。攪動漿料約2分鐘。在攪動的最後,凝聚劑係以約0.1重量%之量來添加至漿料中。隨後將漿料倒入一尺寸為14吋×14吋×30吋(0.36公尺×0.36公尺×0.76公尺)之成形箱中。
於成形箱的底部,由一金屬網所支撐之纖維玻璃稀洋紗使漿料水自由地排出,同時可保留大部分的固體。可藉由對成形箱施加一低壓真空(1吋汞柱(25毫米汞柱))來移除額外的水。隨後將濕基底墊擠壓至一固定濕厚度,以移除額外的水並亦加強基底墊結構。最後,濕基底墊係藉由施加一較高壓真空(5至9吋汞柱(127至229毫米汞柱))來進一步去除水。隨後於一烘箱或窯內,使已成形之板於315℃(600℉)下乾燥30分鐘並於149℃(300℉)下乾燥3小時,以移除剩餘之水分。
於表2中,係使用約10重量%之礦棉,以及約19重量%之新聞紙纖維、約8重量%之澱粉及約6重量%之碳酸鈣來形成板,以板之重量計。珍珠岩及稻殼之量係如下所示。亦列出所得經乾燥之基底墊之特質。
如表所示,具有可通過較大篩開口之稻殼的基底墊較具吸音性,其可反映於較高之eNRC值中。
實施例3
稻殼係得自Rice Hull Specialties,Stuttgart,AR,於該處研磨來自碾稻工廠之稻殼。首先,以#20網篩將經研磨之稻殼篩過,從而移除較大的顆粒,接著以#80網篩篩過,從而移除較小的顆粒。通過#20網篩且保留於#80網篩上之經研磨之稻殼係用以製造基底墊。塊體密度為約22.96磅/立方呎(368公斤/立方公尺)。
藉由將水與板組分及如表3中所列之不同量的珍珠岩和稻殼混合,以形成一具有約4.5濃度%之漿料。在將水不斷地攪拌的情況下,以下列順序添加組分:新聞紙漿、澱粉、碳酸鈣、經研磨之稻殼、礦棉及經膨脹珍珠岩。攪動漿料約2分鐘。在攪動的最後,添加約0.1重量%之凝聚劑至漿料中,以漿料之重量計。隨後將漿料倒入一尺寸為14吋×14吋×30吋(0.36公尺×0.36公尺×0.76公尺)之成形箱中。
於成形箱的底部,由一金屬網所支撐之纖維玻璃稀洋紗使漿料水自由地排出,同時可保留大部分的固體。可藉由對成形箱施加一低壓真空(1吋汞柱(25毫米汞柱))來移除額外的水。隨後將濕基底墊擠壓至一固定濕厚度,以移除額外的水並亦加強基底墊結構。最後,濕基底墊係藉由施加一較高壓真空(5至9吋汞柱(127至229毫米汞柱))來進一步去除水。隨後於一烘箱或窯內,使已成形之板於315℃(600℉)下乾燥30分鐘並於149℃(300℉)下乾燥3小時,以移除剩餘之水分。
於表3中,係使用約10重量%之礦棉,以及約19重量%之新聞紙纖維、約8重量%之澱粉及約6重量%之碳酸鈣來形成板,以板之重量計。珍珠岩及稻殼之量係如下所示。亦列出所得經乾燥之基底墊之特質。
實施例中的所有三個試樣,皆顯著地比實施例1中之測試編號1及2的控制組具較多孔且較具吸音性。
實施例4
稻殼係得自Rice Hull Specialties,Stuttgart,AR,於該處研磨來自碾稻工廠之稻殼。首先,以#30網篩將經研磨之稻殼篩過,從而移除較大的顆粒,接著以#80網篩篩過,從而移除較小的顆粒。通過#30網篩且保留於#80網篩上之經研磨之稻殼係用以製造基底墊。塊體密度為約28.56磅/立方呎(457公斤/立方公尺)。於一貯漿池中,藉由混合水及根據表4之組成的板組分來製備一漿料:
除了表4之組分外,添加額外的20重量%之回收吸音板(或「碎裂」),以板之重量計。回收吸音板為有缺陷的產品、不合標準品質的產品或經研磨之成品的板。回收吸音板可為相同或不同之組成。
漿料之濃度約為3.0%。將一含有表4組分之均質漿料運送至前端箱,其可提供一穩定的漿料材料流。自前端箱流出之漿料隨後散佈於一具孔之生產線上,以形成一濕基底墊。首先藉由重力將水從生產線排出。藉由在生產線的下方施加一低真空壓(4吋汞柱(100毫米汞柱))來移除額外的水。於兩滾筒間擠壓基底墊之後,藉由在生產線的下方施加一相對高真空壓(7至15吋汞柱(178至381毫米汞柱))來移除額外的水。於一窯內蒸發濕基底墊內之剩餘的水及水分。
在乾燥之後,裁切、研磨、滾筒及噴灑塗覆、戳刺以及紋理化該些基底墊,以成為具有視覺美觀之吸音板,其可為2呎×4呎(0.61公尺×1.22公尺)或2呎×2呎(0.61公尺×0.61公尺)。基底墊特質係列於表5中:
此外,表6所示為經加工修整之吸音板之特質:
實施例5
稻殼係得自Rice Hull Specialties,Stuttgart,AR,於該處研磨來自碾稻工廠之稻殼。首先,以#20網篩將經研磨之稻殼篩過,從而移除較大的顆粒,接著以#80網篩篩過,從而移除較小的顆粒。通過#20網篩且保留於#80網篩上之經研磨之稻殼係用以製造基底墊。塊體密度為約24.73磅/立方呎(390公斤/立方公尺)。於一貯漿池中,藉由混合水及根據表7之組成的板組分來製備一漿料:
除了表4之組分外,添加額外的15重量%(以板之重量計)之碎裂板。
漿料之濃度約為3.0%。將一含有表7組分之均質漿料運送至前端箱,其可提供一穩定的漿料材料流。自前端箱流出之漿料隨後散佈於一具孔之生產線上,以形成一濕基底墊。首先藉由重力將水從生產線排出。藉由在生產線的下方施加一低真空壓(1吋汞柱(25毫米汞柱))來移除額外的水。於兩滾筒間擠壓基底墊之後,藉由在生產線的下方施加一相對高真空壓(5至9吋汞柱(127至229毫米汞柱))來移除額外的水。於一窯內蒸發濕基底墊內之剩餘的水及水分。
在乾燥之後,裁切、研磨、滾筒及噴灑塗覆、戳刺以及紋理化該些基底墊,以成為具有視覺美觀之吸音板,其可為2呎×4呎(0.61公尺×1.22公尺)或2呎×2呎(0.61公尺×0.61公尺)。基底墊特質係列於表8中:
此外,表9所示為經加工修整之吸音板之特質:
實施例6
蕎麥殼係得自Zafu Store,Houston,TX。以一配有0.05吋(1.27毫米)直徑之經穿孔的篩尺寸之Fritz磨粉機來進一步研磨蕎麥殼。研磨蕎麥殼直至所有材料皆通過篩為止。經研磨之蕎麥殼的塊體密度為約24.5磅/立方呎(392公斤/立方公尺)。經研磨之蕎麥殼的尺寸分佈如下:21.0%保留於#20網篩上、47.4%保留於#30網篩上、21.0%保留於#40網篩上、以及5.6%保留於#50網篩上、2.8%保留於#100網篩上、以及2.3%通過#100網篩。
藉由將水與板組分及如表10中所列之不同量的珍珠岩和蕎麥殼混合,以形成一具有約4.5濃度%之漿料。在將水不斷地攪拌的情況下,以下列順序添加組分:新聞紙漿、澱粉、碳酸鈣、經研磨之蕎麥殼、礦棉及經膨脹珍珠岩。攪動漿料約2分鐘。在攪動的最後,添加約0.1重量%之凝聚劑至漿料中。隨後將漿料倒入一尺寸為14吋×14吋×30吋(0.36公尺×0.36公尺×0.76公尺)之成形箱中。
於成形箱的底部,由一金屬網所支撐之纖維玻璃稀洋紗使漿料水自由地排出,同時可保留大部分的固體。可藉由對成形箱施加一低壓真空(1吋汞柱(25毫米汞柱))來移除額外的水。隨後擠壓濕基底墊以移除額外的水並亦加強基底墊結構。最後,濕基底墊係藉由施加一較高壓真空(5至9吋汞柱(127毫米汞柱至229毫米汞柱))來進一步去除水。隨後於一烘箱或窯內,使已成形之板於315℃(600℉)下乾燥30分鐘並於149℃(300℉)下乾燥3小時,以移除剩餘之水分。
於表10中,係使用約10重量%之礦棉,以及約19重量%之新聞紙纖維、約8重量%之澱粉及約6重量%之碳酸鈣來形成板,以板之重量計。珍珠岩及蕎麥殼之量係如下所示。亦列出所得經乾燥之基底墊之特質。
如表所示,含有蕎麥殼之基底墊較具吸音性,其可由比控制組(測試編號1)還要高之eNRC值所指出。
實施例7
作為木糠(pine bedding)之木刨片(wood shaving)係得自American Wood Fiber Inc.,Columbia,MD。以一配有0.050吋(1.27毫米)直徑之經穿孔的篩尺寸之Fritz磨粉機來進一步研磨木刨片。研磨木刨片直至所有材料皆通過篩為止。經研磨之木刨片的塊體密度為約8.9磅/立方呎(143公斤/立方公尺)。經研磨之木刨片的尺寸分佈如下:5.5%保留於#20網篩上、37.6%保留於#30網篩上、24.3%保留於#40網篩上、13.6%保留於#50網篩上、12.6%保留於#100網篩上、以及6.4%通過#100網篩。
藉由將水與板組分及如表11中所列之不同量的珍珠岩和木刨片混合,以形成一具有約4.5濃度%之漿料。在將水不斷地攪拌的情況下,以下列順序添加組分:新聞紙漿、澱粉、碳酸鈣、經研磨之木刨片、礦棉及經膨脹珍珠岩。攪動漿料約2分鐘。在攪動的最後,添加約0.1重量%之凝聚劑至漿料中,以漿料之重量計。隨後將漿料倒入一尺寸為14吋×14吋×30吋(0.36公尺×0.36公尺×0.76公尺)之成形箱中。
於成形箱的底部,由一金屬網所支撐之纖維玻璃稀洋紗使漿料水自由地排出,同時可保留大部分的固體。可藉由對成形箱施加一低壓真空(1吋汞柱(25毫米汞柱))來移除額外的水。隨後將濕基底墊擠壓至一固定濕厚度,以移除額外的水並亦加強基底墊結構。最後,濕基底墊係藉由施加一較高壓真空(5至9吋汞柱(127毫米汞柱至229毫米汞柱))來進一步去除水。隨後於一烘箱或窯內,使已成形之板於315℃(600℉)下乾燥30分鐘並於149℃(300℉)下乾燥3小時,以移除剩餘之水分。
於表11中,係使用約10重量%之礦棉,以及約19重量%之新聞紙纖維、約8重量%之澱粉及約6重量%之碳酸鈣來形成板,以板之重量計。珍珠岩及木刨片之量係如下所示。亦列出所得經乾燥之基底墊之特質。
如表所示,含有經研磨之木刨片的基底墊較具吸音性,其可由比控制組(測試編號1)還要高之eNRC值所指出。
實施例8
麥禾(wheat straw)係得自Galusha Farm in Warrenville,IL。以一配有0.050吋(1.27毫米)直徑之經穿孔的篩尺寸之Fritz磨粉機來進一步研磨麥禾。研磨麥禾直至所有材料皆通過篩為止。經研磨之麥禾的塊體密度為約7.7磅/立方呎(123公斤/立方公尺)。經研磨之麥禾的尺寸分佈如下:3.6%保留於#20網篩上、25.3%保留於#30網篩上、25.4%保留於#40網篩上、19.8%保留於#50網篩上、17.1%保留於#100網篩上、以及8.9%通過#100網篩。
藉由將水與板組分及如表12中所列之不同量的珍珠岩和麥禾混合,以形成一具有約4.5濃度%之漿料。在將水不斷地攪拌的情況下,以下列順序添加組分:新聞紙漿、澱粉、碳酸鈣、經研磨之麥禾、礦棉及經膨脹珍珠岩。攪動漿料約2分鐘。在攪動的最後,添加約0.1重量%之凝聚劑至漿料中,以漿料之重量計。隨後將漿料倒入一尺寸為14吋×14吋×30吋(0.36公尺×0.36公尺×0.76公尺)之成形箱中。
於成形箱的底部,由一金屬網所支撐之纖維玻璃稀洋紗使漿料水自由地排出,同時可保留大部分的固體。可藉由對成形箱施加一低壓真空(1吋汞柱(25毫米汞柱))來移除額外的水。隨後將濕基底墊擠壓至一固定濕厚度,以移除額外的水並亦加強基底墊結構。最後,濕基底墊係藉由施加一較高壓真空(5至9吋汞柱(127毫米汞柱至229毫米汞柱))來進一步去除水。隨後於一烘箱或窯內,使已成形之板於315℃(600℉)下乾燥30分鐘並於149℃(300℉)下乾燥3小時,以移除剩餘之水分。
於表12中,係使用約10重量%之礦棉,以及約19重量%之新聞紙纖維、約8重量%之澱粉及約6重量%之碳酸鈣來形成板,以板之重量計。珍珠岩及麥禾之量係如下所示。亦列出所得經乾燥之基底墊之特質。
如表所示,含有木刨片之基底墊較具吸音性,其可由一比控制組(測試1號)還要高之eNRC值得到證明。
實施例9
從地板掃攏之材料(floor sweeping material)的鋸木屑(saw dust)係得自ZEP,Carterville,GA。鋸木屑之塊體密度為約24.0磅/立方呎(384公斤/立方公尺)。鋸木屑之尺寸分佈如下:9.0%保留於#20網篩上、24.3%保留於#30網篩上、22.7%保留於#40網篩上、以及19.1%保留於#50網篩上、21.4%保留於#100網篩上、以及3.6%通過#100網篩。
藉由將水與板組分及如表13中所列之不同量的珍珠岩和鋸木屑混合,以形成一具有約4.5濃度%之漿料。在將水不斷地攪拌的情況下,以下列順序添加組分:新聞紙漿、澱粉、碳酸鈣、鋸木屑、礦棉及經膨脹珍珠岩。攪動漿料約2分鐘。在攪動的最後,添加約0.1重量%之凝聚劑至漿料中。隨後將漿料倒入一尺寸為14吋×14吋×30吋(0.36公尺×0.36公尺×0.76公尺)之成形箱中。
於成形箱的底部,由一金屬網所支撐之纖維玻璃稀洋紗可使漿料水自由地排出,同時可保留大部分固體。可藉由對成形箱施加一低壓真空(1吋汞柱(25毫米汞柱))來移除額外的水。隨後擠壓濕基底墊以移除額外的水並亦加強基底墊結構。最後,濕基底墊係藉由施加一高壓真空(5至9吋汞柱(127毫米汞柱至229毫米汞柱))來進一步去除水。隨後於一烘箱或窯內,使已成形之板於315℃(600℉)下乾燥30分鐘並於149℃(300℉)下乾燥3小時,以移除剩餘之水分。
於表13中,係使用約10重量%之礦棉,以及約19重量%之新聞紙纖維、約8重量%之澱粉及約6重量%之碳酸鈣來形成板,以板之重量計。珍珠岩及鋸木屑之量係如下所示。亦列出所得經乾燥之基底墊特質。
如表所示,含有鋸木屑之基底墊較具吸音性,其可由一比控制組(測試1號)還要高之eNRC值得到證明。
實施例10
經研磨之玉米芯係得自Kramer Industries Inc.,Piscataway,NJ。經研磨之玉米芯的塊體密度為約18.5磅/立方呎(296公斤/立方公尺)。經研磨之玉米芯的尺寸分佈如下:0.0%保留於#20網篩上、0.1%保留於#30網篩上、1.6%保留於#40網篩上、以及94.1%保留於#50網篩上、4.1%保留於#100網篩上、以及0.2%通過#100網篩。
藉由將水與板組分及如表14中所列之不同量的珍珠岩和經研磨之玉米芯混合,以形成一具有約4.5濃度%之漿料。在將水不斷地攪拌的情況下,以下列順序添加組分:新聞紙漿、澱粉、碳酸鈣、經研磨之玉米芯、礦棉及經膨脹珍珠岩。攪動漿料約2分鐘。在攪動的最後,添加約0.1重量%之凝聚劑至漿料中。隨後將漿料倒入一尺寸為14吋×14吋×30吋(0.36公尺×0.36公尺×0.76公尺)之成形箱中。
於成形箱的底部,由一金屬網所支撐之纖維玻璃稀洋紗可使漿料水自由地排出,同時可保留大部分固體。可藉由對成形箱施加一低壓真空(1吋汞柱(25毫米汞柱))來移除額外的水。隨後擠壓濕基底墊以移除額外的水並亦加強基底墊結構。最後,濕基底墊係藉由施加一高壓真空(5至9吋汞柱(127毫米汞柱至229毫米汞柱))來進一步去除水。隨後於一烘箱或窯內,使已成形之板於315℃(600℉)下乾燥30分鐘並於149℃(300℉)下乾燥3小時,以移除剩餘之水分。
於表14中,係使用約10重量%之礦棉,以及約19重量%之新聞紙纖維、約8重量%之澱粉及約6重量%之碳酸鈣來形成板,以板之重量計。珍珠岩及玉米芯之量係如下所示。亦列出所得經乾燥之基底墊特質。
如表所示,含有經研磨之玉米芯的基底墊較具吸音性,其可由一比控制組(測試1號)還要高之eNRC值得到證明。
實施例11
經研磨之胡桃殼係得自Kramer Industries Inc.,Piscataway,NJ。經研磨之胡桃殼的塊體密度為約44.2磅/立方呎(708公斤/立方公尺)。經研磨之胡桃殼的尺寸分佈如下:0.0%保留於#20網篩上、0.0%保留於#30網篩上、3.9%保留於#40網篩上、以及72.5%保留於#50網篩上、23.2%保留於#100網篩上、以及0.3%通過#100網篩。
藉由將水與板組分及如表15中所列之不同量的珍珠岩和胡桃殼混合,以形成一具有約4.5濃度%之漿料。在將水不斷地攪拌的情況下,以下列順序添加組分:新聞紙漿、澱粉、碳酸鈣、經研磨之胡桃殼、礦棉及經膨脹珍珠岩。攪動漿料約2分鐘。在攪動的最後,添加約0.1重量%之凝聚劑至漿料中。隨後將漿料倒入一尺寸為14吋×14吋×30吋(0.36公尺×0.36公尺×0.76公尺)之成形箱中。
於成形箱的底部,由一金屬網所支撐之纖維玻璃稀洋紗可使漿料水自由地排出,同時可保留大部分固體。可藉由對成形箱施加一低壓真空(1吋汞柱(25毫米汞柱))來移除額外的水。隨後擠壓濕基底墊以移除額外的水並亦加強基底墊結構。最後,濕基底墊係藉由施加一高壓真空(5至9吋汞柱(127毫米汞柱至229毫米汞柱))來進一步去除水。隨後於一烘箱或窯內,使已成形之板於315℃(600℉)下乾燥30分鐘並於149℃(300℉)下乾燥3小時,以移除剩餘之水分。
於表15中,係使用約10重量%之礦棉,以及約19重量%之新聞紙纖維、約8重量%之澱粉及約6重量%之碳酸鈣來形成板,以板之重量計。珍珠岩及胡桃殼之量係如下所示。亦列出所得經乾燥之基底墊特質。
如表所示,含有經研磨之胡桃殼的基底墊較具吸音性,其可由一比控制組(測試1號)還要高之eNRC值得到證明。
實施例12
花生殼係得自一當地的雜貨店。以一裝設有0.05吋(1.27毫米)直徑之經穿孔的篩尺寸之Fritz磨粉機來進一步研磨花生殼。研磨花生殼直至所有材料皆通過篩為止。經研磨之花生殼的塊體密度為約15.2磅/立方呎(243公斤/立方公尺)。經研磨之花生殼的尺寸分佈如下:0.2%保留於#20網篩上、13.1%保留於#30網篩上、31.5%保留於#40網篩上、以及19.8%保留於#50網篩上、29.2%保留於#100網篩上、以及6.1%通過#100網篩。
藉由將水與板組分及如表16中所列之不同量的珍珠岩和花生殼混合,以形成一具有約4.5濃度%之漿料。在將水不斷地攪拌的情況下,以下列順序添加組分:新聞紙漿、澱粉、碳酸鈣、經研磨之花生殼、礦棉及經膨脹珍珠岩。攪動漿料約2分鐘。在攪動的最後,添加約0.1重量%之凝聚劑至漿料中。隨後將漿料倒入一尺寸為14吋×14吋×30吋(0.36公尺×0.36公尺×0.76公尺)之成形箱中。
於成形箱的底部,由一金屬網所支撐之纖維玻璃稀洋紗可使漿料水自由地排出,同時可保留大部分固體。可藉由對成形箱施加一低壓真空(1吋汞柱(25毫米汞柱))來移除額外的水。隨後擠壓濕基底墊以移除額外的水並亦加強基底墊結構。最後,濕基底墊係藉由施加一高壓真空(5至9吋汞柱(127毫米汞柱至229毫米汞柱))來進一步去除水。隨後於一烘箱或窯內,使已成形之板於315℃(600℉)下乾燥30分鐘並於149℃(300℉)下乾燥3小時,以移除剩餘之水分。
於表16中,係使用約10重量%之礦棉,以及約19重量%之新聞紙纖維、約8重量%之澱粉及約6重量%之碳酸鈣來形成板,以板之重量計。珍珠岩及花生殼之量係如下所示。亦列出所得經乾燥之基底墊特質。
如表所示,含有經研磨之花生殼的基底墊較具吸音性,其可由一比控制組(測試1號)還要高之eNRC值得到證明。
實施例13
葵花籽殼係得自Archer Deniels Midland,ND。經研磨之葵花籽殼的塊體密度為約12.4磅/立方呎(199公斤/立方公尺)。經研磨之葵花籽殼的尺寸分佈如下:0.1%保留於#20網篩上、8.9%保留於#30網篩上、30.3%保留於#40網篩上、以及29.3%保留於#50網篩上、23.9%保留於#100網篩上、以及7.5%通過#100網篩。
藉由將水與板組分及如表17中所列之不同量的珍珠岩和經研磨之葵花籽殼混合,以形成一具有約4.5濃度%之漿料。在將水不斷地攪拌的情況下,以下列順序添加組分:新聞紙漿、澱粉、碳酸鈣、經研磨之葵花籽殼、礦棉及經膨脹珍珠岩。攪動漿料約2分鐘。在攪動的最後,添加約0.1重量%之凝聚劑至漿料中。隨後將漿料倒入一尺寸為14吋×14吋×30吋(0.36公尺×0.36公尺×0.76公尺)之成形箱中。
於成形箱的底部,由一金屬網所支撐之纖維玻璃稀洋紗可使漿料水自由地排出,同時可保留大部分固體。可藉由對成形箱施加一低壓真空(1吋汞柱(25毫米汞柱))來移除額外的水。隨後擠壓濕基底墊以移除額外的水並亦加強基底墊結構。最後,濕基底墊係藉由施加一高壓真空(5至9吋汞柱(127毫米汞柱至229毫米汞柱))來進一步去除水。隨後於一烘箱或窯內,使已成形之板於315℃(600℉)下乾燥30分鐘並於149℃(300℉)下乾燥3小時,以移除剩餘之水分。
於表17中,係使用約10重量%之礦棉,以及約19重量%之新聞紙纖維、約8重量%之澱粉及約6重量%之碳酸鈣來形成板,以板之重量計。珍珠岩及葵花籽殼之量係如下所示。亦列出所得經乾燥之基底墊特質。
如表所示,含有經研磨之葵花籽殼的基底墊較具吸音性,其可由一比控制組(測試1號)還要高之eNRC值得到證明。
儘管本文中所示及所述為作為建築材料之含有一可再生成分的板之特定實施態樣,應瞭解熟悉本領域技術者可經由上述說明來改變或修改,而不背離本發明之較廣範圍,如後附申請專利範圍所界定。

Claims (15)

  1. 一種用作建築材料之板,該板係自一含水漿料形成,該含水漿料包含無機纖維成分、澱粉、水以及一可再生成分,在移除水後,該板之約0.1重量%至約95重量%係該可再生成分;其中,該板具有以下之至少一者:至少約25之天花板衰減等級(Ceiling Attenuation Class value,CAC)值、至少約0.25之噪音降低係數(Noise Reduction Coefficient,NRC)值、及至少約25之聲音穿透等級(Sound Transmission Class,STC)值。
  2. 如請求項1所述之板,其中該可再生成分包含稻殼。
  3. 如請求項1所述之板,具有至少約0.20之估計噪音降低係數(estimated Noise Reduction Coefficient,eNRC)值。
  4. 如請求項1所述之板,具有小於8毫帕‧秒/平方公尺(mPa˙s/m2 )之氣流阻力。
  5. 如請求項1所述之板,具有至少約80磅/平方吋(pounds per square inch,psi)之斷裂模數(Modulus of Rupture,MOR)值。
  6. 如請求項1所述之板,具有約7磅/立方呎(lbs/ft3 )至約30磅/立方呎(lbs/ft3 )之塊體密度。
  7. 如請求項1所述之板,具有約0.2吋至約1.5吋之厚度。
  8. 如請求項1所述之板,其於90%RH濕氣室中之下垂度值少於約1.5吋。
  9. 如請求項1所述之板,具有低於約25之火焰擴散指數。
  10. 如請求項1所述之板,具有低於約50之煙霧生成指數。
  11. 如請求項1所述之板,其中該可再生成分包含少於約5重量%顆粒,其係保留於一具有約0.312吋之開口的網篩(mesh screen)。
  12. 如請求項1所述之板,其中該可再生成分包含少於約5重量%顆粒,其係保留於一具有約0.132吋之開口的網篩。
  13. 如請求項1所述之板,其中該可再生成分包含少於約5重量%顆粒,其係保留於一具有約0.022吋之開口的網篩。
  14. 如請求項1所述之板,其中該可再生成分之塊體密度係5至50磅/立方呎(lbs/ft3 )。
  15. 一種用作建築材料之板,該板係自一含水漿料形成,該含水漿料包含無機纖維成分、澱粉、水以及一可再生成分,在移除水後,該板之約0.1重量%至約95重量%係該可再生成分,該可再生成分係經縮小尺寸使得該可再生成分之不多於5重量%保留於一具有約0.312吋之開口的網篩;其中,該板具有以下之至少一者:至少約25之天花板衰減等級值、至少約0.25之噪音降低係數值、及至少約25之聲音穿透等級值。
TW098112160A 2008-04-18 2009-04-13 含可再生成分之板及其製造方法 TWI460339B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/106,077 US7935223B2 (en) 2008-04-18 2008-04-18 Panels including renewable components and methods for manufacturing
US12/414,313 US8133357B2 (en) 2008-04-18 2009-03-30 Panels including renewable components and methods for manufacturing same

Publications (2)

Publication Number Publication Date
TW201006992A TW201006992A (en) 2010-02-16
TWI460339B true TWI460339B (zh) 2014-11-11

Family

ID=43332969

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098112160A TWI460339B (zh) 2008-04-18 2009-04-13 含可再生成分之板及其製造方法

Country Status (13)

Country Link
EP (1) EP2310588A4 (zh)
JP (1) JP5691097B2 (zh)
KR (1) KR101633779B1 (zh)
CN (2) CN105178462A (zh)
BR (1) BRPI0907357B1 (zh)
CA (1) CA2721574C (zh)
CO (1) CO6311022A2 (zh)
MX (1) MX2010011031A (zh)
MY (1) MY157316A (zh)
RU (1) RU2507349C2 (zh)
TW (1) TWI460339B (zh)
WO (1) WO2009129051A2 (zh)
ZA (1) ZA201007103B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2344884B1 (es) * 2010-04-07 2011-06-30 Alejandro Barreras Perez Procedimiento para la fabricacion de placas aislantes y placa aislante obtenida.
EA033684B1 (ru) 2011-11-14 2019-11-15 Spc Sunflower Plastic Compound Gmbh Биокомпозит на основе кожуры или шелухи семян подсолнечника
US10399899B2 (en) 2012-10-23 2019-09-03 United States Gypsum Company Pregelatinized starch with mid-range viscosity, and product, slurry and methods related thereto
US9828441B2 (en) 2012-10-23 2017-11-28 United States Gypsum Company Method of preparing pregelatinized, partially hydrolyzed starch and related methods and products
US9540810B2 (en) 2012-10-23 2017-01-10 United States Gypsum Company Pregelatinized starch with mid-range viscosity, and product, slurry and methods related thereto
CN103103892B (zh) * 2012-12-27 2015-05-13 山东轻工业学院 一种纳米TiO2吸音纸板的制备方法
CA3026440A1 (en) * 2016-06-17 2017-12-21 Armstrong World Industries, Inc. Pelletization of recycled ceiling materials
US10696594B2 (en) * 2017-08-11 2020-06-30 Usg Interiors, Llc High noise reduction coefficient, low density acoustical tiles
CN108687928A (zh) * 2018-05-25 2018-10-23 柳州市林道科技有限公司 一种环保人造板及其制造工艺
CN110757917B (zh) * 2019-11-08 2022-02-11 中南林业科技大学 一种桉木单板贴面木基复合板材及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5463514A (en) * 1977-10-29 1979-05-22 Hideo Fukuda Sounddproof panel having composite front plate
CN1122860A (zh) * 1994-08-31 1996-05-22 三菱电机家用机器株式会社 采用多孔材料的吸声装置
US20070042658A1 (en) * 2005-02-14 2007-02-22 Hni Technologies Inc. Fiber-containing article and method of manufacture

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7004A (en) * 1850-01-08 Connecting ctjttees to shafts of boeing instetjments
JPS5872441A (ja) * 1981-10-28 1983-04-30 松下電工株式会社 吸音パネル
CA1330291C (en) * 1987-01-12 1994-06-21 David Graham Izard Low density frothed mineral wool panel and method
DE68905247T2 (de) * 1988-06-23 1993-10-07 Celotex Corp Mineralfaser-Akustikplatte und Verfahren zu ihrer Herstellung.
RU2034965C1 (ru) * 1992-04-23 1995-05-10 Масленников Борис Иванович Теплозвукоизоляционная панель
CN1024342C (zh) * 1992-06-12 1994-04-27 山东建筑材料工业学院 一年生植物纤维水泥复合板的制备方法
KR960007958B1 (ko) * 1993-12-10 1996-06-17 재단법인 한국전자통신연구소 신호망 관리 시스템의 루팅제원 관리 방법
US5558710A (en) * 1994-08-08 1996-09-24 Usg Interiors, Inc. Gypsum/cellulosic fiber acoustical tile composition
US5656129A (en) * 1995-05-31 1997-08-12 Masonite Corporation Method of producing fibers from a straw and board products made therefrom
EP0808953B1 (de) * 1996-05-22 2002-02-06 ERB, Gottfried Dämmaterial aus Naturprodukten und Herstellungsverfahren dafür
US20020096278A1 (en) * 2000-05-24 2002-07-25 Armstrong World Industries, Inc. Durable acoustical panel and method of making the same
KR20020009249A (ko) * 2000-07-25 2002-02-01 조송준 건축 내외장재용 조성물 및 그 제조방법
KR200238704Y1 (ko) * 2001-01-04 2001-09-26 (주)남산건설 코코넛 섬유 (Fiber)를 이용한 흡음재
JP5512062B2 (ja) * 2001-04-03 2014-06-04 アームストロング ワールド インダストリーズ インコーポレーテッド 耐久性の多孔性物品およびその製造プロセス
US20030134553A1 (en) * 2002-01-14 2003-07-17 L.S.I. (420) Import Export And Marketing Ltd. Sound absorbing article
DE10260922A1 (de) * 2002-12-20 2004-07-15 Schmidt, Axel H. Dämpfungsmaterial und Grundstoff zu dessen Herstellung
DE102004024251A1 (de) * 2004-05-11 2005-12-08 Igv Institut Für Getreideverarbeitung Gmbh Verfahren und Anlage zur Herstellung von geformten Schaummaterialien auf der Basis von proteinhaltigen Bipolymeren
DE102004056131B4 (de) * 2004-11-16 2006-08-31 Kronotec Ag Schalldämmplatte
CN200989028Y (zh) * 2006-01-13 2007-12-12 张晓会 高效保温节能绿色多功能复合墙板
US7503430B2 (en) * 2006-09-07 2009-03-17 Usg Interiors, Inc. Reduced dust acoustic panel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5463514A (en) * 1977-10-29 1979-05-22 Hideo Fukuda Sounddproof panel having composite front plate
CN1122860A (zh) * 1994-08-31 1996-05-22 三菱电机家用机器株式会社 采用多孔材料的吸声装置
US20070042658A1 (en) * 2005-02-14 2007-02-22 Hni Technologies Inc. Fiber-containing article and method of manufacture

Also Published As

Publication number Publication date
JP5691097B2 (ja) 2015-04-01
CA2721574A1 (en) 2009-10-22
CN102007255A (zh) 2011-04-06
CN105178462A (zh) 2015-12-23
RU2507349C2 (ru) 2014-02-20
RU2010143122A (ru) 2012-05-27
CA2721574C (en) 2018-05-01
MX2010011031A (es) 2010-11-05
KR20110021785A (ko) 2011-03-04
KR101633779B1 (ko) 2016-06-27
WO2009129051A2 (en) 2009-10-22
CO6311022A2 (es) 2011-08-22
JP2011518266A (ja) 2011-06-23
MY157316A (en) 2016-05-31
EP2310588A2 (en) 2011-04-20
TW201006992A (en) 2010-02-16
ZA201007103B (en) 2011-07-27
WO2009129051A3 (en) 2009-12-17
BRPI0907357A2 (pt) 2015-10-13
EP2310588A4 (en) 2014-10-29
BRPI0907357B1 (pt) 2019-04-09

Similar Documents

Publication Publication Date Title
JP6250007B2 (ja) 再生可能な構成材を含むパネル及びその製造方法
TWI460339B (zh) 含可再生成分之板及其製造方法
US7935223B2 (en) Panels including renewable components and methods for manufacturing
EP3353132B1 (en) Acoustical ceiling tile
JP7297218B2 (ja) 高ノイズ低減係数、低密度音響タイル

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees